CN103441125A - Surge protection circuit based on bidirectional thyristor and method for manufacturing same - Google Patents
Surge protection circuit based on bidirectional thyristor and method for manufacturing same Download PDFInfo
- Publication number
- CN103441125A CN103441125A CN201310284264XA CN201310284264A CN103441125A CN 103441125 A CN103441125 A CN 103441125A CN 201310284264X A CN201310284264X A CN 201310284264XA CN 201310284264 A CN201310284264 A CN 201310284264A CN 103441125 A CN103441125 A CN 103441125A
- Authority
- CN
- China
- Prior art keywords
- type
- photolithography
- well
- carry out
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002457 bidirectional effect Effects 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims description 6
- 239000004065 semiconductor Substances 0.000 claims abstract description 41
- 238000000206 photolithography Methods 0.000 claims description 66
- 238000009792 diffusion process Methods 0.000 claims description 42
- 239000000758 substrate Substances 0.000 claims description 41
- 235000012431 wafers Nutrition 0.000 claims description 21
- 238000005468 ion implantation Methods 0.000 claims description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 239000010703 silicon Substances 0.000 claims description 15
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 12
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 11
- 230000008021 deposition Effects 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 238000002513 implantation Methods 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 230000009977 dual effect Effects 0.000 claims description 6
- 238000002955 isolation Methods 0.000 claims description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 3
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 3
- FGUJWQZQKHUJMW-UHFFFAOYSA-N [AlH3].[B] Chemical compound [AlH3].[B] FGUJWQZQKHUJMW-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 239000004816 latex Substances 0.000 claims description 3
- 229920000126 latex Polymers 0.000 claims description 3
- 238000001883 metal evaporation Methods 0.000 claims description 3
- 238000004806 packaging method and process Methods 0.000 claims description 3
- 238000002161 passivation Methods 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 16
- 229910000679 solder Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Landscapes
- Emergency Protection Circuit Devices (AREA)
- Thyristors (AREA)
Abstract
Description
技术领域 technical field
本发明涉及电子电路及半导体技术,具体的说是涉及一种基于双向晶闸管的浪涌保护电路。 The invention relates to electronic circuits and semiconductor technologies, in particular to a surge protection circuit based on bidirectional thyristors. the
背景技术 Background technique
电子电路在使用过程中经常会遭遇电压瞬变形成的浪涌电流的冲击,这将对整个电路的正常工作产生不利影响甚至导致电子电路系统的损坏。浪涌的来源主要有:感性负载电压瞬变、静电放电、雷电放电、云层内或云层间的放电。为了防止瞬变的浪涌电压对整个电路系统的冲击,提高电子系统的可靠性,浪涌保护成为了现代电子电路必须考虑的问题。晶闸管型浪涌保护电路具有精确导通、无限重复、电压范围宽(几伏到几千伏)和快速响应(ns级)的优越性能,因而广泛应用在电力电子技术领域、通信领域以及各类电子电路的防护。 Electronic circuits are often impacted by surge currents caused by voltage transients during use, which will adversely affect the normal operation of the entire circuit and even cause damage to the electronic circuit system. The main sources of surges are: inductive load voltage transients, electrostatic discharges, lightning discharges, and discharges within or between clouds. In order to prevent the impact of the transient surge voltage on the entire circuit system and improve the reliability of the electronic system, surge protection has become a problem that must be considered in modern electronic circuits. The thyristor type surge protection circuit has the superior performance of precise conduction, infinite repetition, wide voltage range (several volts to thousands of volts) and fast response (ns level), so it is widely used in the field of power electronics technology, communication field and various Protection of electronic circuits. the
常见的晶闸管型浪涌保护电路如图1和图2所示,图1为双向双线可编程浪涌保护电路,这种电路结构可以通过编程设置电极G1和电极G2的电压值来设定浪涌保护范围,当Line端出现正向(负向)浪涌时,pnp(npn)三极管导通,三极管发射极电流触发晶闸管导通,从而泄放浪涌电流、实现对线路的浪涌保护;图2所示为双路双向可编程浪涌保护电路,使用时该电路并联在需要保护的电路两端,在K1、K2出现正的大于约0.7V过电压时,二极管导通,将K1、K2电极的电压钳位在0.7V,同时泄放掉浪涌电流;在K1、K2出现负的低于G端电压约0.7V的过电压时,npn三极管导通,其发射极电流触发p型门极晶闸管导通,从而泄放掉浪涌电流,通过编程设定G电极的电压值,可以设定负向浪涌防护的电压范围。因此现有的保护电路为了确保浪涌电流泄放能力足够大,存在浪涌保护电路芯片面积较大的问题,不利于当前对于电路小型化、经济化的需求。 Common thyristor-type surge protection circuits are shown in Figure 1 and Figure 2. Figure 1 is a bidirectional two-wire programmable surge protection circuit. This circuit structure can set the voltage value of electrode G1 and electrode G2 to set the surge protection circuit. Surge protection range, when a positive (negative) surge occurs at the Line end, the pnp (npn) transistor is turned on, and the emitter current of the triode triggers the thyristor to turn on, thereby discharging the surge current and realizing surge protection for the line; Figure 2 shows a dual-way bidirectional programmable surge protection circuit. When in use, this circuit is connected in parallel at both ends of the circuit to be protected. When K1 and K2 have a positive overvoltage greater than about 0.7V, the diode conducts, and K1, K2 The voltage of the K2 electrode is clamped at 0.7V, and the surge current is released at the same time; when K1 and K2 have a negative overvoltage about 0.7V lower than the G terminal voltage, the npn transistor is turned on, and its emitter current triggers the p-type The gate thyristor is turned on to discharge the surge current, and the voltage range of the negative surge protection can be set by programming the voltage value of the G electrode. Therefore, in order to ensure a sufficiently large surge current discharge capability in the existing protection circuit, there is a problem that the chip area of the surge protection circuit is large, which is not conducive to the current demand for circuit miniaturization and economy. the
发明内容 Contents of the invention
本发明所要解决的技术问题,就是针对目前的浪涌保护电路芯片面积较大的问题,提出一种基于双向晶闸管的浪涌保护电路及其制造方法。 The technical problem to be solved by the present invention is to propose a bidirectional thyristor-based surge protection circuit and a manufacturing method thereof for the problem that the chip area of the current surge protection circuit is relatively large. the
本发明解决上述技术问题所采用的技术方案是:一种基于双向晶闸管的浪涌保护电路,其特征在于,包括双向晶闸管、NPN型三极管和PNP型三极管,所述NPN型三极管的发射极和双向晶闸管的P型门连接、基极引出第一电极,所述PNP型三极管的发射极和双向晶闸管的N型门连接、基极引出第二电极,所述双向晶闸管的一端引出第三电极、另一端与NPN型 三极管的集电极和PNP型三极管的集电极均接地。 The technical solution adopted by the present invention to solve the above technical problems is: a surge protection circuit based on a bidirectional thyristor, which is characterized in that it includes a bidirectional thyristor, an NPN triode and a PNP triode, and the emitter of the NPN triode and the bidirectional The P-type gate of the thyristor is connected, the base leads to the first electrode, the emitter of the PNP-type triode is connected to the N-type gate of the bidirectional thyristor, and the base leads to the second electrode, one end of the bidirectional thyristor leads to the third electrode, and the other One end is grounded to the collector of the NPN transistor and the collector of the PNP transistor. the
具体的,所述双向晶闸管包括第一N型半导体衬底3,所述第一N型半导体衬底3的一端设置有第一P阱4和N型扩散环5,所述N型扩散环5为一对并分别设置在第一P阱4的两边,所述第一P阱4中形成第一N阱7和P型门极6,所述P型门极6设置在第一N阱7的左侧,所述第一N阱7中形成第二P阱9和N型门极8,所述N型门极8设置在第二P阱9的右侧,所述第二P阱9中通过N型注入形成短路孔10,所述第二P阱9表面引出第三电极2,所述第一N型半导体衬底3的另一端设置有多个相间的第一P区11和第一N区12。
Specifically, the bidirectional thyristor includes a first N-
具体的,所述NPN型三极管包括第二N型半导体衬底13,所述第二N型半导体衬底13的一端设置有第三P阱14,所述第三P阱14包括第一发射区15和第一基区16,所述第一发射区15和P型门极6连接,所述第一基区16引出第一电极17,所述第二N型半导体衬底13的另一端通过N型扩散形成第一集电极区19,所述第二N型半导体衬底13还包括第二P区18,所述第二P区18连接第二N型半导体衬底13的一端和另一端。
Specifically, the NPN transistor includes a second N-
具体的,所述PNP型三极管包括第三N型半导体衬底20,所述第三N型半导体衬底20的一端设置有第四P阱21,所述第四P阱21为第二发射区,与N型门极8连接,所述第四P阱的右侧通过N型扩散形成第二基区22,所述第二基区22引出第二电极25,所述第三N型半导体衬底20的另一端通过P型扩散形成第二集电极区23,所述第三N型半导体衬底20还包括第三P区24,所述第三P区24连接第三N型半导体衬底20的一端与另一端,所述第一电极17、第三电极2和第二电极25通过氧化层1隔开。
Specifically, the PNP transistor includes a third N-
一种基于双向晶闸管的浪涌保护电路的制造方法,其特征在于,包括: A method for manufacturing a surge protection circuit based on a bidirectional thyristor, characterized in that it comprises:
第一步:选择片厚300μm,电阻率15~25Ω·cm的单晶硅片,打标清洗、烘干后待用; Step 1: Select a monocrystalline silicon wafer with a thickness of 300 μm and a resistivity of 15-25 Ω cm, mark, clean and dry it for use;
第二步:将第一步中得到的单晶硅片进行硅片表面生长场氧化层处理,进行第一次光刻,具体为隔离区第二P区18和第三P区24的双面光刻,然后进行双面隔离区的硼扩散、硼-铝双质扩散或镓-铝双质扩散;
The second step: the single crystal silicon wafer obtained in the first step is subjected to the surface growth field oxide layer treatment of the silicon wafer, and the first photolithography is performed, specifically the double sides of the
第三步:进行第二次光刻和三次光刻,然后进行第一P阱4、第一P区11硼扩散,扩散条件为:预淀积温度1050℃~1060℃、时间5h,再分布温度1250℃、时间20h~25h、O2流量为700mL/min、N2流量为300mL/min;
Step 3: Carry out the second photolithography and three photolithography, and then perform boron diffusion in the
第四步:进行第四次光刻,然后进行第一N阱7磷扩散,条件为:预淀积温度980℃~1020℃,O2流量200mL/min,N2流量为700mL/min,时间2~3h,再分布条件为温度 1300℃~1310℃、时间18h~20h、O2流量为500mL/min、N2流量为700mL/min; Step 4: Carry out the fourth photolithography , and then carry out 7-phosphorus diffusion in the first N well. 2~3h, redistribution conditions are temperature 1300℃~1310℃, time 18h~20h, O 2 flow rate 500mL/min, N 2 flow rate 700mL/min;
第五步:进行第五次光刻,然后进行第二P阱9、NPN三极管基区14、PNP三极管发射区21硼离子注入,离子注入条件为:剂量5e14cm-2、能量80KeV,再分布条件为温度1250℃、时间10h~15h、O2流量为700mL/min、N2流量为300mL/min;
Step 5: Carry out the fifth photolithography, and then perform boron ion implantation in the
第六步:进行第六次光刻,然后进行门极短路孔10N型离子注入,离子注入条件为:剂量1e15cm-2、能量50KeV,再分布条件为温度1310℃、时间8h~12h、O2流量为700mL/min、N2流量为300mL/min; Step 6: Carry out the sixth photolithography, and then perform 10N-type ion implantation in the gate short-circuit hole. The ion implantation conditions are: dose 1e15cm -2 , energy 50KeV, and redistribution conditions are temperature 1310°C, time 8h-12h, O 2 The flow rate is 700mL/min, and the N2 flow rate is 300mL/min;
第七步:进行第七次光刻,进行正面P型门极6区、NPN三极管基区16接触光刻,进行第八次光刻,进行PNP三极管背面第二集电极区23光刻,进行硼离子注入,注入条件为:剂量5e14cm-2、能量50KeV,再分布条件为温度1250℃、时间2h~4h、O2流量为700mL/min、N2流量为300mL/min; Step 7: Carry out the seventh photolithography, carry out the contact photolithography of the front P-type gate 6 area, the NPN triode base area 16, carry out the eighth photolithography, carry out the photolithography of the second collector area 23 on the back of the PNP triode, and carry out Boron ion implantation, implantation conditions: dose 5e14cm -2 , energy 50KeV, redistribution conditions: temperature 1250°C, time 2h-4h, O 2 flow rate 700mL/min, N 2 flow rate 300mL/min;
第八步:进行第九次光刻,进行正面N型门极8区、PNP三极管基区22接触、N型扩散环5光刻,进行第十次光刻,进行第一N区12光刻,进行磷离子注入,注入条件为:剂量5e15cm-2、能量60KeV,再分布条件为温度1310℃、时间3h~5h、O2流量为500mL/min、N2流量为700mL/min;
Step 8: Carry out the ninth photolithography, carry out the front N-type gate 8 regions, the PNP
第九步:进行第十一次光刻,刻蚀出接触孔; Step 9: Carry out the eleventh photolithography to etch out the contact holes;
第十步:进行金属蒸发、第十二次光刻和反刻铝; Step 10: Carry out metal evaporation, twelfth photolithography and reverse etching of aluminum;
第十一步:合金,条件:炉温550℃、真空度10-3Pa、时间10~30min,钝化;
The eleventh step: alloy, conditions: furnace temperature 550°C,
第十二步:进行第十三次光刻,刻蚀出压焊点; The twelfth step: Carry out the thirteenth photolithography to etch out the solder joints;
第十三步:低温退火,温度500℃~510℃,恒温10min; The thirteenth step: low temperature annealing, temperature 500 ℃ ~ 510 ℃, constant temperature 10min;
第十四步:硅片初测、切割、装架、烧结、封装测试。 Step 14: Preliminary testing of silicon wafers, cutting, racking, sintering, packaging and testing. the
具体的,第二步中所述光刻后为进行镓-铝双质扩散,具体包括以下步骤: Specifically, gallium-aluminum dual-mass diffusion is carried out after the photolithography described in the second step, which specifically includes the following steps:
a.在硅片正反两面均匀涂上由硝酸铝配制的二氧化硅乳胶源,厚度,预烘后将硅片推入扩散炉恒温区,在1300℃~1310℃、N2保护下预淀积8h~10h, a. Evenly coat the silicon dioxide latex source prepared by aluminum nitrate on both sides of the silicon wafer, the thickness , after pre-baking, push the silicon wafer into the constant temperature zone of the diffusion furnace, and pre-deposit at 1300 ℃ ~ 1310 ℃ under the protection of N2 for 8h ~ 10h,
b.进行Ga预淀积,Ga源为Ga2O3粉末,淀积条件为:片温为1250℃~1260℃,源温为980℃~1000℃,H2流量200~300mL/min,N2流量为80~100mL/min,通源时间60~80min; b. Carry out Ga pre-deposition, the Ga source is Ga 2 O 3 powder, the deposition conditions are: sheet temperature 1250°C-1260°C, source temperature 980°C-1000°C, H 2 flow rate 200-300mL/min, N 2 The flow rate is 80-100mL/min, and the power-on time is 60-80min;
c.在1330℃、N2保护下进行杂质再分布50~55h,在400℃以下取出硅片。 c. Perform impurity redistribution at 1330°C under the protection of N 2 for 50-55 hours, and take out the silicon wafer at below 400°C.
本发明的有益效果为,可以实现对单线路的双向可编程浪涌保护,同时可极大的减小芯片面积,从而降低生产成本。 The beneficial effect of the invention is that the bidirectional programmable surge protection for a single line can be realized, and at the same time, the chip area can be greatly reduced, thereby reducing the production cost. the
附图说明 Description of drawings
图1是常见的基于晶闸管的浪涌保护电路结构示意图; Figure 1 is a schematic diagram of a common thyristor-based surge protection circuit;
图2是另一种常见的基于晶闸管的浪涌保护电路结构示意图; Figure 2 is a schematic structural diagram of another common thyristor-based surge protection circuit;
图3是本发明的基于双向晶闸管的浪涌保护电路等效结构示意图; Fig. 3 is the equivalent structure schematic diagram of the surge protection circuit based on bidirectional thyristor of the present invention;
图4是本发明的基于双向晶闸管的浪涌保护电路的剖面示意图; Fig. 4 is the sectional schematic view of the surge protection circuit based on bidirectional thyristor of the present invention;
图5是本发明的浪涌保护电路制造方法的一次光刻掩模板示意图; Fig. 5 is a schematic diagram of a photolithography mask plate of the surge protection circuit manufacturing method of the present invention;
图6是本发明的浪涌保护电路制造方法的二次光刻掩模板示意图; Fig. 6 is a schematic diagram of a secondary photolithography mask of the surge protection circuit manufacturing method of the present invention;
图7是本发明的浪涌保护电路制造方法的三次光刻掩模板示意图; Fig. 7 is a schematic diagram of three photolithography mask plates of the surge protection circuit manufacturing method of the present invention;
图8是本发明的浪涌保护电路制造方法的四次光刻掩模板示意图; Figure 8 is a schematic diagram of four photolithography mask plates of the surge protection circuit manufacturing method of the present invention;
图9是本发明的浪涌保护电路制造方法的五次光刻掩模板示意图; 9 is a schematic diagram of five photolithography mask plates of the surge protection circuit manufacturing method of the present invention;
图10是本发明的浪涌保护电路制造方法的六次光刻掩模板示意图; Fig. 10 is a schematic diagram of six photolithographic mask plates of the surge protection circuit manufacturing method of the present invention;
图11是本发明的浪涌保护电路制造方法的七次光刻掩模板示意图; Fig. 11 is a schematic diagram of seven photolithography mask plates of the surge protection circuit manufacturing method of the present invention;
图12是本发明的浪涌保护电路制造方法的八次光刻掩模板示意图; Fig. 12 is a schematic diagram of eight photolithography mask plates of the surge protection circuit manufacturing method of the present invention;
图13是本发明的浪涌保护电路制造方法的九次光刻掩模板示意图; Fig. 13 is a schematic diagram of nine photolithography mask plates of the surge protection circuit manufacturing method of the present invention;
图14是本发明的浪涌保护电路制造方法的十次光刻掩模板示意图; Fig. 14 is a schematic diagram of ten photolithography mask plates of the surge protection circuit manufacturing method of the present invention;
图15是本发明的浪涌保护电路制造方法的十一次光刻掩模板示意图; Fig. 15 is a schematic diagram of eleven photolithography mask plates of the surge protection circuit manufacturing method of the present invention;
图16是本发明的浪涌保护电路制造方法的十二次光刻掩模板示意图。 FIG. 16 is a schematic diagram of a twelve-pass photolithography mask of the surge protection circuit manufacturing method of the present invention. the
具体实施方式 Detailed ways
下面结合附图和实施例,详细描述本发明的技术方案: Below in conjunction with accompanying drawing and embodiment, describe technical scheme of the present invention in detail:
双向晶闸管具有两种门极,对外引出三个电极,相当于两个单向晶闸管的反向并联,只要在晶闸管的门极上加上一个触发脉冲,不论这个脉冲是什么极性,都可以使双向晶闸管导 通。 The bidirectional thyristor has two kinds of gates, and three electrodes are drawn out to the outside, which is equivalent to the antiparallel connection of two unidirectional thyristors. As long as a trigger pulse is added to the gate of the thyristor, no matter what the polarity of the pulse is, it can be used. The bidirectional thyristor turns on. the
如图1所示,为本发明的基于晶闸管的浪涌保护电路的等效电路示意图,包括双向晶闸管、NPN型三极管和PNP型三极管,NPN型三极管的发射极和双向晶闸管的P型门连接、基极引出第一电极G1,PNP型三极管的发射极和双向晶闸管的N型门连接、基极引出第二电极G2,所述双向晶闸管的一端引出第三电极Line、另一端与NPN型三极管的集电极和PNP型三极管的集电极均接地,双向晶闸管的P型门极与N型门极分别与NPN型三极管、PNP型三极管的发射极相连,根据双向晶闸管的特性,通过控制三极管的通断就可控制双向晶闸管的导通方向因而可以泄放双向浪涌电流。 As shown in Figure 1, it is the equivalent circuit schematic diagram of the surge protection circuit based on the thyristor of the present invention, including bidirectional thyristor, NPN type triode and PNP type triode, the emitter of NPN type triode and the P type gate connection of bidirectional thyristor, The base leads to the first electrode G1, the emitter of the PNP triode is connected to the N-type gate of the bidirectional thyristor, and the base leads to the second electrode G2, one end of the bidirectional thyristor leads to the third electrode Line, and the other end is connected to the NPN triode. Both the collector and the collector of the PNP transistor are grounded, and the P-type gate and N-type gate of the bidirectional thyristor are respectively connected to the emitters of the NPN transistor and the PNP transistor. According to the characteristics of the bidirectional thyristor, by controlling the on-off of the triode The conduction direction of the bidirectional thyristor can be controlled so that the bidirectional surge current can be discharged. the
本发明的工作原理为:在第一电极G1端加上设定的负的偏置电压、第二电极G2端加上设定的正的偏置电压,如果第三电极Line端出现负向的浪涌电流,第一电极G1与第三电极Line端的电压差大于约0.7V时,NPN三极管会导通,其发射极电流作为双向晶闸管的P型门极电流使晶闸管触发导通,将浪涌电流泄放到地,这样就实现了对用户线路的浪涌保护;当第三电极Line端出现正向的浪涌电流,第三点击Line端与第二电极G2的电压差大于约0.7V时,PNP三极管导通,其发射极电流作为双向晶闸管的N型门极电流使晶闸管触发导通,晶闸管导通后具有泄放浪涌电流的能力,从而使后端的电子电路免受浪涌的冲击;不出现浪涌或浪涌过后,晶闸管电流将小于其维持电流,晶闸管将处于关断状态,只有一个很小的泄露电流,不影响后端电子电路正常工作。本发明可以较容易地实现对用户线路的浪涌保护,如果需要对多条用户线路进行浪涌保护只需同时使用多个本发明的电路芯片即可。 The working principle of the present invention is: add a set negative bias voltage to the first electrode G1 end, add a set positive bias voltage to the second electrode G2 end, if the third electrode Line end appears negative Surge current, when the voltage difference between the first electrode G1 and the third electrode Line terminal is greater than about 0.7V, the NPN triode will be turned on, and its emitter current will be used as the P-type gate current of the bidirectional thyristor to trigger the thyristor to turn on, and the surge will be turned on. The current is discharged to the ground, thus realizing the surge protection for the user line; when the third electrode Line terminal has a positive surge current, and the voltage difference between the third electrode Line terminal and the second electrode G2 is greater than about 0.7V , the PNP triode is turned on, and its emitter current is used as the N-type gate current of the bidirectional thyristor to trigger the thyristor to turn on. After the thyristor is turned on, it has the ability to discharge the surge current, so that the back-end electronic circuit is free from the impact of the surge. ; There is no surge or after the surge, the thyristor current will be less than its maintenance current, the thyristor will be in the off state, and there is only a small leakage current, which will not affect the normal operation of the back-end electronic circuit. The present invention can realize the surge protection of subscriber lines relatively easily, and if it is necessary to perform surge protection for multiple subscriber lines, it only needs to use multiple circuit chips of the present invention at the same time. the
如图4所示,为本发明的基于双向晶闸管的浪涌保护电路的剖面示意图,其中,双向晶闸管包括第一N型半导体衬底3,所述第一N型半导体衬底3的一端设置有第一P阱4和N型扩散环5,所述N型扩散环5为一对并分别设置在第一P阱4的两边,所述第一P阱4包括第一N阱7和P型门极6,所述P型门极6设置在第一N阱7的左侧,所述第一N阱7包括第二P阱9和N型门极8,所述N型门极8设置在第二P阱9的右侧,所述第二P阱9中通过N型注入形成短路孔10,所述第二P阱9表面引出第三电极2,所述第一N型半导体衬底3的另一端设置有多个相间的第一P区11和第一N区12。NPN型三极管包括第二N型半导体衬底13,所述第二N型半导体衬底13的一端设置有第三P阱14,所述第三P阱14包括第一发射区15和第一基区16,所述第一发射区15和P型门极6连接,所述第一基区16引出第一电极17,所述第二N型半导体衬底13的另一端通过N型扩散形成第一集电极区19,所述第二N型半导体衬底13还包括第二P区18,所述第二P区18连接第二N型半导体衬底13的一端和另一端。PNP型三极管包括第三N型半导体衬底20,所述第三N型半导体衬底20的 一端设置有第四P阱21,所述第四P阱21为第二发射区,与N型门极8连接,所述第四P阱的右侧通过N型扩散形成第二基区22,所述第二基区22引出第二电极25,所述第三N型半导体衬底20的另一端通过P型扩散形成第二集电极区23,所述第三N型半导体衬底20还包括第三P区24,所述第三P区24连接第三N型半导体衬底20的一端与另一端,所述第一电极17、第三电极2和第二电极25通过氧化层1隔开。可见与传统的采用两个单门极晶闸管的结构相比,新结构更为紧凑、芯片面积更小,优化设计后能大幅提高保护电路的浪涌泄放能力。
As shown in Figure 4, it is a schematic cross-sectional view of a surge protection circuit based on a bidirectional thyristor according to the present invention, wherein the bidirectional thyristor includes a first N-
该电路中的衬底即可使用N型衬底,也可使用P型衬底。除了三极管,还可以使用MOSFET、SCR、二极管、SIT等器件控制双向晶闸管的导通。 The substrate in this circuit can be an N-type substrate or a P-type substrate. In addition to triodes, devices such as MOSFETs, SCRs, diodes, and SITs can also be used to control the conduction of bidirectional thyristors. the
本发明还提供了一种基于双向晶闸管的浪涌保护电路的制造方法,主要工艺步骤包括: The present invention also provides a manufacturing method of a surge protection circuit based on bidirectional thyristors, the main process steps include:
第一步:选择片厚约300μm,电阻率15~25Ω·cm同时缺陷较少的单晶硅片,打标清洗、烘干后待用; Step 1: Select a monocrystalline silicon wafer with a thickness of about 300 μm, a resistivity of 15-25Ω·cm and fewer defects, mark, clean and dry it before use;
第二步:将第一步中得到的单晶硅片进行硅片表面生长场氧化层处理,进行第一次光刻,具体为隔离区第二P区18和第三P区24的双面光刻,掩模板图形如图5(正面、背面)所示,然后进行双面隔离区的硼扩散、硼-铝双质扩散或镓-铝双质扩散;
The second step: the single crystal silicon wafer obtained in the first step is subjected to the surface growth field oxide layer treatment of the silicon wafer, and the first photolithography is performed, specifically the double sides of the
第三步:进行第二次光刻,掩模板图形如图6所示,进行三次光刻,掩模板图形如图7所示,然后进行第一P阱4、第一P区11硼扩散,扩散条件为:预淀积温度1050℃~1060℃、时间5h,再分布温度1250℃、时间20h~25h、O2流量为700mL/min、N2流量为300mL/min;
The third step: carry out the second photolithography, the pattern of the mask plate is as shown in Figure 6, carry out three photolithography, the pattern of the mask plate is shown in Figure 7, and then carry out boron diffusion in the first P well 4 and the
第四步:进行第四次光刻,掩模板图形如图8所示,然后进行第一N阱7磷扩散,条件为:预淀积温度980℃~1020℃,O2流量200mL/min,N2流量为700mL/min,时间2~3h,再分布条件为温度1300℃~1310℃、时间18h~20h、O2流量为500mL/min、N2流量为700mL/min; The fourth step: carry out the fourth photolithography, the pattern of the mask plate is shown in Figure 8, and then carry out the first N well 7 phosphorus diffusion, the conditions are: pre-deposition temperature 980 ° C ~ 1020 ° C, O 2 flow rate 200 mL/min, The flow of N 2 is 700mL/min, the time is 2~3h, the redistribution conditions are temperature 1300℃~1310℃, time 18h~20h, the flow of O 2 is 500mL/min, and the flow of N 2 is 700mL/min;
第五步:进行第五次光刻,掩模板图形如图9所示,然后进行第二P阱9、NPN三极管基区14、PNP三极管发射区21硼离子注入,离子注入条件为:剂量5e14cm-2、能量80KeV,再分布条件为温度1250℃、时间10h~15h、O2流量为700mL/min、N2流量为300mL/min;
Step 5: Carry out the fifth photolithography, the pattern of the mask plate is shown in Figure 9, and then perform boron ion implantation in the second P well 9, NPN transistor base region 14, and PNP
第六步:进行第六次光刻,掩模板图形如图10所示,然后进行门极短路孔10N型离子注入,离子注入条件为:剂量1e15cm-2、能量50KeV,再分布条件为温度1310℃、时间8h~12h、O2流量为700mL/min、N2流量为300mL/min; Step 6: Carry out the sixth photolithography, the pattern of the mask plate is shown in Figure 10, and then perform 10N type ion implantation of the gate short hole, the ion implantation conditions are: dose 1e15cm -2 , energy 50KeV, redistribution condition is temperature 1310 ℃, time 8h~12h, O 2 flow rate is 700mL/min, N 2 flow rate is 300mL/min;
第七步:进行第七次光刻,进行正面P型门极6区、NPN三极管基区16接触光刻,掩 模板图形如图11所示,进行第八次光刻,进行PNP三极管背面第二集电极区23光刻,掩模板图形如图12所示,进行硼离子注入,注入条件为:剂量5e14cm-2、能量50KeV,再分布条件为温度1250℃、时间2h~4h、O2流量为700mL/min、N2流量为300mL/min; The seventh step: carry out the seventh photolithography, carry out the contact photolithography of the front P-type gate 6 area, the NPN transistor base area 16, the mask pattern is shown in Figure 11, carry out the eighth photolithography, and carry out the PNP transistor backside 16 The second collector area 23 is photolithography, the mask pattern is shown in Figure 12, boron ion implantation is carried out, the implantation conditions are: dose 5e14cm -2 , energy 50KeV, redistribution conditions are temperature 1250°C, time 2h~4h, O 2 flow 700mL/min, N 2 flow rate is 300mL/min;
第八步:进行第九次光刻,进行正面N型门极8区、PNP三极管基区22接触、N型扩散环5光刻,掩模板图形如图13所示,进行第十次光刻,进行第一N区12光刻,掩模板图形如图14所示,进行磷离子注入,注入条件为:剂量5e15cm-2、能量60KeV,再分布条件为温度1310℃、时间3h~5h、O2流量为500mL/min、N2流量为700mL/min;
Step 8: Carry out the ninth photolithography, carry out the front N-type gate 8 regions, the PNP
第九步:进行第十一次光刻,刻蚀出接触孔,掩模板图形如图15所示; Step 9: Carry out the eleventh photolithography, etch out the contact holes, and the mask pattern is shown in Figure 15;
第十步:进行金属蒸发、第十二次光刻和反刻铝,掩模板图形如图16所示; Step 10: Carry out metal evaporation, twelfth photolithography and anti-etching of aluminum, the mask pattern is shown in Figure 16;
第十一步:合金,条件:炉温550℃、真空度10-3Pa、时间10~30min,钝化;
The eleventh step: alloy, conditions: furnace temperature 550°C,
第十二步:进行第十三次光刻,刻蚀出压焊点; The twelfth step: Carry out the thirteenth photolithography to etch out the solder joints;
第十三步:低温退火,温度500℃~510℃,恒温10min; The thirteenth step: low temperature annealing, temperature 500 ℃ ~ 510 ℃, constant temperature 10min;
第十四步:硅片初测、切割、装架、烧结、封装测试。 Step 14: Preliminary testing of silicon wafers, cutting, racking, sintering, packaging and testing. the
当第二步中光刻后进行镓-铝双质扩散,具体包括以下步骤: When performing gallium-aluminum dual-mass diffusion after photolithography in the second step, it specifically includes the following steps:
a.在硅片正反两面均匀涂上由硝酸铝配制的二氧化硅乳胶源,厚度,预烘后将硅片推入扩散炉恒温区,在1300℃~1310℃、N2保护下预淀积8h~10h, a. Evenly coat the silicon dioxide latex source prepared by aluminum nitrate on both sides of the silicon wafer, the thickness , after pre-baking, push the silicon wafer into the constant temperature zone of the diffusion furnace, and pre-deposit at 1300 ℃ ~ 1310 ℃ under the protection of N2 for 8h ~ 10h,
b.进行Ga预淀积,Ga源为Ga2O3粉末,淀积条件为:片温为1250℃~1260℃,源温为980℃~1000℃,H2流量200~300mL/min,N2流量为80~100mL/min,通源时间60~80min; b. Carry out Ga pre-deposition, the Ga source is Ga 2 O 3 powder, the deposition conditions are: sheet temperature 1250°C-1260°C, source temperature 980°C-1000°C, H 2 flow rate 200-300mL/min, N 2 The flow rate is 80-100mL/min, and the power-on time is 60-80min;
c.在1330℃、N2保护下进行杂质再分布50~55h,在400℃以下取出硅片。 c. Perform impurity redistribution at 1330°C under the protection of N 2 for 50-55 hours, and take out the silicon wafer at below 400°C.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310284264.XA CN103441125B (en) | 2013-07-08 | 2013-07-08 | A kind of surge protection circuit based on bidirectional thyristor and manufacture method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310284264.XA CN103441125B (en) | 2013-07-08 | 2013-07-08 | A kind of surge protection circuit based on bidirectional thyristor and manufacture method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103441125A true CN103441125A (en) | 2013-12-11 |
CN103441125B CN103441125B (en) | 2015-08-19 |
Family
ID=49694812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310284264.XA Active CN103441125B (en) | 2013-07-08 | 2013-07-08 | A kind of surge protection circuit based on bidirectional thyristor and manufacture method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103441125B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106972014A (en) * | 2016-11-21 | 2017-07-21 | 安徽富芯微电子有限公司 | A kind of anti-reverse power connection prevents two-way surge device and its manufacture method |
CN107658296A (en) * | 2017-10-25 | 2018-02-02 | 启东吉莱电子有限公司 | A kind of thyristor surge suppressor that there are three tunnels to protect and its manufacture method |
CN107845631A (en) * | 2017-10-25 | 2018-03-27 | 启东吉莱电子有限公司 | A kind of high EB bipolar semiconductors protection device and its manufacture method |
CN109148432A (en) * | 2017-06-15 | 2019-01-04 | 上海韦尔半导体股份有限公司 | Surge Protector and preparation method thereof |
CN110010602A (en) * | 2019-04-09 | 2019-07-12 | 捷捷半导体有限公司 | A kind of low breakdown voltage discharge tube and its manufacturing method |
CN110112722A (en) * | 2019-06-04 | 2019-08-09 | 安徽华东光电技术研究所有限公司 | Surge suppression modules and preparation method thereof |
CN111627905A (en) * | 2020-06-04 | 2020-09-04 | 电子科技大学 | Programmable one-way protection device triggered by LDMOS (laterally diffused metal oxide semiconductor) |
CN111627904A (en) * | 2020-06-04 | 2020-09-04 | 电子科技大学 | A Programmable Overvoltage Protection Device with VDMOS and Thyristor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5274524A (en) * | 1990-12-07 | 1993-12-28 | Sgs-Thomson Microelectronics S.A. | Programmable protection circuit and its monolithic manufacturing |
CN1131565C (en) * | 1997-12-30 | 2003-12-17 | St微电子公司 | Subscriber interface protection circuit |
CN101640414A (en) * | 2009-08-26 | 2010-02-03 | 苏州晶讯科技股份有限公司 | Programmable semiconductor anti-surge protective device with deep trap structure |
-
2013
- 2013-07-08 CN CN201310284264.XA patent/CN103441125B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5274524A (en) * | 1990-12-07 | 1993-12-28 | Sgs-Thomson Microelectronics S.A. | Programmable protection circuit and its monolithic manufacturing |
CN1131565C (en) * | 1997-12-30 | 2003-12-17 | St微电子公司 | Subscriber interface protection circuit |
CN101640414A (en) * | 2009-08-26 | 2010-02-03 | 苏州晶讯科技股份有限公司 | Programmable semiconductor anti-surge protective device with deep trap structure |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106972014B (en) * | 2016-11-21 | 2019-07-19 | 富芯微电子有限公司 | A kind of anti-power reverse connection anti-bidirectional surge device and manufacturing method thereof |
CN106972014A (en) * | 2016-11-21 | 2017-07-21 | 安徽富芯微电子有限公司 | A kind of anti-reverse power connection prevents two-way surge device and its manufacture method |
CN109148432A (en) * | 2017-06-15 | 2019-01-04 | 上海韦尔半导体股份有限公司 | Surge Protector and preparation method thereof |
CN107658296A (en) * | 2017-10-25 | 2018-02-02 | 启东吉莱电子有限公司 | A kind of thyristor surge suppressor that there are three tunnels to protect and its manufacture method |
CN107845631A (en) * | 2017-10-25 | 2018-03-27 | 启东吉莱电子有限公司 | A kind of high EB bipolar semiconductors protection device and its manufacture method |
CN110010602B (en) * | 2019-04-09 | 2023-11-28 | 捷捷半导体有限公司 | A low breakdown voltage discharge tube and its manufacturing method |
CN110010602A (en) * | 2019-04-09 | 2019-07-12 | 捷捷半导体有限公司 | A kind of low breakdown voltage discharge tube and its manufacturing method |
CN110112722A (en) * | 2019-06-04 | 2019-08-09 | 安徽华东光电技术研究所有限公司 | Surge suppression modules and preparation method thereof |
CN110112722B (en) * | 2019-06-04 | 2021-07-27 | 安徽华东光电技术研究所有限公司 | Surge suppression module and manufacturing method thereof |
CN111627904A (en) * | 2020-06-04 | 2020-09-04 | 电子科技大学 | A Programmable Overvoltage Protection Device with VDMOS and Thyristor |
CN111627905B (en) * | 2020-06-04 | 2022-06-07 | 电子科技大学 | A Programmable Unidirectional Protection Device Triggered by LDMOS |
CN111627904B (en) * | 2020-06-04 | 2022-12-02 | 电子科技大学 | A Programmable Overvoltage Protection Device with VDMOS and Thyristor |
CN111627905A (en) * | 2020-06-04 | 2020-09-04 | 电子科技大学 | Programmable one-way protection device triggered by LDMOS (laterally diffused metal oxide semiconductor) |
Also Published As
Publication number | Publication date |
---|---|
CN103441125B (en) | 2015-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103441125B (en) | A kind of surge protection circuit based on bidirectional thyristor and manufacture method thereof | |
CN103384063B (en) | A kind of surge protection circuit and manufacture method thereof | |
CN108520875B (en) | High-maintenance voltage NPNPN type bidirectional silicon controlled rectifier electrostatic protection device | |
CN103490399B (en) | Protection circuit | |
CN105489657B (en) | A kind of one-way low pressure TVS device and manufacture method thereof | |
CN110491875B (en) | Bidirectional thyristor electrostatic protection device | |
CN111933639A (en) | Electrostatic protection structure for high-voltage tolerance circuit | |
CN102142440B (en) | Thyristor device | |
CN101764151A (en) | SCR ESD protective structure with high maintaining voltage | |
CN108022912A (en) | A kind of two-way SCR semiconductor protection devices of new low trigger voltage | |
CN104269402B (en) | High-voltage ESD protective circuit with stacked SCR-LDMOS | |
CN101211968A (en) | A method of manufacturing a thyristor for electrostatic discharge | |
CN103165600A (en) | Electro-static discharge (ESD) protective circuit | |
CN110600466A (en) | Bidirectional programmable overvoltage protection device based on silicon controlled rectifier principle | |
CN108807374B (en) | High-voltage bidirectional transient voltage suppressor | |
CN107845631A (en) | A kind of high EB bipolar semiconductors protection device and its manufacture method | |
CN106229349B (en) | A kind of ultra-low capacitance low voltage semiconductor discharge tube chip and its manufacturing method | |
CN104241276B (en) | A high-voltage ESD protection circuit with stacked STSCR‑LDMOS | |
CN106972014A (en) | A kind of anti-reverse power connection prevents two-way surge device and its manufacture method | |
CN114512477B (en) | SCR type ESD protection structure with adjustable breakdown voltage | |
CN106449733B (en) | It is a kind of for ESD protection without latch SCR | |
CN107946372B (en) | Silicon controlled rectifier for ESD protection | |
CN102769041B (en) | Silicon controlled rectifier structure for ESD (electro-static discharge) protection | |
CN105405844B (en) | A kind of automatic biasing stacking-type SCR device for ESD protection | |
CN211045439U (en) | Bidirectional programmable overvoltage protection device based on silicon controlled rectifier principle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |