[go: up one dir, main page]

CN103472403A - Composite estimating method of power battery SOC based on PNGV equivalent circuit model - Google Patents

Composite estimating method of power battery SOC based on PNGV equivalent circuit model Download PDF

Info

Publication number
CN103472403A
CN103472403A CN2013104260215A CN201310426021A CN103472403A CN 103472403 A CN103472403 A CN 103472403A CN 2013104260215 A CN2013104260215 A CN 2013104260215A CN 201310426021 A CN201310426021 A CN 201310426021A CN 103472403 A CN103472403 A CN 103472403A
Authority
CN
China
Prior art keywords
soc
power battery
battery
delta
open circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013104260215A
Other languages
Chinese (zh)
Other versions
CN103472403B (en
Inventor
李明
江洋
郑荐中
彭筱筱
朱中文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Province Institute of Metrology
Original Assignee
Zhejiang Province Institute of Metrology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Province Institute of Metrology filed Critical Zhejiang Province Institute of Metrology
Priority to CN201310426021.5A priority Critical patent/CN103472403B/en
Publication of CN103472403A publication Critical patent/CN103472403A/en
Application granted granted Critical
Publication of CN103472403B publication Critical patent/CN103472403B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Secondary Cells (AREA)

Abstract

本发明涉及电动汽车动力电池技术领域,公开了一种基于PNGV等效电路模型的动力电池SOC复合估计方法,包括以下步骤:A.检测动力电池开路电压;B.采用开路电压法计算动力电池初始SOC(t0);C.在t0-t1时间段内,采用扩展卡尔曼滤波(EKF)算法对初始SOC(t0)进行修正,得到SOC(t1);D.在t1-t2时间段内,采用改进安时积分法进行估计;E.继续使用动力电池时,步骤C步骤D进行循环;t0:表示初始时间;t1、t2:在t0之后的时间点。本发明考虑动力电池充放电电流、环境温度以及电池健康状态等影响因素修正系数的影响,得到改进的安时积分法,可以克服安时积分法估计动力电池SOC时受外界因素影响较大等缺陷;充分利用卡尔曼滤波法对SOC的初始误差有很强的修正效果的优势。

Figure 201310426021

The invention relates to the technical field of electric vehicle power batteries, and discloses a power battery SOC composite estimation method based on the PNGV equivalent circuit model, comprising the following steps: A. Detecting the open circuit voltage of the power battery; B. Using the open circuit voltage method to calculate the initial state of the power battery SOC(t 0 ); C. During the period of t 0 -t 1 , the extended Kalman filter (EKF) algorithm is used to correct the initial SOC (t 0 ) to obtain SOC (t 1 ); D. In the period of t 1 - During the t 2 time period, use the improved ampere-hour integration method to estimate; E. When continuing to use the power battery, step C and step D are cycled; t 0 : represents the initial time; t 1 , t 2 : time points after t 0 . The present invention considers the influence of the power battery charging and discharging current, ambient temperature, battery health status and other influencing factors and the correction coefficient, and obtains an improved ampere-hour integration method, which can overcome the defects that the ampere-hour integration method is greatly affected by external factors when estimating the power battery SOC. ; Make full use of the advantage that the Kalman filter method has a strong correction effect on the initial error of the SOC.

Figure 201310426021

Description

一种基于PNGV等效电路模型的动力电池SOC复合估计方法A Composite Estimation Method for Power Battery SOC Based on PNGV Equivalent Circuit Model

技术领域technical field

本发明涉及电动汽车动力电池技术领域,尤其涉及了一种基于PNGV等效电路模型的动力电池SOC复合估计方法。The invention relates to the technical field of electric vehicle power batteries, in particular to a composite estimation method for power battery SOC based on a PNGV equivalent circuit model.

背景技术Background technique

电池管理系统是电动汽车的重要组成部分,动力电池荷电状态(State ofCharge,SOC)估计是此系统的关键技术之一。SOC实时估计涉及到动力电池充放电控制和电动汽车的优化管理,直接影响动力电池的使用寿命和动力系统的性能,因此动力电池SOC的准确估计对于电动汽车的运行非常关键。The battery management system is an important part of electric vehicles, and the state of charge (State of Charge, SOC) estimation of power batteries is one of the key technologies of this system. The real-time estimation of SOC involves the charging and discharging control of the power battery and the optimal management of electric vehicles, which directly affects the service life of the power battery and the performance of the power system. Therefore, accurate estimation of the SOC of the power battery is very critical for the operation of electric vehicles.

目前,SOC的估计方法主要有安时积分法、内阻法、开路电压法、神经网络法和卡尔曼滤波法等。但安时积分法存在一些缺陷会导致估计不准确,比如方法本身不能估计SOC初始值,动力电池容量受外界因素影响较大等;开路电压法需要电池长时间静置,不适用于实时预测;神经网络法易受干扰,准确度受训练方法和训练数据的影响很大;卡尔曼滤波法对SOC的初始误差有很强的修正作用,特别适合于电流变化较快的动力电池,但对电池模型准确性要求比较高。At present, SOC estimation methods mainly include ampere-hour integral method, internal resistance method, open circuit voltage method, neural network method and Kalman filter method. However, there are some defects in the ampere-hour integration method that will lead to inaccurate estimates. For example, the method itself cannot estimate the initial value of SOC, and the capacity of the power battery is greatly affected by external factors. The open circuit voltage method requires the battery to stand for a long time and is not suitable for real-time prediction; The neural network method is susceptible to interference, and its accuracy is greatly affected by the training method and training data; the Kalman filter method has a strong correction effect on the initial error of the SOC, and is especially suitable for power batteries with rapid current changes, but it is not effective for battery The model accuracy requirements are relatively high.

发明内容Contents of the invention

本发明的目的是克服现有的动力电池SOC估计方法存在的不足,提供一种基于PNGV等效电路模型的动力电池SOC复合估计方法,实现了磷酸铁锂动力电池的SOC准确估计。The purpose of the present invention is to overcome the shortcomings of existing power battery SOC estimation methods, provide a power battery SOC composite estimation method based on the PNGV equivalent circuit model, and realize accurate SOC estimation of lithium iron phosphate power batteries.

为了解决上述技术问题,本发明通过下述技术方案得以解决:In order to solve the above technical problems, the present invention is solved through the following technical solutions:

一种基于PNGV等效电路模型的动力电池SOC复合估计方法,包括以下步骤:A kind of power battery SOC compound estimation method based on PNGV equivalent circuit model, comprises the following steps:

A.检测动力电池开路电压;A. Detect the open circuit voltage of the power battery;

B.采用开路电压法计算动力电池初始SOC(t0);B. Use the open circuit voltage method to calculate the initial SOC of the power battery (t 0 );

C.在t0-t1时间段内,采用扩展卡尔曼滤波(EKF)算法对初始SOC(t0)进行修正,得到SOC(t1);C. During the time period t 0 -t 1 , the extended Kalman filter (EKF) algorithm is used to correct the initial SOC (t 0 ) to obtain the SOC (t 1 );

D.在t1-t2时间段内,采用改进安时积分法进行估计;D. During the t 1 -t 2 time period, use the improved ampere-hour integration method to estimate;

E.继续使用动力电池时,步骤C步骤D进行循环;E. When continuing to use the power battery, step C and step D are cycled;

t0:表示初始时间;t1、t2:在t0之后的时间点。t 0 : indicates the initial time; t 1 , t 2 : time points after t 0 .

一种基于PNGV等效电路模型的动力电池SOC复合估计方法,列出开路电压方程如下:A power battery SOC composite estimation method based on the PNGV equivalent circuit model, the open circuit voltage equation is listed as follows:

U(t)=UOCV(t)-Ua(t)-Up(t)-RoI(t)         (1)U(t)=U OCV (t)-U a (t)-U p (t)-R o I(t) (1)

Uu aa (( tt )) == 11 CC aa ∫∫ tt 00 tt II (( tt )) dtdt -- -- -- (( 22 ))

II (( tt )) -- II pp (( tt )) == II (( tt )) -- Uu pp (( tt )) RR pp == CC pp dd Uu pp (( tt )) dtdt -- -- -- (( 33 ))

UOCV:理想电压源,表示电池的开路电压;t:时间;U OCV : ideal voltage source, indicating the open circuit voltage of the battery; t: time;

Ca:电容,电容描述的是因电流的时间累积效应而引起的开路电压的变化;C a : Capacitance, capacitance describes the change of open circuit voltage caused by the time accumulation effect of current;

Ua:表示电容Ca两端的电压;Ro:电池的欧姆内阻;U a : indicates the voltage across the capacitor C a ; R o : the ohmic internal resistance of the battery;

Rp:电池内部极化电阻;Up:电池内部极化电阻两端的电压;R p : the internal polarization resistance of the battery; U p : the voltage across the internal polarization resistance of the battery;

Cp:电阻Rp的并联电容;C p : the parallel capacitance of the resistor R p ;

I:动力电池工作电流;Ip:极化电阻的电流;U:动力电池端电压;I: working current of power battery; I p : current of polarization resistance; U: terminal voltage of power battery;

列出动力电池开路电压与动力电池SOC的函数关系:List the functional relationship between the open circuit voltage of the power battery and the SOC of the power battery:

UOCV(t)=F[SOC(t)]           (4) UOCV (t)=F[SOC(t)] (4)

式中,F[SOC(t)]是一个非线性函数;In the formula, F[SOC(t)] is a nonlinear function;

根据原始安时积分法估算SOC公式列出在时间t0-t1的安时积分法估算SOC公式:The formula for estimating SOC based on the original ampere-hour integration method is listed in the ampere-hour integration method at time t 0 -t 1 to estimate the SOC formula:

SOCSOC (( tt 11 )) == SOCSOC (( tt 00 )) -- 11 QQ RR ∫∫ tt 00 tt 11 II (( tt )) dtdt -- -- -- (( 55 ))

式中,QR为动力电池额定容量;In the formula, Q R is the rated capacity of the power battery;

考虑动力电池充放电电流λc、环境温度λT以及电池健康状态λSOH等影响因素修正系数的影响,可得到改进的安时积分法:Considering the influence of the correction coefficient of the charging and discharging current λc of the power battery, the ambient temperature λT , and the state of health of the battery λSOH , an improved ampere-hour integration method can be obtained:

SOCSOC (( tt 11 )) == SOCSOC (( tt 00 )) -- 11 λλ QQ RR ∫∫ tt 00 tt 11 II (( tt )) dtdt -- -- -- (( 66 ))

式中:λ=λc×λT×λSOHWhere: λ=λ c ×λ T ×λ SOH ,

λ为修正系数;λc为动力电池充放电电流系数;λT为环境温度系数;λSOH为电池健康状态系数;λ is the correction coefficient; λ c is the charge and discharge current coefficient of the power battery; λ T is the ambient temperature coefficient; λ SOH is the battery state of health coefficient;

将公式(1)(3)(6)离散化,Discretize formulas (1) (3) (6),

U(k)=F[SOC(k)]-Ua(k)-Up(k)-RoI(k)            (7)U(k)=F[SOC(k)]-U a (k)-U p (k)-R o I(k) (7)

II (( kk )) -- Uu pp (( kk )) RR pp == CC pp Uu pp (( kk ++ 11 )) -- Uu pp (( kk )) ΔtΔt -- -- -- (( 88 ))

(( kk ++ 11 )) == SOCSOC (( kk )) -- ΔtΔt λλ QQ RR (( kk )) -- -- -- (( 99 ))

最终得到离散时间状态空间模型如下:Finally, the discrete-time state-space model is obtained as follows:

SOCSOC (( kk ++ 11 )) Uu pp (( kk ++ 11 )) == 11 00 00 11 -- ΔtΔt RR pp CC pp SOCSOC (( kk )) Uu pp (( kk )) ++ -- ΔtΔt λλ QQ RR ΔtΔt CC pp II (( kk )) ++ ww 11 (( kk )) ww 22 (( kk )) -- -- -- (( 1010 ))

U(k)=F[SOC(k)]-Ua(k)-Up(k)-RoI(k)+v(k)      (11)U(k)=F[SOC(k)]-U a (k)-U p (k)-R o I(k)+v(k) (11)

该状态空间模型中,I(k)为输入量,表示工作电流;U(k)为输出量,表示端电压; w 1 ( k ) w 2 ( k ) 为系统噪声;v(k)为观测噪声;Δt表示时间差;In the state-space model, I(k) is the input quantity, representing the working current; U(k) is the output quantity, representing the terminal voltage; w 1 ( k ) w 2 ( k ) is the system noise; v(k) is the observation noise; Δt is the time difference;

将输出方程中的F[SOC(t)]进行线性化处理后,状态空间模型(10)、(11)中的A(k),B(k)与C(k)分别为:After linearizing F[SOC(t)] in the output equation, A(k), B(k) and C(k) in state space models (10) and (11) are respectively:

AA (( kk )) == 11 00 00 11 -- ΔtΔt RR pp CC pp ,, BB (( kk )) == -- ΔtΔt λλ QQ RR ΔtΔt CC pp ,, CC (( kk )) == [[ ∂∂ Ff (( SOCSOC (( kk )) ]] ∂∂ SOCSOC (( kk )) ]] Xx (( kk )) == Xx ^^ (( kk ))

EKF算法公式如下:The EKF algorithm formula is as follows:

Xx ^^ (( kk || kk -- 11 )) == AA (( kk -- 11 )) Xx ^^ (( kk -- 11 )) ++ BB (( kk -- 11 )) II (( kk -- 11 )) -- -- -- (( 1212 ))

Xx ^^ (( kk )) == Xx ^^ (( kk || kk -- 11 )) ++ KK (( kk )) [[ Uu (( kk )) -- Uu ^^ (( kk )) ]] -- -- -- (( 1313 ))

P(k|k-1)=A(k-1)P(k-1)AT(k-1)+Q           (14)P(k|k-1)=A(k-1)P(k-1) AT (k-1)+Q (14)

K(k)=P(k|k-1)CT(k)[C(k)P(k|k-1)CT(k)+R]-1         (15)K(k)=P(k|k-1)C T (k)[C(k)P(k|k-1)C T (k)+R] -1 (15)

P(k)=[1-K(k)C(k)]P(k|k-1)           (16)P(k)=[1-K(k)C(k)]P(k|k-1) (16)

EKF算法由滤波器计算和滤波器增益计算两部分组成,滤波器计算由式(11)-(13)完成,滤波器先根据式(12)由前一时刻的结果

Figure BDA0000383254670000044
得到状态变量的预测值
Figure BDA0000383254670000045
再根据输出方程(11)得到系统观测量的预测值
Figure BDA0000383254670000046
跟实际观测值U(k)比较后得到预测误差,然后根据误差由式(13)对状态变量的预测值修正,得到新的滤波结果
Figure BDA0000383254670000047
滤波器增益计算由式(14)-(16)完成,式中P(k|k-1)和P(k)分别是状态变量预测误差和滤波误差的方差阵,K(k)为滤波器增益,Q和R分别是噪声w(k)和v(k)的方差阵。The EKF algorithm consists of two parts: filter calculation and filter gain calculation. The filter calculation is completed by formula (11)-(13).
Figure BDA0000383254670000044
Get the predicted value of the state variable
Figure BDA0000383254670000045
Then according to the output equation (11), the predicted value of the system observation is obtained
Figure BDA0000383254670000046
After comparing with the actual observed value U(k), the prediction error is obtained, and then according to the error, the predicted value of the state variable is corrected by formula (13) to obtain a new filtering result
Figure BDA0000383254670000047
The calculation of filter gain is completed by equations (14)-(16), where P(k|k-1) and P(k) are the variance matrix of state variable prediction error and filter error respectively, and K(k) is the filter Gains, Q and R are variance matrices of noise w(k) and v(k), respectively.

本发明由于采用了以上技术方案,具有显著的技术效果:The present invention has remarkable technical effect owing to adopted above technical scheme:

本发明考虑动力电池充放电电流、环境温度以及电池健康状态等影响因素修正系数的影响,得到改进的安时积分法,可以克服安时积分法估计动力电池SOC时受外界因素影响较大等缺陷;对于车载的动力电池系统而言,由于汽车负载的不断变化,所适用的电池模型应当是动态模型,而研究人员通过恒流放电试验和脉冲放电试验对上述模型静态和动态特性进行对比分析,确认PNGV模型就是这样一种能比较准确描述电池动态充放电特性的等效电路模型。综合采用开路电压法、改进安时积分法以及EKF算法进行估计,充分利用卡尔曼滤波法对SOC的初始误差有很强的修正效果的优势。可以有效提高估计方法的准确性。The present invention considers the influence of the power battery charging and discharging current, ambient temperature, battery health status and other influencing factors and the correction coefficient, and obtains an improved ampere-hour integration method, which can overcome the defects that the ampere-hour integration method is greatly affected by external factors when estimating the power battery SOC. ; For the vehicle-mounted power battery system, due to the continuous change of vehicle load, the applicable battery model should be a dynamic model, and the researchers compared the static and dynamic characteristics of the above models through constant current discharge tests and pulse discharge tests. It is confirmed that the PNGV model is such an equivalent circuit model that can accurately describe the dynamic charging and discharging characteristics of the battery. The open-circuit voltage method, the improved ampere-hour integral method and the EKF algorithm are used for estimation, and the Kalman filter method is fully utilized to have a strong correction effect on the initial error of the SOC. It can effectively improve the accuracy of the estimation method.

附图说明Description of drawings

图1是本发明所采用的PNGV等效电路模型;Fig. 1 is the PNGV equivalent circuit model that the present invention adopts;

图2是本发明中计算SOC的流程图。Fig. 2 is a flow chart of calculating SOC in the present invention.

具体实施方式Detailed ways

下面结合附图与实施例对本发明作进一步详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.

实施例1Example 1

下面结合附图1、2对本发明进一步详细描述:Below in conjunction with accompanying drawing 1,2 the present invention is described in further detail:

一种基于PNGV等效电路模型的动力电池SOC复合估计方法,如图2所示,包括以下步骤:A power battery SOC composite estimation method based on the PNGV equivalent circuit model, as shown in Figure 2, includes the following steps:

A.检测动力电池开路电压;A. Detect the open circuit voltage of the power battery;

B.采用开路电压法计算动力电池初始SOC(t0);B. Use the open circuit voltage method to calculate the initial SOC of the power battery (t 0 );

C.在t0-t1时间段内,采用扩展卡尔曼滤波(EKF)算法对初始SOC(t0)进行修正,得到SOC(t1);C. During the time period t 0 -t 1 , the extended Kalman filter (EKF) algorithm is used to correct the initial SOC (t 0 ) to obtain the SOC (t 1 );

D.在t1-t2时间段内,采用改进安时积分法进行估计;D. During the t 1 -t 2 time period, use the improved ampere-hour integration method to estimate;

E.继续使用动力电池时,步骤C步骤D进行循环;E. When continuing to use the power battery, step C and step D are cycled;

t0:表示初始时间;t1、t2:在t0之后的时间点。t 0 : indicates the initial time; t 1 , t 2 : time points after t 0 .

一种基于PNGV等效模型的动力电池SOC复合估计方法,PNGV推荐的电池模型简洁清晰,可以直接引用,如图1所示,为动力电池PNGV等效电路模型的数学模型,根据电路可以得出开路电压方程如下:A power battery SOC composite estimation method based on the PNGV equivalent model. The battery model recommended by PNGV is concise and clear, and can be directly quoted. As shown in Figure 1, it is the mathematical model of the power battery PNGV equivalent circuit model. According to the circuit, it can be obtained The open circuit voltage equation is as follows:

U(t)=UOCV(t)-Ua(t)-Up(t)-RoI(t)           (1)U(t)=U OCV (t)-U a (t)-U p (t)-R o I(t) (1)

Uu aa (( tt )) == 11 CC aa ∫∫ tt 00 tt II (( tt )) dtdt -- -- -- (( 22 ))

II (( tt )) -- II pp (( tt )) == II (( tt )) -- Uu pp (( tt )) RR pp == CC pp dd Uu pp (( tt )) dtdt -- -- -- (( 33 ))

UOCV:理想电压源,表示电池的开路电压;t:时间;U OCV : ideal voltage source, indicating the open circuit voltage of the battery; t: time;

Ca:电容,电容描述的是因电流的时间累积效应而引起的开路电压的变化;C a : Capacitance, capacitance describes the change of open circuit voltage caused by the time accumulation effect of current;

Ua:表示电容Ca两端的电压;Ro:电池的欧姆内阻;U a : indicates the voltage across the capacitor C a ; R o : the ohmic internal resistance of the battery;

Rp:电池内部极化电阻;Up:电池内部极化电阻两端的电压;R p : the internal polarization resistance of the battery; U p : the voltage across the internal polarization resistance of the battery;

Cp:电阻Rp的并联电容;C p : the parallel capacitance of the resistor R p ;

I:动力电池工作电流;Ip:极化电阻的电流;U:动力电池端电压;I: working current of power battery; I p : current of polarization resistance; U: terminal voltage of power battery;

列出动力电池开路电压与动力电池SOC的函数关系:List the functional relationship between the open circuit voltage of the power battery and the SOC of the power battery:

UOCV(t)=F[SOC(t)]          (4) UOCV (t)=F[SOC(t)] (4)

式中,F[SOC(t)]是一个非线性函数;In the formula, F[SOC(t)] is a nonlinear function;

根据原始安时积分法估算SOC公式列出在时间t0-t1的安时积分法估算SOC公式:The formula for estimating SOC based on the original ampere-hour integration method is listed in the ampere-hour integration method at time t 0 -t 1 to estimate the SOC formula:

SOCSOC (( tt 11 )) == SOCSOC (( tt 00 )) -- 11 QQ RR ∫∫ tt 00 tt 11 II (( tt )) dtdt -- -- -- (( 55 ))

式中,QR为动力电池额定容量;In the formula, Q R is the rated capacity of the power battery;

考虑动力电池充放电电流λc、环境温度λT以及电池健康状态λSOH等影响因素修正系数的影响,可得到改进的安时积分法:Considering the influence of the correction coefficient of the charging and discharging current λc of the power battery, the ambient temperature λT , and the state of health of the battery λSOH , an improved ampere-hour integration method can be obtained:

SOCSOC (( tt 11 )) == SOCSOC (( tt 00 )) -- 11 λλ QQ RR ∫∫ tt 00 tt 11 II (( tt )) dtdt -- -- -- (( 66 ))

式中:λ=λc×λT×λSOHWhere: λ=λ c ×λ T ×λ SOH ,

λ为修正系数;λc为动力电池充放电电流系数;λT为环境温度系数;λSOH为电池健康状态系数;λ is the correction coefficient; λ c is the charge and discharge current coefficient of the power battery; λ T is the ambient temperature coefficient; λ SOH is the battery state of health coefficient;

将公式(1)(3)(6)离散化,Discretize formulas (1) (3) (6),

U(k)=F[SOC(k)]-Ua(k)-Up(k)-RoI(k)        (7)U(k)=F[SOC(k)]-U a (k)-U p (k)-R o I(k) (7)

II (( kk )) -- Uu pp (( kk )) RR pp == CC pp Uu pp (( kk ++ 11 )) -- Uu pp (( kk )) ΔtΔt -- -- -- (( 88 ))

(( kk ++ 11 )) == SOCSOC (( kk )) -- ΔtΔt λλ QQ RR (( kk )) -- -- -- (( 99 ))

最终得到离散时间状态空间模型如下:Finally, the discrete-time state-space model is obtained as follows:

SOCSOC (( kk ++ 11 )) Uu pp (( kk ++ 11 )) == 11 00 00 11 -- ΔtΔt RR pp CC pp SOCSOC (( kk )) Uu pp (( kk )) ++ -- ΔtΔt λλ QQ RR ΔtΔt CC pp II (( kk )) ++ ww 11 (( kk )) ww 22 (( kk )) -- -- -- (( 1010 ))

U(k)=F[SOC(k)]-Ua(k)-Up(k)-RoI(k)+v(k)          (11)U(k)=F[SOC(k)]-U a (k)-U p (k)-R o I(k)+v(k) (11)

该状态空间模型中,I(k)为输入量,表示工作电流;U(k)为输出量,表示端电压; w 1 ( k ) w 2 ( k ) 为系统噪声;v(k)为观测噪声;Δt表示时间差;In the state-space model, I(k) is the input quantity, representing the working current; U(k) is the output quantity, representing the terminal voltage; w 1 ( k ) w 2 ( k ) is the system noise; v(k) is the observation noise; Δt is the time difference;

将输出方程中的F[SOC(t)]进行线性化处理后,状态空间模型(10)、(11)中的A(k),B(k)与C(k)分别为:After linearizing F[SOC(t)] in the output equation, A(k), B(k) and C(k) in state space models (10) and (11) are respectively:

AA (( kk )) == 11 00 00 11 -- ΔtΔt RR pp CC pp ,, BB (( kk )) == -- ΔtΔt λλ QQ RR ΔtΔt CC pp ,, CC (( kk )) == [[ ∂∂ Ff (( SOCSOC (( kk )) ]] ∂∂ SOCSOC (( kk )) ]] Xx (( kk )) == Xx ^^ (( kk ))

EKF算法公式如下:The EKF algorithm formula is as follows:

Xx ^^ (( kk || kk -- 11 )) == AA (( kk -- 11 )) Xx ^^ (( kk -- 11 )) ++ BB (( kk -- 11 )) II (( kk -- 11 )) -- -- -- (( 1212 ))

Xx ^^ (( kk )) == Xx ^^ (( kk || kk -- 11 )) ++ KK (( kk )) [[ Uu (( kk )) -- Uu ^^ (( kk )) ]] -- -- -- (( 1313 ))

P(k|k-1)=A(k-1)P(k-1)AT(k-1)+Q           (14)P(k|k-1)=A(k-1)P(k-1) AT (k-1)+Q (14)

K(k)=P(k|k-1)CT(k)[C(k)P(k|k-1)CT(k)+R]-1        (15)K(k)=P(k|k-1)C T (k)[C(k)P(k|k-1)C T (k)+R] -1 (15)

P(k)=[1-K(k)C(k)]P(k|k-1)            (16)P(k)=[1-K(k)C(k)]P(k|k-1) (16)

EKF算法由滤波器计算和滤波器增益计算两部分组成,滤波器计算由式(11)-(13)完成,滤波器先根据式(12)由前一时刻的结果

Figure BDA0000383254670000081
得到状态变量的预测值
Figure BDA0000383254670000082
再根据输出方程(11)得到系统观测量的预测值
Figure BDA0000383254670000083
跟实际观测值U(k)比较后得到预测误差,然后根据误差由式(13)对状态变量的预测值修正,得到新的滤波结果
Figure BDA0000383254670000084
滤波器增益计算由式(14)-(16)完成,式中P(k|k-1)和P(k)分别是状态变量预测误差和滤波误差的方差阵,K(k)为滤波器增益,Q和R分别是噪声w(k)和v(k)的方差阵。The EKF algorithm consists of two parts: filter calculation and filter gain calculation. The filter calculation is completed by formula (11)-(13).
Figure BDA0000383254670000081
Get the predicted value of the state variable
Figure BDA0000383254670000082
Then according to the output equation (11), the predicted value of the system observation is obtained
Figure BDA0000383254670000083
After comparing with the actual observed value U(k), the prediction error is obtained, and then according to the error, the predicted value of the state variable is corrected by formula (13) to obtain a new filtering result
Figure BDA0000383254670000084
The calculation of filter gain is completed by equations (14)-(16), where P(k|k-1) and P(k) are the variance matrix of state variable prediction error and filter error respectively, and K(k) is the filter Gains, Q and R are variance matrices of noise w(k) and v(k), respectively.

本发明提出的SOC复合估计算法(IAh-EKF)综合采用开路电压法、改进安时积分法结合EKF算法进行估计,流程如下:The SOC composite estimation algorithm (IAh-EKF) proposed by the present invention comprehensively uses the open circuit voltage method, the improved ampere-hour integral method combined with the EKF algorithm for estimation, and the process is as follows:

当电动汽车刚启动时,首先检测动力电池开路电压,利用开路电压法估计刚启动时的SOC初始值SOC(t0),然后在t0-t1时间段内由EKF算法对电池初始值SOC(t0)进行修正得到SOC(t1),最后根据修正后的SOC(t1)值,采用改进安时积分法对t1后的SOC进行估计,采用改进安时积分法估计时间段t1-t2后,如果继续使用动力电池,则再采用EKF算法对电池SOC进行修正。When the electric vehicle is just started, first detect the open circuit voltage of the power battery, use the open circuit voltage method to estimate the initial value of SOC (t 0 ) at the beginning of the start, and then use the EKF algorithm to calculate the initial value of the battery SOC during the time period of t 0 -t 1 (t 0 ) to obtain SOC (t 1 ), and finally according to the revised SOC (t 1 ) value, use the improved ampere-hour integration method to estimate the SOC after t 1 , and use the improved ampere-hour integration method to estimate the time period t After 1 -t 2 , if you continue to use the power battery, then use the EKF algorithm to correct the battery SOC.

总之,以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所作的均等变化与修饰,皆应属本发明专利的涵盖范围。In a word, the above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the patent of the present invention.

Claims (2)

1.一种基于PNGV等效电路模型的动力电池SOC复合估计方法,其特征在于包括以下步骤:1. a kind of power battery SOC composite estimation method based on PNGV equivalent circuit model, it is characterized in that comprising the following steps: A.检测动力电池开路电压;A. Detect the open circuit voltage of the power battery; B.采用开路电压法计算动力电池初始SOC(t0);B. Use the open circuit voltage method to calculate the initial SOC of the power battery (t 0 ); C.在t0-t1时间段内,采用扩展卡尔曼滤波(EKF)算法对初始SOC(t0)进行修正,得到SOC(t1);C. During the time period t 0 -t 1 , the extended Kalman filter (EKF) algorithm is used to correct the initial SOC (t 0 ) to obtain the SOC (t 1 ); D.在t1-t2时间段内,采用改进安时积分法进行估计;D. During the t 1 -t 2 time period, use the improved ampere-hour integration method to estimate; E.继续使用动力电池时,步骤C步骤D进行循环;E. When continuing to use the power battery, step C and step D are cycled; t0:表示初始时间;t1、t2:在t0之后的时间点。t 0 : indicates the initial time; t 1 , t 2 : time points after t 0 . 2.根据权利要求1所述的一种基于PNGV等效电路模型的动力电池SOC复合估计方法,其特征在于:列出开路电压方程如下:2. A kind of power battery SOC composite estimation method based on PNGV equivalent circuit model according to claim 1, is characterized in that: list open circuit voltage equation as follows: U(t)=UOCV(t)-Ua(t)-Up(t)-RoI(t)            (1)U(t)=U OCV (t)-U a (t)-U p (t)-R o I(t) (1) Uu aa (( tt )) == 11 CC aa ∫∫ tt 00 tt II (( tt )) dtdt -- -- -- (( 22 )) II (( tt )) -- II pp (( tt )) == II (( tt )) -- Uu pp (( tt )) RR pp == CC pp dd Uu pp (( tt )) dtdt -- -- -- (( 33 )) UOCV:理想电压源,表示电池的开路电压;t:时间;U OCV : ideal voltage source, indicating the open circuit voltage of the battery; t: time; Ca:电容,电容描述的是因电流的时间累积效应而引起的开路电压的变化;C a : Capacitance, capacitance describes the change of open circuit voltage caused by the time accumulation effect of current; Ua:表示电容Ca两端的电压;Ro:电池的欧姆内阻;U a : indicates the voltage across the capacitor C a ; R o : the ohmic internal resistance of the battery; Rp:电池内部极化电阻;Up:电池内部极化电阻两端的电压;R p : the internal polarization resistance of the battery; U p : the voltage across the internal polarization resistance of the battery; Cp:电阻Rp的并联电容;C p : the parallel capacitance of the resistor R p ; I:动力电池工作电流;Ip:极化电阻的电流;U:动力电池端电压;I: working current of power battery; I p : current of polarization resistance; U: terminal voltage of power battery; 列出动力电池开路电压与动力电池SOC的函数关系:List the functional relationship between the open circuit voltage of the power battery and the SOC of the power battery: UOCV(t)=F[SOC(t)]                (4) UOCV (t)=F[SOC(t)] (4) 式中,F[SOC(t)]是一个非线性函数;In the formula, F[SOC(t)] is a nonlinear function; 根据原始安时积分法估算SOC公式列出在时间t0-t1的安时积分法估算SOC公式:The formula for estimating SOC based on the original ampere-hour integration method is listed in the ampere-hour integration method at time t 0 -t 1 to estimate the SOC formula: SOCSOC (( tt 11 )) == SOCSOC (( tt 00 )) -- 11 QQ RR ∫∫ tt 00 tt 11 II (( tt )) dtdt -- -- -- (( 55 )) 式中,QR为动力电池额定容量;In the formula, Q R is the rated capacity of the power battery; 考虑动力电池充放电电流λc、环境温度λT以及电池健康状态λSOH等影响因素修正系数的影响,得到改进的安时积分法:Considering the influence of the correction coefficient of the charging and discharging current λc of the power battery, the ambient temperature λT , and the state of health of the battery λSOH , the improved ampere-hour integration method is obtained: SOCSOC (( tt 11 )) == SOCSOC (( tt 00 )) -- 11 λλ QQ RR ∫∫ tt 00 tt 11 II (( tt )) dtdt -- -- -- (( 66 )) 式中:λ=λc×λT×λSOHWhere: λ=λ c ×λ T ×λ SOH , λ为修正系数;λc为动力电池充放电电流系数;λT为环境温度系数;λSOH为电池健康状态系数;λ is the correction coefficient; λ c is the charge and discharge current coefficient of the power battery; λ T is the ambient temperature coefficient; λ SOH is the battery state of health coefficient; 将公式(1)(3)(6)离散化,Discretize formulas (1) (3) (6), U(k)=F[SOC(k)]-Ua(k)-Up(k)-RoI(k)             (7)U(k)=F[SOC(k)]-U a (k)-U p (k)-R o I(k) (7) II (( kk )) -- Uu pp (( kk )) RR pp == CC pp Uu pp (( kk ++ 11 )) -- Uu pp (( kk )) ΔtΔt -- -- -- (( 88 )) (( kk ++ 11 )) == SOCSOC (( kk )) -- ΔtΔt λλ QQ RR (( kk )) -- -- -- (( 99 )) 最终得到离散时间状态空间模型如下:Finally, the discrete-time state-space model is obtained as follows: SOCSOC (( kk ++ 11 )) Uu pp (( kk ++ 11 )) == 11 00 00 11 -- ΔtΔt RR pp CC pp SOCSOC (( kk )) Uu pp (( kk )) ++ -- ΔtΔt λλ QQ RR ΔtΔt CC pp II (( kk )) ++ ww 11 (( kk )) ww 22 (( kk )) -- -- -- (( 1010 )) U(k)=F[SOC(k)]-Ua(k)-Up(k)-RoI(k)+v(k)           (11)U(k)=F[SOC(k)]-U a (k)-U p (k)-R o I(k)+v(k) (11) 该状态空间模型中,I(k)为输入量,表示工作电流;U(k)为输出量,表示端电压; w 1 ( k ) w 2 ( k ) 为系统噪声;v(k)为观测噪声;Δt表示时间差;In the state-space model, I(k) is the input quantity, representing the working current; U(k) is the output quantity, representing the terminal voltage; w 1 ( k ) w 2 ( k ) is the system noise; v(k) is the observation noise; Δt is the time difference; 将输出方程中的F[SOC(t)]进行线性化处理后,状态空间模型(10)、(11)中的A(k),B(k)与C(k)分别为:After linearizing F[SOC(t)] in the output equation, A(k), B(k) and C(k) in state space models (10) and (11) are respectively: AA (( kk )) == 11 00 00 11 -- ΔtΔt RR pp CC pp ,, BB (( kk )) == -- ΔtΔt λλ QQ RR ΔtΔt CC pp ,, CC (( kk )) == [[ ∂∂ Ff (( SOCSOC (( kk )) ]] ∂∂ SOCSOC (( kk )) ]] Xx (( kk )) == Xx ^^ (( kk )) EKF算法公式如下:The EKF algorithm formula is as follows: Xx ^^ (( kk || kk -- 11 )) == AA (( kk -- 11 )) Xx ^^ (( kk -- 11 )) ++ BB (( kk -- 11 )) II (( kk -- 11 )) -- -- -- (( 1212 )) Xx ^^ (( kk )) == Xx ^^ (( kk || kk -- 11 )) ++ KK (( kk )) [[ Uu (( kk )) -- Uu ^^ (( kk )) ]] -- -- -- (( 1313 )) P(k|k-1)=A(k-1)P(k-1)AT(k-1)+Q          (14)P(k|k-1)=A(k-1)P(k-1) AT (k-1)+Q (14) K(k)=P(k|k-1)CT(k)[C(k)P(k|k-1)CT(k)+R]-1        (15)K(k)=P(k|k-1)C T (k)[C(k)P(k|k-1)C T (k)+R] -1 (15) P(k)=[1-K(k)C(k)]P(k|k-1)           (16)P(k)=[1-K(k)C(k)]P(k|k-1) (16) EKF算法由滤波器计算和滤波器增益计算两部分组成,滤波器计算由式(11)-(13)完成,滤波器先根据式(12)由前一时刻的结果得到状态变量的预测值再根据输出方程(11)得到系统观测量的预测值
Figure FDA0000383254660000037
跟实际观测值U(k)比较后得到预测误差,然后根据误差由式(13)对状态变量的预测值修正,得到新的滤波结果
Figure FDA0000383254660000038
滤波器增益计算由式(14)-(16)完成,式中P(k|k-1)和P(k)分别是状态变量预测误差和滤波误差的方差阵,K(k)为滤波器增益,Q和R分别是噪声w(k)和v(k)的方差阵。
The EKF algorithm consists of two parts: filter calculation and filter gain calculation. The filter calculation is completed by formula (11)-(13). Get the predicted value of the state variable Then according to the output equation (11), the predicted value of the system observation is obtained
Figure FDA0000383254660000037
After comparing with the actual observed value U(k), the prediction error is obtained, and then according to the error, the predicted value of the state variable is corrected by formula (13) to obtain a new filtering result
Figure FDA0000383254660000038
The calculation of filter gain is completed by equations (14)-(16), where P(k|k-1) and P(k) are the variance matrix of state variable prediction error and filter error respectively, and K(k) is the filter Gains, Q and R are variance matrices of noise w(k) and v(k), respectively.
CN201310426021.5A 2013-09-17 2013-09-17 A kind of electrokinetic cell SOC compound method of estimation based on PNGV equivalent-circuit model Active CN103472403B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310426021.5A CN103472403B (en) 2013-09-17 2013-09-17 A kind of electrokinetic cell SOC compound method of estimation based on PNGV equivalent-circuit model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310426021.5A CN103472403B (en) 2013-09-17 2013-09-17 A kind of electrokinetic cell SOC compound method of estimation based on PNGV equivalent-circuit model

Publications (2)

Publication Number Publication Date
CN103472403A true CN103472403A (en) 2013-12-25
CN103472403B CN103472403B (en) 2016-04-13

Family

ID=49797326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310426021.5A Active CN103472403B (en) 2013-09-17 2013-09-17 A kind of electrokinetic cell SOC compound method of estimation based on PNGV equivalent-circuit model

Country Status (1)

Country Link
CN (1) CN103472403B (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051810A (en) * 2014-06-25 2014-09-17 中国东方电气集团有限公司 Rapid correction method for SOC (state of charge) estimation of energy storage lithium ion battery system
CN104502847A (en) * 2014-11-28 2015-04-08 华晨汽车集团控股有限公司 Pre-estimate method for SOH (state of health) of power battery of electric car
CN105353316A (en) * 2015-09-30 2016-02-24 南京林业大学 Measurement method of SOC variation and charging power conversion coefficient during power battery charging
CN105487016A (en) * 2016-01-21 2016-04-13 深圳市沃特玛电池有限公司 SOC value estimation method and system thereof
CN105501075A (en) * 2015-11-30 2016-04-20 刘淼 Electric vehicle control system
CN105807226A (en) * 2014-12-31 2016-07-27 北京航天测控技术有限公司 Lithium ion battery SOC prediction method and device based on equivalent circuit model
CN105807168A (en) * 2016-05-11 2016-07-27 大连理工大学 Method for correcting supercapacitor SOC estimation
CN106324518A (en) * 2016-08-31 2017-01-11 浙江长兴笛卡尔科技有限公司 SOH (State of Health) estimation method for power battery of electric car
CN106443480A (en) * 2016-11-04 2017-02-22 天津市捷威动力工业有限公司 Lithium ion battery system SOC estimation method
CN106483463A (en) * 2015-08-31 2017-03-08 上汽通用汽车有限公司 Battery charging state predictor method and device
CN106646239A (en) * 2015-07-21 2017-05-10 苏州弗朗汽车技术有限公司 Dynamic estimation and intelligent correction method of remaining capacity of vehicle mounted lithium battery system
CN106680727A (en) * 2016-12-28 2017-05-17 江苏兴云新能源有限公司 Method for estimating multi-algorithm for SOC
CN106918789A (en) * 2017-05-10 2017-07-04 成都理工大学 A kind of SOC SOH combine online real-time estimation and on-line amending method
CN107110914A (en) * 2014-10-31 2017-08-29 康奈可关精株式会社 The parameter estimation apparatus of battery
CN107453467A (en) * 2017-07-27 2017-12-08 华中科技大学 A kind of oceanographic buoy SOFC mixed tensor management system
CN108008317A (en) * 2017-12-01 2018-05-08 重庆大学 A kind of state-of-charge method of estimation based on battery open circuit voltage curve characteristic
CN108169687A (en) * 2017-12-27 2018-06-15 国网河北省电力有限公司电力科学研究院 A kind of accumulator SOC estimation method based on cloud platform
CN109085505A (en) * 2018-07-25 2018-12-25 深圳华中科技大学研究院 A kind of power battery charging and discharging state evaluation method
CN109154638A (en) * 2016-06-23 2019-01-04 英特尔公司 System, method and apparatus for battery charging state detection
CN109164392A (en) * 2018-08-22 2019-01-08 清华大学深圳研究生院 A kind of SOC estimation method of power battery
CN109444758A (en) * 2018-12-03 2019-03-08 湖南金杯新能源发展有限公司 Battery charge state estimation method, device, storage medium and computer equipment
CN109991548A (en) * 2019-04-19 2019-07-09 中国计量大学 An OCV-SOC calibration experiment method, battery equivalent model parameter identification method and SOC estimation method
CN110133510A (en) * 2019-05-30 2019-08-16 陕西科技大学 A Hybrid Estimation Method for State of Charge SOC of Lithium-ion Batteries
CN110196395A (en) * 2018-02-26 2019-09-03 中国商用飞机有限责任公司 Battery SOC estimation method
CN110286324A (en) * 2019-07-18 2019-09-27 北京碧水润城水务咨询有限公司 A kind of battery charge state evaluation method and cell health state evaluation method
CN110395141A (en) * 2019-06-27 2019-11-01 武汉理工大学 SOC estimation method for power lithium battery based on adaptive Kalman filter method
CN110579714A (en) * 2019-07-26 2019-12-17 西安科技大学 A battery SOC double-state switching estimation method based on BAS optimization ElmanNN-AH method
CN110632520A (en) * 2019-10-17 2019-12-31 西安工业大学 A device for estimating power battery SOC and its estimating method
CN110716146A (en) * 2019-09-30 2020-01-21 精进电动科技股份有限公司 Estimation method of power battery open circuit voltage
CN110954831A (en) * 2019-12-06 2020-04-03 重庆大学 Multi-time scale square lithium battery SOC and SOT joint estimation method
CN116736141A (en) * 2023-08-10 2023-09-12 锦浪科技股份有限公司 Lithium battery energy storage safety management system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239602B (en) * 2018-09-18 2020-12-29 清华大学深圳研究生院 Method for estimating ohmic internal resistance of power battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192726A (en) * 2006-01-20 2007-08-02 Nissan Motor Co Ltd Soc calculator for battery
CN102608542A (en) * 2012-04-10 2012-07-25 吉林大学 Method for estimating charge state of power cell
CN102854470A (en) * 2012-08-31 2013-01-02 哈尔滨工业大学 Measurement method for estimating actual available capacity by SOC (state of charge) of power battery set

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192726A (en) * 2006-01-20 2007-08-02 Nissan Motor Co Ltd Soc calculator for battery
CN102608542A (en) * 2012-04-10 2012-07-25 吉林大学 Method for estimating charge state of power cell
CN102854470A (en) * 2012-08-31 2013-01-02 哈尔滨工业大学 Measurement method for estimating actual available capacity by SOC (state of charge) of power battery set

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
罗玉涛等: "电动汽车锂离子电池组参数辨识与SOC估计", 《华南理工大学学报(自然科学版)》 *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051810A (en) * 2014-06-25 2014-09-17 中国东方电气集团有限公司 Rapid correction method for SOC (state of charge) estimation of energy storage lithium ion battery system
CN104051810B (en) * 2014-06-25 2016-04-06 中国东方电气集团有限公司 A kind of lithium-ion energy storage battery system SOC estimates rapid correction method
CN107110914A (en) * 2014-10-31 2017-08-29 康奈可关精株式会社 The parameter estimation apparatus of battery
CN104502847A (en) * 2014-11-28 2015-04-08 华晨汽车集团控股有限公司 Pre-estimate method for SOH (state of health) of power battery of electric car
CN105807226A (en) * 2014-12-31 2016-07-27 北京航天测控技术有限公司 Lithium ion battery SOC prediction method and device based on equivalent circuit model
CN105807226B (en) * 2014-12-31 2018-07-10 北京航天测控技术有限公司 Lithium ion battery SOC Forecasting Methodologies and device based on equivalent-circuit model
CN106646239A (en) * 2015-07-21 2017-05-10 苏州弗朗汽车技术有限公司 Dynamic estimation and intelligent correction method of remaining capacity of vehicle mounted lithium battery system
CN106483463A (en) * 2015-08-31 2017-03-08 上汽通用汽车有限公司 Battery charging state predictor method and device
CN105353316A (en) * 2015-09-30 2016-02-24 南京林业大学 Measurement method of SOC variation and charging power conversion coefficient during power battery charging
CN105353316B (en) * 2015-09-30 2018-07-03 南京林业大学 Measurement method of SOC variation and charging power conversion coefficient during power battery charging
CN105501075A (en) * 2015-11-30 2016-04-20 刘淼 Electric vehicle control system
CN105501075B (en) * 2015-11-30 2017-12-29 刘淼 Control system for electric vehicle
CN105487016A (en) * 2016-01-21 2016-04-13 深圳市沃特玛电池有限公司 SOC value estimation method and system thereof
CN105807168A (en) * 2016-05-11 2016-07-27 大连理工大学 Method for correcting supercapacitor SOC estimation
CN105807168B (en) * 2016-05-11 2018-06-08 大连理工大学 A kind of method for being used to correct ultracapacitor SOC estimations
CN109154638B (en) * 2016-06-23 2021-11-19 英特尔公司 System, method and apparatus for battery state of charge detection
CN109154638A (en) * 2016-06-23 2019-01-04 英特尔公司 System, method and apparatus for battery charging state detection
CN106324518B (en) * 2016-08-31 2019-09-20 浙江长兴笛卡尔科技有限公司 A kind of electric automobile power battery SOH evaluation method
CN106324518A (en) * 2016-08-31 2017-01-11 浙江长兴笛卡尔科技有限公司 SOH (State of Health) estimation method for power battery of electric car
CN106443480B (en) * 2016-11-04 2019-11-22 天津市捷威动力工业有限公司 A Li-ion battery system SOC estimation method
CN106443480A (en) * 2016-11-04 2017-02-22 天津市捷威动力工业有限公司 Lithium ion battery system SOC estimation method
CN106680727A (en) * 2016-12-28 2017-05-17 江苏兴云新能源有限公司 Method for estimating multi-algorithm for SOC
CN106918789B (en) * 2017-05-10 2019-05-14 成都理工大学 A kind of SOC-SOH combines online real-time estimation and on-line amending method
CN106918789A (en) * 2017-05-10 2017-07-04 成都理工大学 A kind of SOC SOH combine online real-time estimation and on-line amending method
CN107453467B (en) * 2017-07-27 2020-07-10 华中科技大学 Solid oxide fuel cell hybrid energy management system for ocean buoy
CN107453467A (en) * 2017-07-27 2017-12-08 华中科技大学 A kind of oceanographic buoy SOFC mixed tensor management system
CN108008317A (en) * 2017-12-01 2018-05-08 重庆大学 A kind of state-of-charge method of estimation based on battery open circuit voltage curve characteristic
CN108169687A (en) * 2017-12-27 2018-06-15 国网河北省电力有限公司电力科学研究院 A kind of accumulator SOC estimation method based on cloud platform
CN110196395B (en) * 2018-02-26 2022-07-12 中国商用飞机有限责任公司 Storage battery SOC estimation method
CN110196395A (en) * 2018-02-26 2019-09-03 中国商用飞机有限责任公司 Battery SOC estimation method
CN109085505A (en) * 2018-07-25 2018-12-25 深圳华中科技大学研究院 A kind of power battery charging and discharging state evaluation method
CN109164392A (en) * 2018-08-22 2019-01-08 清华大学深圳研究生院 A kind of SOC estimation method of power battery
CN109444758A (en) * 2018-12-03 2019-03-08 湖南金杯新能源发展有限公司 Battery charge state estimation method, device, storage medium and computer equipment
CN109991548A (en) * 2019-04-19 2019-07-09 中国计量大学 An OCV-SOC calibration experiment method, battery equivalent model parameter identification method and SOC estimation method
CN110133510B (en) * 2019-05-30 2021-08-13 陕西科技大学 A Hybrid Estimation Method for State of Charge (SOC) of Li-ion Batteries
CN110133510A (en) * 2019-05-30 2019-08-16 陕西科技大学 A Hybrid Estimation Method for State of Charge SOC of Lithium-ion Batteries
CN110395141A (en) * 2019-06-27 2019-11-01 武汉理工大学 SOC estimation method for power lithium battery based on adaptive Kalman filter method
CN110286324B (en) * 2019-07-18 2021-07-09 北京碧水润城水务咨询有限公司 Battery state of charge estimation method and battery state of health estimation method
CN110286324A (en) * 2019-07-18 2019-09-27 北京碧水润城水务咨询有限公司 A kind of battery charge state evaluation method and cell health state evaluation method
CN110579714A (en) * 2019-07-26 2019-12-17 西安科技大学 A battery SOC double-state switching estimation method based on BAS optimization ElmanNN-AH method
CN110716146A (en) * 2019-09-30 2020-01-21 精进电动科技股份有限公司 Estimation method of power battery open circuit voltage
CN110632520A (en) * 2019-10-17 2019-12-31 西安工业大学 A device for estimating power battery SOC and its estimating method
CN110954831A (en) * 2019-12-06 2020-04-03 重庆大学 Multi-time scale square lithium battery SOC and SOT joint estimation method
CN110954831B (en) * 2019-12-06 2021-10-26 重庆大学 Multi-time scale square lithium battery SOC and SOT joint estimation method
CN116736141A (en) * 2023-08-10 2023-09-12 锦浪科技股份有限公司 Lithium battery energy storage safety management system and method

Also Published As

Publication number Publication date
CN103472403B (en) 2016-04-13

Similar Documents

Publication Publication Date Title
CN103472403B (en) A kind of electrokinetic cell SOC compound method of estimation based on PNGV equivalent-circuit model
CN108717164B (en) SOC calibration method and system for battery
KR101189150B1 (en) The method for measuring SOC of a battery in Battery Management System and the apparatus thereof
CN104502858B (en) Electrokinetic cell SOC methods of estimation and system based on backward difference discrete model
CN103797374B (en) System and method for battery monitoring
CN102540096B (en) Self-correction method for remaining capacity estimation of lithium iron phosphate power battery
CN104267354B (en) A kind of peak power Forecasting Methodology of electrokinetic cell
CN105319515B (en) Charge states of lithium ion battery and health status joint estimate method
CN105548898B (en) A kind of lithium battery SOC methods of estimation of off-line data segmentation correction
WO2015106691A1 (en) Soc estimation method for power battery for hybrid electric vehicle
US11320491B2 (en) Battery cell state of charge estimation method and a battery state monitoring system
CN105548896A (en) Power-cell SOC online closed-loop estimation method based on N-2RC model
US8452556B2 (en) Method and apparatus for estimating SOC of a battery
EP3107146B1 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
CN109031133B (en) SOC correction method of power battery
CN106646265A (en) Method for estimating SOC of lithium battery
CN106329021A (en) Method and device for estimating remaining available energy of power battery
KR101996943B1 (en) Apparatus and method for estimating of battery state-of-charge
CN111239611A (en) A calculation method for calibrating PACKSOC based on single battery capacity
CN111190109B (en) A method for estimating state of charge of lithium battery without current sensor
CN103293485A (en) Model-based storage battery SOC (state of charge) estimating method
CN103116136B (en) Lithium battery charge state assessment method based on finite difference expansion Kalman algorithm
CN101625397A (en) Mixed rapid estimation method for residual energy of battery
CN108828448B (en) Battery state of charge on-line estimation method based on charging voltage curve fusion Kalman filtering
CN105699910A (en) Method for on-line estimating residual electric quantity of lithium battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant