CN103438934A - Method and device for detecting load parameters of ball mill - Google Patents
Method and device for detecting load parameters of ball mill Download PDFInfo
- Publication number
- CN103438934A CN103438934A CN2013103777309A CN201310377730A CN103438934A CN 103438934 A CN103438934 A CN 103438934A CN 2013103777309 A CN2013103777309 A CN 2013103777309A CN 201310377730 A CN201310377730 A CN 201310377730A CN 103438934 A CN103438934 A CN 103438934A
- Authority
- CN
- China
- Prior art keywords
- ball mill
- electrode
- load
- cylinder
- ball
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000001514 detection method Methods 0.000 claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 37
- 238000013178 mathematical model Methods 0.000 claims abstract description 14
- 238000004070 electrodeposition Methods 0.000 claims description 33
- 238000005303 weighing Methods 0.000 claims description 31
- 229910000831 Steel Inorganic materials 0.000 claims description 17
- 239000010959 steel Substances 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 9
- 238000009434 installation Methods 0.000 claims description 6
- 230000001143 conditioned effect Effects 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 239000011805 ball Substances 0.000 description 156
- 238000004364 calculation method Methods 0.000 description 24
- 238000002474 experimental method Methods 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000011810 insulating material Substances 0.000 description 8
- 238000005070 sampling Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000000227 grinding Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052951 chalcopyrite Inorganic materials 0.000 description 1
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical group [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 electric power Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Crushing And Grinding (AREA)
Abstract
本发明涉及一种球磨机负荷参数的检测方法及装置,属于自动检测领域。融合负荷体的测量电阻值、球磨机筒体的测量重量、球磨机筒体转速,并通过多个数学模型精确计算球磨机的充填率、装载量、球料比的复合式技术方法。装置的球磨机筒体悬空固定在机架上并通过称重传感器测重,球磨机筒体的底部安装有电极,位置传感器和旋转编码器固定在机架的底端,位置传感器和旋转编码器采集的信号通过DI模块传送到计算机,电极采集的与球磨机筒体之间的电阻值信号通过电阻A/D模块、无线发送器和无线接收器传送到计算机,称重传感器采集的球磨机筒体重量信号传送至计算机。本发明是实现球磨机优化控制的前提,对于提高球磨机效率、降低能耗等具有重要的作用。
The invention relates to a method and a device for detecting load parameters of a ball mill, belonging to the field of automatic detection. Combine the measured resistance value of the load body, the measured weight of the ball mill barrel, and the ball mill barrel speed, and accurately calculate the filling rate, loading capacity, and ball-to-material ratio of the ball mill through multiple mathematical models. The ball mill cylinder of the device is suspended and fixed on the frame and measured by the load cell. The bottom of the ball mill cylinder is equipped with electrodes, and the position sensor and rotary encoder are fixed at the bottom of the frame. The position sensor and rotary encoder collect The signal is transmitted to the computer through the DI module, the resistance value signal collected by the electrode and the ball mill cylinder is transmitted to the computer through the resistance A/D module, wireless transmitter and wireless receiver, and the weight signal of the ball mill cylinder collected by the load cell is transmitted to the computer. The invention is the premise of realizing the optimal control of the ball mill, and plays an important role in improving the efficiency of the ball mill, reducing energy consumption and the like.
Description
技术领域 technical field
本发明涉及一种球磨机负荷参数检测方法及装置,具体地说是融合负荷体的测量电阻值、球磨机筒体的测量重量、球磨机筒体转速,并通过多个数学模型精确计算球磨机的充填率、装载量、球料比的复合式技术方法,属于自动检测领域。 The invention relates to a method and device for detecting load parameters of a ball mill, specifically combining the measured resistance value of the load body, the measured weight of the ball mill cylinder, and the rotational speed of the ball mill cylinder, and accurately calculating the filling rate of the ball mill through multiple mathematical models. The composite technical method of loading capacity and ball-to-material ratio belongs to the field of automatic detection.
背景技术 Background technique
球磨机广泛应用于矿山、冶金、化工、建材、电力、陶瓷等行业,特别是在矿山的选矿过程中更是占有重要地位。湿式球磨机是选矿工业最为常用的粉碎设备。湿式球磨机内部负荷体由钢球、物料和水组成。充填率是指球磨机筒体内部负荷体所占空间的比率,球料比是指球磨机筒体内部装载的钢球质量与物料质量的比值,充填率和球料比是反映球磨机负荷的两个最为重要的参数,直接关系到粉碎效率。实践表明,保持球磨机在合理的充填率和球料比状态下运行,不但能大幅度提高球磨机的处理能力,降低单位处理量的消耗,而且对于提高整个选矿厂的生产指标都具有十分重要的作用。 Ball mills are widely used in mining, metallurgy, chemical industry, building materials, electric power, ceramics and other industries, especially in the beneficiation process of mines. Wet ball mill is the most commonly used crushing equipment in mineral processing industry. The internal load body of the wet ball mill is composed of steel balls, materials and water. The filling rate refers to the ratio of the space occupied by the load body inside the ball mill cylinder. The ball-to-material ratio refers to the ratio of the mass of steel balls loaded inside the ball mill cylinder to the material mass. The filling rate and the ball-to-material ratio are the two most important indicators to reflect the load of the ball mill. Important parameter, directly related to crushing efficiency. Practice has shown that keeping the ball mill running at a reasonable filling rate and ball-to-material ratio can not only greatly increase the processing capacity of the ball mill, reduce the consumption of unit processing capacity, but also play a very important role in improving the production indicators of the entire concentrator .
传统的单因素负荷参数检测法主要包括:电流法、声响法、有用功率法、振动法等。这些方法虽然简单易行,但由于检测原理的局限性,只能间接反映球磨机的单个负荷量参数,都不能单独在整个过程中精确检测球磨机的负荷参数。 Traditional single-factor load parameter detection methods mainly include: current method, acoustic method, useful power method, vibration method, etc. Although these methods are simple and easy to implement, due to the limitation of the detection principle, they can only indirectly reflect the single load parameter of the ball mill, and cannot accurately detect the load parameter of the ball mill in the whole process alone.
考虑单一检测方法各自存在的优点和不足,组合两种或三种具有互补性的检测方法进行负荷参数的检测,先后出现了声响—功率双信号检测法、声响—振动双信号检测法、声响—功率—振动三信号检测法等多因素检测法。这些方法计算很复杂,适应性差,而易受磨矿浓度、物料粒度、物料硬度、钢球尺寸等因素影响。 Considering the advantages and disadvantages of a single detection method, two or three complementary detection methods are combined to detect load parameters, and the sound-power double signal detection method, sound-vibration double signal detection method, sound- Power-vibration three-signal detection method and other multi-factor detection methods. These methods are very complicated to calculate, have poor adaptability, and are easily affected by factors such as grinding concentration, material particle size, material hardness, and steel ball size.
力传感器法是利用力传感器对与球磨机负荷有关的作用力进行直接测量从而检测球磨机负荷参数的技术方法。目前主要有衬板压力检测法、筒体应力检测法、筒体称重检测法等。衬板压力检测法是在球磨机筒体内部衬板下面安装一个能测定径向压力和切向压力的传感器,测量信号引入计算机进行处理,得到受力图谱,从图谱中可以判断球磨机负荷体的脱离角和接触角,由此可以算出球磨机的充填率,再分析径向压力的大小,可以计算球料比。称重法能精确检测球磨机的装载量,受影响因素少,适应性强,但不能检测充填率和球料比。 The force sensor method is a technical method that uses a force sensor to directly measure the force related to the load of the ball mill to detect the load parameters of the ball mill. At present, there are mainly liner pressure detection method, cylinder stress detection method, cylinder weighing detection method, etc. The liner pressure detection method is to install a sensor capable of measuring radial pressure and tangential pressure under the inner liner of the ball mill cylinder, and the measurement signal is introduced into the computer for processing to obtain a force map, from which the detachment of the load body of the ball mill can be judged Angle and contact angle, from which the filling rate of the ball mill can be calculated, and then the radial pressure can be analyzed to calculate the ball-to-material ratio. The weighing method can accurately detect the loading capacity of the ball mill, with few affected factors and strong adaptability, but it cannot detect the filling rate and ball-to-material ratio.
从有关报道来看,现有的球磨机负荷参数检测方法都或多或少地存在不足,有的因素单一无法实现精确检测,有的计算过于复杂或条件要求苛刻难以应用,有的检测参数不太全面,难以适用于球磨机的优化控制。 Judging from related reports, the existing ball mill load parameter detection methods are more or less deficient, some factors cannot be accurately detected, some calculations are too complicated or the conditions are harsh and difficult to apply, and some detection parameters are not very accurate. Comprehensive, difficult to apply to the optimal control of ball mills.
发明内容 Contents of the invention
为了克服现有的球磨机负荷参数检测方法检测精度低、计算过于复杂、检测参数不全面等不足,本发明提供一种球磨机负荷参数的检测方法及装置,该方法及装置不仅能同时检测球磨机筒体内负荷体的充填率、装载量和球料比,而且适应性强、便于实现。 In order to overcome the shortcomings of the existing ball mill load parameter detection method, such as low detection accuracy, overly complicated calculation, and incomplete detection parameters, the present invention provides a ball mill load parameter detection method and device, which can not only simultaneously detect the The filling rate, loading capacity and ball-to-material ratio of the load body are highly adaptable and easy to realize.
本发明的技术方案是: Technical scheme of the present invention is:
(1)检测球磨机的空载质量,然后检测磨料时需要加入负荷体后球磨机的总质量,计算得到球磨机的装载量; (1) Detect the no-load mass of the ball mill, and then detect the total mass of the ball mill after adding the load body when testing the abrasive, and calculate the loading capacity of the ball mill;
(2)在球磨机的筒体安装电极,球磨机的运行过程中测量每个电极与筒体之间的电阻、每个电极的位置角度,以每个电极位置角度为横坐标、以每个电极的电阻值为纵坐标,分别建立电极的电阻值图谱,根据电阻值的变化规律判断负荷体电极位置的脱离角θA与接触角θB,根据脱离角θA和接触角θB分别计算每个电极位置的局部负荷体的充填率,采用加权平均法计算球磨机的总体充填率; (2) Install the electrodes on the barrel of the ball mill. During the operation of the ball mill, measure the resistance between each electrode and the barrel, and the position angle of each electrode. Take the position angle of each electrode as the abscissa and the The resistance value is the ordinate, and the resistance value map of the electrode is respectively established, and the detachment angle θ A and the contact angle θ B of the electrode position of the load body are judged according to the change rule of the resistance value, and the detachment angle θ A and the contact angle θ B are respectively calculated for each The filling rate of the local load body at the electrode position is calculated by the weighted average method to calculate the overall filling rate of the ball mill;
(3)根据球磨机的总体填充率、装载量,以及结合矿石密度、矿石加水后的矿浆密度,通过球料比数学模型计算负荷体的球料比,即为球磨机的负荷参数。填充率和球料比是影响球磨机粉碎效率的重要参数。填充率太低,可供粉碎的矿石少,因此粉碎效率低;填充率太高,球磨机内部的钢球打击矿粒的运动变弱,粉碎效率也低;另外,球磨机是依靠钢球的相互碰撞和磨剥而产生磨矿作用的,如果钢球多矿石少,则电能主要消耗在钢球的相互作用上,如果钢球少矿石多,则矿石受到钢球的碰撞或磨剥的机会少,电能主要消耗在负荷体的圆周运动上。因此,球磨机的填充率和球料比必须控制在最佳状态才能获得最佳的磨矿效果。而本发明检测填充率和球料比是球磨机实现优化控制的前提。 (3) According to the overall filling rate and loading capacity of the ball mill, combined with the ore density and the pulp density after adding water to the ore, the ball-to-material ratio of the load body is calculated through the ball-to-material ratio mathematical model, which is the load parameter of the ball mill. Filling ratio and ball-to-material ratio are important parameters that affect the crushing efficiency of the ball mill. If the filling rate is too low, there will be less ore available for crushing, so the crushing efficiency is low; if the filling rate is too high, the movement of the steel balls inside the ball mill to strike the ore particles will become weak, and the crushing efficiency will be low; in addition, the ball mill relies on the collision of steel balls If there are more steel balls and less ore, the electric energy will be mainly consumed in the interaction of steel balls. If there are fewer steel balls and more ore, the ore will be less likely to be impacted by steel balls or ground. Electric energy is mainly consumed in the circular motion of the load body. Therefore, the filling rate and ball-to-material ratio of the ball mill must be controlled in the best state to obtain the best grinding effect. However, the detection of the filling rate and the ball-to-material ratio of the present invention is the premise of realizing the optimal control of the ball mill.
所述球磨机的装载量的计算方法是:首先检测球磨机的空载质量,然后检测球磨时加入矿浆和钢球后的总质量,总质量减去空载质量即为球磨机的装载量。 The calculation method of the loading capacity of the ball mill is: first detect the no-load mass of the ball mill, and then detect the total mass after adding ore pulp and steel balls during the ball mill, and subtract the no-load mass from the total mass to obtain the loading capacity of the ball mill.
所述负荷体为球磨机筒体内的钢球、矿石和水的混合物。 The load body is a mixture of steel balls, ore and water in the barrel of the ball mill.
所述球磨机筒体安装电极至少为三个,安装在筒体的不同位置。 There are at least three electrodes installed on the barrel of the ball mill, which are installed at different positions of the barrel.
所述球磨机筒体安装电极为三个或五个,安装在球磨机筒体底部的前端、中间和后端,安装的位置连线与球磨机筒体的轴线平行,电极随球磨机筒体一起转动。 There are three or five electrodes installed on the ball mill cylinder, which are installed at the front, middle and rear ends of the bottom of the ball mill cylinder.
所述球磨机筒体的电机位置角度的测量的方法为:在球磨机的筒体表面安装旋转编码器来检测球磨机的转速、在球磨机的筒体下方安装位置传感器,当电极经过位置传感器时即产生一个电脉冲,由此确定电极的零角度(以位置传感器所处位置为零角度),通过筒体角速度和电极经过零角度的时间可算出电极位置角度。 The method for measuring the position angle of the motor of the ball mill cylinder is as follows: install a rotary encoder on the surface of the ball mill cylinder to detect the rotational speed of the ball mill, install a position sensor under the ball mill cylinder, and when the electrode passes the position sensor, a The electric pulse determines the zero angle of the electrode (the position of the position sensor is the zero angle), and the electrode position angle can be calculated by the angular velocity of the cylinder and the time when the electrode passes through the zero angle.
所述球料比的数学模型的建模方法为:根据总体充填率计算球磨机内部负荷体的体积,再结合装载量、矿石密度、钢球密度、矿浆浓度,通过机理分析法推导出球料比的初步数学模型,然后根据实验结果修正数学模型的系数。 The modeling method of the mathematical model of the ball-to-material ratio is: calculate the volume of the internal load body of the ball mill according to the overall filling rate, and then combine the loading capacity, ore density, steel ball density, and ore slurry concentration to deduce the ball-to-material ratio through the mechanism analysis method The preliminary mathematical model, and then modify the coefficients of the mathematical model according to the experimental results.
本发明的球磨机负荷参数检测装置的结构:如图1和2所示,包括机架、球磨机筒体1、电极、采集电极位置信息的位置传感器13、称重传感器、采集球磨机筒体1筒体转速的旋转编码器14和用于处理和计算负荷参数的计算机20,球磨机筒体1悬空固定在机架上并通过称重传感器测重,球磨机筒体1的底部安装有电极,位置传感器13和旋转编码器14固定在机架的底端,位置传感器13和旋转编码器14采集的信号通过DI模块16传送到计算机20,电极采集的与球磨机筒体1之间的电阻值信号通过电阻A/D模块11、无线发送器12和无线接收器19传送到计算机20,称重传感器采集的球磨机筒体重量信号传送至计算机20。
The structure of the ball mill load parameter detection device of the present invention: as shown in Figures 1 and 2, includes a frame, a ball mill cylinder 1, an electrode, a
所述电极至少为三个,安装在球磨机筒体1底部的前端、中间和后端,安装的位置连线与球磨机筒体1的轴线平行。如图1所示,前端电极8、中间电极9和后端电极10。
There are at least three electrodes, which are installed at the front end, the middle and the rear end of the bottom of the ball mill cylinder 1, and the connecting line of the installed positions is parallel to the axis of the ball mill cylinder 1. As shown in FIG. 1 , the
所述电极为螺栓型,中间为金属线24,周围为硬质绝缘材料22,电极穿过衬板安装孔后通过紧固螺母23固定在衬板21和筒体1上。 The electrode is bolt-shaped, with a metal wire 24 in the middle and a hard insulating material 22 around it. The electrode passes through the installation hole of the lining plate and is fixed on the lining plate 21 and the cylinder 1 by fastening nuts 23 .
所述球磨机筒体1的前空心轴2和后空心轴3分别固定在机架的前机座4和后机座5上保持球磨机筒体1悬空,前机座4上安装有前端称重传感器组6,后机座5上安装有后端称重传感器7组。
The front
所述前端称重传感器组6连接前机座称重变送器17,后端称重传感器组7连接后机座称重变送器15,前机座称重变送器17和后机座称重变送器15将放大调理的信号通过AI模块18传送至计算机20。
The front end load cell group 6 is connected to the front
本发明的基本检测原理为:在球磨机的筒体的两端和中部分别安装电极以测量筒体与各电极之间的电阻,通过对电极位置角度与电极电阻值关系的图谱进行分析,获得球磨机筒体内负荷体的脱离角和接触角,将脱离角、接触角输入数学模型可计算出负荷体的充填率。在筒体上安装有旋转编码器以测量球磨机筒体的转速,并由转速确定电极的位置。在球磨机两端的机座上安装称重传感器,用于测量球磨机筒体的重量,总重减去空载重量即可获得负荷体的重量(装载量),将充填率、装载量、钢球密度、矿石密度、矿浆浓度输入计算球料比的数学模型,即可得到负荷体的球料比。 The basic detection principle of the present invention is: install electrodes at both ends and the middle of the barrel of the ball mill to measure the resistance between the barrel and each electrode, and analyze the graph of the relationship between the electrode position angle and the electrode resistance value to obtain the ball mill. The detachment angle and contact angle of the load body in the cylinder can be input into the mathematical model to calculate the filling rate of the load body. A rotary encoder is installed on the cylinder to measure the rotation speed of the ball mill cylinder, and the position of the electrode is determined by the rotation speed. Load cells are installed on the bases at both ends of the ball mill to measure the weight of the ball mill cylinder. The weight of the load body (loading capacity) can be obtained by subtracting the empty weight from the total weight. Filling rate, loading capacity, steel ball density , ore density, and pulp concentration are input into the mathematical model for calculating the ball-to-material ratio, and the ball-to-material ratio of the load body can be obtained.
本发明的有益效果是,能够实时精确检测球磨机的充填率、装载量、球料比等负荷量参数,而且便于实现,适应性强,可为球磨机优化控制提供相关检测数据,对于提高球磨机效率、降低能耗等具有重要的作用。目前,用于检测球磨机负荷量参数的电流法、声响法、振动法,或者是这几种方法的联合法都不能同时检测充填率、装载量、球料比这三个参数,只能检测其中的一个或两个参数,是一种间接检测方法,很容易受到矿石性质、矿浆浓度、电网波动、环境条件等因素的影响,不仅检测精度差而且不能在检测的全过程中精确测量。而本发明不受矿石性质、矿浆浓度、环境条件等因素的影响,属于直接检测方法,能在检测的全过程中实现精确检测。 The beneficial effect of the present invention is that it can accurately detect the loading rate parameters of the ball mill in real time, such as the loading rate and the ball-to-material ratio, and is easy to implement and has strong adaptability. It plays an important role in reducing energy consumption. At present, the current method, acoustic method, vibration method, or the combination of these methods used to detect the load parameters of the ball mill cannot simultaneously detect the three parameters of filling rate, loading capacity, and ball-to-material ratio, and can only detect the three parameters. One or two parameters is an indirect detection method, which is easily affected by factors such as ore properties, pulp concentration, power grid fluctuations, and environmental conditions. Not only is the detection accuracy poor, but it cannot be accurately measured during the entire detection process. However, the present invention is not affected by factors such as ore properties, pulp concentration, environmental conditions, etc., belongs to a direct detection method, and can realize accurate detection in the whole detection process.
附图说明 Description of drawings
图1是本发明的检测系统结构原理图; Fig. 1 is a structural principle diagram of the detection system of the present invention;
图2是本发明球磨机筒体内部确定电机位置角度示意图。 Figure 2 is a schematic diagram of determining the position angle of the motor inside the barrel of the ball mill of the present invention.
图中: 1-球磨机筒体、2-前空心轴、3-后空心轴、4-前机座、5-后机座、6-前端称重传感器组、7-后端称重传感器组、8-前端电极、9-中间电极、10-后端电极、11-电阻A/D模块、12-无线发送器、13-位置传感器、14-旋转编码器、15-后机座称重变送器、16-DI模块、17-前机座称重变送器、18-AI模块、19-无线接收器、20-计算机、21-衬板、22-硬质绝缘材料、23-紧固螺母、24-金属线、25-负荷体。 In the figure: 1-ball mill barrel, 2-front hollow shaft, 3-rear hollow shaft, 4-front base, 5-rear base, 6-front load cell group, 7-rear end load cell group, 8-front electrode, 9-middle electrode, 10-rear electrode, 11-resistor A/D module, 12-wireless transmitter, 13-position sensor, 14-rotary encoder, 15-rear frame weighing transmitter Device, 16-DI module, 17-front frame weighing transmitter, 18-AI module, 19-wireless receiver, 20-computer, 21-liner, 22-hard insulating material, 23-fastening nut , 24-metal wire, 25-load body.
具体实施方式 Detailed ways
下面结合附图和具体实施方式,对本发明作进一步说明。 The present invention will be further described below in combination with the accompanying drawings and specific embodiments.
实施方式一:如图1所示,本实施方式是用于格子型球磨机的检测,格子型球磨机的规格为Φ2700×3600,由给料部、出料部、回转部、传动部(减速机、小传动齿轮、电机、电控)等主要部分组成。转速为50r/min,装球量为45t,电机功率为355kw,供电为380VAC。处理矿石为黄铜矿,密度为3.1g/cm3。 Embodiment 1: As shown in Figure 1, this embodiment is used for the detection of grid-type ball mills. The specification of grid-type ball mills is Φ2700×3600. Small transmission gear, motor, electric control) and other main parts. The rotating speed is 50r/min, the ball loading capacity is 45t, the motor power is 355kw, and the power supply is 380VAC. The processed ore is chalcopyrite with a density of 3.1g/cm 3 .
本实施例的元件选型为:前端称重传感器组6和后端称重传感器组7分别由2个型号为CYT-2002的辐轮式称重传感器组成,每个称重传感器测量范围为0-50t,接线方法为两个传感器分别并接后连到各自的称重变送器;后机座称重变送器15和前机座称重变送器17的型号为DYDS-001,变送器为24 VDC供电, 输出4-20mA;称重变送器信号经AI模块DTE3216转换后通过USB口输入计算机20;旋转编码器14和位置传感器13的信号接入DI模块16,DI模块16的型号为USB-4751L, 由USB与计算机20连接;位置传感器13的型号为LJ12A3-4-Z,电感式,24VDC供电,NPN型输出;旋转编码器14的型号为E6B2-CW26C,分辨率为20个脉冲/转,24VDC供电,NPN型输出;无线发送器12和无线接收器19的型号为EKI-6351(1对);计算机20为DELL OptiPlex 3010台式机;前端电极8、中间电极9、后端电极10选用的硬质绝缘材料22为硬质陶瓷,金属丝24为金属钛丝。所有部件按上述介绍的方法进行安装和连接。 The component selection of this embodiment is as follows: the front load cell group 6 and the rear load cell group 7 are respectively composed of two spoke wheel load cells of the model CYT-2002, and the measurement range of each load cell is 0 -50t, the wiring method is that the two sensors are connected in parallel and then connected to their respective weighing transmitters; the model of the weighing transmitter 15 of the rear base and the weighing transmitter 17 of the front base is DYDS-001, The transmitter is powered by 24 VDC and outputs 4-20mA; the signal of the weighing transmitter is converted by the AI module DTE3216 and input to the computer 20 through the USB port; the signals of the rotary encoder 14 and the position sensor 13 are connected to the DI module 16, and the DI module 16 The model is USB-4751L, connected to the computer 20 by USB; the model of the position sensor 13 is LJ12A3-4-Z, inductive, 24VDC power supply, NPN output; the model of the rotary encoder 14 is E6B2-CW26C, the resolution is 20 pulses/rotation, 24VDC power supply, NPN output; the model of wireless transmitter 12 and wireless receiver 19 is EKI-6351 (1 pair); computer 20 is DELL OptiPlex 3010 desktop; front electrode 8, middle electrode 9, The hard insulating material 22 selected for the back-end electrode 10 is hard ceramics, and the metal wire 24 is metal titanium wire. All components are installed and connected as described above.
检测方法的具体步骤为: The specific steps of the detection method are:
(1)检测球磨机的空载质量,然后检测磨料时需要加入负荷体后球磨机的总质量,计算得到球磨机的装载量;装载量W的计算公式为:W=K1·(N1-N10)+K2·(N2-N20), 其中,K1为前端传感器组的重量系数(可通过重量对比标定),N1为前端传感器组的采样值,N10为空载时前端传感器组的采样值,K2为后端传感器组的重量系数(可通过重量对比标定),N2为后端传感器组的采样值,N20为空载时后端传感器组的采样值。经实验得到K1=1.105, N1=54155,N10=25120;K2=1.091,N2=53345,N20=24620。则球磨机的装载量W=55.67t。 (1) Detect the no-load mass of the ball mill, and then detect the total mass of the ball mill after adding the load body when testing the abrasive, and calculate the loading capacity of the ball mill; the calculation formula for the loading capacity W is: W=K1·(N1-N10)+K2 ·(N2-N20), where K1 is the weight coefficient of the front sensor group (can be calibrated by weight comparison), N1 is the sampling value of the front sensor group, N10 is the sampling value of the front sensor group at no load, and K2 is the back end The weight coefficient of the sensor group (can be calibrated by weight comparison), N2 is the sampling value of the rear sensor group, and N20 is the sampling value of the rear sensor group when it is empty. Through experiments, K 1 =1.105, N 1 =54155, N 10 =25120; K 2 =1.091, N 2 =53345, N 20 =24620. Then the loading capacity of the ball mill W=55.67t.
(2)在球磨机的筒体安装电极,球磨机的运行过程中测量每个电极与筒体之间的电阻、每个电极的位置角度,以每个电极位置角度为横坐标、以每个电极的电阻值为纵坐标,分别建立电极的电阻值图谱,根据电阻值的变化规律判断负荷体电极位置的脱离角θA与接触角θB,根据脱离角θA和接触角θB分别计算每个电极位置的局部负荷体的充填率,采用加权平均法计算球磨机的总体充填率; (2) Install the electrodes on the barrel of the ball mill. During the operation of the ball mill, measure the resistance between each electrode and the barrel, and the position angle of each electrode. Take the position angle of each electrode as the abscissa and the The resistance value is the ordinate, and the resistance value map of the electrode is respectively established, and the detachment angle θ A and the contact angle θ B of the electrode position of the load body are judged according to the change rule of the resistance value, and the detachment angle θ A and the contact angle θ B are respectively calculated for each The filling rate of the local load body at the electrode position is calculated by the weighted average method to calculate the overall filling rate of the ball mill;
筒体角速度ω的计算公式为: The calculation formula of cylinder angular velocity ω is:
ω=Kw*P,其中,Kw为角速度系数(可通过标定获得),P为每秒的脉冲数。经实验得到Kw =0.00385,实时测得P=680,则球磨机筒体角速度 ω=2.62/s ω=Kw*P, where Kw is the angular velocity coefficient (can be obtained through calibration), and P is the number of pulses per second. Kw = 0.00385 obtained through experiments, P = 680 measured in real time, then the angular velocity of the ball mill cylinder ω = 2.62/s
负荷体位置角度的判断计算方法为: The calculation method for judging the position angle of the load body is as follows:
通过实验得到,电极离开负荷体后,其电阻值约为Ra=20k;电极进入负荷体后其电阻值为Rb=1.1k。由于电极随球磨机筒体而转动,可以根据电极电阻值与Ra、Rb的阻值比较,估计负荷体的脱离角和接触角。 It is obtained through experiments that after the electrode leaves the load body, its resistance value is about R a =20k; after the electrode enters the load body, its resistance value is R b =1.1k. Since the electrode rotates with the cylinder of the ball mill, the detachment angle and contact angle of the load body can be estimated based on the comparison between the electrode resistance value and the resistance values of R a and R b .
前端电极的脱离角与接触角计算:当t=0.507s时,电阻值R大于Ra,此电极位置角度即为负荷体的脱离角,脱离角θa=2.62 x 0.507s=1.33; 当t=0.931s时,电阻值R小于Rb,此电极位置角度即为负荷体的接触角,接触角θb=2.62 x 0.931s=2.44。 Calculation of the detachment angle and contact angle of the front electrode: when t=0.507s, the resistance value R is greater than R a , the electrode position angle is the detachment angle of the load body, the detachment angle θ a =2.62 x 0.507s=1.33; when t When =0.931s, the resistance value R is smaller than R b , and this electrode position angle is the contact angle of the load body, and the contact angle θ b =2.62 x 0.931s=2.44.
中端电极的脱离角与接触角计算: 当t=0.5s时,电阻值R大于Ra,此电极位置角度即为负荷体的脱离角,脱离角θa=2.62 x 0.5s=1.31; 当t=0.92s时,电阻值R小于Rb,此电极位置角度即为负荷体的接触角,接触角θb=2.62 x 0.92s=2.41。 Calculation of the detachment angle and contact angle of the middle electrode: When t=0.5s, the resistance value R is greater than R a , the electrode position angle is the detachment angle of the load body, and the detachment angle θ a =2.62 x 0.5s=1.31; when When t=0.92s, the resistance value R is smaller than R b , the electrode position angle is the contact angle of the load body, and the contact angle θ b =2.62 x 0.92s=2.41.
后端电极的脱离角与接触角计算: 当t=0.49s时,电阻值R大于Ra,此电极位置角度即为负荷体的脱离角,脱离角θa=2.62 x 0.49s=1.29; 当t=0.91s时,电阻值R小于Rb,此电极位置角度即为负荷体的接触角,接触角θb=2.62 x 0.91s=2.39。 Calculation of the detachment angle and contact angle of the rear electrode: When t=0.49s, the resistance value R is greater than R a , the electrode position angle is the detachment angle of the load body, and the detachment angle θ a =2.62 x 0.49s=1.29; When t=0.91s, the resistance value R is smaller than R b , the electrode position angle is the contact angle of the load body, and the contact angle θ b =2.62 x 0.91s=2.39.
取权重μ1=0.97,μ2=1,μ3=1.03。实验测得Kf=0.97, 填率F的计算方法 Take weights μ 1 =0.97, μ 2 =1, μ 3 =1.03. The experimental measurement K f =0.97, the calculation method of the filling rate F
F = 1+Kf[μ1(θa1 -θb1)+μ2(θa2 -θb2)+μ3(θa3-θb3)]/3π F = 1+K f [μ 1 (θ a1 -θ b1 )+μ 2 (θ a2 -θ b2 )+μ 3 (θ a3 -θ b3 )]/3π
=1+0.98*[0.97*(1.33-2.44)+(1.31-2.41)+1.03*(1.29-2.39)]/3*3.14 =1+0.98*[0.97*(1.33-2.44)+(1.31-2.41)+1.03*(1.29-2.39)]/3*3.14
=0.644 =0.644
(3)根据球磨机的总体填充率、装载量,以及结合矿石密度、矿石加水后的矿浆密度,通过球料比数学模型计算负荷体的球料比,即为球磨机的负荷参数。 (3) According to the overall filling rate and loading capacity of the ball mill, combined with the ore density and the pulp density after adding water to the ore, the ball-to-material ratio of the load body is calculated through the ball-to-material ratio mathematical model, which is the load parameter of the ball mill.
根据机理分析法,负荷体球料比G为: According to the mechanism analysis method, the ball-to-material ratio G of the load body is:
上式中,d1= 7.8g/cm3,d2= 3.1g/cm3,水的密度取1,W=55.67t, C=0.75,V0=17.16 m3,F=0.644,KG=1.03(由多次实验标定)。则根据上述公式算出球料比G=5.55 In the above formula, d 1 = 7.8g/cm 3 , d 2 = 3.1g/cm 3 , the density of water is 1, W=55.67t, C=0.75, V 0 =17.16 m 3 , F=0.644, K G =1.03 (calibrated by multiple experiments). According to the above formula, the ball-to-material ratio G=5.55 is calculated
本实施方式的球磨机负荷参数检测装置的结构:如图1和2所示,包括机架、球磨机筒体1、电极、采集电极位置信息的位置传感器13、称重传感器、采集球磨机筒体1筒体转速的旋转编码器14和用于处理和计算负荷参数的计算机20,球磨机筒体1悬空固定在机架上并通过称重传感器测重,球磨机筒体1的底部安装有电极,位置传感器13和旋转编码器14固定在机架的底端,位置传感器13和旋转编码器14采集的信号通过DI模块16传送到计算机20,电极采集的与球磨机筒体1之间的电阻值信号通过电阻A/D模块11、无线发送器12和无线接收器19传送到计算机20,称重传感器采集的球磨机筒体重量信号传送至计算机20。电极为三个,安装在球磨机筒体1底部的前端、中间和后端,安装的位置连线与球磨机筒体1的轴线平行。如图1所示,前端电极8、中间电极9和后端电极10。电极为螺栓型,中间为金属线24,周围为硬质绝缘材料22,电极穿过衬板安装孔后通过紧固螺母23固定在衬板21和筒体1上。球磨机筒体1的前空心轴2和后空心轴3分别固定在机架的前机座4和后机座5上保持球磨机筒体1悬空,前机座4上安装有前端称重传感器组6,后机座5上安装有后端称重传感器7组。前端称重传感器组6连接前机座称重变送器17,后端称重传感器组7连接后机座称重变送器15,前机座称重变送器17和后机座称重变送器15将放大调理的信号通过AI模块18传送至计算机20。
The structure of the ball mill load parameter detection device of this embodiment: as shown in Figures 1 and 2, includes a frame, a ball mill cylinder 1, an electrode, a
实施方式二:如图1所示,本实施方式检测的是一台用于细磨的磨溢流型球磨机(规格为Φ1600×4500),筒体直径为Φ1600,筒体长度为4500mm,属细长型结构。由给料部、出料部、回转部、传动部(减速机、小传动齿轮、电机、电控)等主要部分组成。转速为60r/min,装球量为30t,电机功率为250kw,供电为380VAC。处理矿石的密度为2.9 g/cm3。 Embodiment 2: As shown in Figure 1, this embodiment detects a mill overflow type ball mill for fine grinding (the specification is Φ1600×4500), the diameter of the cylinder is Φ1600, and the length of the cylinder is 4500mm, which belongs to fine grinding. long structure. It is composed of feeding part, discharging part, rotary part, transmission part (reducer, small transmission gear, motor, electric control) and other main parts. The rotating speed is 60r/min, the ball loading capacity is 30t, the motor power is 250kw, and the power supply is 380VAC. The processed ore has a density of 2.9 g/cm 3 .
本实施例的元件选型为:球磨机前后机座各采用一个圆盘形称重传感器,作为前端称重传感器组6和后端称重传感器组7的称重部件,传感器型号为CHBS4,每个称重传感器测量范围为0-30t;AI模块18为一个集信号变送、AI采集于一体的模块,AI模块型号为 USB7360N,通过USB口与计算机20连接;旋转编码器14和位置传感器13的信号接入DI模块16,DI模块16的型号为USB-4751L, 通过USB接口与计算机20连接;位置传感器13为红外光电式,型号为E3S-DS,12VDC供电,PNP型输出;旋转编码器14的型号为E6WB2,分辨率为40个脉冲/转,12VDC供电,PNP型输出;前端电极8由两根电极(1,2)组成,中间电极9为一根电极,后端电极10由两根电极(4,5)组成,电极的硬质绝缘材料22选用硬质玻璃钢,金属丝为钛丝;采用集信号放大、数据采集、无线传输于一体的多功能无线传感器12和配套的无线接收器19,套件型号为JZH-0;计算机20选用联想TD4900D台式机;所有部件按上述介绍的方法进行安装和连接。
The component selection of this embodiment is: the front and rear bases of the ball mill each use a disc-shaped load cell as the weighing part of the front load cell group 6 and the rear load cell group 7, the sensor model is CHBS4, each The measuring range of the load cell is 0-30t; the
具体检测步骤包括如下: The specific detection steps include the following:
(1)检测球磨机的空载质量,然后检测磨料时需要加入负荷体后球磨机的总质量,计算得到球磨机的装载量;装载量W的计算公式为:W=K1·(N1-N10)+K2·(N2-N20), 其中,K1为前端传感器组的重量系数(可通过实验标定),N1为前端传感器组的采样值,N10为空载时前端传感器组的采样值,K2为后端传感器组的重量系数(可通过重量对比标定),N2为后端传感器组的采样值,N20为空载时后端传感器组的采样值。经实验得到K1=0.506, N1=42220;N10=16345,K2=0.502,N2=41476,N20=16220。则球磨机的装载量W=25.7t。 (1) Detect the no-load mass of the ball mill, and then detect the total mass of the ball mill after adding the load body when detecting the abrasive, and calculate the loading capacity of the ball mill; the calculation formula for the loading capacity W is: W=K 1 ·(N 1 -N 10 )+K 2 ·(N 2 -N 20 ), where K 1 is the weight factor of the front sensor group (can be calibrated through experiments), N 1 is the sampling value of the front sensor group, N 10 is the front sensor group at no load K 2 is the weight coefficient of the back-end sensor group (can be calibrated by weight comparison), N 2 is the sampling value of the back-end sensor group, and N 20 is the sampling value of the back-end sensor group at no load. Through experiments, K 1 =0.506, N 1 =42220; N 10 =16345, K 2 =0.502, N 2 =41476, N 20 =16220. Then the loading capacity of the ball mill is W=25.7t.
(2)在球磨机的筒体安装电极,球磨机的运行过程中测量每个电极与筒体之间的电阻、每个电极的位置角度,以每个电极位置角度为横坐标、以每个电极的电阻值为纵坐标,分别建立电极的电阻值图谱,根据电阻值的变化规律判断负荷体电极位置的脱离角θA与接触角θB,根据脱离角θA和接触角θB分别计算每个电极位置的局部负荷体的充填率,采用加权平均法计算球磨机的总体充填率; (2) Install the electrodes on the barrel of the ball mill. During the operation of the ball mill, measure the resistance between each electrode and the barrel, and the position angle of each electrode. Take the position angle of each electrode as the abscissa and the The resistance value is the ordinate, and the resistance value map of the electrode is respectively established, and the detachment angle θ A and the contact angle θ B of the electrode position of the load body are judged according to the change rule of the resistance value, and the detachment angle θ A and the contact angle θ B are respectively calculated for each The filling rate of the local load body at the electrode position is calculated by the weighted average method to calculate the overall filling rate of the ball mill;
筒体角速度ω的计算: Calculation of cylinder angular velocity ω:
ω=Kw*P (单位为弧度/秒) ω=Kw*P (unit is radian/second)
经实验得到Kw =0.0059,实时测得P=533,则球磨机筒体角速度 ω=3.14/s Kw = 0.0059 obtained through experiments, P = 533 measured in real time, then the angular velocity of the ball mill cylinder ω = 3.14/s
负荷体位置角度的判断计算方法为: The calculation method for judging the position angle of the load body is as follows:
通过实验得到,电极离开负荷体后,其电阻值约为Ra=35.23k;电极进入负荷体后其电阻值为Rb=1.356k。由于电极随球磨机筒体而转动,可以根据电极电阻值与Ra、Rb的阻值比较,估计负荷体的脱离角和接触角。 It is obtained through experiments that after the electrode leaves the load body, its resistance value is about R a =35.23k; after the electrode enters the load body, its resistance value is R b =1.356k. Since the electrode rotates with the cylinder of the ball mill, the detachment angle and contact angle of the load body can be estimated based on the comparison between the electrode resistance value and the resistance values of R a and R b .
前端电极的脱离角与接触角计算: 当t=0.388s时,电阻值R大于Ra,此电极位置角度即为负荷体的脱离角,脱离角θa=3.14 x 0.388s=1.218; 当t=0.833s时,电阻值R小于Rb,此电极位置角度即为负荷体的接触角,接触角θb=3.14 x 0.833s=2.617。 Calculation of the detachment angle and contact angle of the front electrode: When t=0.388s, the resistance value R is greater than R a , this electrode position angle is the detachment angle of the load body, the detachment angle θ a =3.14 x 0.388s=1.218; when t =0.833s, the resistance value R is less than R b , the electrode position angle is the contact angle of the load body, and the contact angle θ b =3.14 x 0.833s=2.617.
中端电极的脱离角与接触角计算: 当t=0.384s时,电阻值R大于Ra,此电极位置角度即为负荷体的脱离角,脱离角θa=3.14x 0.384s=1.207; 当t=0.826s时,电阻值R小于Rb,此电极位置角度即为负荷体的接触角,接触角θb=3.14 x 0.826s=2.595。 Calculation of the detachment angle and contact angle of the middle-end electrode: When t=0.384s, the resistance value R is greater than R a , the electrode position angle is the detachment angle of the load body, and the detachment angle θ a =3.14x 0.384s=1.207; When t=0.826s, the resistance value R is smaller than R b , the electrode position angle is the contact angle of the load body, and the contact angle θ b =3.14 x 0.826s=2.595.
后端电极的脱离角与接触角计算: 当t=0.386s时,电阻值R大于Ra,此电极位置角度即为负荷体的脱离角,脱离角θa=3.14 x 0.386s=1.212; 当t=0.827s时,电阻值R小于Rb,此电极位置角度即为负荷体的接触角,接触角θb=3.14 x 0.827s=2.598。 Calculation of the detachment angle and contact angle of the rear electrode: When t=0.386s, the resistance value R is greater than R a , the electrode position angle is the detachment angle of the load body, and the detachment angle θ a =3.14 x 0.386s=1.212; When t=0.827s, the resistance value R is smaller than R b , the electrode position angle is the contact angle of the load body, and the contact angle θ b =3.14 x 0.827s=2.598.
取权重μ1=0.96,μ2=1,μ3=1.04。实验测得Kf=0.98, 填率F的计算方法 Take weights μ 1 =0.96, μ 2 =1, μ 3 =1.04. The experimental measurement K f =0.98, the calculation method of the filling rate F
F = 1+Kf[μ1(θa1 -θb1)+μ2(θa2 -θb2)+μ3(θa3-θb3)]/3π F = 1+K f [μ 1 (θ a1 -θ b1 )+μ 2 (θ a2 -θ b2 )+μ 3 (θ a3 -θ b3 )]/3π
=1+0.88*[0.96*(1.218-2.617)+(1.207-2.595)+0.98*(1.212-2.598)]/3*3.14 =1+0.88*[0.96*(1.218-2.617)+(1.207-2.595)+0.98*(1.212-2.598)]/3*3.14
=0.62 =0.62
(3)根据球磨机的总体填充率、装载量,以及结合矿石密度、矿石加水后的矿浆密度,通过球料比数学模型计算负荷体的球料比,即为球磨机的负荷参数。 (3) According to the overall filling rate and loading capacity of the ball mill, combined with the ore density and the pulp density after adding water to the ore, the ball-to-material ratio of the load body is calculated through the ball-to-material ratio mathematical model, which is the load parameter of the ball mill.
根据机理分析法,负荷体球料比G的为: According to the mechanism analysis method, the ball-to-material ratio G of the load body is:
上式中,d1为钢球的密度,d2为矿石的密度,水的密度取1,W为检测得到的负荷体装载量,C为磨矿浓度,V0为球磨机筒体的有效容积,F为负荷体的充填率,KG为充填率修正系数, KG由多次实验获得。d1= 7.8g/cm3,d2= 2.9g/cm3,水的密度取1,W=25.7t, C=0.70,V0=9.04 m3,F=0.62,KG=0.98(由多次实验标定)。则根据上述公式算出球料比G=5.03 In the above formula, d 1 is the density of steel balls, d 2 is the density of ore, the density of water is taken as 1, W is the loading capacity of the load body obtained by detection, C is the grinding concentration, and V 0 is the effective volume of the ball mill cylinder , F is the filling rate of the load body, K G is the filling rate correction coefficient, and K G is obtained from multiple experiments. d 1 = 7.8g/cm 3 , d 2 = 2.9g/cm 3 , the density of water is 1, W=25.7t, C=0.70, V 0 =9.04 m 3 , F=0.62, K G =0.98 (by Calibrated by multiple experiments). According to the above formula, the ball-to-material ratio G=5.03 is calculated
本实施方式的球磨机负荷参数检测装置的结构:如图1和2所示,包括机架、球磨机筒体1、电极、采集电极位置信息的位置传感器13、称重传感器、采集球磨机筒体1筒体转速的旋转编码器14和用于处理和计算负荷参数的计算机20,球磨机筒体1悬空固定在机架上并通过称重传感器测重,球磨机筒体1的底部安装有电极,位置传感器13和旋转编码器14固定在机架的底端,位置传感器13和旋转编码器14采集的信号通过DI模块16传送到计算机20,电极采集的与球磨机筒体1之间的电阻值信号通过电阻A/D模块11、无线发送器12和无线接收器19传送到计算机20,称重传感器采集的球磨机筒体重量信号传送至计算机20。电极为五个,安装在球磨机筒体1底部的前端、中间和后端,安装的位置连线与球磨机筒体1的轴线平行。如图1所示,前端电极8、中间电极9和后端电极10。电极为螺栓型,中间为金属线24,周围为硬质绝缘材料22,电极穿过衬板安装孔后通过紧固螺母23固定在衬板21和筒体1上。球磨机筒体1的前空心轴2和后空心轴3分别固定在机架的前机座4和后机座5上保持球磨机筒体1悬空,前机座4上安装有前端称重传感器组6,后机座5上安装有后端称重传感器7组。前端称重传感器组6连接前机座称重变送器17,后端称重传感器组7连接后机座称重变送器15,前机座称重变送器17和后机座称重变送器15将放大调理的信号通过AI模块18传送至计算机20。
The structure of the ball mill load parameter detection device of this embodiment: as shown in Figures 1 and 2, includes a frame, a ball mill cylinder 1, an electrode, a
实施方式三:如图1所示,为一台高堰型球磨机(规格为Φ1800×3000),采用三种不同直径的小钢球,用于选矿过程阶段矿浆的研磨。部件球磨机机组的组成与上述相似。转速为80r/min,装球量为14t,电极功率为250kw,供电为380VAC。处理矿石的密度为3.0 g/cm3。 Embodiment 3: As shown in Figure 1, it is a high-weir type ball mill (with a specification of Φ1800×3000), which uses three small steel balls with different diameters to grind the ore pulp in the beneficiation process. The composition of the component ball mill unit is similar to the above. The rotating speed is 80r/min, the ball loading capacity is 14t, the electrode power is 250kw, and the power supply is 380VAC. The processed ore has a density of 3.0 g/cm 3 .
本实施例的元件选型为:前端称重传感器组6和后端称重传感器组7分别由2个型号为CYT-201A的柱形称重传感器组成,每个称重传感器测量范围为0-10t,接线方法为两个传感器分别并接后连到AI模块18;采用一个集信号放大与AI采用于一体的AI模块18,AI模块型号为 USB7360N, AI模块18通过USB接入计算机20;旋转编码器14和位置传感器13的信号接入DI模块16,DI模块16的型号为USB-4751L, 由USB与计算机20连接;位置传感器13的型号为LJ12A3-4-Z,电感式,24VDC供电,NPN型输出;旋转编码器14连接到球磨机减速器的轴上,通过计算单位时间内编码器的脉冲数,即可计算球磨机筒体的角速度,旋转编码器的型号为E6B2-CW26C,分辨率为60个脉冲/转,12VDC供电,NPN型输出;无线发送器12和无线接收器19的型号为EKI-6351(1对);计算机20为惠普 P6-1499台式机;前端电极8、中间电极9、后端电极10选用的硬质绝缘材料22为硬质陶瓷,金属丝24为金属钛丝。所有部件按上述介绍的方法进行安装和连接。
The component selection of this embodiment is: the front load cell group 6 and the rear load cell group 7 are respectively composed of two cylindrical load cells of the model CYT-201A, and the measurement range of each load cell is 0- 10t, the wiring method is that two sensors are respectively connected in parallel and then connected to the
装载量W的计算公式为: The formula for calculating the load W is:
W=K1*(N1-N10)+K2*(N2-N20), W=K 1 *(N 1 -N 10 )+K 2 *(N 2 -N 20 ),
经实验得到K1=0.418, N1=38322,N10=13023;K2=0.421,N2=36623,N20=12635。 Through experiments, K 1 =0.418, N 1 =38322, N 10 =13023; K 2 =0.421, N 2 =36623, N 20 =12635.
则球磨机的装载量W=20.61t Then the loading capacity of the ball mill W=20.61t
筒体角速度ω的计算公式为: The calculation formula of cylinder angular velocity ω is:
ω=Kw*Nr, ω=Kw*Nr,
经实验得到Kw =0.005,实时测得P=833,则球磨机筒体角速度 ω=4.18/s Kw = 0.005 obtained through experiments, P = 833 measured in real time, then the angular velocity of the ball mill cylinder ω = 4.18/s
负荷体位置角度的判断计算方法为: The calculation method for judging the position angle of the load body is as follows:
通过实验得到,电极离开负荷体后,其电阻值约为Ra=18k;电极进入负荷体后其电阻值为Rb=1.1k。由于电极随球磨机筒体而转动,可以根据电极电阻值与Ra、Rb的阻值比较,估计负荷体的脱离角和接触角。 It is obtained through experiments that after the electrode leaves the load body, its resistance value is about R a =18k; after the electrode enters the load body, its resistance value is R b =1.1k. Since the electrode rotates with the cylinder of the ball mill, the detachment angle and contact angle of the load body can be estimated based on the comparison between the electrode resistance value and the resistance values of R a and R b .
前端电极的脱离角与接触角计算: 当t=0.333s时,电阻值R大于Ra,此电极位置角度即为负荷体的脱离角,脱离角θa=4.18 x 0.333s=1.391; 当t=0.625s时,电阻值R小于Rb,此电极位置角度即为负荷体的接触角,接触角θb=4.18 x 0.625s=2.611。 Calculation of the detachment angle and contact angle of the front electrode: When t=0.333s, the resistance value R is greater than R a , the electrode position angle is the detachment angle of the load body, the detachment angle θ a =4.18 x 0.333s=1.391; when t When =0.625s, the resistance value R is less than R b , the electrode position angle is the contact angle of the load body, and the contact angle θ b =4.18 x 0.625s=2.611.
中端电极的脱离角与接触角计算: 当t=0.331s时,电阻值R大于Ra,此电极位置角度即为负荷体的脱离角,脱离角θa=4.18x 0.331s=1.382; 当t=0.622s时,电阻值R小于Rb,此电极位置角度即为负荷体的接触角,接触角θb=4.18 x 0.622s=2.602。 Calculation of the detachment angle and contact angle of the middle-end electrode: When t=0.331s, the resistance value R is greater than R a , the electrode position angle is the detachment angle of the load body, and the detachment angle θ a =4.18x 0.331s=1.382; When t=0.622s, the resistance value R is smaller than R b , the electrode position angle is the contact angle of the load body, and the contact angle θ b =4.18 x 0.622s=2.602.
后端电极的脱离角与接触角计算: 当t=0.326s时,电阻值R大于Ra,此电极位置角度即为负荷体的脱离角,脱离角θa=4.18 x 0.326s=1.363; 当t=0. 619s时,电阻值R小于Rb,此电极位置角度即为负荷体的接触角,接触角θb=4.18 x 0.619s=2.588。 Calculation of the detachment angle and contact angle of the rear electrode: When t=0.326s, the resistance value R is greater than R a , the electrode position angle is the detachment angle of the load body, and the detachment angle θ a =4.18 x 0.326s=1.363; When t=0.619s, the resistance value R is smaller than R b , the electrode position angle is the contact angle of the load body, and the contact angle θ b =4.18 x 0.619s=2.588.
取权重μ1=1,μ2=1,μ3=1。实验测得Kf=0.98, 填率F的计算方法 Take weights μ 1 =1, μ 2 =1, μ 3 =1. The experimental measurement K f =0.98, the calculation method of the filling rate F
F = 1+Kf[μ1(θa1 -θb1)+μ2(θa2 -θb2)+μ3(θa3-θb3)]/3π F = 1+K f [μ 1 (θ a1 -θ b1 )+μ 2 (θ a2 -θ b2 )+μ 3 (θ a3 -θ b3 )]/3π
=1+0.98*[(1.391-2.611)+( 1.382-2.602)+( 1.363-2.588)]/3*3.14 =1+0.98*[(1.391-2.611)+( 1.382-2.602)+( 1.363-2.588)]/3*3.14
=0.61 =0.61
根据球料比G的计算公式为 According to the calculation formula of ball material ratio G is
上式中,d1= 7.8g/cm3,d2= 3.0g/cm3,水的密度取1,W=20.61t, C=0.65,V0=7.63 m3,F=0.61,KG=0.99(由多次实验标定)。则根据上述公式算出球料比G=5.33。 In the above formula, d 1 = 7.8g/cm 3 , d 2 = 3.0g/cm 3 , the density of water is 1, W=20.61t, C=0.65, V 0 =7.63 m 3 , F=0.61, K G =0.99 (calibrated by multiple experiments). Then calculate the ball-to-material ratio G=5.33 according to the above formula.
本实施方式的球磨机负荷参数检测装置的结构:如图1和2所示,包括机架、球磨机筒体1、电极、采集电极位置信息的位置传感器13、称重传感器、采集球磨机筒体1筒体转速的旋转编码器14和用于处理和计算负荷参数的计算机20,球磨机筒体1悬空固定在机架上并通过称重传感器测重,球磨机筒体1的底部安装有电极,位置传感器13和旋转编码器14固定在机架的底端,位置传感器13和旋转编码器14采集的信号通过DI模块16传送到计算机20,电极采集的与球磨机筒体1之间的电阻值信号通过电阻A/D模块11、无线发送器12和无线接收器19传送到计算机20,称重传感器采集的球磨机筒体重量信号传送至计算机20。电极为五个,安装在球磨机筒体1底部的前端、中间和后端,安装的位置连线与球磨机筒体1的轴线平行。如图1所示,前端电极8、中间电极9和后端电极10。电极为螺栓型,中间为金属线24,周围为硬质绝缘材料22,电极穿过衬板安装孔后通过紧固螺母23固定在衬板21和筒体1上。球磨机筒体1的前空心轴2和后空心轴3分别固定在机架的前机座4和后机座5上保持球磨机筒体1悬空,前机座4上安装有前端称重传感器组6,后机座5上安装有后端称重传感器7组。前端称重传感器组6连接前机座称重变送器17,后端称重传感器组7连接后机座称重变送器15,前机座称重变送器17和后机座称重变送器15将放大调理的信号通过AI模块18传送至计算机20。
The structure of the ball mill load parameter detection device of this embodiment: as shown in Figures 1 and 2, includes a frame, a ball mill cylinder 1, an electrode, a
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。 The specific embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above embodiments. Variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310377730.9A CN103438934B (en) | 2013-08-27 | 2013-08-27 | A kind of ball mill load parameter detection method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310377730.9A CN103438934B (en) | 2013-08-27 | 2013-08-27 | A kind of ball mill load parameter detection method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103438934A true CN103438934A (en) | 2013-12-11 |
CN103438934B CN103438934B (en) | 2015-11-18 |
Family
ID=49692630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310377730.9A Expired - Fee Related CN103438934B (en) | 2013-08-27 | 2013-08-27 | A kind of ball mill load parameter detection method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103438934B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106197359A (en) * | 2016-09-12 | 2016-12-07 | 上海理工大学 | The on-line measurement device and method of granule materials angle of repose in drum-type pulverizer |
CN107876198A (en) * | 2017-11-24 | 2018-04-06 | 浙江琰大新材料有限公司 | A kind of nano material preparation facilities of material automatic grading |
CN109225492A (en) * | 2018-11-06 | 2019-01-18 | 福建亚亨机械股份有限公司 | A kind of ball-grinding machine ball adding device ball storehouse induction weighing device |
CN110339914A (en) * | 2019-07-18 | 2019-10-18 | 北京科技大学 | An online detection device and automatic control method for comprehensive operation status of a grinding machine |
CN113953056A (en) * | 2021-09-28 | 2022-01-21 | 宁波圣燕工程设备有限公司 | Utilize inside quantity control of vibration response to smash complete cement manufacture equipment |
CN114542917A (en) * | 2022-02-17 | 2022-05-27 | 甘肃省有色金属地质勘查局兰州矿产勘查院 | Ore composition detection device |
CN119549244A (en) * | 2025-01-06 | 2025-03-04 | 昆明理工大学 | A method and device for detecting load parameters of liner radial pressure ball mill |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020175232A1 (en) * | 2001-05-25 | 2002-11-28 | Scuccato Serge Louis | Solidified load protection system for grinding mills |
CN101042311A (en) * | 2007-03-13 | 2007-09-26 | 西安交通大学 | Detection method and apparatus for barrel type steel ball grinder load based on multiple sensor fusion |
CN203432616U (en) * | 2013-08-27 | 2014-02-12 | 昆明理工大学 | An apparatus for detecting load parameters of a ball mill |
-
2013
- 2013-08-27 CN CN201310377730.9A patent/CN103438934B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020175232A1 (en) * | 2001-05-25 | 2002-11-28 | Scuccato Serge Louis | Solidified load protection system for grinding mills |
CN101042311A (en) * | 2007-03-13 | 2007-09-26 | 西安交通大学 | Detection method and apparatus for barrel type steel ball grinder load based on multiple sensor fusion |
CN203432616U (en) * | 2013-08-27 | 2014-02-12 | 昆明理工大学 | An apparatus for detecting load parameters of a ball mill |
Non-Patent Citations (3)
Title |
---|
孙景敏等: "基于信息融合技术的球磨机三因素负荷检测研究", 《云南冶金》 * |
沙亚红等: "球磨机负荷检测方法综述", 《现代电力》 * |
王泽红等: "球磨机负荷检测的现状与发展趋势", 《中国粉体技术》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106197359A (en) * | 2016-09-12 | 2016-12-07 | 上海理工大学 | The on-line measurement device and method of granule materials angle of repose in drum-type pulverizer |
CN106197359B (en) * | 2016-09-12 | 2019-01-01 | 上海理工大学 | The on-line measurement device and method at granule materials angle of repose in drum-type pulverizer |
CN107876198A (en) * | 2017-11-24 | 2018-04-06 | 浙江琰大新材料有限公司 | A kind of nano material preparation facilities of material automatic grading |
CN109225492A (en) * | 2018-11-06 | 2019-01-18 | 福建亚亨机械股份有限公司 | A kind of ball-grinding machine ball adding device ball storehouse induction weighing device |
CN110339914A (en) * | 2019-07-18 | 2019-10-18 | 北京科技大学 | An online detection device and automatic control method for comprehensive operation status of a grinding machine |
CN110339914B (en) * | 2019-07-18 | 2023-05-05 | 北京科技大学 | Online detection device and automatic control method for comprehensive running state of ore mill |
CN113953056A (en) * | 2021-09-28 | 2022-01-21 | 宁波圣燕工程设备有限公司 | Utilize inside quantity control of vibration response to smash complete cement manufacture equipment |
CN114542917A (en) * | 2022-02-17 | 2022-05-27 | 甘肃省有色金属地质勘查局兰州矿产勘查院 | Ore composition detection device |
CN114542917B (en) * | 2022-02-17 | 2023-07-25 | 甘肃省有色金属地质勘查局兰州矿产勘查院 | Ore composition detection device |
CN119549244A (en) * | 2025-01-06 | 2025-03-04 | 昆明理工大学 | A method and device for detecting load parameters of liner radial pressure ball mill |
Also Published As
Publication number | Publication date |
---|---|
CN103438934B (en) | 2015-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103438934B (en) | A kind of ball mill load parameter detection method and device | |
CN100498240C (en) | Material position detecting method and device based on vibration signal of ball grinder rotating cylinder body | |
CN203432616U (en) | An apparatus for detecting load parameters of a ball mill | |
RU2441234C1 (en) | Method to analyse structure and monitor strength of building structures concrete and device for its realisation | |
CN109821619A (en) | A Ball Mill Load Measurement Device Based on Piezoelectric Sensors and Wireless Transmission | |
CN104111346A (en) | Working and abrasion state on-line detection method for shield hob | |
CN111453311B (en) | A real-time tension detection system for scraper chain based on piezoelectric effect | |
CN104655528A (en) | Efficient integrated concentration and granularity detection device | |
CN110339914A (en) | An online detection device and automatic control method for comprehensive operation status of a grinding machine | |
CN107764229A (en) | Intelligent amendment type surface evenness detection device | |
CN101493354B (en) | Material level detecting method for ball mill based on multi-sensor fusing technology | |
CN105784066A (en) | Method for material level on-line measurement of mine ultra-deep draw shaft undergoing redundant design | |
CN103170910A (en) | Numerical control grinder load spectrum data transfer sampling rate device and numerical control grinder load spectrum data transfer sampling rate method | |
US7347113B2 (en) | Method for evaluating the filling rate of a tubular rotary ball mill and device therefor | |
CN207881765U (en) | A kind of oil truck multi-parameter measuring systems | |
CN1020774C (en) | High-speed highway level | |
CN206496855U (en) | An experimental device for measuring the power of a ball mill | |
CN203324262U (en) | Coal dump humidity detection device | |
CN209069471U (en) | A kind of differential mechanism flywheel moment self-operated measuring unit | |
CN104308661A (en) | Disc type part numerical control turning processing dimension on-line measurement device | |
CN201548286U (en) | Overflow type ball mill material level detection device | |
CN213264349U (en) | Belt feeding detection device and automatic belt feeding device | |
CN202153144U (en) | Material level detector | |
CN206174952U (en) | Drilling deviational survey device | |
CN202433082U (en) | Vibration monitoring system of fan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151118 Termination date: 20210827 |
|
CF01 | Termination of patent right due to non-payment of annual fee |