CN103440996A - Method for preparing nanometer manganous-manganic oxide/carbon composite energy storage material - Google Patents
Method for preparing nanometer manganous-manganic oxide/carbon composite energy storage material Download PDFInfo
- Publication number
- CN103440996A CN103440996A CN2013103949574A CN201310394957A CN103440996A CN 103440996 A CN103440996 A CN 103440996A CN 2013103949574 A CN2013103949574 A CN 2013103949574A CN 201310394957 A CN201310394957 A CN 201310394957A CN 103440996 A CN103440996 A CN 103440996A
- Authority
- CN
- China
- Prior art keywords
- carbon composite
- storage material
- preparation
- carbon
- manganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种纳米四氧化三锰/碳复合储能材料的制备方法:将高锰酸钾与油酸按照100∶1(g/L)的比例在水溶液中反应,将得到的固体分散于醇溶剂中,再按照0~2∶1的质量比加入单质碘并溶解。然后将上述溶液在反应釜中120~200℃下反应12~48小时。离心分离,经洗涤、干燥后得到四氧化三锰/碳复合材料。本方法可在较低温度和非碱性条件下进行,工艺简单,能耗低。同时该方法得到的四氧化三锰/碳复合材料的超级电容性能得到了显著提高。The invention discloses a preparation method of nanometer trimanganese tetraoxide/carbon composite energy storage material: react potassium permanganate and oleic acid in an aqueous solution at a ratio of 100:1 (g/L), and disperse the obtained solid In the alcohol solvent, add elemental iodine and dissolve according to the mass ratio of 0-2:1. Then react the above solution in a reaction kettle at 120-200° C. for 12-48 hours. After centrifugal separation, washing and drying, the trimanganese tetraoxide/carbon composite material is obtained. The method can be carried out under relatively low temperature and non-alkaline conditions, and has simple process and low energy consumption. At the same time, the supercapacitive performance of the manganese tetraoxide/carbon composite material obtained by the method has been significantly improved.
Description
技术领域technical field
本发明涉及无机非金属复合材料技术领域,特别是涉及一种纳米四氧化三锰/碳复合储能材料的制备方法。The invention relates to the technical field of inorganic non-metallic composite materials, in particular to a preparation method of a nanometer trimanganese tetraoxide/carbon composite energy storage material.
背景技术Background technique
与碳材料相比,四氧化三锰储能材料具有比容量大、能量密度高、耐腐蚀等优点,同时因资源丰富、价格低廉、低毒等特点而在新能源领域得到了越来越多的重视。但是四氧化三锰的电导率低,在电解液中发生氧化还原反应时的电子传递阻抗大,导致其实际比容量远低于理论比容量。通常将四氧化三锰与碳材料进行复合来提高材料的电导率,从而大幅度提高比容量和循环性能(Journal of Power Sources,2002,104:52-61)。尹龙卫等(ACS Applied Materials&Interfaces,2012,4:1636-1642)报道了用一水乙酸锰作前驱体、乙二醇为成核剂、聚乙烯吡咯烷酮作碳源两步合成四氧化三锰/碳复合材料:首先在180℃下水热反应48小时,再700℃下氮气氛中烧结4小时,其缺点是工艺复杂,需要高温,能耗大。中国专利CN101901916A报道了一种碳载四氧化三锰的制备方法:首先在水中用碳黑吸附硝酸锰,干燥后400℃恒温3小时,研磨后得到碳载四氧化三锰复合材料,其缺点是硝酸锰分解后生成氧化氮气体易于对环境造成污染,而且也需要较高能耗。王志林等(Chemistry-A European Journal,2013,19,7084-7089)报道了用三氧化二锰为前驱体、葡萄糖为碳源180℃下水热反应12小时,再在氩气氛中400℃恒温30分钟合成四氧化三锰/碳复合材料,其缺点也是高温,而且用该方法合成的四氧化三锰/碳复合超级电容器材料在1A/g时的比容量仅为174F/g。Compared with carbon materials, manganese tetraoxide energy storage materials have the advantages of large specific capacity, high energy density, and corrosion resistance. attention. However, the conductivity of trimanganese tetroxide is low, and the electron transfer resistance is large when the redox reaction occurs in the electrolyte, so that its actual specific capacity is much lower than the theoretical specific capacity. Trimanganese tetroxide is usually compounded with carbon materials to increase the electrical conductivity of the material, thereby greatly improving the specific capacity and cycle performance (Journal of Power Sources, 2002, 104: 52-61). Yin Longwei et al. (ACS Applied Materials & Interfaces, 2012, 4: 1636-1642) reported a two-step synthesis of manganese tetraoxide/carbon composites using manganese acetate monohydrate as a precursor, ethylene glycol as a nucleating agent, and polyvinylpyrrolidone as a carbon source. Material: First, hydrothermal reaction at 180°C for 48 hours, and then sintering in nitrogen atmosphere at 700°C for 4 hours. The disadvantage is that the process is complicated, high temperature is required, and energy consumption is large. Chinese patent CN101901916A reports a preparation method of carbon-supported trimanganese tetraoxide: first, carbon black is used to absorb manganese nitrate in water, after drying, the temperature is kept at 400°C for 3 hours, and the carbon-supported trimanganese tetraoxide composite material is obtained after grinding. The disadvantages are Manganese nitrate is decomposed to generate nitrogen oxide gas, which is easy to pollute the environment and requires high energy consumption. Wang Zhilin et al. (Chemistry-A European Journal, 2013, 19, 7084-7089) reported using manganese trioxide as a precursor and glucose as a carbon source for a hydrothermal reaction at 180°C for 12 hours, and then at a constant temperature of 400°C for 30 minutes in an argon atmosphere. The disadvantage of synthesizing trimanganese tetraoxide/carbon composite material is also high temperature, and the specific capacity of the trimanganese tetraoxide/carbon composite supercapacitor material synthesized by this method is only 174F/g at 1A/g.
发明内容Contents of the invention
为了克服上述现有技术的不足,本发明提供了一种合成纳米四氧化三锰/碳复合储能材料的方法。本发明所采用的技术方案是:In order to overcome the deficiencies of the above-mentioned prior art, the present invention provides a method for synthesizing nanometer trimanganese tetraoxide/carbon composite energy storage material. The technical scheme adopted in the present invention is:
采用的四氧化三锰前驱体为高锰酸钾;The trimanganese tetraoxide precursor used is potassium permanganate;
采用的溶剂热介质和碳源为甲醇、乙醇、丙醇中的一种或几种;The solvent heat medium and carbon source used are one or more of methanol, ethanol, propanol;
采用单质碘来控制碳含量和四氧化三锰结晶度;Elemental iodine is used to control the carbon content and crystallinity of trimanganese tetraoxide;
碘与二氧化锰的质量比为0-2∶1。The mass ratio of iodine to manganese dioxide is 0-2:1.
将高锰酸钾与油酸按照100∶1(g/L)的比例在水溶液中反应,将得到的固体产物分散于醇溶剂中,按照0~2∶1的质量比加入单质碘并溶解。将混合物料在反应釜中120~200℃进行溶剂热反应12~48小时。离心分离,分经洗涤、干燥后得到纳米四氧化三锰/碳复合材料。Potassium permanganate and oleic acid are reacted in an aqueous solution at a ratio of 100:1 (g/L), the obtained solid product is dispersed in an alcohol solvent, and elemental iodine is added and dissolved at a mass ratio of 0 to 2:1. The mixed material is subjected to solvothermal reaction at 120-200° C. in a reaction kettle for 12-48 hours. After centrifugal separation, washing and drying, the nanometer trimanganese tetraoxide/carbon composite material is obtained.
本发明与现有技术相比,可在较低温度下溶剂热合成目标纳米四氧化三锰/碳复合储能材料,无需经过高温烧结和碳活化步骤,能耗低;四氧化三锰晶粒粒径小于100nm。该方法反应需要的单质碘可循环使用,无有害气体排放。同时,该方法合成的复合材料具有优异的超级电容性能。Compared with the prior art, the present invention can solvothermally synthesize target nanometer manganese tetraoxide/carbon composite energy storage material at a lower temperature without high-temperature sintering and carbon activation steps, and has low energy consumption; crystal grains of manganese tetraoxide The particle size is less than 100nm. The elemental iodine required for the reaction of the method can be recycled without harmful gas emission. At the same time, the composite material synthesized by this method has excellent supercapacitive performance.
附图说明Description of drawings
图1为纳米四氧化三锰/碳(20%)复合材料的X射线衍射(XRD)图谱;Fig. 1 is the X-ray diffraction (XRD) collection of illustrative plates of nanometer trimanganese tetraoxide/carbon (20%) composite material;
图2为纳米四氧化三锰/碳(20%)复合材料的扫描电镜(SEM)图;Fig. 2 is the scanning electron microscope (SEM) figure of nanometer trimanganese tetraoxide/carbon (20%) composite material;
图3为纳米四氧化三锰/碳(7%)复合材料的X射线衍射(XRD)图谱;Fig. 3 is the X-ray diffraction (XRD) collection of illustrative plates of nanometer trimanganese tetraoxide/carbon (7%) composite material;
图4为纳米四氧化三锰/碳(7%)复合材料的扫描电镜(SEM)图;Fig. 4 is the scanning electron microscope (SEM) figure of nanometer trimanganese tetraoxide/carbon (7%) composite material;
图5为纳米四氧化三锰/碳复合材料的0.2A/g时的首次充放电曲线Figure 5 is the first charge and discharge curve of the nanometer trimanganese tetraoxide/carbon composite material at 0.2A/g
图6为四氧化三锰和四氧化三锰/碳复合材料倍率性能比较曲线。Figure 6 is a comparison curve of the rate performance of trimanganese tetraoxide and trimanganese tetraoxide/carbon composite material.
具体实施方式Detailed ways
实施例1:纳米四氧化三锰/碳(20%)复合材料的制备Embodiment 1: the preparation of nano trimanganese tetraoxide/carbon (20%) composite material
将50毫升油酸在搅拌下缓慢加入到1.5升0.04mol/L的高锰酸钾溶液中。室温反应24小时后,将得到的固体过滤、洗涤、干燥。称取0.3克上述产物,加入100毫升无水乙醇,超声分散。然后将溶液转移到反应釜中,在160℃下反应24小时。离心分离,经洗涤、干燥后得到产物。产物X射线粉末衍射谱图(图1)与黑锰矿型四氧化三锰标准谱图(JCPDS No.24-0734)相符,但在20°附近出现无定型碳的宽衍射峰;衍射峰较宽,表明晶粒较小,经谢乐公式计算得平均粒径约为11.4nm。由扫描电镜图(图2)可见四氧化三锰/碳材料为不规则颗粒,有团聚现象,元素分析表明材料中含有20%的碳。Slowly add 50 milliliters of oleic acid into 1.5 liters of 0.04 mol/L potassium permanganate solution under stirring. After reacting at room temperature for 24 hours, the obtained solid was filtered, washed and dried. Weigh 0.3 g of the above product, add 100 ml of absolute ethanol, and ultrasonically disperse. Then the solution was transferred to a reaction kettle and reacted at 160° C. for 24 hours. Centrifuge, wash and dry to obtain the product. The X-ray powder diffraction spectrum of the product (Figure 1) is consistent with the standard spectrum of manganese tetramanganese tetraoxide (JCPDS No.24-0734), but a broad diffraction peak of amorphous carbon appears near 20 °; the diffraction peak is wider , indicating that the crystal grains are small, and the average particle size calculated by the Scherrer formula is about 11.4nm. From the scanning electron microscope image (Fig. 2), it can be seen that the trimanganese tetraoxide/carbon material is irregular particles with agglomeration phenomenon, and the elemental analysis shows that the material contains 20% carbon.
实施例2:纳米四氧化三锰/碳(7%)复合材料的制备Embodiment 2: the preparation of nanometer trimanganese tetraoxide/carbon (7%) composite material
称取0.3克实施例1得到的固体中间产物,加入100毫升无水乙醇,超声分散。按照碘/二氧化锰为1∶1的质量比加入0.3克单质碘并溶解。然后将溶液转移到反应釜中,在160℃下反应24小时。离心分离,经洗涤、干燥后得到纳米四氧化三锰/碳复合材料。X射线粉末衍射谱图(图3)与黑锰矿型四氧化三锰标准谱图(JCPDS No.24-0734)一致;与实施例1的产物比较,衍射峰变的尖锐,表明结晶度提高,经谢乐公式计算得到平均粒径为27nm。这是因为反应中生成的碳减少,降低了对四氧化三锰晶粒生长的抑制作用,导致晶粒粒径变大,但是也因为晶粒表面包覆的碳减少,反而使复合材料颗粒粒径变得较小,见图4。元素分析结果表明材料含碳量为7%,与实施例1得到的产物比较减少了13%,这与XRD测试结果相符。Weigh 0.3 g of the solid intermediate product obtained in Example 1, add 100 ml of absolute ethanol, and ultrasonically disperse. According to the mass ratio of iodine/manganese dioxide of 1:1, 0.3 g of elemental iodine was added and dissolved. Then the solution was transferred to a reaction kettle and reacted at 160° C. for 24 hours. Centrifugal separation, washing and drying to obtain nanometer trimanganese tetraoxide/carbon composite material. X-ray powder diffraction spectrogram (Fig. 3) is consistent with the standard spectrogram (JCPDS No.24-0734) of manganese ore type trimanganese tetraoxide; compared with the product of
实施例3:四氧化三锰和四氧化三锰/碳复合材料电化学性能测试Embodiment 3: Electrochemical performance test of trimanganese tetraoxide and trimanganese tetraoxide/carbon composite material
用三电极体系在室温下测试纯四氧化三锰和四氧化三锰/碳复合材料的电化学性质,其中参比电极为饱和甘汞电极,辅助电极为铂电极。电解液为1mol/L的硫酸钠溶液。采用蓝电CT2001A型电池测试系统进行恒电流充放电测试,电压范围为0-1.0V。结果如下:The electrochemical properties of pure trimanganese tetraoxide and trimanganese tetraoxide/carbon composite were tested at room temperature with a three-electrode system, in which the reference electrode was a saturated calomel electrode and the auxiliary electrode was a platinum electrode. The electrolyte is 1mol/L sodium sulfate solution. The constant current charge and discharge test is carried out with the Blue Electric CT2001A battery test system, and the voltage range is 0-1.0V. The result is as follows:
(1)由图5可见,用0.2A/g的电流密度充放电,含碳量为7%和20%的四氧化三锰/碳的比容量分别为为218.2F/g和207.8F/g。电压随时间的变化曲线具有很好地镜面对称性,说明材料具有很好地电化学可逆性和优异的循环性能。(1) It can be seen from Figure 5 that the specific capacities of manganese tetraoxide/carbon with a carbon content of 7% and 20% are 218.2F/g and 207.8F/g respectively when charging and discharging at a current density of 0.2A/g. . The curve of voltage versus time has a good mirror symmetry, indicating that the material has good electrochemical reversibility and excellent cycle performance.
(2)如图6所示,在不同电流密度下,四氧化三锰/碳复合材料的比容量均高于纯四氧化三锰的比容量。随着电流密度的增大,纯四氧化三锰放电比容量衰减较快;四氧化三锰/碳复合材料呈现良好的大电流放电特性,尤其碳含量为7%的复合材料的比容量在5A/g时比容量仍高达180F/g,较0.2A/g时的比容量仅衰减17%。(2) As shown in Figure 6, at different current densities, the specific capacity of trimanganese tetraoxide/carbon composites is higher than that of pure trimanganese tetraoxide. With the increase of current density, the discharge specific capacity of pure manganese tetraoxide decays quickly; the manganese tetraoxide/carbon composite material presents good high-current discharge characteristics, especially the specific capacity of the composite material with a carbon content of 7% is 5A The specific capacity at /g is still as high as 180F/g, which is only 17% lower than that at 0.2A/g.
(3)在较小的电流密度下,如0.2A/g时,电解液能够充分渗透碳包覆层并浸润到材料内部与四氧化三锰发生反应,不同含碳量的复合材料比容量很接近。但是随着电流密度的增大,电解液不能够很好地向颗粒内部渗透,从而导致比容量的下降,其中含碳量为20%的复合材料因碳包覆层较厚表现得更加明显。因此通过添加单质碘来调控材料中的含碳量和碳层厚度,可以达到优化材料的超级电容储能性能的目的。(3) At a small current density, such as 0.2A/g, the electrolyte can fully penetrate the carbon coating and infiltrate into the material to react with trimanganese tetraoxide, and the specific capacity of composite materials with different carbon contents is very large. near. However, as the current density increases, the electrolyte cannot penetrate into the particles well, resulting in a decrease in the specific capacity. The composite material with a carbon content of 20% is more obvious due to the thicker carbon coating. Therefore, by adding elemental iodine to regulate the carbon content and carbon layer thickness in the material, the purpose of optimizing the supercapacitor energy storage performance of the material can be achieved.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013103949574A CN103440996A (en) | 2013-08-30 | 2013-08-30 | Method for preparing nanometer manganous-manganic oxide/carbon composite energy storage material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013103949574A CN103440996A (en) | 2013-08-30 | 2013-08-30 | Method for preparing nanometer manganous-manganic oxide/carbon composite energy storage material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103440996A true CN103440996A (en) | 2013-12-11 |
Family
ID=49694684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013103949574A Pending CN103440996A (en) | 2013-08-30 | 2013-08-30 | Method for preparing nanometer manganous-manganic oxide/carbon composite energy storage material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103440996A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106098403A (en) * | 2016-08-17 | 2016-11-09 | 华中科技大学 | A kind of ultracapacitor, negative pole and preparation method thereof |
CN110518230A (en) * | 2019-09-24 | 2019-11-29 | 吉林大学 | The preparation method of lithium ion battery negative material |
CN111495385A (en) * | 2020-04-24 | 2020-08-07 | 山东师范大学 | A kind of flower cluster Fe3O4@MnO2 and preparation method and application thereof |
CN112387271A (en) * | 2020-11-16 | 2021-02-23 | 湖南大学 | Carbon-coated manganous-manganic oxide composite material and preparation method and application thereof |
CN114229904A (en) * | 2021-12-06 | 2022-03-25 | 桂林理工大学 | Mn for water-based zinc ion battery2O3/Mn3O4Preparation method of composite electrode material |
CN114345322A (en) * | 2022-01-13 | 2022-04-15 | 贵州民族大学 | Carbon-supported manganese oxide catalyst and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080003159A1 (en) * | 2004-11-10 | 2008-01-03 | Yonsei University | Preparation Method of Magnetic and Metal Oxide Nanoparticles |
CN101402471A (en) * | 2008-10-24 | 2009-04-08 | 中国科学院电工研究所 | Process for producing layered delta-MnO2 nano-particle |
CN101901916A (en) * | 2010-08-17 | 2010-12-01 | 天津久聚能源科技发展有限公司 | Carbon-carried manganese tetraoxide composite catalytic material and preparation method thereof |
-
2013
- 2013-08-30 CN CN2013103949574A patent/CN103440996A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080003159A1 (en) * | 2004-11-10 | 2008-01-03 | Yonsei University | Preparation Method of Magnetic and Metal Oxide Nanoparticles |
CN101402471A (en) * | 2008-10-24 | 2009-04-08 | 中国科学院电工研究所 | Process for producing layered delta-MnO2 nano-particle |
CN101901916A (en) * | 2010-08-17 | 2010-12-01 | 天津久聚能源科技发展有限公司 | Carbon-carried manganese tetraoxide composite catalytic material and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
HONGMIN CHEN等: "Facile Synthesis of Monodisperse Manganese Oxide Nanostructures and Their Application in Water Treatment", 《AMERICAN CHEMICAL SOCIETY》 * |
贺军辉等: "无机微/纳空心球", 《化学进展》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106098403A (en) * | 2016-08-17 | 2016-11-09 | 华中科技大学 | A kind of ultracapacitor, negative pole and preparation method thereof |
CN106098403B (en) * | 2016-08-17 | 2018-07-24 | 华中科技大学 | A kind of ultracapacitor, cathode and preparation method thereof |
CN110518230A (en) * | 2019-09-24 | 2019-11-29 | 吉林大学 | The preparation method of lithium ion battery negative material |
CN111495385A (en) * | 2020-04-24 | 2020-08-07 | 山东师范大学 | A kind of flower cluster Fe3O4@MnO2 and preparation method and application thereof |
CN111495385B (en) * | 2020-04-24 | 2023-02-24 | 山东师范大学 | A kind of flower cluster Fe3O4@MnO2 and its preparation method and application |
CN112387271A (en) * | 2020-11-16 | 2021-02-23 | 湖南大学 | Carbon-coated manganous-manganic oxide composite material and preparation method and application thereof |
CN112387271B (en) * | 2020-11-16 | 2022-08-12 | 湖南大学 | A kind of carbon-wrapped manganese tetroxide composite material, preparation method and application thereof |
CN114229904A (en) * | 2021-12-06 | 2022-03-25 | 桂林理工大学 | Mn for water-based zinc ion battery2O3/Mn3O4Preparation method of composite electrode material |
CN114229904B (en) * | 2021-12-06 | 2023-06-23 | 桂林理工大学 | A kind of preparation method of Mn2O3/Mn3O4 composite electrode material for aqueous zinc ion battery |
CN114345322A (en) * | 2022-01-13 | 2022-04-15 | 贵州民族大学 | Carbon-supported manganese oxide catalyst and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Improving the Ni-rich LiNi0. 5Co0. 2Mn0. 3O2 cathode properties at high operating voltage by double coating layer of Al2O3 and AlPO4 | |
US9868105B2 (en) | Spinel-type lithium titanium oxide/graphene composite and method of preparing the same | |
JP6493853B2 (en) | Lithium nickel cobalt aluminum oxide composite positive electrode material, method for producing the same, and lithium ion secondary battery | |
CN104681823B (en) | A kind of nitrogen-doped graphene and Co3O4 hollow nano-sphere composites and its preparation method and application | |
Li et al. | Fe3O4 nanoparticles decorated on the biochar derived from pomelo pericarp as excellent anode materials for Li-ion batteries | |
Cai et al. | A nano interlayer spacing and rich defect 1T-MoS 2 as cathode for superior performance aqueous zinc-ion batteries | |
CN102569756A (en) | Preparation method of silicon/graphene nanocomposite material for cathode of lithium ion battery | |
Sen et al. | Synthesis of molybdenum oxides and their electrochemical properties against Li | |
CN106410153B (en) | A kind of titanium nitride cladding nickel titanate composite material and preparation method and application | |
CN103440996A (en) | Method for preparing nanometer manganous-manganic oxide/carbon composite energy storage material | |
JP5686459B2 (en) | Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery including the positive electrode | |
CN103219168A (en) | A kind of Li4Ti5O12/graphene composite electrode material and preparation method thereof | |
CN105870439B (en) | A kind of preparation method and applications of porous cobaltosic oxide | |
Yang et al. | Ionic-liquid-bifunctional wrapping of ultrafine SnO 2 nanocrystals into N-doped graphene networks: high pseudocapacitive sodium storage and high-performance sodium-ion full cells | |
Yu et al. | Rice husk lignin-based porous carbon and ZnO composite as an anode for high-performance lithium-ion batteries | |
CN108598405B (en) | Preparation method of three-dimensional graphene tin oxide carbon composite negative electrode material | |
Álvarez‐Serrano et al. | Stable manganese‐oxide composites as cathodes for Zn‐ion batteries: interface activation from in situ layer electrochemical deposition under 2 V | |
CN105161678B (en) | A multilayer composite titanium dioxide nanotube material for lithium battery electrodes | |
Rong et al. | One-step synthesis of carbon-coated monocrystal molybdenum oxides nanocomposite as high-capacity anode materials for lithium-ion batteries | |
CN107819125A (en) | A kind of preparation method of straw bundle shape cobaltosic oxide and its application in lithium ion battery | |
Kang et al. | Facile fabrication of WS 2 nanocrystals confined in chlorella-derived N, P co-doped bio-carbon for sodium-ion batteries with ultra-long lifespan | |
Xu et al. | Synthesis of CeVO4-V2O5 nanowires by cation-exchange method for high-performance lithium-ion battery electrode | |
CN103378355A (en) | Alkali metal secondary battery as well as negative active substance, negative material and negative electrode thereof, and preparation method of negative active substance | |
CN105870440B (en) | A kind of preparation method and applications of bowknot shape cobaltosic oxide | |
CN101830518A (en) | Spherical cobaltosic oxide with nuclear shell structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20131211 |