CN103472420A - Method for obtaining high resolution nuclear magnetic resonance heteronuclear spectrogram in unknown spatial distribution magnetic field - Google Patents
Method for obtaining high resolution nuclear magnetic resonance heteronuclear spectrogram in unknown spatial distribution magnetic field Download PDFInfo
- Publication number
- CN103472420A CN103472420A CN2013104618367A CN201310461836A CN103472420A CN 103472420 A CN103472420 A CN 103472420A CN 2013104618367 A CN2013104618367 A CN 2013104618367A CN 201310461836 A CN201310461836 A CN 201310461836A CN 103472420 A CN103472420 A CN 103472420A
- Authority
- CN
- China
- Prior art keywords
- dimensional
- sampling
- spatial
- heteronuclear
- sampling mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000005481 NMR spectroscopy Methods 0.000 title claims abstract description 27
- 238000005070 sampling Methods 0.000 claims abstract description 79
- 238000001228 spectrum Methods 0.000 claims abstract description 45
- 239000011159 matrix material Substances 0.000 claims abstract description 16
- 230000008569 process Effects 0.000 claims abstract description 4
- 230000003595 spectral effect Effects 0.000 claims description 4
- 238000012565 NMR experiment Methods 0.000 claims description 2
- 238000002474 experimental method Methods 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 230000005284 excitation Effects 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 230000008878 coupling Effects 0.000 description 10
- 150000002431 hydrogen Chemical class 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 238000000990 heteronuclear single quantum coherence spectrum Methods 0.000 description 7
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 6
- 238000002595 magnetic resonance imaging Methods 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000001427 coherent effect Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 4
- 238000005400 testing for adjacent nuclei with gyration operator Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000005100 correlation spectroscopy Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000001911 insensitive nuclei enhancement by polarisation transfer Methods 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003929 heteronuclear multiple quantum coherence Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005084 2D-nuclear magnetic resonance Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000068 bilinear rotation decoupling pulse sequence Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000005570 heteronuclear single quantum coherence Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- MFBOGIVSZKQAPD-UHFFFAOYSA-M sodium butyrate Chemical compound [Na+].CCCC([O-])=O MFBOGIVSZKQAPD-UHFFFAOYSA-M 0.000 description 1
- MFBOGIVSZKQAPD-VZHAHHFWSA-M sodium;butanoate Chemical compound [Na+].CCC[13C]([O-])=O MFBOGIVSZKQAPD-VZHAHHFWSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000004288 spin-echo correlated spectroscopy Methods 0.000 description 1
Images
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
未知空间分布磁场下获取高分辨核磁共振异核谱图的方法,涉及核磁共振。根据实验要求判断是信噪比优先还是采样效率优先,若信噪比优先,则使用三维采样模式;若采样效率优先,则使用空间编解码采样模式;设定序列参数后对样品进行采样,采样结束后存储实验数据;对存储的实验数据进行处理,若使用的实验数据由三维采样模式得到,则将实验数据构建成三维时域矩阵,只需对该矩阵进行三维傅里叶变换,即可得到实验谱图;若使用的数据由空间编解码采样模式得到,则首先将每一条长为np个点数的数据串分割为np1×ND,随后与间接F3维构成一个三维矩阵,只对三维矩阵的F2与F3维进行傅里叶变换即获取高分辨核磁共振异核谱图。
The invention relates to a method for obtaining a high-resolution nuclear magnetic resonance heteronuclear spectrum under an unknown spatially distributed magnetic field, involving nuclear magnetic resonance. According to the experimental requirements, it is judged whether the signal-to-noise ratio is the priority or the sampling efficiency is the priority. If the signal-to-noise ratio is the priority, use the three-dimensional sampling mode; if the sampling efficiency is the priority, use the spatial codec sampling mode; Store the experimental data after the end; process the stored experimental data, if the experimental data used is obtained by the three-dimensional sampling mode, then construct the experimental data into a three-dimensional time-domain matrix, and only need to perform a three-dimensional Fourier transform on the matrix. Obtain the experimental spectrogram; if the data used is obtained by the spatial codec sampling mode, first divide each data string with a length of np points into np1×N D , and then form a three-dimensional matrix with the indirect F3 dimension, only for three-dimensional The F2 and F3 dimensions of the matrix are Fourier transformed to obtain a high-resolution NMR heteronuclear spectrum.
Description
技术领域technical field
本发明涉及核磁共振(NMR,Nuclear Magnetic Resonance),尤其是涉及未知空间分布磁场下获取高分辨核磁共振异核谱图的方法。The invention relates to nuclear magnetic resonance (NMR, Nuclear Magnetic Resonance), in particular to a method for obtaining a high-resolution nuclear magnetic resonance heteronuclear spectrum under an unknown spatially distributed magnetic field.
背景技术Background technique
NMR现已成为最有效且使用广泛的检测手段之一。如今,复杂有机分子的结构解析相当依赖于质子检测的异核NMR技术。在这些技术中,异核单量子相干HSQC(HeteronuclearSingular Quantum Correlation),异核多量子相干HMQC(Heteronuclear MultipleQuantumCorrelation),异核多重键相关HMBC(Heteronuclear Multiple Bond Correlation)便是最重要的2D NMR方法。HSQC,HMQC是通过化学键直接相连的相关谱,而HMBC是通过相隔一键以上化学键相连的相关谱。早期的异核二维相关实验是直接观测13C,15N等不灵敏核,获得的是它们与1H的偶合相关信息。但是因为13C,15N的天然丰度极低,NMR信号非常弱,测一维谱有很大的困难,需要累加多次,获取一张二维谱所用的时间就更长,严重影响了异核二维谱的广泛应用。反式检测异核二维相关谱实验的提出,如异核多量子相干HMQC实验,取代了早期的异核相关谱(HETCOR)实验。HMQC实验观测的是1H的自由感应衰减FID(FreeInduction Decay)信号,通过核间偶合间接观测不灵敏核的化学位移。与记录不灵敏核FID的HETCOR实验相比,信噪比有很大的提高。NMR反式检测的灵敏度最大为(γH)5/2,1H的磁旋比γH约为13C磁旋比γC的4倍,(γH)5/2:(γC)5/2=32,因此用HMQC实验检测相关信号增强32倍。如今最常用的异核二维谱为HSQC、HMQC和HMBC,通常多为13C-1H偶合系统,此外15N-1H,29Si-1H系统也有广泛的应用。NMR has become one of the most effective and widely used detection methods. Today, structural elucidation of complex organic molecules relies heavily on proton-detecting heteronuclear NMR techniques. Among these technologies, heteronuclear single quantum coherence HSQC (Heteronuclear Singular Quantum Correlation), heteronuclear multiple quantum coherence HMQC (Heteronuclear Multiple Quantum Correlation), and heteronuclear multiple bond correlation HMBC (Heteronuclear Multiple Bond Correlation) are the most important 2D NMR methods. HSQC and HMQC are related spectra connected directly by chemical bonds, while HMBC is related spectra connected by chemical bonds separated by more than one bond. The early two-dimensional heteronuclear correlation experiments were to directly observe insensitive nuclei such as 13 C and 15 N, and obtain information about their coupling with 1 H. However, because the natural abundance of 13 C and 15 N is extremely low, and the NMR signal is very weak, it is very difficult to measure the one-dimensional spectrum. It needs to be accumulated many times, and it takes longer to obtain a two-dimensional spectrum, which seriously affects the heteronuclear spectrum. Wide application of two-dimensional spectroscopy. The proposal of trans-detection heteronuclear two-dimensional correlation spectroscopy experiments, such as the heteronuclear multiple quantum coherence HMQC experiment, replaced the earlier heteronuclear correlation spectroscopy (HETCOR) experiment. The HMQC experiment observes the 1 H free induction decay FID (FreeInduction Decay) signal, and indirectly observes the chemical shift of the insensitive nucleus through internuclear coupling. Compared to HETCOR experiments recording insensitive nuclear FID, the signal-to-noise ratio is greatly improved. The maximum sensitivity of NMR trans detection is (γ H ) 5/2 , the magnetic gyro ratio γ H of 1 H is about 4 times that of 13 C γ C , (γ H ) 5/2 : (γ C ) 5 /2 = 32, so the HMQC experiment detects that the correlation signal is enhanced by 32 times. Nowadays, the most commonly used heteronuclear two-dimensional spectra are HSQC, HMQC and HMBC, usually 13 C- 1 H coupling systems, and 15 N- 1 H, 29 Si- 1 H systems are also widely used.
近年来,磁共振成像技术(MRI,Magnetic Resonance Imaging)在诸如形态学、功能及代谢等方面有惊人的发展。无论是无生命的固体、液体,或是有机生命体,多数应用都依赖于高度均匀的静磁场B0,空间变化率小于10-9。因此不同原子核周围环境的细微差异都会导致化学位移和偶合信息有着明显不同。然而理想条件下的高度均匀场通常是无法实现的,如在非原位NMR实验中,研究对象放置在磁体外[1,2];在阻抗式高场中或使用的是混合磁体[3,4];样品(包括动物和人体)有脉动或呼吸等运动,更不用说由空隙和外科植入物引入的磁场不均匀性[5,6]。许多方法被提出来用于获得高分辨谱。自旋回波方法[7,8]可以重聚不均匀场得到偶合信息产生回波调制[9-11]。若场图的空间分布已知,则可以使用设计好的与之匹配的射频场用来抵消不均匀场。有两种方法可以实现:第一种方法是设计射频场B1(r)来匹配B0(r)[12-14],射频场的相移可通过B0场校正;第二种方法参照单扫描实验方式[15,16],用已知梯度场补偿不同体素的磁化矢量的相位,达到消除不均匀场的目的。两种方法中的不均匀场都必须与时间无关,且其空间分布必须已知,而这成为了一个很大的障碍。Pelupessy等人[17]提出了单次扫描内通过追踪两个不同自旋间的进动频率之差[18,19]来获得不均匀场下的高分辨谱。In recent years, Magnetic Resonance Imaging (MRI, Magnetic Resonance Imaging) has made amazing developments in aspects such as morphology, function and metabolism. Whether it is an inanimate solid, liquid, or organic life, most applications rely on a highly uniform static magnetic field B 0 with a spatial variation rate of less than 10 -9 . Therefore, slight differences in the surrounding environment of different nuclei can lead to significantly different chemical shifts and coupling information. However, a highly uniform field under ideal conditions is usually unattainable. For example, in ex-situ NMR experiments, the research object is placed outside the magnet [1,2] ; in impedance high-field or using a hybrid magnet [3, 4] ; samples (including animals and humans) have motions such as pulsation or breathing, not to mention magnetic field inhomogeneities introduced by air gaps and surgical implants [5,6] . Many methods have been proposed for obtaining high-resolution spectra. The spin echo method [7,8] can refocus inhomogeneous fields to obtain coupling information to generate echo modulation [9-11] . If the spatial distribution of the field pattern is known, a designed matching RF field can be used to cancel the inhomogeneous field. There are two ways to achieve this: the first method is to design the RF field B 1 (r) to match B 0 (r) [12-14] , and the phase shift of the RF field can be corrected by the B 0 field; the second method refers to The single-scan experiment method [15,16] uses the known gradient field to compensate the phase of the magnetization vector of different voxels to achieve the purpose of eliminating the inhomogeneous field. In both approaches the inhomogeneous field has to be time-independent and its spatial distribution must be known, which becomes a big hurdle. Pelupessy et al. [17] proposed to obtain a high-resolution spectrum under an inhomogeneous field by tracking the precession frequency difference between two different spins in a single scan [18,19] .
基于偶极场调制技术是通过不同分子自旋间的远程偶极相互作用追踪自旋的进动频率来消除不均匀场的影响。通常情况下偶极相关距离(通常在10~100μm)远小于样品的尺寸,而偶极相关距离内的磁场相对均匀,对信号线宽影响较小,因此iMQC在不均匀场高分辨谱方面具有诱人的应用前景。Based on the dipole field modulation technique, the effect of the inhomogeneous field is eliminated by tracking the precession frequency of the spins through the long-range dipole interaction between different molecular spins. In general, the dipole correlation distance (usually 10-100 μm) is much smaller than the size of the sample, and the magnetic field within the dipole correlation distance is relatively uniform, which has little influence on the signal line width. Therefore, iMQC has the advantages of inhomogeneous field high resolution spectrum Attractive application prospects.
参考文献:references:
[1]G Eidmann,R Savelsberg,P Blümler,et al.The NMR MOUSE:a mobile universal surfaceexplorer[J].Journal of Magnetic Resonance,Series A,1996,122(1):104-109.[1] G Eidmann, R Savelsberg, P Blümler, et al. The NMR MOUSE: a mobile universal surface explorer [J]. Journal of Magnetic Resonance, Series A, 1996, 122(1): 104-109.
[2]B Blümich,J Perlo and F Casanova.Mobile single-sided NMR[J].Progress in NuclearMagnetic Resonance Spectroscopy,2008,52(4):197-269.[2] B Blümich, J Perlo and F Casanova. Mobile single-sided NMR [J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2008, 52(4): 197-269.
[3]YY Lin,S Ahn,N Murali,et al.High-resolution,>1GHz NMR in unstable magnetic fields[J].Physical Review Letters,2000,85(17):3732-3735.[3]YY Lin, S Ahn, N Murali, et al.High-resolution,>1GHz NMR in unstable magnetic fields[J].Physical Review Letters,2000,85(17):3732-3735.
[4]Boaz Shapira,Kiran Shetty,William W Brey,et al.Single-scan2D NMR spectroscopy ona25T bitter magnet[J].Chemical Physics Letters,2007,442(4):478-482.[4]Boaz Shapira, Kiran Shetty, William W Brey, et al.Single-scan2D NMR spectroscopy ona25T bitter magnet[J].Chemical Physics Letters,2007,442(4):478-482.
[5]I Jane Cox,Graeme M Bydder,David G Gadian,et al.The effect of magnetic susceptibilityvariations in NMR imaging and NMR spectroscopy in vivo[J].Journal of Magnetic Resonance,1986,70(1):163-168.[5] I Jane Cox, Graeme M Bydder, David G Gadian, et al. The effect of magnetic susceptibility variations in NMR imaging and NMR spectroscopy in vivo[J]. Journal of Magnetic Resonance, 1986, 70(1): 163-168 .
[6]Carolyn E Mountford,Sinead Doran,Cynthia L Lean,et al.Proton MRS can determine thepathology of human cancers with a high level of accuracy[J].Chemical Reviews,2004,104(8):3677-3704.[6]Carolyn E Mountford, Sinead Doran, Cynthia L Lean, et al.Proton MRS can determine the pathology of human cancers with a high level of accuracy[J].Chemical Reviews,2004,104(8):3677-3704.
[7]Erwin L Hahn.Spin echoes[J].Physical Review,1950,80(4):580.[7]Erwin L Hahn.Spin echoes[J].Physical Review,1950,80(4):580.
[8]Herman Y Carr and Edward M Purcell.Effects of diffusion on free precession in nuclearmagnetic resonance experiments[J].Physical Review,1954,94(3):630.[8]Herman Y Carr and Edward M Purcell.Effects of diffusion on free precipitation in nuclear magnetic resonance experiments[J].Physical Review,1954,94(3):630.
[9]EL Hahn and DE Maxwell.Spin echo measurements of nuclear spin coupling in molecules[J].Physical Review,1952,88(5):1070.[9] EL Hahn and DE Maxwell.Spin echo measurements of nuclear spin coupling in molecules[J].Physical Review,1952,88(5):1070.
[10]RL Vold and SO Chan.Modulated spin echo trains from liquid crystals[J].The Journalof Chemical Physics,1970,53(1):449-451.[10]RL Vold and SO Chan.Modulated spin echo trains from liquid crystals[J].The Journal of Chemical Physics,1970,53(1):449-451.
[11]Ray Freeman and HDW Hill.High-resolution study of NMR spin echoes:“J spectra”[J].The Journal of Chemical Physics,1971,54:301-313.[11]Ray Freeman and HDW Hill.High-resolution study of NMR spin echoes: "J spectrum"[J].The Journal of Chemical Physics,1971,54:301-313.
[12]Carlos A Meriles,Dimitris Sakellariou,Henrike Heise,et al.Approach tohigh-resolution ex situ NMR spectroscopy[J].Science,2001,293(5527):82-85.[12] Carlos A Meriles, Dimitris Sakellariou, Henrike Heise, et al. Approach to high-resolution ex situ NMR spectroscopy [J]. Science, 2001, 293(5527): 82-85.
[13]Juan Perlo,Vasiliki Demas,Federico Casanova,et al.High-resolution NMRspectroscopy with a portable single-sided sensor[J].Science,2005,308(5726):1279-1279.[13] Juan Perlo, Vasiliki Demas, Federico Casanova, et al. High-resolution NMRspectroscopy with a portable single-sided sensor [J]. Science, 2005, 308(5726): 1279-1279.
[14]Vasiliki Demas,Carlos Meriles,Dimitris Sakellariou,et al.Toward ex situphase-encoded spectroscopic imaging[J].Concepts in Magnetic Resonance Part B:MagneticResonance Engineering,2006,29(3):137-144.[14] Vasiliki Demas, Carlos Meriles, Dimitris Sakellariou, et al. Toward ex situation-encoded spectroscopic imaging [J]. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 2006,29(3):137-144.
[15]Boaz Shapira and Lucio Frydman.Spatial encoding and the acquisition ofhigh-resolution NMR Spectra in inhomogeneous magnetic fields[J].Journal of The AmericanChemical Society,2004,126(23):7184-7185.[15]Boaz Shapira and Lucio Frydman.Spatial encoding and the acquisition of high-resolution NMR Spectra in inhomogeneous magnetic fields[J].Journal of The American Chemical Society,2004,126(23):7184-7185.
[16]B.Shapira and L.Frydman.Spatially encoded pulse sequences for the acquisition ofhigh resolution NMR spectra in inhomogeneous fields[J].Journal of Magnetic Resonance,2006,182(1):12-21.[16]B.Shapira and L.Frydman.Spatially encoded pulse sequences for the acquisition of high resolution NMR spectrum in inhomogeneous fields[J].Journal of Magnetic Resonance,2006,182(1):12-21.
[17]P.Pelupessy,E.Rennella and G.Bodenhausen.High-resolution NMR in magneticfields with unknown spatiotemporal variations[J].Science,2009,324(5935):1693-7.[17]P.Pelupessy,E.Rennella and G.Bodenhausen.High-resolution NMR in magneticfields with unknown spatialtemporal variations[J].Science,2009,324(5935):1693-7.
[18]A Wokaun and Richard R Ernst.Selective detection of multiple quantum transitions inNMR by two-dimensional spectroscopy[J].Chemical Physics Letters,1977,52(3):407-412.[18]A Wokaun and Richard R Ernst.Selective detection of multiple quantum transitions inNMR by two-dimensional spectroscopy[J].Chemical Physics Letters,1977,52(3):407-412.
[19]K Nagayama,K Wüthrich and RR Ernst.Two-dimensional spin echo correlatedspectroscopy(SECSY)for1H NMR studies of biological macromolecules[J].Biochemical andBiophysical Research Communications,1979,90(1):305-311.[19] K Nagayama, K Wüthrich and RR Ernst. Two-dimensional spin echo correlated spectroscopy (SECSY) for 1 H NMR studies of biological macromolecules [J]. Biochemical and Biophysical Research Communications, 1979, 90(1): 305-311.
发明内容Contents of the invention
本发明的目的是提供一种可消除磁共振检测中磁场不均匀的影响,从而提高谱图分辨率的未知空间分布磁场下获取高分辨核磁共振异核谱图的方法。The purpose of the present invention is to provide a method for obtaining high-resolution nuclear magnetic resonance heteronuclear spectra under an unknown spatially distributed magnetic field that can eliminate the influence of magnetic field inhomogeneity in magnetic resonance detection, thereby improving the resolution of the spectra.
本发明包括以下步骤:The present invention comprises the following steps:
1)根据实验要求判断是信噪比优先还是采样效率优先,若信噪比优先,则使用三维采样模式;若采样效率优先,则使用空间编解码采样模式;1) Determine whether the signal-to-noise ratio or the sampling efficiency is prioritized according to the experimental requirements. If the signal-to-noise ratio is prioritized, use the three-dimensional sampling mode; if the sampling efficiency is prioritized, use the spatial codec sampling mode;
2)设定序列参数;2) Set sequence parameters;
3)完成序列参数设定后对样品进行采样,采样结束后存储实验数据;3) Sample the sample after completing the sequence parameter setting, and store the experimental data after sampling;
4)对存储的实验数据进行处理,若使用的实验数据由三维采样模式得到,则将实验数据构建成三维时域矩阵,只需对该矩阵进行三维傅里叶变换,即可得到实验谱图;若使用的数据由空间编解码采样模式得到,则需要首先将每一条长为np个点数的数据串分割为np1×ND(其中np1对应于空间编码F1维,ND对应为直接采样F2维),随后与间接F3维构成一个三维矩阵,只需要对这个三维矩阵的F2与F3维进行傅里叶变换即可在未知空间分布磁场下获取高分辨核磁共振异核谱图。4) Process the stored experimental data. If the experimental data used is obtained by the three-dimensional sampling mode, the experimental data is constructed into a three-dimensional time-domain matrix, and the experimental spectrum can be obtained by performing a three-dimensional Fourier transform on the matrix ; If the data used is obtained by the spatial encoding and decoding sampling mode, it is necessary to first divide each data string with a length of np points into np1×N D (wherein np1 corresponds to the spatial encoding F1 dimension, and N D corresponds to the direct sampling F2 dimension), and then form a three-dimensional matrix with the indirect F3 dimension, and only need to perform Fourier transform on the F2 and F3 dimensions of this three-dimensional matrix to obtain a high-resolution nuclear magnetic resonance heteronuclear spectrum under an unknown spatially distributed magnetic field.
在步骤2)中,所述设定序列参数的具体方法可为:若采用三维采样模式,则只需要设定序列中所有脉冲宽度与功率,设定方法与核磁共振常规实验相同;若采用空间编解码采样模式,则需要使用核磁共振谱仪的脉冲生成工具箱产生线性调频chirp脉冲,并将该脉冲设置至空间编解码模块中,根据实验样品谱宽信息设定编解码梯度大小与时间至基于J偶合调制采样的空间编解码模块中。In step 2), the specific method for setting the sequence parameters can be: if the three-dimensional sampling mode is adopted, it is only necessary to set the width and power of all pulses in the sequence, and the setting method is the same as that of the conventional nuclear magnetic resonance experiment; if the spatial In the codec sampling mode, you need to use the pulse generation toolbox of the nuclear magnetic resonance spectrometer to generate a chirp pulse, and set the pulse to the spatial codec module, and set the codec gradient size and time to In the spatial codec module based on J-coupled modulation sampling.
本发明基于偶极场调制方法提出了在未知空间分布的磁场下获取二维高分辨异核谱的方法,该技术的脉冲序列含有两种采样方式,三维采样方式可以获取二维高分辨异核相关信息;空间编解码采样方式可以获取三维高分信息,其中二维为高峰异核相关信息,另外一维为偶合裂分信息。该方法利用了偶极场调制的异核相关谱具有对空间分布不敏感的特性,来消除磁共振检测中磁场不均匀的影响,从而提高谱图的分辨率。本发明采用激发偶极场调制的两种模块,分别为选择性脉冲激发模块和非选择性脉冲激发模块。选择性脉冲激发模块由一个高斯选择π/2脉冲,一个BIRD脉冲单元和两个梯度场组成。高斯选择π/2脉冲用来选择激发偶极场的溶剂峰,BIRD脉冲单元外加两个梯度场用来强化溶剂峰的选择。非选择性脉冲激发模块由一个TANGO脉冲单元,一个BIRD脉冲单元和两个梯度场组成。TANGO脉冲单元用来选择远程偶合信号,后面的BIRD脉冲单元外加两个梯度场用来滤除杂信号。这两种激发方式最后都是确保前面单元只激发溶剂信号演化,为后续激发成为偶极场做准备。Based on the dipole field modulation method, the present invention proposes a method for obtaining two-dimensional high-resolution heteronucleus spectra under a magnetic field with unknown spatial distribution. The pulse sequence of this technology contains two sampling methods, and the three-dimensional sampling method can obtain two-dimensional high-resolution heteronuclei. Relevant information; the spatial encoding and decoding sampling method can obtain three-dimensional high-score information, of which two-dimensional is the information related to peak heteronucleus, and the other one is the coupling splitting information. The method utilizes the property that the heteronuclear correlation spectrum modulated by the dipole field is not sensitive to the spatial distribution, so as to eliminate the influence of the inhomogeneous magnetic field in the magnetic resonance detection, thereby improving the resolution of the spectrum. The present invention adopts two kinds of modules for exciting dipole field modulation, namely a selective pulse excitation module and a non-selective pulse excitation module. The selective pulse excitation module consists of a Gaussian selective π/2 pulse, a BIRD pulse unit and two gradient fields. The Gaussian selection π/2 pulse is used to select the solvent peak that excites the dipole field, and the addition of two gradient fields to the BIRD pulse unit is used to strengthen the selection of the solvent peak. The non-selective pulse excitation module consists of a TANGO pulse unit, a BIRD pulse unit and two gradient fields. The TANGO pulse unit is used to select the remote coupling signal, and the subsequent BIRD pulse unit plus two gradient fields are used to filter out the impurity signal. These two excitation methods finally ensure that the front unit only stimulates the evolution of the solvent signal, and prepares for the subsequent excitation to become a dipole field.
本发明采用的两种采样模式,一种为三维采样模式,该模式由两个间接维(F1,F3)和直接采样维(F2)组成。间接维F1维由γXt1/γH和t1两段演化时间组成用于获取不受不均匀场影响的杂核(X核)的化学位移演化;间接维F3维由序列前面的t3和采样前t3两段演化时间组成用于获取不受不均匀场影响的氢核(H核)的化学位移演化。三维采样模式可以在不均匀场下获取二维高分辨异核相关信息,该模式特点信噪比高,但时间较长。另一种为空间编解码采样模式,该模式由一个常规间接维(F2)和空间编解码维(F1,F3)组成。该模式使用奇数个线性调频绝热脉冲与极性正负交替变化的梯度场组成的空间编码模块取代间接维(F3)的两段演化时间t3;并且使用由一系列单极性梯度场夹着π脉冲(J偶合调制)的空间解码模块采样。空间编解码采样模式的主要特点是采样时间短,但信噪比较低。此外该模式可以得到三维高分辨信息,其中二维为高峰异核相关信息,另外一维为偶合裂分信息。The present invention adopts two sampling modes, one is a three-dimensional sampling mode, which is composed of two indirect dimensions (F1, F3) and a direct sampling dimension (F2). The indirect dimension F1 is composed of two evolution times of γ X t 1 /γ H and t 1 to obtain the chemical shift evolution of heteronuclei (X nuclei) not affected by the inhomogeneous field; the indirect dimension F3 is composed of t in front of the sequence 3 and t +3 before sampling are used to obtain the chemical shift evolution of hydrogen nuclei (H nuclei) which are not affected by the inhomogeneous field. The three-dimensional sampling mode can obtain two-dimensional high-resolution heteronuclear related information in an inhomogeneous field. This mode features a high signal-to-noise ratio, but takes a long time. The other is the spatial codec sampling mode, which consists of a regular indirect dimension (F2) and spatial codec dimensions (F1, F3). This mode uses a spatial encoding module composed of an odd number of linear frequency-modulated adiabatic pulses and a gradient field with alternating positive and negative polarities to replace the two evolution times t 3 of the indirect dimension (F3); and uses a series of unipolar gradient fields sandwiched by Sampling of the spatial decoding module for π pulses (J-coupled modulation). The main feature of the spatial codec sampling mode is that the sampling time is short, but the signal-to-noise ratio is low. In addition, this mode can obtain three-dimensional high-resolution information, in which two-dimensional is the peak heteronuclear related information, and the other one is the coupled splitting information.
附图说明Description of drawings
图1为13C全标记的丁酸钠水溶液在氢谱线宽2500Hz的不均匀场(匀场电源关闭)下通过三维采样得到的三维谱图。其中投影至F1F3平面可以获取高分辨的HSQC谱图,碳维分辨率达到19Hz,氢维分辨率达到28Hz,但F2维仍然受到不均匀场的影响,线宽展宽2500Hz,即三维采样得到的三维信息为(F3,F1,F2)=(ΩH,ΩC,ΩH+γHΔB),其中ΩH,ΩC分别为1H和13C的化学位移。Figure 1 is a three-dimensional spectrum obtained by three-dimensional sampling of 13 C fully-labeled sodium butyrate aqueous solution under an inhomogeneous field with a hydrogen spectrum linewidth of 2500 Hz (the shimming power is turned off). Among them, the high-resolution HSQC spectrum can be obtained by projecting to the F1F3 plane. The resolution of the carbon dimension reaches 19Hz, and the resolution of the hydrogen dimension reaches 28Hz. However, the F2 dimension is still affected by the inhomogeneous field, and the line width is broadened by 2500Hz, that is, the three-dimensional sampling obtained The information is (F3,F1,F2)=(Ω H ,Ω C ,Ω H + γH ΔB), where Ω H and Ω C are the chemical shifts of 1 H and 13 C, respectively.
图2为天然丰度的γ-氨基丁酸(GABA)的水溶液不均匀场下常规gHSQC序列得到的谱图。Fig. 2 is a spectrum obtained by a conventional gHSQC sequence in an aqueous solution of naturally abundant γ-aminobutyric acid (GABA) in a non-uniform field.
图3为本发明得到的HSQC谱图。Fig. 3 is the HSQC spectrogram that the present invention obtains.
图4为空间编解码采样模式中解码模块只使用H通道的180度脉冲得到的谱图。投影至F1F3平面得到HSQC信息,投影至F2F3平面得到同核J分解谱,即三维高分辨信息为:(F3,F1,F2)=(ΩH,ΩC,JHH),其中氢维分辨率28Hz,碳维分辨率20Hz,JHH等于5Hz。Fig. 4 is a spectrogram obtained by the decoding module using only the 180-degree pulse of the H channel in the spatial codec sampling mode. Project to F1F3 plane to get HSQC information, and project to F2F3 plane to get homonuclear J-decomposition spectrum, that is, three-dimensional high-resolution information is: (F3,F1,F2)=(Ω H ,Ω C ,J HH ), where the hydrogen dimension resolution 28Hz, carbon dimension resolution 20Hz, J HH is equal to 5Hz.
图5为空间编解码采样模式中解码模块H通道与C通道都使用180度脉冲得到的谱图。投影至F1F3平面得到HSQC信息,投影至F1F3平面得到异核J分解谱,即三维高分辨信息为:(F3,F1,F2)=(ΩH,ΩC,JCH+JHH),其中氢维分辨率28Hz,碳维分辨率20Hz,JCH+JHH等于7Hz。Fig. 5 is a spectrogram obtained by using 180-degree pulses in both the H channel and the C channel of the decoding module in the spatial codec sampling mode. Project to the F1F3 plane to get the HSQC information, and project to the F1F3 plane to get the heteronuclear J decomposition spectrum, that is, the three-dimensional high-resolution information is: (F3,F1,F2)=(Ω H ,Ω C ,J CH +J HH ), where hydrogen Dimension resolution 28Hz, carbon dimension resolution 20Hz, J CH + J HH is equal to 7Hz.
其中,图2和图3给出本发明的三维采样模式对不同样品在线宽为1000Hz左右的不均匀场下获取的异核相关谱,图2和图3表明了本发明对于天然丰度的样品适用,能非常好地将展宽1000Hz的HSQC谱图恢复到氢维34Hz碳维20Hz高分辨的程度。图4和图5描绘了本发明的空间编解码采样模式在线宽为1000Hz左右不均匀场下获取三维高分辨谱图。Among them, Fig. 2 and Fig. 3 show the heteronuclear correlation spectra obtained by the three-dimensional sampling mode of the present invention under the uneven field with a line width of about 1000 Hz for different samples, and Fig. 2 and Fig. 3 show that the present invention is for samples with natural abundance Applicable, it can very well restore the 1000Hz broadened HSQC spectrum to the level of high resolution of hydrogen dimension 34Hz carbon dimension 20Hz. Fig. 4 and Fig. 5 depict the spatial codec sampling mode of the present invention to obtain a three-dimensional high-resolution spectrogram in an uneven field with a line width of about 1000 Hz.
具体实施方式Detailed ways
本发明提供一种基于偶极场调制的在未知空间分布磁场下获取高分辨异核相关谱图的方法,该方法包括激发偶极场调制模块、常规异核相干转移模块、间接维演化时间模块、奇数个线性调频绝热脉冲空间编码模块、基于J偶合调制采样的空间解码模块。The invention provides a method for obtaining high-resolution heteronuclear correlation spectra under an unknown spatially distributed magnetic field based on dipole field modulation. The method includes an excited dipole field modulation module, a conventional heteronuclear coherent transfer module, and an indirect dimensional evolution time module. , an odd number of chirp adiabatic pulse spatial encoding modules, and a spatial decoding module based on J-coupled modulation sampling.
为方便描述,使用碳氢异核体系为例,假设I1为水中的质子自旋,I2和S分别为溶液中有机物中的一对CH偶合对,其中I2为质子自旋,S为碳自旋。For the convenience of description, the carbon-hydrogen heteronuclear system is used as an example, assuming that I 1 is the spin of the proton in water, and I 2 and S are a pair of CH coupling pairs in the organic matter in the solution, where I 2 is the spin of the proton, and S is carbon spin.
激发偶极场调制模块目的只激发溶剂(水)中的质子信号,使第一个演化时间t3只有溶剂的演化。当溶剂与溶质的信号强度相当时,通常使用选择性激发,该方式随着不均匀场的增大,激发效率下降;当溶剂比溶质信号强很多,或者13C标记的样品,使用TANGO模块,可以选择激发溶剂自旋,该方式使用很大的不均匀场。此外,添加了BIRD模块压制了激发不理想时的溶质13C相连的质子信号。The purpose of the excitation dipole field modulation module is to only excite the proton signal in the solvent (water), so that the first evolution time t 3 is only the evolution of the solvent. When the signal strength of the solvent and the solute is comparable, selective excitation is usually used, and the excitation efficiency decreases with the increase of the inhomogeneous field; when the signal of the solvent is much stronger than that of the solute, or 13 C-labeled samples, use the TANGO module, Solvent spins can be excited selectively, using a large inhomogeneous field. In addition, the addition of the BIRD module suppresses the solute 13 C-linked proton signal when excitation is not ideal.
三维采样方式:采样的序列为三维采样模式,演化时间t1和演化时间t2对应于常规二维异核相关谱序列的间接维F1和直接维F2。由于直接采样维F2总是受到不均匀场的影响,导致线宽展宽,通常需要摒弃。因此为了获取高分辨的二维谱需要另外一个演化时间t3构成另外一个间接维F3。Three-dimensional sampling method: the sampling sequence is a three-dimensional sampling mode, and the evolution time t 1 and evolution time t 2 correspond to the indirect dimension F1 and direct dimension F2 of the conventional two-dimensional heterokaryon correlation spectrum sequence. Since the directly sampled dimension F2 is always affected by the inhomogeneous field, resulting in linewidth broadening, it usually needs to be discarded. Therefore, in order to obtain a high-resolution two-dimensional spectrum, another evolution time t3 is needed to form another indirect dimension F3.
以HSQC为例,通过前面的偶极场激发模块后,只有溶剂自旋I1经历演化时间t3+γCt1/γH。常规异核相干转移模块中的INEPT单元将这些自旋翻转至纵向,根据偶极场调制理论,I1自旋产生的偶极场为:Taking HSQC as an example, only the solvent spin I 1 undergoes the evolution time t 3 +γ C t 1 /γ H after passing through the previous dipole field excitation module. The INEPT unit in the conventional heteronuclear coherent transfer module flips these spins to the longitudinal direction. According to the dipole field modulation theory, the dipole field generated by the I 1 spin is:
其中为I1自旋偶极退磁时间,μ0是真空导磁率,为平衡态的单位体积的I1自旋磁化。为溶剂自旋I1的固有频率位移,r为空间位置,ΔB为不均匀场,Δs=(3cos2θ-1)/2,其中θ为梯度场G1与静磁场的夹角,δ为梯度场G1的持续时间。in is the I 1 spin dipole demagnetization time, μ 0 is the vacuum permeability, I 1 spin magnetization per unit volume for the equilibrium state. is the natural frequency displacement of the solvent spin I 1 , r is the spatial position, ΔB is the inhomogeneous field, Δ s =(3cos 2 θ-1)/2, where θ is the angle between the gradient field G 1 and the static magnetic field, δ is the duration of the gradient field G1 .
产生的偶极场Bd将叠加在原来的磁场环境中。现在考虑偶极场对溶质信号的调制。自旋I2通过INEPT单元相干转移至S自旋。S自旋经历演化时间t1得到化学位移和不均匀场的演化相位,通过相干路径选择可以只选择相干阶p=-1的相位。紧接着S自旋将转移回I2自旋。Bd无法在后面的演化抵消,对13C通道去偶,忽略JHH偶合作用,可以得到随时间和空间变化的相位:The resulting dipole field B d will be superimposed on the original magnetic field environment. Now consider the modulation of the solute signal by the dipole field. The spin I2 is coherently transferred to the S spin by the INEPT cell. The S spin undergoes an evolution time t 1 to obtain the chemical shift and the evolution phase of the inhomogeneous field, and only the phase of the coherence order p=-1 can be selected through coherent path selection . Immediately afterwards the S spin will be transferred back to the I2 spin. B d cannot be counteracted in the later evolution, decoupling the 13 C channel, ignoring the J HH coupling, the phase that varies with time and space can be obtained:
这里值得注意的是2/3是I2自旋从I1自旋感受到的偶极场因子。通过Bessel函数展开
其中Jm(ξ1)为一个幅度调制因子。从公式(3)可以得到只有在m=-1时相位才与相干路径梯引起空间变化无关,因此最后可以得到最后信号的相位信息:Where J m (ξ 1 ) is an amplitude modulation factor. From formula (3), it can be obtained that the phase has nothing to do with the spatial variation caused by the coherent path ladder only when m=-1, so finally the phase information of the final signal can be obtained:
当谱仪的参考频率设置为I1自旋的共振频率,即,可以得到所得到的信号所在位置为(F1,F2,F3)=(ΩC,ΩH+γHΔB,ΩH),可以看到F1和F3维将不受到不均匀场的影响。将三维谱图投影至F1-F3平面可以得到高分辨的HSQC谱图。同理HMQC与HMBC适用同样的原理。When the reference frequency of the spectrometer is set to the resonant frequency of the I spin, i.e. , the position of the obtained signal can be obtained as (F 1 , F 2 , F 3 )=(Ω C ,Ω H +γ H ΔB,Ω H ), it can be seen that the F1 and F3 dimensions will not be affected by the inhomogeneous field Influence. High-resolution HSQC spectra can be obtained by projecting the three-dimensional spectra onto the F1-F3 plane. Similarly, HMQC and HMBC apply the same principle.
基于空间编解码采样模式:当使用空间编码和解码模块取代三维采样模式演化时间t3和采样时间t2就得到空间编解码采样模式,即F2维和F3维是通过空间编解码采样数据构成的。F1维仍然使用常规演化时间。假设所有的编解码梯度方向都为z方向,恒时空间编码方式可以得到随位置变化的演化时间。前面的(2NE+1)个线性扫频脉冲将自旋相位编码表示为空间位置函数:Based on the spatial codec sampling mode: When the spatial encoding and decoding modules are used to replace the three-dimensional sampling mode evolution time t3 and sampling time t2 , the spatial codec sampling mode is obtained, that is, the F2 and F3 dimensions are formed by the spatial codec sampling data. The F1 dimension still uses regular evolution time. Assuming that all encoding and decoding gradient directions are in the z direction, the constant-time spatial encoding method can obtain the evolution time that changes with the position. The preceding (2N E + 1) linear sweep pulses express the spin-phase encoding as a function of spatial position:
其中α=τad/Δad,即为延迟τad与扫频脉冲扫频宽度Δad的比值。GE是编码梯度强度。空间编解码采样模式中间的180°13C脉冲用来消除I2自旋的JCH偶合,对I1自旋(水溶剂)则没有必要。深入探究被远程偶极场调制的两种自旋(I1,I2)的进动频率的差异,在(2NE+1)个恒时相位编码后得到相位差,可以表述如下:Among them, α=τ ad /Δ ad is the ratio of the delay τ ad to the sweep width Δ ad of the frequency sweep pulse. G E is the encoding gradient strength. The 180° 13 C pulse in the middle of the spatial codec sampling mode is used to eliminate the J CH coupling of the I 2 spin, which is not necessary for the I 1 spin (water solvent). To deeply explore the difference of the precession frequency of the two spins (I 1 , I 2 ) modulated by the remote dipole field, the phase difference can be obtained after (2N E +1) constant-time phase encodings, which can be expressed as follows:
由奇数个绝热脉冲组成的空间编码实质上是相位不仅由编码梯度GE调制,也有不均匀场ΔB的调制。解码梯度GD的幅度为编码梯度的(2NE+1)倍,也就是GD=GE。其相位为The spatial encoding composed of an odd number of adiabatic pulses is essentially that the phase is not only modulated by the encoding gradient GE , but also modulated by the inhomogeneous field ΔB. The amplitude of the decoding gradient G D is (2N E +1) times of the encoding gradient, that is, G D =G E . Its phase is
相位与空间变化无关,在时间处会形成一个回波。当谱仪参考频率设定到I1自旋(水峰)共振频率,即,不均匀场对空间编码维(F3)的影响可以被消除掉,进而给出精确的1H化学位移。这和自旋回波相关谱(SECSY)类似。对于常规直接维(F1),用同样的方式消除不均匀场影响来给出精确的13C化学位移。The phase is independent of the spatial variation, in the time An echo will be formed. When the spectrometer reference frequency is set to the I 1 spin (water peak) resonance frequency, i.e. , the influence of the inhomogeneous field on the spatial encoding dimension (F3) can be eliminated, and then the precise 1 H chemical shift can be given. This is similar to spin echo correlation spectroscopy (SECSY). For the conventional direct dimension (F1), the inhomogeneous field effects are eliminated in the same way to give accurate13C chemical shifts.
J调制检测方案如空间编解码采样模式,13C通道里180°脉冲可选可不选。如果1H和13C通道都施加180°脉冲,JCH+JHH的信息由F2维得到,即三维高分辨谱以(F1,F2,F3)=(ΩC,±JCH±JHH,ΩH)分别对应。但是如果仅1H通道施加180°脉冲,在对应I2自旋的F2维得到的是精确的JHH信息,对应的三维高分辨谱为(F1,F2,F3)=(ΩC,±JHH,ΩH)。J modulation detection scheme such as spatial codec sampling mode, 13 C channel 180° pulse optional or not. If 180° pulses are applied to both 1 H and 13 C channels, the information of J CH +J HH is obtained from the F2 dimension, that is, the three-dimensional high-resolution spectrum is (F 1 , F 2 , F 3 )=(Ω C ,±J CH ± J HH , Ω H ) respectively. But if only 180° pulse is applied to the 1 H channel, the accurate JHH information is obtained in the F2 dimension corresponding to the I 2 spin, and the corresponding three-dimensional high-resolution spectrum is (F 1 , F 2 , F 3 )=(Ω C , ±J HH ,Ω H ).
本发明所涉及的方案,不仅适用于不均匀磁场下化学样品精细结构的检测,对不均匀磁场下生物代谢物快速分析测量也同样适用。所有的实验均在Varian500MHz NMR谱议(Varian,Palo Alto,CA)下进行。使用本发明的步骤包括:The solution involved in the present invention is not only applicable to the detection of the fine structure of chemical samples under an uneven magnetic field, but also applicable to the rapid analysis and measurement of biological metabolites under an uneven magnetic field. All experiments were performed under Varian 500 MHz NMR spectroscopy (Varian, Palo Alto, CA). The steps of using the present invention include:
1)根据实验要求判断是信噪比优先还是采样效率优先,信噪比优先的情况下使用三维采样模式,采样效率优先的情况下使用空间编解码采样模式。1) Determine whether the signal-to-noise ratio or the sampling efficiency is prioritized according to the experimental requirements. When the signal-to-noise ratio is prioritized, the 3D sampling mode is used, and when the sampling efficiency is prioritized, the spatial codec sampling mode is used.
2)设定序列参数,具体方法如下:三维采样模式下只需要设定序列中所有脉冲宽度与功率,设定方法与核磁共振常规实验相同;空间编解码采样模式下,需要使用核磁共振谱仪的脉冲生成工具箱产生线性调频chirp脉冲,并将该脉冲设置至空间编解码模块中,根据实验样品谱宽信息设定编解码梯度大小与时间至基于J偶合调制采样的空间编解码模块中。2) Set the sequence parameters, the specific method is as follows: in the three-dimensional sampling mode, you only need to set the width and power of all the pulses in the sequence, the setting method is the same as that of the conventional nuclear magnetic resonance experiment; in the spatial codec sampling mode, you need to use the nuclear magnetic resonance spectrometer The pulse generation toolbox of the pulse generation toolbox generates chirp pulses, and sets the pulses to the spatial codec module, and sets the codec gradient size and time to the spatial codec module based on J-coupled modulation sampling according to the spectral width information of the experimental samples.
3)完成序列参数设定后对样品进行采样。采样结束后存储实验数据。3) Sample the sample after completing the sequence parameter setting. Store the experimental data after sampling.
4)对存储的实验数据进行处理,若使用的实验数据由三维采样模式得到,将实验数据构建成三维时域矩阵,只需对该矩阵进行三维傅里叶变换,即可得到实验谱图;若使用的数据由空间编解码采样模式得到,需要首先将每一条长为np个点数的数据串分割为np1×ND(其中np1对应于空间编码F1维,ND对应为直接采样F2维),随后与间接F3维构成一个三维矩阵,只需要对这个三维矩阵的F2与F3维进行傅里叶变换即可在未知空间分布磁场下获取高分辨核磁共振异核谱图。4) Process the stored experimental data. If the experimental data used is obtained by three-dimensional sampling mode, construct the experimental data into a three-dimensional time-domain matrix, and only need to perform three-dimensional Fourier transform on the matrix to obtain the experimental spectrum; If the data used is obtained by the spatial encoding and decoding sampling mode, it is necessary to first divide each data string with a length of np points into np1×N D (where np1 corresponds to the spatial encoding F1 dimension, and N D corresponds to the direct sampling F2 dimension) , and then form a three-dimensional matrix with the indirect F3 dimension, and only need to perform Fourier transform on the F2 and F3 dimensions of this three-dimensional matrix to obtain a high-resolution nuclear magnetic resonance heteronuclear spectrum under an unknown spatially distributed magnetic field.
以下给出具体实例以验证本发明所提供的方法:Provide specific examples below to verify the method provided by the present invention:
首先,用13C标记的丁酸钠来检验三维采样模式下的序列在自然不均匀场下的性能。通过人为不施加匀场线圈作用,产生线宽为2500Hz的不均匀磁场,得到图1所示的三维采样谱图,投影至F1F3平面,可以获取高分辨的HSQC谱图,碳维分辨率达到19Hz,氢维分辨率达到28Hz,F2维仍然受到不均匀场的影响,线宽展宽2500Hz,即三维采样得到的三维信息为(F3,F1,F2)=(ΩH,ΩC,ΩH+γΔB),由此得到高分辨的碳维和氢维化学位移信息。First, 13 C-labeled sodium butyrate was used to examine the performance of the sequence in the three-dimensional sampling mode under the natural inhomogeneous field. By artificially not applying shimming coils to generate an inhomogeneous magnetic field with a line width of 2500 Hz, the three-dimensional sampling spectrum shown in Figure 1 is obtained, and projected to the F1F3 plane, a high-resolution HSQC spectrum can be obtained, and the carbon dimension resolution reaches 19Hz , the resolution of the hydrogen dimension reaches 28Hz, the F2 dimension is still affected by the inhomogeneous field, and the line width is broadened by 2500Hz, that is, the three-dimensional information obtained by three-dimensional sampling is (F3,F1,F2)=(Ω H ,Ω C ,Ω H +γΔB ), thus obtaining high-resolution carbon-dimensional and hydrogen-dimensional chemical shift information.
其次,为了更加全面地检测该方法在不均匀场下获得高分辨谱的性能,人为调偏匀场线圈电流产生线宽为1000Hz的不均匀磁场,用该方法的三维采样模式对不同样品在线宽为1000Hz左右的不均匀场下采样获取异核相关谱。图2和图3描绘了新方法的三维采样模式对不同样品在线宽为1000Hz左右的不均匀场下获取的异核相关谱。图2为天然丰度的γ-氨基丁酸(GABA)的水溶液不均匀场下常规gHSQC序列得到的谱图,图3为该方法得到的HSQC谱图。高分辨二维HSQC谱图无需经过旋转加工就可以从F1-F3平面的累积投影获得。由图片的对比可以看出由于磁场不均匀性引起的谱线展宽问题,在这种方法下可得到解决。这两幅图表明了本方法对于天然丰度的样品适用,能非常好的将展宽1000Hz的HSQC谱图恢复到氢维34Hz碳维20Hz高分辨的程度。Secondly, in order to more comprehensively test the performance of this method in obtaining high-resolution spectra under inhomogeneous fields, the current of the shimming coil is artificially adjusted to generate an inhomogeneous magnetic field with a linewidth of 1000 Hz. Acquire heteronuclear correlation spectra for downsampling of inhomogeneous fields around 1000 Hz. Fig. 2 and Fig. 3 depict the heteronuclear correlation spectra acquired by the three-dimensional sampling mode of the new method under the inhomogeneous field with a line width of about 1000 Hz for different samples. Figure 2 is the spectrum obtained by the conventional gHSQC sequence under the non-uniform field of the aqueous solution of natural abundance γ-aminobutyric acid (GABA), and Figure 3 is the HSQC spectrum obtained by this method. High-resolution two-dimensional HSQC spectra can be obtained from the cumulative projection of the F1-F3 plane without rotation processing. From the comparison of the pictures, it can be seen that the problem of spectral line broadening caused by the inhomogeneity of the magnetic field can be solved by this method. These two figures show that this method is suitable for samples with natural abundance, and can very well restore the 1000Hz broadened HSQC spectrum to the level of high resolution of hydrogen dimension 34Hz carbon dimension 20Hz.
最后,检测不均匀场下空间编解码采样模式对样品采样的效果。实验在人为调偏匀场线圈电流产生线宽为1000Hz的不均匀磁场下进行,样品是碳标记的甲醇和第二个碳被标记的乙醇的混合水溶液,图4和图5描绘了该实验下得到的高分辨三维谱图。图4为空间编解码采样模式中解码模块只使用H通道的180度脉冲得到的谱图,投影至F1F3平面得到HSQC信息,投影至F2F3平面得到同核J分解谱,即三维高分辨信息为:(F3,F1,F2)=(ΩH,ΩC,JHH),其中氢维分辨率28Hz,碳维分辨率20Hz,JHH等于5Hz。图5为空间编解码采样模式中解码模块H通道与C通道都使用的180度脉冲得到的谱图,投影至F1F3平面得到HSQC信息,投影至F1F3平面得到异核J分解谱,即三维高分辨信息为:(F3,F1,F2)=(ΩH,ΩC,JCH+JHH),其中氢维分辨率28Hz,碳维分辨率20Hz,JCH+JHH等于7Hz。这种空间编解码采样模式的新序列采样时间仅为34min。可见,对比常规HSQC方法,新序列不仅能够在不均匀磁场中恢复出良好的高分辨信息,而且其简化的谱峰裂分模式和J偶合信息更有利于谱图分析,两种不同的采样模式可根据实际测量情况进行选择。Finally, the effect of spatial codec sampling mode on sample sampling under inhomogeneous field is detected. The experiment was carried out under an inhomogeneous magnetic field with a line width of 1000 Hz generated by artificially adjusting the current of the shim coil. The sample was a mixed aqueous solution of carbon-labeled methanol and the second carbon-labeled ethanol. Figures 4 and 5 depict the experimental conditions. The obtained high-resolution three-dimensional spectrum. Figure 4 is the spectrogram obtained by the decoding module in the spatial codec sampling mode using only the 180-degree pulse of the H channel, projected to the F1F3 plane to obtain HSQC information, and projected to the F2F3 plane to obtain the homonuclear J-decomposition spectrum, that is, the three-dimensional high-resolution information is: (F3,F1,F2)=(Ω H ,Ω C ,J HH ), where the resolution of the hydrogen dimension is 28Hz, the resolution of the carbon dimension is 20Hz, and J HH is equal to 5Hz. Figure 5 is the spectrogram obtained by the 180-degree pulse used by both the H channel and the C channel of the decoding module in the spatial codec sampling mode, projected to the F1F3 plane to obtain HSQC information, and projected to the F1F3 plane to obtain the heteronuclear J decomposition spectrum, that is, three-dimensional high-resolution The information is: (F3, F1, F2)=(Ω H ,Ω C , J CH +J HH ), where the resolution of the hydrogen dimension is 28Hz, the resolution of the carbon dimension is 20Hz, and J CH +J HH is equal to 7Hz. The new sequence sampling time of this spatial codec sampling mode is only 34min. It can be seen that compared with the conventional HSQC method, the new sequence can not only recover good high-resolution information in an inhomogeneous magnetic field, but also its simplified spectral peak splitting mode and J-coupling information are more conducive to spectral analysis. Two different sampling modes It can be selected according to the actual measurement situation.
表1:专业词汇中英对照表Table 1: Chinese-English comparison table of professional vocabulary
表2:字符对照表Table 2: Character comparison table
专业词汇中英对照表参见表1,字符对照表参见表2。See Table 1 for the Chinese-English comparison table of professional vocabulary, and Table 2 for the character comparison table.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310461836.7A CN103472420B (en) | 2013-09-30 | 2013-09-30 | The method of high resolution NMR heteronuclear spectrogram is obtained under unknown space distribution magnetic field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310461836.7A CN103472420B (en) | 2013-09-30 | 2013-09-30 | The method of high resolution NMR heteronuclear spectrogram is obtained under unknown space distribution magnetic field |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103472420A true CN103472420A (en) | 2013-12-25 |
CN103472420B CN103472420B (en) | 2015-11-11 |
Family
ID=49797340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310461836.7A Active CN103472420B (en) | 2013-09-30 | 2013-09-30 | The method of high resolution NMR heteronuclear spectrogram is obtained under unknown space distribution magnetic field |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103472420B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103744042A (en) * | 2014-01-17 | 2014-04-23 | 厦门大学 | Method for obtaining nuclear magnetic resonance two-dimension spin echo related spectrum under uneven magnetic field |
CN103837561A (en) * | 2014-03-11 | 2014-06-04 | 吴仁华 | Method for detecting intracerebral GABA (gamma-aminobutyric acid) by double-quantum filtering technology |
CN103885017A (en) * | 2014-02-20 | 2014-06-25 | 厦门大学 | Image distortion correction method based on single sweep quadrature space-time coding magnetic resonance imaging |
CN103941204A (en) * | 2014-04-16 | 2014-07-23 | 厦门大学 | Method for obtaining high-resolution three-dimensional NMR spectrum under non-uniform magnetic field |
CN105004748A (en) * | 2015-07-23 | 2015-10-28 | 厦门大学 | Method for obtaining two-dimensional nuclear magnetic resonance coherence spectrogram under nonuniform magnetic field |
CN105738397A (en) * | 2016-02-04 | 2016-07-06 | 浙江大学 | Method for analyzing longitudinal relaxation time (T1) of quaternary carbon in compound |
CN106645255A (en) * | 2017-01-21 | 2017-05-10 | 厦门大学 | NMR (nuclear magnetic resonance) single voxel localization and one-dimensional pure chemical shift spectroscopy method |
CN108828479A (en) * | 2017-04-12 | 2018-11-16 | 西门子保健有限责任公司 | Device and method for the recovery time ratio in the magnetic resonance reception chain of idle running |
CN110361680A (en) * | 2019-06-21 | 2019-10-22 | 厦门大学 | A kind of super-resolution nuclear magnetic resonance two dimension J decomposition spectral method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0151026A2 (en) * | 1984-01-31 | 1985-08-07 | Kabushiki Kaisha Toshiba | A method for producing nuclear magnetic resonance image data |
US20030210045A1 (en) * | 2002-05-10 | 2003-11-13 | Mitchell J. Ross | Local multi-scale fourier analysis for MRI |
CN102305918A (en) * | 2011-05-24 | 2012-01-04 | 中国科学院武汉物理与数学研究所 | Method for suppressing pseudo peak of nuclear magnetic resonance multi-dimensional spectrum |
-
2013
- 2013-09-30 CN CN201310461836.7A patent/CN103472420B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0151026A2 (en) * | 1984-01-31 | 1985-08-07 | Kabushiki Kaisha Toshiba | A method for producing nuclear magnetic resonance image data |
US20030210045A1 (en) * | 2002-05-10 | 2003-11-13 | Mitchell J. Ross | Local multi-scale fourier analysis for MRI |
CN102305918A (en) * | 2011-05-24 | 2012-01-04 | 中国科学院武汉物理与数学研究所 | Method for suppressing pseudo peak of nuclear magnetic resonance multi-dimensional spectrum |
Non-Patent Citations (4)
Title |
---|
AD BAX 等: "High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium", 《JOURNAL OF BIOMOLECULAR NMR》 * |
C.H.WU 等: "High-resolution heteronuclear dipolar solid-state NMR spectroscopy", 《JOURNAL OF MAGNETIC RESONANCE》 * |
陈忠 等: "空间编码超快速NMR新技术及其应用", 《第十七届全国波谱学学术会议论文摘要集》 * |
顾兆斌 等: "核磁共振二维谱反演", 《波谱学杂志》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103744042A (en) * | 2014-01-17 | 2014-04-23 | 厦门大学 | Method for obtaining nuclear magnetic resonance two-dimension spin echo related spectrum under uneven magnetic field |
CN103885017A (en) * | 2014-02-20 | 2014-06-25 | 厦门大学 | Image distortion correction method based on single sweep quadrature space-time coding magnetic resonance imaging |
CN103837561A (en) * | 2014-03-11 | 2014-06-04 | 吴仁华 | Method for detecting intracerebral GABA (gamma-aminobutyric acid) by double-quantum filtering technology |
CN103941204A (en) * | 2014-04-16 | 2014-07-23 | 厦门大学 | Method for obtaining high-resolution three-dimensional NMR spectrum under non-uniform magnetic field |
CN105004748A (en) * | 2015-07-23 | 2015-10-28 | 厦门大学 | Method for obtaining two-dimensional nuclear magnetic resonance coherence spectrogram under nonuniform magnetic field |
CN105004748B (en) * | 2015-07-23 | 2017-04-05 | 厦门大学 | A kind of method that the relevant spectrogram of two dimensional NMR is obtained under non-uniform magnetic field |
CN105738397A (en) * | 2016-02-04 | 2016-07-06 | 浙江大学 | Method for analyzing longitudinal relaxation time (T1) of quaternary carbon in compound |
CN106645255A (en) * | 2017-01-21 | 2017-05-10 | 厦门大学 | NMR (nuclear magnetic resonance) single voxel localization and one-dimensional pure chemical shift spectroscopy method |
CN108828479A (en) * | 2017-04-12 | 2018-11-16 | 西门子保健有限责任公司 | Device and method for the recovery time ratio in the magnetic resonance reception chain of idle running |
CN110361680A (en) * | 2019-06-21 | 2019-10-22 | 厦门大学 | A kind of super-resolution nuclear magnetic resonance two dimension J decomposition spectral method |
Also Published As
Publication number | Publication date |
---|---|
CN103472420B (en) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103472420B (en) | The method of high resolution NMR heteronuclear spectrogram is obtained under unknown space distribution magnetic field | |
Blümich et al. | Essential NMR | |
Schnell | Dipolar recoupling in fast-MAS solid-state NMR spectroscopy | |
US6674282B2 (en) | Method and apparatus for high resolution ex-situ NMR spectroscopy | |
US20070007959A1 (en) | Simultaneous phase cycling for nuclear magnetic resonance spectroscopy | |
King et al. | Ultrafast Multidimensional Laplace NMR Using a Single‐Sided Magnet | |
Wang et al. | Positioning nuclear spins in interacting clusters for quantum technologies and bioimaging | |
CN106645255B (en) | A kind of monomer element localization One-Dimensional Pure chemical shift nuclear magnetic resonance spectral method | |
CN103744043B (en) | A kind of method of obtaining one dimension high resolution NMR spectrogram under non-uniform magnetic field | |
Xu et al. | Solid-state NMR in zeolite catalysis | |
Chen et al. | High-resolution NMR spectroscopy in inhomogeneous fields | |
Zhang et al. | Spatially encoded ultrafast high-resolution 2D homonuclear correlation spectroscopy in inhomogeneous fields | |
CN101479619B (en) | Measurement of homonuclear J-couplings in ultralow magnetic fields by high-resolution NMR spectroscopy | |
JP4599490B2 (en) | Method and configuration of NMR spectroscopy | |
Potnuru et al. | Selective 1H–1H recoupling via symmetry sequences in fully protonated samples at fast magic angle spinning | |
WO2011059543A1 (en) | Magnetic resonance imaging and spectroscopy of low concentration solutes with exchangeable protons using label transfer modules: frequency transfer, inversion transfer, and dephasing transfer | |
Xue et al. | Field and magic angle spinning frequency dependence of proton resonances in rotating solids | |
EP3502728B1 (en) | Method and system to detect a solute in a solvent using nuclear magnetic resonance | |
CN106932426A (en) | The magnetic nuclear resonance method of all hydrogen hydrogen coupling constants in a kind of measurement molecule | |
CN101093249A (en) | Method and apparatus for polarization transfer in the detection enhancement of mr spectroscopy | |
Chen et al. | High‐resolution NMR spectroscopy in inhomogeneous fields via Hadamard‐encoded intermolecular double‐quantum coherences | |
CN105004748B (en) | A kind of method that the relevant spectrogram of two dimensional NMR is obtained under non-uniform magnetic field | |
US5317262A (en) | Single shot magnetic resonance method to measure diffusion, flow and/or motion | |
WO2023234979A2 (en) | High field magnetometry with hyperpolarized nuclear spins | |
Cui et al. | In vivo spatially localized high resolution 1H MRS via intermolecular single‐quantum coherence of rat brain at 7 T |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |