CN103433642A - Low-hydrogen basic electrode for 1Ni9 low-temperature steel welding and preparation method of low-hydrogen basic electrode - Google Patents
Low-hydrogen basic electrode for 1Ni9 low-temperature steel welding and preparation method of low-hydrogen basic electrode Download PDFInfo
- Publication number
- CN103433642A CN103433642A CN2013103498936A CN201310349893A CN103433642A CN 103433642 A CN103433642 A CN 103433642A CN 2013103498936 A CN2013103498936 A CN 2013103498936A CN 201310349893 A CN201310349893 A CN 201310349893A CN 103433642 A CN103433642 A CN 103433642A
- Authority
- CN
- China
- Prior art keywords
- low
- temperature
- welding
- steel
- basic electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 106
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 86
- 239000010959 steel Substances 0.000 title claims abstract description 86
- 239000001257 hydrogen Substances 0.000 title claims abstract description 18
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 72
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 46
- 239000011572 manganese Substances 0.000 claims abstract description 39
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 32
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 29
- 239000011651 chromium Substances 0.000 claims abstract description 29
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 29
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 29
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 28
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 27
- 239000010955 niobium Substances 0.000 claims abstract description 27
- 239000010936 titanium Substances 0.000 claims abstract description 27
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052742 iron Inorganic materials 0.000 claims abstract description 24
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 22
- 229910000519 Ferrosilicon Inorganic materials 0.000 claims abstract description 21
- 238000000576 coating method Methods 0.000 claims abstract description 20
- 239000011248 coating agent Substances 0.000 claims abstract description 19
- 239000010445 mica Substances 0.000 claims abstract description 19
- 229910052618 mica group Inorganic materials 0.000 claims abstract description 19
- 239000004579 marble Substances 0.000 claims abstract description 17
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 16
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 15
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims abstract description 15
- 239000010436 fluorite Substances 0.000 claims abstract description 15
- 239000011574 phosphorus Substances 0.000 claims abstract description 15
- 239000004576 sand Substances 0.000 claims abstract description 15
- 229910052845 zircon Inorganic materials 0.000 claims abstract description 15
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000003513 alkali Substances 0.000 claims abstract description 14
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 12
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000010703 silicon Substances 0.000 claims abstract description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011733 molybdenum Substances 0.000 claims abstract description 11
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000003814 drug Substances 0.000 claims description 39
- 238000001035 drying Methods 0.000 claims description 34
- 238000010079 rubber tapping Methods 0.000 claims description 30
- 239000000843 powder Substances 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 23
- 238000005491 wire drawing Methods 0.000 claims description 22
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 20
- 238000005554 pickling Methods 0.000 claims description 15
- 238000007670 refining Methods 0.000 claims description 12
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 claims description 11
- 235000019353 potassium silicate Nutrition 0.000 claims description 11
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 11
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 10
- 230000006698 induction Effects 0.000 claims description 10
- 238000005096 rolling process Methods 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000011230 binding agent Substances 0.000 claims description 4
- 239000005864 Sulphur Substances 0.000 claims 2
- 239000002826 coolant Substances 0.000 claims 2
- 238000001125 extrusion Methods 0.000 claims 2
- 208000037656 Respiratory Sounds Diseases 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000005266 casting Methods 0.000 claims 1
- 239000000470 constituent Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 239000000155 melt Substances 0.000 claims 1
- 238000003801 milling Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 abstract description 20
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 15
- 229910000616 Ferromanganese Inorganic materials 0.000 abstract description 14
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 abstract description 14
- 150000002910 rare earth metals Chemical class 0.000 abstract description 13
- 239000011593 sulfur Substances 0.000 abstract description 13
- 229910001200 Ferrotitanium Inorganic materials 0.000 abstract description 12
- 230000008676 import Effects 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 32
- 239000002184 metal Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 20
- 239000002893 slag Substances 0.000 description 20
- 229940079593 drug Drugs 0.000 description 19
- 238000003723 Smelting Methods 0.000 description 17
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 16
- 230000007797 corrosion Effects 0.000 description 15
- 238000005260 corrosion Methods 0.000 description 15
- 239000002253 acid Substances 0.000 description 14
- 229910001566 austenite Inorganic materials 0.000 description 12
- 238000001816 cooling Methods 0.000 description 11
- 229910000859 α-Fe Inorganic materials 0.000 description 10
- 229910000420 cerium oxide Inorganic materials 0.000 description 8
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 8
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 210000001787 dendrite Anatomy 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- RJDOZRNNYVAULJ-UHFFFAOYSA-L [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] RJDOZRNNYVAULJ-UHFFFAOYSA-L 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- -1 nickel Chemical compound 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910004261 CaF 2 Inorganic materials 0.000 description 2
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000009849 vacuum degassing Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical group [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003844 drug implant Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Nonmetallic Welding Materials (AREA)
Abstract
1Ni9低温钢焊接用低氢碱性焊条,包括焊芯和药皮,焊芯按质量百分比由以下组分组成:碳0.01-0.03%,锰0.5-0.9%,硅0.2-0.4%,铬21-24%,铁2.5-3.5%,钼8.5-9.5%,钛0.02-0.04%,铌4-4.5%,氮0.15-0.20%,硫<0.01%,磷<0.01%,余量为镍;药皮按质量百分比包括:34-48%大理石,17-24%萤石,2-6%锆英砂,1-4%硅铁,5-12%钛铁,3-5%中碳锰铁,2-5%钛白粉,2-5%金红石,2-6%云母,0.7-1%碱,1-3%混合稀土,上述组分质量百分比之和为100%。本发明解决了现有焊条进口价格昂贵且性能较差的问题。
Low-hydrogen alkaline electrode for welding 1Ni9 low-temperature steel, including welding core and coating. The welding core is composed of the following components by mass percentage: carbon 0.01-0.03%, manganese 0.5-0.9%, silicon 0.2-0.4%, chromium 21- 24%, iron 2.5-3.5%, molybdenum 8.5-9.5%, titanium 0.02-0.04%, niobium 4-4.5%, nitrogen 0.15-0.20%, sulfur<0.01%, phosphorus<0.01%, the balance is nickel; Include by mass percentage: 34-48% marble, 17-24% fluorite, 2-6% zircon sand, 1-4% ferrosilicon, 5-12% ferro-titanium, 3-5% medium carbon ferromanganese, 2 - 5% titanium dioxide, 2-5% rutile, 2-6% mica, 0.7-1% alkali, 1-3% mixed rare earth, the sum of the mass percentages of the above components is 100%. The invention solves the problems of high import price and poor performance of existing welding rods.
Description
技术领域technical field
本发明属于焊接材料技术领域,具体涉及一种1Ni9低温钢焊接用低氢碱性焊条,本发明还涉及该焊条的制备方法。The invention belongs to the technical field of welding materials, and in particular relates to a low-hydrogen basic electrode for welding 1Ni9 low-temperature steel, and also relates to a preparation method of the electrode.
背景技术Background technique
1Ni9钢是含镍量为9%,含碳量低于0.13%的低碳中合金钢,在-196℃具有优良的强韧性和焊接性。与具有优良性能的不锈钢相比,1Ni9钢具有合金含量少、价格便宜的优点;与低温用铝合金相比,有许用应力大、热膨胀率小的优点。而随着风机行业的迅猛发展,1Ni9钢因其良好的低温性能在风机行业被广泛用作叶轮材料,而现在风机叶轮通常是通过焊接连接轮盘和叶片,叶轮的焊接质量是影响风机使用寿命的关键问题之一,这就需要大量和叶轮材料相匹配并且焊缝具有优良的力学性能、耐腐蚀性能和超低温性能的焊接材料。由于现有与1Ni9钢匹配的焊条主要从国外进口,价格昂贵,因此发展低温马氏体1Ni9钢的专用焊接材料具有广阔的市场前景和经济效益。1Ni9 steel is a low-carbon medium alloy steel with a nickel content of 9% and a carbon content of less than 0.13%. It has excellent strength, toughness and weldability at -196°C. Compared with stainless steel with excellent performance, 1Ni9 steel has the advantages of less alloy content and lower price; compared with aluminum alloy for low temperature, it has the advantages of large allowable stress and small thermal expansion rate. With the rapid development of the fan industry, 1Ni9 steel is widely used as the impeller material in the fan industry due to its good low temperature performance. Now the fan impeller is usually connected to the disc and the blade by welding. The welding quality of the impeller affects the service life of the fan. One of the key issues, which requires a large number of welding materials that match the impeller material and have excellent mechanical properties, corrosion resistance and ultra-low temperature performance. Since the existing welding rods matching 1Ni9 steel are mainly imported from abroad, the price is expensive, so the development of special welding materials for low-temperature martensitic 1Ni9 steel has broad market prospects and economic benefits.
发明内容Contents of the invention
本发明的目的是提供一种1Ni9低温钢焊接用低氢碱性焊条,解决了现有用于焊接1Ni9钢的焊条需从国外进口价格昂贵且性能较差的问题。The object of the present invention is to provide a low-hydrogen basic electrode for welding 1Ni9 low-temperature steel, which solves the problem that the existing electrode used for welding 1Ni9 steel needs to be imported from abroad, which is expensive and has poor performance.
本发明的另一个目的是提供上述焊条的制备方法。Another object of the present invention is to provide a method for preparing the above welding rod.
本发明所采用的技术方案是:1Ni9低温钢焊接用低氢碱性焊条,包括焊芯和药皮,焊芯按质量百分比由以下组分组成:碳0.01%-0.03%,锰0.5%-0.9%,硅0.2%-0.4%,铬21%-24%,铁2.5%-3.5%,钼8.5%-9.5%,钛0.02%-0.04%,铌4%-4.5%,氮0.15%-0.20%,硫<0.01%,磷<0.01%,余量为镍,上述各组分质量百分比之和为100%;药皮按质量百分比由以下组分组成:34%-48%的大理石,17%-24%的萤石,2%-6%的锆英砂,1%-4%的硅铁,5%-12%的钛铁,3%-5%的中碳锰铁,2%-5%的钛白粉,2%-5%的金红石,2%-6%的云母,0.7%-1%的碱,1%-3%的混合稀土,上述各组分质重量百分比之和为100%。The technical solution adopted in the present invention is: 1Ni9 low-temperature steel welding low-hydrogen alkaline electrode, including welding core and coating, welding core is composed of the following components according to mass percentage: carbon 0.01%-0.03%, manganese 0.5%-0.9 %, silicon 0.2%-0.4%, chromium 21%-24%, iron 2.5%-3.5%, molybdenum 8.5%-9.5%, titanium 0.02%-0.04%, niobium 4%-4.5%, nitrogen 0.15%-0.20% , sulfur<0.01%, phosphorus<0.01%, the balance is nickel, the sum of the mass percentages of the above components is 100%; the drug skin is composed of the following components by mass percentage: 34%-48% of marble, 17%- 24% fluorite, 2%-6% zircon sand, 1%-4% ferrosilicon, 5%-12% ferrotitanium, 3%-5% medium carbon ferromanganese, 2%-5% Titanium dioxide, 2%-5% rutile, 2%-6% mica, 0.7%-1% alkali, 1%-3% mixed rare earth, the sum of the weight percentages of the above components is 100%.
本发明所采取的另一个技术方案是,上述焊条的制备方法,包括以下步骤:Another technical solution adopted by the present invention is that the preparation method of the above-mentioned welding rod comprises the following steps:
步骤1,step 1,
将质量比为65%的工业纯镍、含C、Si、Ti、Nb、N的矿石以及Fe、Mo、Cr、Mn一起放入感应炉中进行冶炼,当工业纯镍全部熔化,合金钢液温度达到1450℃,钢液平静时,停电冷却排气,再送电进行加热精炼,待温度继续下降至出钢温度时出钢,出钢前5min先向炉内充氩气使炉内压强达到33-47KPa,再向钢液中加入Mn搅拌2min后出钢,出钢温度1450℃,浇注时要求钢液表面平静,浇注均匀,冷却至室温得到钢锭,使得钢锭的质量百分比为:碳0.01%-0.03%,锰0.5%-0.9%,硅0.2%-0.4%,铬21%-24%,铁2.5%-3.5%,钼8.5%-9.5%,钛0.02%-0.04%,铌4%-4.5%,氮0.15%-0.20%,硫<0.01%,磷<0.01%,余量为镍,上述各组分的质量百分比之和为100%;Put industrial pure nickel with a mass ratio of 65%, ores containing C, Si, Ti, Nb, N, and Fe, Mo, Cr, and Mn together in an induction furnace for smelting. When the industrial pure nickel is completely melted, the molten alloy steel When the temperature reaches 1450°C, when the molten steel is calm, power off to cool and exhaust, and then power on for heating and refining. When the temperature continues to drop to the tapping temperature, the steel is tapped, and the furnace is filled with argon 5 minutes before tapping to make the furnace pressure reach 33. -47KPa, then add Mn to the molten steel and stir for 2 minutes before tapping, the tapping temperature is 1450°C, when pouring, the surface of the molten steel is required to be calm, pour evenly, cool to room temperature to obtain a steel ingot, so that the mass percentage of the steel ingot is: carbon 0.01%- 0.03%, manganese 0.5%-0.9%, silicon 0.2%-0.4%, chromium 21%-24%, iron 2.5%-3.5%, molybdenum 8.5%-9.5%, titanium 0.02%-0.04%, niobium 4%-4.5% %, nitrogen 0.15%-0.20%, sulfur <0.01%, phosphorus <0.01%, the balance is nickel, and the sum of the mass percentages of the above components is 100%;
步骤2,Step 2,
将步骤1得到的钢锭扒皮后用750kg的蒸汽锤锻造成方坯,冷却至室温后去除方坯表面黑皮及裂纹并切去冒头,然后用轧机将方坯轧制成盘条后机械剥壳,再在耐酸混凝土酸洗池中进行酸洗去锈后烘干,用回转式拉丝机进行干法拉丝后卷取,热处理后用回转式拉丝机再次干法拉丝,缠绕成直径为4.0mm的焊丝,即焊芯;After peeling the steel ingot obtained in step 1, forge it into a billet with a 750kg steam hammer, remove the black skin and cracks on the surface of the billet after cooling to room temperature, and cut off the riser, and then roll the billet into a billet with a rolling mill. After the wire rod is mechanically peeled off, it is pickled in an acid-resistant concrete pickling pool to remove rust and then dried. It is coiled after dry drawing with a rotary wire drawing machine. After heat treatment, it is again dry drawn with a rotary wire drawing machine and wound. Form a welding wire with a diameter of 4.0mm, that is, the welding core;
步骤3,Step 3,
按照质量百分比分别称取34%-48%的大理石,17%-24%的萤石,2%-6%的锆英砂,1%-4%的硅铁,5%-12%的钛铁,3%-5%的中碳锰铁,2%-5%的钛白粉,2%-5%的金红石,2%-6%的云母,0.7%-1%的碱,1%-3%的混合稀土,上述各组分的质量百分比之和为100%;将上述药皮材料和粘结剂一起放入混料机中混合,然后将混合后的药粉放入压团机中压成圆柱形药团;Weigh 34%-48% marble, 17%-24% fluorite, 2%-6% zircon sand, 1%-4% ferrosilicon, 5%-12% ferrosilicon according to mass percentage , 3%-5% medium carbon ferromanganese, 2%-5% titanium dioxide, 2%-5% rutile, 2%-6% mica, 0.7%-1% alkali, 1%-3% The mixed rare earth, the sum of the mass percentages of the above components is 100%; put the above coating material and binder together in a mixer and mix, and then put the mixed powder into a compactor and press it into a cylinder shaped drug group;
步骤4,Step 4,
在焊条压涂机中加入步骤3制得的圆柱形药团,并将圆柱形药团压涂在步骤2制得的焊芯上,然后放入箱式炉中进行逐级升温烘干,即得到焊条。Add the cylindrical drug pellets prepared in step 3 into the welding rod press coater, and press-coat the cylindrical pellets on the welding cores prepared in step 2, and then put them into a box furnace for step-by-step heating and drying, namely Get welding rods.
本发明的特点还在于,The present invention is also characterized in that,
步骤1中冷却排气时间为10-20min,加热精炼时间为15-25min。In step 1, the time for cooling and exhausting is 10-20 minutes, and the time for heating and refining is 15-25 minutes.
步骤2中酸洗采用体积浓度为15%的盐酸,酸洗时间为10-20min。In step 2, pickling adopts hydrochloric acid with a volume concentration of 15%, and the pickling time is 10-20min.
步骤2中烘干采用链条式烘干炉,烘干温度为145-150℃,烘干速度为1.5-2.5m/s。In step 2, a chain-type drying furnace is used for drying, the drying temperature is 145-150° C., and the drying speed is 1.5-2.5 m/s.
步骤2中热处理是将卷取的焊丝加热至670-680℃后自然冷却至室温。The heat treatment in step 2 is to heat the coiled wire to 670-680°C and then cool it naturally to room temperature.
步骤3中药粉粘结剂为钾钠混合水玻璃,加入量为药皮质量的30%-33%。In step 3, the traditional Chinese medicine powder binder is potassium sodium mixed water glass, and the addition amount is 30%-33% of the quality of the medicine skin.
步骤4中逐级升温烘干具体步骤为:先以60℃低温烘10h,然后依次以120℃烘干1h、180℃烘干1h、250℃烘干1h、350℃烘干1h。The step-by-step drying steps in step 4 are as follows: firstly dry at 60°C for 10 hours, then dry at 120°C for 1 hour, 180°C for 1 hour, 250°C for 1 hour, and 350°C for 1 hour.
本发明的有益效果是:本发明1Ni9低温钢焊接用低氢碱性焊条,解决了现有与1Ni9钢相匹配的焊条需从国外进口价格昂贵且性能较差的问题,其稳弧性能良好,熔池流动性好,飞溅颗粒细小,焊后脱渣容易,熔渣覆盖均匀,焊缝成型细致美观,并且其制备方法简单,焊条熔敷金属的超低温性能达到了企业所需。The beneficial effects of the present invention are: the low-hydrogen basic electrode for welding 1Ni9 low-temperature steel of the present invention solves the problem that the existing electrode matching the 1Ni9 steel needs to be imported from abroad, which is expensive and has poor performance, and its arc stability performance is good, The fluidity of the molten pool is good, the spatter particles are small, the slag is easy to remove after welding, the slag is evenly covered, the weld shape is meticulous and beautiful, and its preparation method is simple. The ultra-low temperature performance of the deposited metal of the electrode meets the needs of the enterprise.
附图说明Description of drawings
图1是本发明实施例1制作的焊条的熔敷金属金相图;Fig. 1 is the metallographic diagram of the deposited metal of the welding rod that the embodiment of the present invention 1 makes;
图2是本发明实施例4制作的焊条的熔敷金属金相图;Fig. 2 is the metallographic diagram of the deposited metal of the welding rod that the embodiment of the present invention 4 makes;
图3是本发明实施例4制作的焊条的熔敷金属焊缝横断面金相图。Fig. 3 is the metallographic diagram of the cross-section of the deposited metal weld seam of the electrode produced in Example 4 of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明1Ni9低温钢焊接用低氢碱性焊条,包括焊芯和药皮,焊芯按质量百分比由以下组分组成:碳0.01%-0.03%,锰0.5%-0.9%,硅0.2%-0.4%,铬21%-24%,铁2.5%-3.5%,钼8.5%-9.5%,钛0.02%-0.04%,铌4%-4.5%,氮0.15%-0.20%,硫<0.01%,磷<0.01%,余量为镍,上述各组分质量百分比之和为100%;药皮按质量百分比由以下组分组成:34%-48%的大理石,17%-24%的萤石,2%-6%的锆英砂,1%-4%的硅铁,5%-12%的钛铁,3%-5%的中碳锰铁,2%-5%的钛白粉,2%-5%的金红石,2%-6%的云母,0.7%-1%的碱,1%-3%的混合稀土,上述各组分质重量百分比之和为100%。The low-hydrogen alkaline electrode for welding 1Ni9 low-temperature steel of the present invention includes a welding core and a coating, and the welding core is composed of the following components in terms of mass percentage: carbon 0.01%-0.03%, manganese 0.5%-0.9%, silicon 0.2%-0.4 %, chromium 21%-24%, iron 2.5%-3.5%, molybdenum 8.5%-9.5%, titanium 0.02%-0.04%, niobium 4%-4.5%, nitrogen 0.15%-0.20%, sulfur <0.01%, phosphorus <0.01%, the balance is nickel, the sum of the mass percentages of the above components is 100%; the coating is composed of the following components by mass percentage: 34%-48% marble, 17%-24% fluorite, 2 %-6% zircon sand, 1%-4% ferrosilicon, 5%-12% ferro-titanium, 3%-5% medium carbon ferromanganese, 2%-5% titanium dioxide, 2%- 5% rutile, 2%-6% mica, 0.7%-1% alkali, 1%-3% mixed rare earth, the sum of the weight percentages of the above components is 100%.
上述焊条的制备方法,包括以下步骤:The preparation method of above-mentioned welding rod, comprises the following steps:
步骤1,step 1,
将质量比为65%的工业纯镍、含C、Si、Ti、Nb、N的矿石以及Fe、Mo、Cr、Mn一起放入感应炉中进行冶炼,当工业纯镍全部熔化,合金钢液温度达到1450℃,钢液平静时,停电冷却排气10-20min,再送电进行加热精炼15-25min,待温度继续下降至出钢温度时出钢,出钢前5min向炉内充氩气使炉内压强达到33-47KPa,再向钢液中加入Mn搅拌2min后出钢,出钢温度1450℃,浇注时要求钢液表面平静,浇注均匀,冷却至室温得到钢锭,在冶炼过程中,控制碳0.01%-0.03%,锰0.5%-0.9%,硅0.2%-0.4%,铬21%-24%,铁2.5%-3.5%,钼8.5%-9.5%,钛0.02%-0.04%,铌4%-4.5%,氮0.15%-0.20%,硫<0.01%,磷<0.01%,余量为Ni,上述各组分的质量百分比之和为100%;Put industrial pure nickel with a mass ratio of 65%, ores containing C, Si, Ti, Nb, N, and Fe, Mo, Cr, and Mn together in an induction furnace for smelting. When the industrial pure nickel is completely melted, the molten alloy steel When the temperature reaches 1450°C and the molten steel is calm, cut off the power to cool and exhaust for 10-20 minutes, then turn on the power for heating and refining for 15-25 minutes. When the pressure in the furnace reaches 33-47KPa, add Mn to the molten steel and stir for 2 minutes before tapping. The tapping temperature is 1450°C. When pouring, the surface of the molten steel is required to be calm, pour evenly, and cool to room temperature to obtain steel ingots. During the smelting process, control Carbon 0.01%-0.03%, Manganese 0.5%-0.9%, Silicon 0.2%-0.4%, Chromium 21%-24%, Iron 2.5%-3.5%, Molybdenum 8.5%-9.5%, Titanium 0.02%-0.04%, Niobium 4%-4.5%, nitrogen 0.15%-0.20%, sulfur<0.01%, phosphorus<0.01%, the balance is Ni, the sum of the mass percentages of the above components is 100%;
步骤2,Step 2,
将步骤1得到的钢锭扒皮后用750kg的蒸汽锤锻造成方坯,冷却至室温后去除方坯表面黑皮及裂纹并切去冒头,然后用轧机将方坯轧制成盘条后机械剥壳,再在耐酸混凝土酸洗池中用体积浓度为15%的盐酸洗10-20min后采用链条式烘干炉在145-155℃烘干,烘干速度为1.5-2.5m/s,用回转式拉丝机进行干法拉丝后卷取,将卷取的焊丝加热至670-680℃后自然冷却至室温后用回转式拉丝机再次干法拉丝,缠绕成直径为4.0mm的焊丝,即焊芯;After peeling the steel ingot obtained in step 1, forge it into a billet with a 750kg steam hammer, remove the black skin and cracks on the surface of the billet after cooling to room temperature, and cut off the riser, and then roll the billet into a billet with a rolling mill. After the wire rod is mechanically peeled off, it is washed with hydrochloric acid with a volume concentration of 15% in the acid-resistant concrete pickling pool for 10-20 minutes, and then dried in a chain-type drying furnace at 145-155 ° C, and the drying speed is 1.5-2.5m /s, use a rotary wire drawing machine for dry drawing and coiling, heat the coiled welding wire to 670-680°C, cool it to room temperature naturally, then dry draw again with a rotary wire drawing machine, and wind it into a wire with a diameter of 4.0mm Welding wire, that is, welding core;
步骤3,Step 3,
按照质量百分比分别称取34%-48%的大理石,17%-24%的萤石,2%-6%的锆英砂,1%-4%的硅铁,5%-12%的钛铁,3%-5%的中碳锰铁,2%-5%的钛白粉,2%-5%的金红石,2%-6%的云母,0.7%-1%的碱,1%-3%的混合稀土(20%的氧化钇、20%的氧化铈和60%的氧化镧组成的混合物),上述各组分质重量百分比之和为100%;将上述药粉材料和钾钠混合水玻璃一起放入混料机中混合15分钟,然后将混合后的药粉放入压团机中压成圆柱形药团;钾钠混合水玻璃的加入量为药皮质量的30%-33%;Weigh 34%-48% marble, 17%-24% fluorite, 2%-6% zircon sand, 1%-4% ferrosilicon, 5%-12% ferrosilicon according to mass percentage , 3%-5% medium carbon ferromanganese, 2%-5% titanium dioxide, 2%-5% rutile, 2%-6% mica, 0.7%-1% alkali, 1%-3% Mixed rare earths (a mixture of 20% yttrium oxide, 20% cerium oxide and 60% lanthanum oxide), the sum of the weight percentages of the above components is 100%; the above powder materials and potassium sodium mixed water glass Put it into the blender and mix for 15 minutes, then put the mixed medicine powder into the ball press machine and press it into a cylindrical medicine ball; the amount of potassium sodium mixed water glass is 30%-33% of the medicine skin quality;
步骤4,Step 4,
在焊条压涂机中加入步骤3制得的圆柱形药团,并将圆柱形药团压涂在步骤2制得的焊芯上,然后放入箱式炉中先以低温60℃×10h,然后依次以高温120℃×1h、180℃×1h、250℃×1h、350℃×1h四个温度段进行逐级升温烘干,制成焊条。Add the cylindrical drug ball prepared in step 3 to the electrode press coater, and press-coat the cylindrical drug ball on the welding core prepared in step 2, and then put it into a box furnace at a low temperature of 60 ° C for 10 h, Then carry out step-by-step heating and drying at high temperature of 120°C×1h, 180°C×1h, 250°C×1h, 350°C×1h to make welding rods.
本发明1Ni9低温钢焊接用低氢碱性焊条,解决了现有与1Ni9钢相匹配的焊条需从国外进口价格昂贵且性能较差的问题,采用本发明制作的焊条与现有的进口OK92.55焊条相比,稳弧性能良好,熔池流动性好,飞溅颗粒细小,焊后脱渣容易,熔渣覆盖均匀,焊缝成型细致美观,尤其是改善了焊条发红严重的问题,并且其制备方法简单,焊条熔敷金属的超低温性能达到了企业所需。The low-hydrogen alkaline electrode for welding 1Ni9 low-temperature steel of the present invention solves the problem that the existing electrode matching 1Ni9 steel needs to be imported from abroad with high price and poor performance. The electrode produced by the present invention is compatible with the existing imported OK92. Compared with 55 electrode, it has good arc stability performance, good molten pool fluidity, fine spatter particles, easy slag removal after welding, uniform slag coverage, fine and beautiful weld shape, especially improved the problem of serious redness of electrode, and its The preparation method is simple, and the ultra-low temperature performance of the electrode deposited metal meets the needs of enterprises.
焊芯中各个组分的作用:The role of each component in the welding core:
碳:碳是强的奥氏体形成元素。由于碳化物沿晶界析出,会使焊缝金属脆化,出现晶界贫铬的现象,使焊缝金属耐蚀性降低;而晶界碳化物的强化作用,可使焊缝金属强度和耐磨性增加。故以耐蚀性为主的不锈钢焊缝,含碳量低些为好;而要求具有高温强度的不锈钢焊缝,其含碳量应适当。基于以上原因本发明确定C在焊芯中的成分范围为0.01%-0.03%。Carbon: Carbon is a strong austenite former. Due to the precipitation of carbides along the grain boundaries, the weld metal will be embrittled, and the phenomenon of chromium deficiency in the grain boundaries will occur, which will reduce the corrosion resistance of the weld metal; and the strengthening effect of the carbides at the grain boundaries can increase the strength and resistance of the weld metal. Increased abrasiveness. Therefore, for stainless steel welds that are mainly corrosion-resistant, it is better to have a lower carbon content; and for stainless steel welds that require high-temperature strength, their carbon content should be appropriate. Based on the above reasons, the present invention determines that the composition range of C in the welding core is 0.01%-0.03%.
锰:锰是奥氏体化形成元素。当不改变奥氏体+铁素体组织状态时,锰能改善焊缝的抗裂性,增加焊缝的塑性;但是当锰含量过高时,会导致焊缝的奥氏体粗化,焊缝抗晶间腐蚀能力降低。本发明确定焊芯中锰的含量为0.5%-0.9%。Manganese: Manganese is an austenitization forming element. When the state of austenite + ferrite structure is not changed, manganese can improve the crack resistance of the weld and increase the plasticity of the weld; but when the manganese content is too high, it will cause the austenite of the weld to coarsen, and the weld The ability of seams to resist intergranular corrosion is reduced. The present invention determines that the content of manganese in the welding core is 0.5%-0.9%.
硅:硅是铁素体化形成元素,其能够增加焊缝的强度。在奥氏体+铁素体的双相钢中,能够使低温冲击韧性降低,但是却可以有效的增加奥氏体+铁素体双相不锈钢焊缝的抗裂性能。在氧化性酸中,硅能够增加焊缝耐腐蚀性能,且在不使焊缝的铁素体相粗化的前提下,可以增加焊缝抗晶间腐蚀能力。故焊芯中硅的含量控制在0.2%-0.4%。Silicon: Silicon is a ferrite former which increases the strength of the weld. In the austenite + ferrite duplex steel, it can reduce the low temperature impact toughness, but it can effectively increase the crack resistance of the austenite + ferrite duplex stainless steel weld. In oxidizing acids, silicon can increase the corrosion resistance of the weld, and can increase the intergranular corrosion resistance of the weld without coarsening the ferrite phase of the weld. Therefore, the content of silicon in the welding core is controlled at 0.2%-0.4%.
铬:铬是铁素体化形成元素,能增加焊缝的屈服强度和极限强度,并降低延伸率及断面收缩率,有时会降低冲击韧性;并且铬能够提高焊缝抗晶间腐蚀能力,改善双相不锈钢焊缝在氧化性酸中的耐腐蚀能力。所以焊芯中络的范围控制在21%-24%。Chromium: Chromium is a ferrite forming element, which can increase the yield strength and ultimate strength of the weld, reduce the elongation and reduction of area, and sometimes reduce the impact toughness; and chromium can improve the intergranular corrosion resistance of the weld and improve Corrosion resistance of duplex stainless steel welds in oxidizing acids. Therefore, the range of the welding core network is controlled at 21%-24%.
钛和铌:钛和铌加入马氏体钢中会促进碳化物的形成,从而稳定碳,防止晶间腐蚀。这两种元素形成MC型碳化物,这种碳化物在焊接和热处理过程中不溶解,可以防止形成富铬的M23C6型碳化物,也就防止了晶间腐蚀。本发明中确定焊芯中钛的含量为0.02%-0.04%、铌的含量为4%-4.5%。Titanium and niobium: The addition of titanium and niobium to martensitic steels promotes the formation of carbides, thereby stabilizing the carbon and preventing intergranular corrosion. These two elements form MC-type carbides, which are insoluble during welding and heat treatment, and can prevent the formation of chromium-rich M 23 C 6 -type carbides, which prevents intergranular corrosion. In the present invention, it is determined that the content of titanium in the welding core is 0.02%-0.04%, and the content of niobium is 4%-4.5%.
氮:氮是很强的奥氏体化形成元素,在不使焊缝出现热裂纹的情况下,可增加焊缝的塑性。当镍含量导致焊缝中奥氏体相粗化时,便会降低焊缝抗晶间腐蚀能力,但增加焊缝在还原性酸中的耐腐蚀能力。氮和镍一样在形成奥氏体方面具有重要的影响,它们都是形成和扩大奥氏体的元素,但是氮的能力远远大于镍。在高温下,氮稳定奥氏体的能力比镍大,可以防止焊后出现单相铁素体,并能阻止有害金属相的析出。为了抑制焊缝中铁素体的过量增加,采用奥氏体占优势的焊缝金属是1Ni9钢的焊接趋势,一般在焊接材料中增加镍含量或加氮。通常镍的含量比母材高出2%-4%,用含氮的填充材料比只提高镍的填充材料效果更好,两种元素都可以增加奥氏体的比例,并使其稳定,但加氮不仅能延缓金属间相的析出,而且还可以提高焊缝金属的强度和耐蚀性。本发明所确定的氮在焊芯中的含量为0.15%-0.20%。Nitrogen: Nitrogen is a strong austenitization forming element, which can increase the plasticity of the weld without causing hot cracks in the weld. When the nickel content leads to the coarsening of the austenite phase in the weld, it will reduce the intergranular corrosion resistance of the weld, but increase the corrosion resistance of the weld in reducing acid. Nitrogen, like nickel, has an important influence on the formation of austenite. They are all elements that form and expand austenite, but the ability of nitrogen is much greater than that of nickel. At high temperature, the ability of nitrogen to stabilize austenite is greater than that of nickel, which can prevent single-phase ferrite after welding and prevent the precipitation of harmful metal phases. In order to suppress the excessive increase of ferrite in the weld, it is the welding trend of 1Ni9 steel to use austenite-dominated weld metal. Generally, the nickel content or nitrogen is added to the welding material. Usually the content of nickel is 2%-4% higher than that of the base metal. It is better to use nitrogen-containing filler materials than to only increase nickel. Both elements can increase the proportion of austenite and stabilize it, but Adding nitrogen can not only delay the precipitation of intermetallic phases, but also improve the strength and corrosion resistance of the weld metal. The content of nitrogen in the welding core determined by the present invention is 0.15%-0.20%.
钼:钼是铁素体化形成元素,可以提高不锈钢焊缝高温强度和抗裂性。钼含量为8.5%-9.5%时,在各类酸中特别是还原性酸中,能比较明显地改善焊缝耐腐蚀性能,且能够明显提高焊缝金属的抗点蚀能力。故本发明所确定的钼的成分在8.5%-9.5%。Molybdenum: Molybdenum is a ferrite forming element that can improve the high temperature strength and crack resistance of stainless steel welds. When the molybdenum content is 8.5%-9.5%, it can significantly improve the corrosion resistance of welds in various acids, especially reducing acids, and can significantly improve the pitting resistance of weld metal. Therefore, the composition of molybdenum determined in the present invention is 8.5%-9.5%.
硫和磷:硫、磷为杂质元素。硫使焊缝的热裂纹倾向增大,在焊缝中含量越低越好。焊缝中铁素体相越多,磷的有害作用越弱,此时,磷不会导致产生热裂纹。硫和磷属于限制性杂质元素,但无限度地降低硫和磷的含量,必然会引起生产成本的提高,故控制硫、磷的含量为硫<0.01%,磷<0.01%。Sulfur and phosphorus: Sulfur and phosphorus are impurity elements. Sulfur increases the hot cracking tendency of the weld, and the lower the content in the weld, the better. The more ferrite phase in the weld, the weaker the harmful effect of phosphorus, at this time, phosphorus will not cause hot cracks. Sulfur and phosphorus are restrictive impurity elements, but reducing the content of sulfur and phosphorus indefinitely will inevitably lead to an increase in production costs, so the content of sulfur and phosphorus is controlled to be sulfur < 0.01% and phosphorus < 0.01%.
药皮中各个组分的作用:The role of each component in the drug skin:
大理石的主要化学成分是CaCO3,在焊条药皮中的主要作用是造渣和造气,大理石分解出的CaO既能稳定电弧,又有良好的脱硫能力。大理石用量过多会增加药粉熔点,减慢焊接速度,使焊缝成型粗糙,并使熔渣粘度增加,易致焊缝产生内气孔。The main chemical composition of marble is CaCO 3 , and its main function in electrode coating is to generate slag and gas. The CaO decomposed from marble can not only stabilize the arc, but also has good desulfurization ability. Excessive use of marble will increase the melting point of the powder, slow down the welding speed, make the weld shape rough, and increase the viscosity of the slag, which will easily cause internal pores in the weld.
萤石的主要化学成分是CaF2,其熔点较低,具有稀释熔渣的作用,会降低熔渣的熔点,从而提高熔渣的导电性和流动性,CaF2在焊接中发生分解反应,生成的[F]捕捉熔渣中还原反应而产生的[O],抑制[O]向熔敷金属中过渡,从而降低熔敷金属中的[O]含量,并且降低了电弧气氛中的[H]分压,改善焊缝的塑性和韧性以及焊接工艺性能。The main chemical composition of fluorite is CaF 2 , which has a low melting point and has the effect of diluting slag, which will reduce the melting point of slag, thereby improving the conductivity and fluidity of slag. CaF 2 decomposes during welding, forming The [F] captures the [O] produced by the reduction reaction in the slag, inhibits the transition of [O] to the deposited metal, thereby reducing the [O] content in the deposited metal, and reduces the [H] in the arc atmosphere Partial pressure, improving the plasticity and toughness of the weld and the performance of the welding process.
锆英砂的主要化学成分是ZrO2,熔点为2715℃,具有两种变体,一种是1000℃以下稳定的单斜晶体,另一种为高于1000℃时稳定的正方晶体。由一种晶体转变为另一种晶体时体积发生约7%的变化,利用这一性能可以改善焊剂的脱渣性能,有利于脱渣。The main chemical composition of zircon sand is ZrO 2 , with a melting point of 2715°C. It has two variants, one is monoclinic crystal stable below 1000°C, and the other is tetragonal crystal stable above 1000°C. When changing from one crystal to another, the volume changes by about 7%. Using this property can improve the slag removal performance of the flux and is beneficial to slag removal.
钛酸盐的加入主要以金红石和钛白粉为主。钛白粉能够使焊条药皮具有较好的塑性,可以改善焊条的压涂工艺性能,但其用量太高不仅增加成本还会使焊条药皮在焊接过程发红严重。金红石可以使焊条药皮在焊接熔化的过程中实现“短渣”的特性,由于TiO2在焊接高温下粘度较低,对焊缝熔态金属的铺展十分有利,而当电弧移开某一区域,这一区域TiO2的粘度将急剧增加,从而可以有效保证焊条对全位置立向下的焊接的适应性;同时金红石还可以起到稳定电弧的作用。在焊条药皮中,当TiO2含量较少时,会造成焊接时电弧不稳定,但是其含量过多,又会造成电弧吹力的下降。在大量的生产实际中还发现,在焊条药皮中TiO2的含量控制得合理时,其不仅稳弧,而且减少焊接飞溅,还能促进熔池金属的铺展,使焊缝成型良好以减少焊缝中气孔的形成。The addition of titanate is mainly based on rutile and titanium dioxide. Titanium dioxide can make the electrode coating have better plasticity and can improve the pressure coating process performance of the electrode, but if its dosage is too high, it will not only increase the cost but also make the electrode coating redden severely during the welding process. Rutile can make the electrode coating realize the characteristics of "short slag" in the process of welding melting. Because TiO 2 has a low viscosity at high welding temperature, it is very beneficial to the spreading of molten metal in the weld, and when the arc moves away from a certain area , the viscosity of TiO 2 in this area will increase sharply, which can effectively ensure the adaptability of the electrode to all-position vertical downward welding; at the same time, rutile can also play a role in stabilizing the arc. In the electrode coating, when the content of TiO 2 is small, the arc will be unstable during welding, but if the content is too large, the arc blowing force will decrease. In a large number of production practices, it has also been found that when the content of TiO 2 in the electrode coating is controlled reasonably, it not only stabilizes the arc, but also reduces welding spatter, and can also promote the spreading of molten pool metal, so that the weld shape is good to reduce welding. The formation of pores in the crevice.
铁合金:钛铁是主要的脱氧剂,脱氧后的产物TiO2有一定的稀渣作用,钛铁对改善焊条的工艺性能有利。硅铁通常采用低度硅铁,含Si量约45%,低度硅铁压涂性能好,烘干焊条过程中药皮一般不会起泡。一般硅铁用量小于5%,过量的硅铁会加剧熔池中的冶金反应,使爆炸性飞溅增大,熔渣流动性增加,成形变差,且还会导致焊缝金属的硅含量增加。中碳锰铁的用量一般小于8%,过量的锰铁会增加MnO的量,使熔渣碱度增大,导致熔渣流动性变差,焊缝成形不良,脱渣困难。Ferroalloy: Ferro-titanium is the main deoxidizer, and the product TiO 2 after deoxidation has a certain effect of thinning slag, and ferro-titanium is beneficial to improve the process performance of welding rods. Ferrosilicon usually adopts low-grade ferrosilicon, with a Si content of about 45%. Low-grade ferrosilicon has good pressure coating performance, and the coating generally does not bubble during the process of drying the electrode. Generally, the amount of ferrosilicon is less than 5%. Excessive ferrosilicon will intensify the metallurgical reaction in the molten pool, increase the explosive splash, increase the fluidity of slag, deteriorate the forming, and increase the silicon content of the weld metal. The amount of medium-carbon ferromanganese is generally less than 8%. Excessive ferromanganese will increase the amount of MnO, increase the basicity of slag, lead to poor fluidity of slag, poor weld formation, and difficulty in slag removal.
云母:云母的主要作用是改善涂料的压涂性能和造渣,并有助于提高稳弧性,但是由于含结晶水,会使焊缝金属增氢。云母有以下特性:1)耐腐蚀性:云母与普通酸碱溶液不起反应,与水亦不发生反应,因而不起层、不挂垢、不破裂,在高温高压水的长期(2-3年)冲刷下,仍能基本保持原来的清晰和透明度;2)热性能:由于合成云母不含(OH)-,所以它的耐高温热稳定性比天然云母高许多,合成云母1200℃以上才缓慢分解,1100℃以上失重显著;3)真空放气性能:合成云母的真空放气量低,用质谱仪测定,放出的微量气体只是O2、N2和Ar等吸附气体,由于不放出H2O蒸汽,很适合用作电真空绝缘材料,将大大提高真空器件的使用寿命;4)合成云母的含水量较小,有利于减少氢气孔,从而有利于保证焊缝的强度。Mica: The main function of mica is to improve the pressure coating performance and slag formation of the coating, and help to improve arc stability, but because it contains crystal water, it will increase the hydrogenation of the weld metal. Mica has the following characteristics: 1) Corrosion resistance: Mica does not react with ordinary acid-base solutions, nor does it react with water, so it does not have a layer, no scaling, and no rupture. 2) Thermal properties: Since synthetic mica does not contain (OH) - , its high temperature resistance and thermal stability are much higher than those of natural mica, and synthetic mica can withstand temperatures above 1200°C. Decomposes slowly, and loses weight significantly above 1100°C; 3) Vacuum degassing performance: the vacuum degassing capacity of synthetic mica is low, and the trace gases released are only adsorbed gases such as O 2 , N 2 and Ar, as measured by mass spectrometer, because no H 2 is released O steam is very suitable as an electrical vacuum insulation material, which will greatly improve the service life of vacuum devices; 4) The water content of synthetic mica is small, which is conducive to reducing hydrogen pores, thereby ensuring the strength of the weld.
混合稀土可显著提高焊缝金属的低温冲击韧性。稀土在焊接冶金过程中与硫、氧反应,可产生稀土硫化物、稀土氧化物和稀土硫氧化物,大部分上浮到熔渣中,有效净化焊缝;能够显著改善焊缝金属组织,细化晶粒;可明显改善焊缝金属中夹杂物的形态大小及分布,使夹杂物数量减少,尺寸减小。Mixed rare earth can significantly improve the low temperature impact toughness of weld metal. Rare earth reacts with sulfur and oxygen in the process of welding metallurgy to produce rare earth sulfides, rare earth oxides and rare earth sulfur oxides, most of which float into the slag to effectively purify the weld; it can significantly improve the weld metal structure and refine Grain: It can significantly improve the shape, size and distribution of inclusions in the weld metal, reduce the number and size of inclusions.
实施例1Example 1
步骤1,将质量比为65%的工业纯镍、含C、Si、Ti、Nb、N的矿石以及Fe、Mo、Cr、Mn一起放入感应炉中进行冶炼,当工业纯镍全部熔化,合金钢液温度达到1450℃,钢液平静时,停电冷却排气15min,再送电进行加热精炼15min,待温度继续下降至出钢温度时出钢,出钢前5min先向炉内充氩气使炉内压强达到40KPa,再向钢液中加入Mn搅拌2min后出钢,出钢温度1450℃,浇注时要求钢液表面平静,浇注均匀,冷却至室温得到钢锭,在冶炼过程中,控制0.01%的C,0.5%的Mn,0.2%的Si,21%的Cr,2.5%的Fe,8.5%的Mo,0.02%的Ti,4%的Nb,0.15%的N,S<0.01%,P<0.01%,余量为Ni,上述各组分的质量百分比之和为100%;Step 1, putting industrial pure nickel with a mass ratio of 65%, ores containing C, Si, Ti, Nb, N, and Fe, Mo, Cr, and Mn together in an induction furnace for smelting, when all industrial pure nickel is melted, When the molten steel temperature reaches 1450°C, when the molten steel is calm, power off to cool and exhaust for 15 minutes, then power on for heating and refining for 15 minutes, and when the temperature continues to drop to the tapping temperature, the steel is tapped, and the furnace is filled with argon gas 5 minutes before tapping. The pressure in the furnace reaches 40KPa, and then add Mn to the molten steel and stir for 2 minutes before tapping. The tapping temperature is 1450°C. When pouring, the surface of the molten steel is required to be calm, pour evenly, and cool to room temperature to obtain steel ingots. During the smelting process, control 0.01% C, 0.5% Mn, 0.2% Si, 21% Cr, 2.5% Fe, 8.5% Mo, 0.02% Ti, 4% Nb, 0.15% N, S<0.01%, P< 0.01%, the balance is Ni, and the sum of the mass percentages of the above-mentioned components is 100%;
步骤2,将步骤1得到的钢锭扒皮后用750kg的蒸汽锤锻造成方坯,冷却至室温后去除方坯表面黑皮及裂纹并切去冒头,然后用轧机将方坯轧制成盘条后机械剥壳,再在耐酸混凝土酸洗池中用体积浓度为15%的盐酸洗15min后采用链条式烘干炉在145℃烘干,烘干速度为2m/s,用回转式拉丝机进行干法拉丝后卷取,将卷取的焊丝加热至670℃后自然冷却至室温后用回转式拉丝机再次干法拉丝,缠绕成直径为4.0mm的焊丝,即焊芯;Step 2, after peeling the steel ingot obtained in step 1, forge it into a billet with a 750kg steam hammer, remove the black skin and cracks on the surface of the billet after cooling to room temperature, and cut off the riser, and then use a rolling mill to roll the billet into After the wire rod is mechanically peeled off, it is washed with hydrochloric acid with a volume concentration of 15% in the acid-resistant concrete pickling pool for 15 minutes, and then dried in a chain-type drying furnace at 145°C with a drying speed of 2m/s. After dry wire drawing by the machine, it is coiled, the coiled wire is heated to 670°C, cooled to room temperature naturally, and then dry wire is drawn again with a rotary wire drawing machine, and wound into a wire with a diameter of 4.0mm, that is, the welding core;
步骤3,按照质量百分比分别称取44%的大理石,22%的萤石,4%的锆英砂,3%的硅铁,6%的钛铁,4%的中碳锰铁,5%的钛白粉,5%的金红石,3%的云母,1%的碱,3%的混合稀土(20%的氧化钇、20%的氧化铈和60%的氧化镧组成的混合物);将上述药粉材料和上述药粉材料31%的钾钠混合水玻璃一起放入混料机中混合15分钟,然后将混合后的药粉放入压团机中压成圆柱形药团;Step 3, take by weight respectively 44% marble, 22% fluorite, 4% zircon sand, 3% ferrosilicon, 6% ferrotitanium, 4% medium carbon ferromanganese, 5% Titanium dioxide, 5% rutile, 3% mica, 1% alkali, 3% mixed rare earth (a mixture of 20% yttrium oxide, 20% cerium oxide and 60% lanthanum oxide); the above powder materials Put 31% potassium sodium mixed water glass of the above-mentioned medicinal powder material together into a blender and mix for 15 minutes, then put the mixed medicinal powder into a compactor and press into a cylindrical medicinal mass;
步骤4,在焊条压涂机中加入步骤3制得的圆柱形药团,并将圆柱形药团压涂在步骤2制得的焊芯上,然后放入箱式炉中先以低温60℃×10h,然后依次以高温120℃×1h、180℃×1h、250℃×1h、350℃×1h四个温度段进行逐级升温烘干,制成焊条。该焊条和进口焊条OK92.55的熔敷金属的力学性能和工艺性能的比较如表1所示。Step 4, add the cylindrical drug ball prepared in step 3 to the welding rod press coater, and press-coat the cylindrical drug ball on the welding core prepared in step 2, and then put it into a box furnace at a low temperature of 60 ° C ×10h, and then step by step heating and drying at high temperature of 120°C×1h, 180°C×1h, 250°C×1h, 350°C×1h to make welding rods. Table 1 shows the comparison of the mechanical properties and technological properties of the deposited metal between this electrode and the imported electrode OK92.55.
表1焊条熔敷金属的力学性能和工艺性能Table 1 Mechanical properties and process properties of electrode deposited metal
本发明实施例1制作的焊条的熔敷金属金相组织图如图1所示。由图1可以看出,该组织主要为单一奥氏体,这种组织相主要由γ相固溶体和析出相组成,结晶形态为树枝晶,有一定的方向性,并在结晶过程中发生枝晶偏析或晶界偏析,因此具有良好的低温韧性。The metallographic structure diagram of the deposited metal of the electrode produced in Example 1 of the present invention is shown in FIG. 1 . It can be seen from Figure 1 that the structure is mainly single austenite, which is mainly composed of γ-phase solid solution and precipitated phase, and the crystallization form is dendrite, which has a certain directionality, and dendrite occurs during the crystallization process Segregation or grain boundary segregation, so it has good low temperature toughness.
实施例2Example 2
步骤1,将质量比为65%的工业纯镍、含C、Si、Ti、Nb、N的矿石以及Fe、Mo、Cr、Mn一起放入感应炉中进行冶炼,当工业纯镍全部熔化,合金钢液温度达到1450℃,钢液平静时,停电冷却排气10min,再送电进行加热精炼15min,待温度继续下降至出钢温度时出钢,出钢前5min先向炉内充氩气使炉内压强达到33KPa,再向钢液中加入Mn搅拌2min后出钢,出钢温度1450℃,浇注时要求钢液表面平静,浇注均匀,冷却至室温得到钢锭,在冶炼过程中,控制0.02%的C,0.7%的Mn,0.25%的Si,22%的Cr,2.5%的Fe,9%的Mo,0.03%的Ti,4%的Nb,0.17%的N,S<0.01%,P<0.01%,余量为Ni,上述各组分的质量百分比之和为100%;Step 1, putting industrial pure nickel with a mass ratio of 65%, ores containing C, Si, Ti, Nb, N, and Fe, Mo, Cr, and Mn together in an induction furnace for smelting, when all industrial pure nickel is melted, When the temperature of molten alloy steel reaches 1450°C, when the molten steel is calm, power off to cool and exhaust for 10 minutes, and then power on for heating and refining for 15 minutes. When the pressure in the furnace reaches 33KPa, add Mn to the molten steel and stir for 2 minutes before tapping. The tapping temperature is 1450°C. When pouring, the surface of the molten steel is required to be calm, pour evenly, and cool to room temperature to obtain steel ingots. During the smelting process, control 0.02% C, 0.7% Mn, 0.25% Si, 22% Cr, 2.5% Fe, 9% Mo, 0.03% Ti, 4% Nb, 0.17% N, S<0.01%, P< 0.01%, the balance is Ni, and the sum of the mass percentages of the above-mentioned components is 100%;
步骤2,将步骤1得到的钢锭扒皮后用750kg的蒸汽锤锻造成方坯,冷却至室温后去除方坯表面黑皮及裂纹并切去冒头,然后用轧机将方坯轧制成盘条后机械剥壳,再在耐酸混凝土酸洗池中用体积浓度为15%的盐酸洗20min后采用链条式烘干炉在155℃烘干,烘干速度为1.5m/s,用回转式拉丝机进行干法拉丝后卷取,将卷取的焊丝加热至675℃后自然冷却至室温后用回转式拉丝机再次干法拉丝,缠绕成直径为4.0mm的焊丝,即焊芯;Step 2, after peeling the steel ingot obtained in step 1, forge it into a billet with a 750kg steam hammer, remove the black skin and cracks on the surface of the billet after cooling to room temperature, and cut off the riser, and then use a rolling mill to roll the billet into After the wire rod is mechanically peeled off, it is washed with hydrochloric acid with a volume concentration of 15% in the acid-resistant concrete pickling pool for 20 minutes, and then dried in a chain-type drying furnace at 155°C with a drying speed of 1.5m/s. The wire drawing machine is dry-drawn and then coiled. The coiled welding wire is heated to 675°C, cooled to room temperature naturally, and then dry-drawn again with a rotary wire drawing machine, and wound into a welding wire with a diameter of 4.0mm, that is, the welding core;
步骤3,按照质量百分比分别称取42%的大理石,21%的萤石,4%的锆英砂,2%的硅铁,8%的钛铁,5%的中碳锰铁,4%的钛白粉,5%的金红石,5%的云母,1%的碱,3%的混合稀土(20%的氧化钇、20%的氧化铈和60%的氧化镧组成的混合物);将上述药粉材料和上述药粉材料31%的钾钠混合水玻璃一起放入混料机中混合15分钟,然后将混合后的药粉放入压团机中压成圆柱形药团;Step 3, take by weight respectively 42% marble, 21% fluorite, 4% zircon sand, 2% ferrosilicon, 8% ferrotitanium, 5% medium carbon ferromanganese, 4% Titanium dioxide, 5% rutile, 5% mica, 1% alkali, 3% mixed rare earth (a mixture of 20% yttrium oxide, 20% cerium oxide and 60% lanthanum oxide); the above powder materials Put 31% potassium sodium mixed water glass of the above-mentioned medicinal powder material together into a blender and mix for 15 minutes, then put the mixed medicinal powder into a compactor and press into a cylindrical medicinal mass;
步骤4,在焊条压涂机中加入步骤3制得的圆柱形药团,并将圆柱形药团压涂在步骤2制得的焊芯上,然后放入箱式炉中先以低温60℃×10h,然后依次以高温120℃×1h、180℃×1h、250℃×1h、350℃×1h四个温度段进行逐级升温烘干,制成焊条。该焊条和进口焊条OK92.55的熔敷金属的力学性能和工艺性能的比较如表2所示。Step 4, add the cylindrical drug ball prepared in step 3 to the welding rod press coater, and press-coat the cylindrical drug ball on the welding core prepared in step 2, and then put it into a box furnace at a low temperature of 60 ° C ×10h, and then step by step heating and drying at high temperature of 120°C×1h, 180°C×1h, 250°C×1h, 350°C×1h to make welding rods. Table 2 shows the comparison of the mechanical properties and technological properties of the deposited metal between this electrode and the imported electrode OK92.55.
表2焊条熔敷金属的力学性能和工艺性能Table 2 Mechanical properties and process properties of electrode deposited metal
实施例3Example 3
步骤1,将质量比为65%的工业纯镍、含C、Si、Ti、Nb、N的矿石以及Fe、Mo、Cr、Mn一起放入感应炉中进行冶炼,当工业纯镍全部熔化,合金钢液温度达到1450℃,钢液平静时,停电冷却排气20min,再送电进行加热精炼20min,待温度继续下降至出钢温度时出钢,出钢前5min先向炉内充氩气使炉内压强达到47KPa,再向钢液中加入Mn搅拌2min后出钢,出钢温度1450℃,浇注时要求钢液表面平静,浇注均匀,冷却至室温得到钢锭,在冶炼过程中,控制0.03%的C,0.7%的Mn,0.2%的Si,23%的Cr,3.0%的Fe,9.5%的Mo,0.03%的Ti,4.5%的Nb,0.2%的N,S<0.01%,P<0.01%,余量为Ni,上述各组分的质量百分比之和为100%。Step 1, putting industrial pure nickel with a mass ratio of 65%, ores containing C, Si, Ti, Nb, N, and Fe, Mo, Cr, and Mn together in an induction furnace for smelting, when all industrial pure nickel is melted, The temperature of the molten alloy steel reaches 1450°C. When the molten steel is calm, turn off the power to cool and exhaust for 20 minutes, and then turn on the power for heating and refining for 20 minutes. When the temperature continues to drop to the tapping temperature, the steel is tapped. When the pressure in the furnace reaches 47KPa, add Mn to the molten steel and stir for 2 minutes before tapping. The tapping temperature is 1450°C. When pouring, the surface of the molten steel is required to be calm, pour evenly, and cool to room temperature to obtain steel ingots. During the smelting process, control 0.03% C, 0.7% Mn, 0.2% Si, 23% Cr, 3.0% Fe, 9.5% Mo, 0.03% Ti, 4.5% Nb, 0.2% N, S<0.01%, P< 0.01%, the balance is Ni, and the sum of the mass percentages of the above-mentioned components is 100%.
步骤2,将步骤1得到的钢锭扒皮后用750kg的蒸汽锤锻造成方坯,冷却至室温后去除方坯表面黑皮及裂纹并切去冒头,然后用轧机将方坯轧制成盘条后机械剥壳,再在耐酸混凝土酸洗池中用体积浓度为15%的盐酸洗10min后采用链条式烘干炉在148℃烘干,烘干速度为2.5m/s,用回转式拉丝机进行干法拉丝后卷取,将卷取的焊丝加热至680℃后自然冷却至室温后用回转式拉丝机再次干法拉丝,缠绕成直径为4.0mm的焊丝,即焊芯;Step 2, after peeling the steel ingot obtained in step 1, forge it into a billet with a 750kg steam hammer, remove the black skin and cracks on the surface of the billet after cooling to room temperature, and cut off the riser, and then use a rolling mill to roll the billet into After the wire rod is mechanically peeled off, it is washed with hydrochloric acid with a volume concentration of 15% in the acid-resistant concrete pickling tank for 10 minutes, and then dried in a chain-type drying furnace at 148°C with a drying speed of 2.5m/s. The wire drawing machine is coiled after dry drawing, the coiled welding wire is heated to 680°C, cooled to room temperature naturally, and then dry drawn again with a rotary wire drawing machine, and wound into a welding wire with a diameter of 4.0mm, that is, the welding core;
步骤3,按照质量百分比分别称取39%的大理石,20%的萤石,6%的锆英砂,1.2%的硅铁,10%的钛铁,5%的中碳锰铁,5%的钛白粉,5%的金红石,6%的云母,0.8%的碱,2%的混合稀土(20%的氧化钇、20%的氧化铈和60%的氧化镧组成的混合物);将上述药粉材料和上述药粉材料31%的钾钠混合水玻璃一起放入混料机中混合15分钟,然后将混合后的药粉放入压团机中压成圆柱形药团;Step 3, take by weight respectively 39% marble, 20% fluorite, 6% zircon sand, 1.2% ferrosilicon, 10% ferrotitanium, 5% medium carbon ferromanganese, 5% Titanium dioxide, 5% rutile, 6% mica, 0.8% alkali, 2% mixed rare earth (a mixture of 20% yttrium oxide, 20% cerium oxide and 60% lanthanum oxide); the above powder materials Put 31% potassium sodium mixed water glass of the above-mentioned medicinal powder material together into a blender and mix for 15 minutes, then put the mixed medicinal powder into a compactor and press into a cylindrical medicinal mass;
步骤4,在焊条压涂机中加入步骤3制得的圆柱形药团,并将圆柱形药团压涂在步骤2制得的焊芯上,然后放入箱式炉中先以低温60℃×10h,然后依次以高温120℃×1h、180℃×1h、250℃×1h、350℃×1h四个温度段进行逐级升温烘干,制成焊条。该焊条和进口焊条OK92.55的熔敷金属的力学性能和工艺性能的比较如表3所示。Step 4, add the cylindrical drug ball prepared in step 3 to the welding rod press coater, and press-coat the cylindrical drug ball on the welding core prepared in step 2, and then put it into a box furnace at a low temperature of 60 ° C ×10h, and then step by step heating and drying at high temperature of 120°C×1h, 180°C×1h, 250°C×1h, 350°C×1h to make welding rods. Table 3 shows the comparison of the mechanical properties and technological properties of the deposited metal between this electrode and the imported electrode OK92.55.
表3焊条熔敷金属的力学性能和工艺性能Table 3 Mechanical properties and process properties of electrode deposited metal
实施例4Example 4
步骤1,将质量比为65%的工业纯镍、含C、Si、Ti、Nb、N的矿石以及Fe、Mo、Cr、Mn一起放入感应炉中进行冶炼,当工业纯镍全部熔化,合金钢液温度达到1450℃,钢液平静时,停电冷却排气17min,再送电进行加热精炼25min,待温度继续下降至出钢温度时出钢,出钢前5min先向炉内充氩气使炉内压强达到43KPa,再向钢液中加入Mn搅拌2min后出钢,出钢温度1450℃,浇注时要求钢液表面平静,浇注均匀,冷却至室温得到钢锭,在冶炼过程中,控制0.02%的C,0.9%的Mn,0.4%的Si,24%的Cr,3.0%的Fe,9.5%的Mo,0.03%的Ti,4.5%的Nb,0.2%的N,S<0.01%,P<0.01%,余量为Ni,上述各组分的质量百分比之和为100%;Step 1, putting industrial pure nickel with a mass ratio of 65%, ores containing C, Si, Ti, Nb, N, and Fe, Mo, Cr, and Mn together in an induction furnace for smelting, when all industrial pure nickel is melted, The temperature of the molten alloy steel reaches 1450°C. When the molten steel is calm, cut off the power to cool and exhaust for 17 minutes, and then turn on the power for heating and refining for 25 minutes. When the temperature continues to drop to the tapping temperature, the steel is tapped. When the pressure in the furnace reaches 43KPa, add Mn to the molten steel and stir for 2 minutes before tapping. The tapping temperature is 1450°C. When pouring, the surface of the molten steel is required to be calm, pour evenly, and cool to room temperature to obtain steel ingots. During the smelting process, control 0.02% C, 0.9% Mn, 0.4% Si, 24% Cr, 3.0% Fe, 9.5% Mo, 0.03% Ti, 4.5% Nb, 0.2% N, S<0.01%, P< 0.01%, the balance is Ni, and the sum of the mass percentages of the above-mentioned components is 100%;
步骤2,将步骤1得到的钢锭扒皮后用750kg的蒸汽锤锻造成方坯,冷却至室温后去除方坯表面黑皮及裂纹并切去冒头,然后用轧机将方坯轧制成盘条后机械剥壳,再在耐酸混凝土酸洗池中用体积浓度为15%的盐酸洗13min后采用链条式烘干炉在152℃烘干,烘干速度为2.2m/s,用回转式拉丝机进行干法拉丝后卷取,将卷取的焊丝加热至677℃后自然冷却至室温后用回转式拉丝机再次干法拉丝,缠绕成直径为4.0mm的焊丝,即焊芯;Step 2, after peeling the steel ingot obtained in step 1, forge it into a billet with a 750kg steam hammer, remove the black skin and cracks on the surface of the billet after cooling to room temperature, and cut off the riser, and then use a rolling mill to roll the billet into After the wire rod is mechanically peeled off, it is washed with hydrochloric acid with a volume concentration of 15% in the acid-resistant concrete pickling pool for 13 minutes, and then dried in a chain-type drying furnace at 152°C with a drying speed of 2.2m/s. The wire drawing machine is dry-drawn and then coiled. The coiled welding wire is heated to 677°C, cooled to room temperature naturally, and then dry-drawn again with a rotary wire drawing machine, and wound into a welding wire with a diameter of 4.0mm, that is, the welding core;
步骤3,按照质量百分比分别称取38%的大理石,19%的萤石,6%的锆英砂,1%的硅铁,12%的钛铁,5%的中碳锰铁,5%的钛白粉,5%的金红石,6%的云母,1%的碱,2%的混合稀土(20%的氧化钇、20%的氧化铈和60%的氧化镧组成的混合物);将上述药粉材料和上述药粉材料33%的钾钠混合水玻璃一起放入混料机中混合15分钟,然后将混合后的药粉放入压团机中压成圆柱形药团;Step 3, take by weight 38% marble, 19% fluorite, 6% zircon sand, 1% ferrosilicon, 12% ferrotitanium, 5% medium carbon ferromanganese, 5% Titanium dioxide, 5% rutile, 6% mica, 1% alkali, 2% mixed rare earth (a mixture of 20% yttrium oxide, 20% cerium oxide and 60% lanthanum oxide); the above powder materials Put into the mixer together with 33% potassium sodium mixed water glass of the above-mentioned medicine powder material and mix for 15 minutes, then put the mixed medicine powder into a ball press and press into a cylindrical medicine ball;
步骤4,在焊条压涂机中加入步骤3制得的圆柱形药团,并将圆柱形药团压涂在步骤2制得的焊芯上,然后放入箱式炉中先以低温60℃×10h,然后依次以高温120℃×1h、180℃×1h、250℃×1h、350℃×1h四个温度段进行逐级升温烘干,制成焊条。该焊条和进口焊条OK92.55的熔敷金属的力学性能和工艺性能的比较如表4所示。Step 4, add the cylindrical drug ball prepared in step 3 to the welding rod press coater, and press-coat the cylindrical drug ball on the welding core prepared in step 2, and then put it into a box furnace at a low temperature of 60 ° C ×10h, and then step by step heating and drying at high temperature of 120°C×1h, 180°C×1h, 250°C×1h, 350°C×1h to make welding rods. Table 4 shows the comparison of the mechanical properties and technological properties of the deposited metal between this electrode and the imported electrode OK92.55.
表4焊条熔敷金属的力学性能和工艺性能Table 4 Mechanical properties and process properties of electrode deposited metal
本发明实施例4制作的焊条的熔敷金属金相组织图如图2所示。由图2可以看出,该组织主要为单一奥氏体,这种组织相主要由γ相固溶体和析出相组成,结晶形态为树枝晶,有一定的方向性,并在结晶过程中发生枝晶偏析或晶界偏析,因此具有良好的低温韧性。The metallographic structure diagram of the deposited metal of the electrode produced in Example 4 of the present invention is shown in FIG. 2 . It can be seen from Figure 2 that the structure is mainly single austenite, which is mainly composed of γ-phase solid solution and precipitated phase, and the crystallization form is dendrite, which has a certain directionality, and dendrite occurs during the crystallization process Segregation or grain boundary segregation, so it has good low temperature toughness.
本发明实施例4制作的焊条的熔敷金属焊缝横断面金相图如图3所示。由图3可以看出,该组织主要为蜂窝状组织,亮色的为树枝晶的枝干,这是柱状晶横断面的典型形貌。由于在焊缝区域温度梯度较大,因此结晶体在柱状晶主干上横向长出分支,这样就构成了柱状树枝晶,形成的蜂窝状较小,从而提高了焊接接头的韧性。The metallographic diagram of the cross-section of the deposited metal weld of the electrode produced in Example 4 of the present invention is shown in FIG. 3 . It can be seen from Figure 3 that the structure is mainly honeycomb structure, and the bright colored ones are the branches of dendrites, which is the typical morphology of the cross-section of columnar crystals. Due to the large temperature gradient in the weld area, the crystals grow branches laterally on the columnar crystal trunk, thus forming columnar dendrites and forming a smaller honeycomb shape, thereby improving the toughness of the welded joint.
实施例5Example 5
步骤1,将质量比为65%的工业纯镍、含C、Si、Ti、Nb、N的矿石以及Fe、Mo、Cr、Mn一起放入感应炉中进行冶炼,当工业纯镍全部熔化,合金钢液温度达到1450℃,钢液平静时,停电冷却排气18min,再送电进行加热精炼17min,待温度继续下降至出钢温度时出钢,出钢前5min先向炉内充氩气使炉内压强达到36KPa,再向钢液中加入Mn搅拌2min后出钢,出钢温度1450℃,浇注时要求钢液表面平静,浇注均匀,冷却至室温得到钢锭,在冶炼过程中,控制0.02%的C,0.7%的Mn,0.3%的Si,22%的Cr,3.5%的Fe,9%的Mo,0.04%的Ti,4.5%的Nb,0.18%的N,S<0.01%,P<0.01%,余量为Ni,上述各组分的质量百分比之和为100%;Step 1, putting industrial pure nickel with a mass ratio of 65%, ores containing C, Si, Ti, Nb, N, and Fe, Mo, Cr, and Mn together in an induction furnace for smelting, when all industrial pure nickel is melted, The temperature of the molten alloy steel reaches 1450°C. When the molten steel is calm, cut off the power to cool and exhaust for 18 minutes, and then turn on the power for heating and refining for 17 minutes. When the temperature continues to drop to the tapping temperature, the steel is tapped. The pressure in the furnace reaches 36KPa, and then add Mn to the molten steel and stir for 2 minutes before tapping. The tapping temperature is 1450°C. When pouring, the surface of the molten steel is required to be calm, pour evenly, and cool to room temperature to obtain steel ingots. During the smelting process, control 0.02% C, 0.7% Mn, 0.3% Si, 22% Cr, 3.5% Fe, 9% Mo, 0.04% Ti, 4.5% Nb, 0.18% N, S<0.01%, P< 0.01%, the balance is Ni, and the sum of the mass percentages of the above-mentioned components is 100%;
步骤2,将步骤1得到的钢锭扒皮后用750kg的蒸汽锤锻造成方坯,冷却至室温后去除方坯表面黑皮及裂纹并切去冒头,然后用轧机将方坯轧制成盘条后机械剥壳,再在耐酸混凝土酸洗池中用体积浓度为15%的盐酸洗20min后采用链条式烘干炉在146℃烘干,烘干速度为1.6m/s,用回转式拉丝机进行干法拉丝后卷取,将卷取的焊丝加热至680℃后自然冷却至室温后用回转式拉丝机再次干法拉丝,缠绕成直径为4.0mm的焊丝,即焊芯;Step 2, after peeling the steel ingot obtained in step 1, forge it into a billet with a 750kg steam hammer, remove the black skin and cracks on the surface of the billet after cooling to room temperature, and cut off the riser, and then use a rolling mill to roll the billet into After the wire rod is mechanically peeled off, it is washed with hydrochloric acid with a volume concentration of 15% in the acid-resistant concrete pickling tank for 20 minutes, and then dried in a chain-type drying furnace at 146°C with a drying speed of 1.6m/s. The wire drawing machine is coiled after dry drawing, the coiled welding wire is heated to 680°C, cooled to room temperature naturally, and then dry drawn again with a rotary wire drawing machine, and wound into a welding wire with a diameter of 4.0mm, that is, the welding core;
步骤3,按照质量百分比分别称取34%的大理石,24%的萤石,6%的锆英砂,4%的硅铁,12%的钛铁,5%的中碳锰铁,5%的钛白粉,5%的金红石,2%的云母,0.7%的碱,2.3%的混合稀土(20%的氧化钇、20%的氧化铈和60%的氧化镧组成的混合物);将上述药粉材料和上述药粉材料33%的钾钠混合水玻璃一起放入混料机中混合15分钟,然后将混合后的药粉放入压团机中压成圆柱形药团;Step 3, take by weight respectively 34% marble, 24% fluorite, 6% zircon sand, 4% ferrosilicon, 12% ferrotitanium, 5% medium carbon ferromanganese, 5% Titanium dioxide, 5% rutile, 2% mica, 0.7% alkali, 2.3% mixed rare earth (a mixture of 20% yttrium oxide, 20% cerium oxide and 60% lanthanum oxide); the above powder materials Put into the mixer together with 33% potassium sodium mixed water glass of the above-mentioned medicine powder material and mix for 15 minutes, then put the mixed medicine powder into a ball press and press into a cylindrical medicine ball;
步骤4,在焊条压涂机中加入步骤3制得的圆柱形药团,并将圆柱形药团压涂在步骤2制得的焊芯上,然后放入箱式炉中先以低温60℃×10h,然后依次以高温120℃×1h、180℃×1h、250℃×1h、350℃×1h四个温度段进行逐级升温烘干,制成焊条。Step 4, add the cylindrical drug ball prepared in step 3 to the welding rod press coater, and press-coat the cylindrical drug ball on the welding core prepared in step 2, and then put it into a box furnace at a low temperature of 60 ° C ×10h, and then step by step heating and drying at high temperature of 120°C×1h, 180°C×1h, 250°C×1h, 350°C×1h to make welding rods.
实施例6Example 6
步骤1,将质量比为65%的工业纯镍、含C、Si、Ti、Nb、N的矿石以及Fe、Mo、Cr、Mn一起放入感应炉中进行冶炼,当工业纯镍全部熔化,合金钢液温度达到1450℃,钢液平静时,停电冷却排气20min,再送电进行加热精炼23min,待温度继续下降至出钢温度时出钢,出钢前5min先向炉内充氩气使炉内压强达到38KPa,再向钢液中加入Mn搅拌2min后出钢,出钢温度1450℃,浇注时要求钢液表面平静,浇注均匀,冷却至室温得到钢锭,在冶炼过程中,控制0.01%的C,0.8%的Mn,0.4%的Si,23%的Cr,2.5%的Fe,9%的Mo,0.03%的Ti,4%的Nb,0.15%的N,S<0.01%,P<0.01%,余量为Ni,上述各组分的质量百分比之和为100%;Step 1, putting industrial pure nickel with a mass ratio of 65%, ores containing C, Si, Ti, Nb, N, and Fe, Mo, Cr, and Mn together in an induction furnace for smelting, when all industrial pure nickel is melted, The temperature of the molten alloy steel reaches 1450°C. When the molten steel is calm, turn off the power to cool and exhaust for 20 minutes, and then turn on the power for heating and refining for 23 minutes. When the temperature continues to drop to the tapping temperature, the steel is tapped. The pressure in the furnace reaches 38KPa, and then add Mn to the molten steel and stir for 2 minutes before tapping. The tapping temperature is 1450°C. When pouring, the surface of the molten steel is required to be calm, pour evenly, and cool to room temperature to obtain steel ingots. During the smelting process, control 0.01% C, 0.8% Mn, 0.4% Si, 23% Cr, 2.5% Fe, 9% Mo, 0.03% Ti, 4% Nb, 0.15% N, S<0.01%, P< 0.01%, the balance is Ni, and the sum of the mass percentages of the above-mentioned components is 100%;
步骤2,将步骤1得到的钢锭扒皮后用750kg的蒸汽锤锻造成方坯,冷却至室温后去除方坯表面黑皮及裂纹并切去冒头,然后用轧机将方坯轧制成盘条后机械剥壳,再在耐酸混凝土酸洗池中用体积浓度为15%的盐酸洗12min后采用链条式烘干炉在151℃烘干,烘干速度为2.3m/s,用回转式拉丝机进行干法拉丝后卷取,将卷取的焊丝加热至672℃后自然冷却至室温后用回转式拉丝机再次干法拉丝,缠绕成直径为4.0mm的焊丝,即焊芯;Step 2, after peeling the steel ingot obtained in step 1, forge it into a billet with a 750kg steam hammer, remove the black skin and cracks on the surface of the billet after cooling to room temperature, and cut off the riser, and then use a rolling mill to roll the billet into After the wire rod is mechanically peeled off, it is washed with hydrochloric acid with a volume concentration of 15% in the acid-resistant concrete pickling tank for 12 minutes, and then dried in a chain-type drying furnace at 151°C with a drying speed of 2.3m/s. The wire drawing machine is dry-drawn and then coiled. The coiled welding wire is heated to 672°C, cooled to room temperature naturally, and then dry-drawn again with a rotary wire drawing machine, and wound into a welding wire with a diameter of 4.0mm, that is, the welding core;
步骤3,按照质量百分比分别称取48%的大理石,21%的萤石,2%的锆英砂,4%的硅铁,10%的钛铁,3%的中碳锰铁,2%的钛白粉,2%的金红石,6%的云母,1%的碱,1%的混合稀土(20%的氧化钇、20%的氧化铈和60%的氧化镧组成的混合物);将上述药粉材料和上述药粉材料33%的钾钠混合水玻璃一起放入混料机中混合15分钟,然后将混合后的药粉放入压团机中压成圆柱形药团;Step 3, weigh 48% of marble, 21% of fluorite, 2% of zircon sand, 4% of ferrosilicon, 10% of ferrotitanium, 3% of medium carbon ferromanganese, 2% of Titanium dioxide, 2% rutile, 6% mica, 1% alkali, 1% mixed rare earth (a mixture of 20% yttrium oxide, 20% cerium oxide and 60% lanthanum oxide); the above powder materials Put into the mixer together with 33% potassium sodium mixed water glass of the above-mentioned medicine powder material and mix for 15 minutes, then put the mixed medicine powder into a ball press and press into a cylindrical medicine ball;
步骤4,在焊条压涂机中加入步骤3制得的圆柱形药团,并将圆柱形药团压涂在步骤2制得的焊芯上,然后放入箱式炉中先以低温60℃×10h,然后依次以高温120℃×1h、180℃×1h、250℃×1h、350℃×1h四个温度段进行逐级升温烘干,制成焊条。Step 4, add the cylindrical drug ball prepared in step 3 to the welding rod press coater, and press-coat the cylindrical drug ball on the welding core prepared in step 2, and then put it into a box furnace at a low temperature of 60 ° C ×10h, and then step by step heating and drying at high temperature of 120°C×1h, 180°C×1h, 250°C×1h, 350°C×1h to make welding rods.
实施例7Example 7
步骤1,将质量比为65%的工业纯镍、含C、Si、Ti、Nb、N的矿石以及Fe、Mo、Cr、Mn一起放入感应炉中进行冶炼,当工业纯镍全部熔化,合金钢液温度达到1450℃,钢液平静时,停电冷却排气18min,再送电进行加热精炼22min,待温度继续下降至出钢温度时出钢,出钢前5min先向炉内充氩气使炉内达到45KPa,再向钢液中加入Mn搅拌2min后出钢,出钢温度1450℃,浇注时要求钢液表面平静,浇注均匀,冷却至室温得到钢锭,在冶炼过程中,控制0.02%的C,0.6%的Mn,0.2%的Si,22%的Cr,3%的Fe,9%的Mo,0.03%的Ti,4%的Nb,0.2%的N,S<0.01%,P<0.01%,余量为Ni,上述各组分的质量百分比之和为100%;Step 1, putting industrial pure nickel with a mass ratio of 65%, ores containing C, Si, Ti, Nb, N, and Fe, Mo, Cr, and Mn together in an induction furnace for smelting, when all industrial pure nickel is melted, The temperature of the molten alloy steel reaches 1450°C. When the molten steel is calm, the power is turned off for cooling and exhausting for 18 minutes, and then the power is turned on for heating and refining for 22 minutes. When the temperature continues to drop to the tapping temperature, the steel is tapped. When the furnace reaches 45KPa, add Mn to the molten steel and stir for 2 minutes before tapping. The tapping temperature is 1450°C. When pouring, the surface of the molten steel is required to be calm, pour evenly, and cool to room temperature to obtain a steel ingot. During the smelting process, control 0.02% C, 0.6% Mn, 0.2% Si, 22% Cr, 3% Fe, 9% Mo, 0.03% Ti, 4% Nb, 0.2% N, S<0.01%, P<0.01 %, the balance is Ni, and the sum of the mass percentages of the above-mentioned components is 100%;
步骤2,将步骤1得到的钢锭扒皮后用750kg的蒸汽锤锻造成方坯,冷却至室温后去除方坯表面黑皮及裂纹并切去冒头,然后用轧机将方坯轧制成盘条后机械剥壳,再在耐酸混凝土酸洗池中用体积浓度为15%的盐酸洗15min后采用链条式烘干炉在155℃烘干,烘干速度为2m/s,用回转式拉丝机进行干法拉丝后卷取,将卷取的焊丝加热至676℃后自然冷却至室温后用回转式拉丝机再次干法拉丝,缠绕成直径为4.0mm的焊丝,即焊芯;Step 2, after peeling the steel ingot obtained in step 1, forge it into a billet with a 750kg steam hammer, remove the black skin and cracks on the surface of the billet after cooling to room temperature, and cut off the riser, and then use a rolling mill to roll the billet into After the wire rod is mechanically peeled off, it is washed with hydrochloric acid with a volume concentration of 15% in the acid-resistant concrete pickling pool for 15 minutes, and then dried in a chain-type drying furnace at 155°C with a drying speed of 2m/s. After dry wire drawing by the machine, it is coiled, the coiled wire is heated to 676°C, cooled to room temperature naturally, and then dry-drawed again with a rotary wire drawing machine, and wound into a wire with a diameter of 4.0mm, that is, the welding core;
步骤3,按照质量百分比分别称取48%的大理石,17%的萤石,5%的锆英砂,3%的硅铁,5%的钛铁,5%的中碳锰铁,4%的钛白粉,5%的金红石,5%的云母,0.8%的碱,2.2%的混合稀土(20%的氧化钇、20%的氧化铈和60%的氧化镧组成的混合物);将上述药粉材料和上述药粉材料33%的钾钠混合水玻璃一起放入混料机中混合15分钟,然后将混合后的药粉放入压团机中压成圆柱形药团;Step 3, take by weight respectively 48% marble, 17% fluorite, 5% zircon sand, 3% ferrosilicon, 5% ferrotitanium, 5% medium carbon ferromanganese, 4% Titanium dioxide, 5% rutile, 5% mica, 0.8% alkali, 2.2% mixed rare earth (a mixture of 20% yttrium oxide, 20% cerium oxide and 60% lanthanum oxide); the above powder materials Put into the mixer together with 33% potassium sodium mixed water glass of the above-mentioned medicine powder material and mix for 15 minutes, then put the mixed medicine powder into a ball press and press into a cylindrical medicine ball;
步骤4,在焊条压涂机中加入步骤3制得的圆柱形药团,并将圆柱形药团压涂在步骤2制得的焊芯上,然后放入箱式炉中先以低温60℃×10h,然后依次以高温120℃×1h、180℃×1h、250℃×1h、350℃×1h四个温度段进行逐级升温烘干,制成焊条。Step 4, add the cylindrical drug ball prepared in step 3 to the welding rod press coater, and press-coat the cylindrical drug ball on the welding core prepared in step 2, and then put it into a box furnace at a low temperature of 60 ° C ×10h, and then step by step heating and drying at high temperature of 120°C×1h, 180°C×1h, 250°C×1h, 350°C×1h to make welding rods.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310349893.6A CN103433642B (en) | 2013-08-12 | 2013-08-12 | Low-hydrogen basic electrode for 1Ni9 low-temperature steel welding and preparation method of low-hydrogen basic electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310349893.6A CN103433642B (en) | 2013-08-12 | 2013-08-12 | Low-hydrogen basic electrode for 1Ni9 low-temperature steel welding and preparation method of low-hydrogen basic electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103433642A true CN103433642A (en) | 2013-12-11 |
CN103433642B CN103433642B (en) | 2015-06-24 |
Family
ID=49687406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310349893.6A Expired - Fee Related CN103433642B (en) | 2013-08-12 | 2013-08-12 | Low-hydrogen basic electrode for 1Ni9 low-temperature steel welding and preparation method of low-hydrogen basic electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103433642B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104493375A (en) * | 2014-10-31 | 2015-04-08 | 河海大学常州校区 | Titanium-reinforced hardfacing electrode and manufacturing method thereof |
CN106181116A (en) * | 2014-08-25 | 2016-12-07 | 株式会社神户制钢所 | Ni base alloy covered electrode |
CN106181115A (en) * | 2015-04-29 | 2016-12-07 | 海宁瑞奥金属科技有限公司 | Low spatter 9Ni steel nickel-based welding electrode |
CN106363313A (en) * | 2016-09-19 | 2017-02-01 | 四川大学 | Ultralow temperature steel nickel-based welding rod with core wire added with rare earth element and preparing method thereof |
CN107498054A (en) * | 2017-10-12 | 2017-12-22 | 东北大学 | A kind of method that toughness reinforcing 24CrNiMo steel alloys are prepared using selective laser smelting technology |
CN110977245A (en) * | 2019-12-31 | 2020-04-10 | 江苏新华合金有限公司 | Nickel-chromium-molybdenum alloy welding wire for ball valve surfacing and process preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080121629A1 (en) * | 2005-01-25 | 2008-05-29 | Huntington Alloys Corporation | Coated Welding Electrode Having Resistance To Ductility Dip Cracking, And Weld Deposit Produced Therefrom |
CN101905395A (en) * | 2010-07-30 | 2010-12-08 | 西安理工大学 | FV520 (B) low hydrogen alkaline electrode for stainless steel welding |
CN102430876A (en) * | 2011-10-20 | 2012-05-02 | 四川大西洋焊接材料股份有限公司 | Nickel-based welding electrode for welding nickel-chromium-molybdenum alloy steel |
CN102500951A (en) * | 2011-10-20 | 2012-06-20 | 四川大西洋焊接材料股份有限公司 | Nickel-based welding electrode matched with 9Ni steel |
CN102773631A (en) * | 2012-08-09 | 2012-11-14 | 上海电力修造总厂有限公司 | Core wire and coating of nuclear-grade nickel base covered electrode of basic slag system, covered electrode and preparation methods |
CN102873473A (en) * | 2012-09-28 | 2013-01-16 | 西安理工大学 | Low-hydrogen alkaline electrode for online welding of X80 pipeline steel |
CN102962603A (en) * | 2012-11-08 | 2013-03-13 | 中国船舶重工集团公司第七二五研究所 | Nickel base welding rod of Ni-Cr-Mo alloy system |
CN103008923A (en) * | 2012-12-21 | 2013-04-03 | 西安理工大学 | Low-hydrogen basic welding rod for welding 1Ni9 steel and preparation method thereof |
CN103084757A (en) * | 2013-01-23 | 2013-05-08 | 西安理工大学 | High-tenacity low-hydrogen alkaline welding rod and preparation method thereof |
-
2013
- 2013-08-12 CN CN201310349893.6A patent/CN103433642B/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080121629A1 (en) * | 2005-01-25 | 2008-05-29 | Huntington Alloys Corporation | Coated Welding Electrode Having Resistance To Ductility Dip Cracking, And Weld Deposit Produced Therefrom |
CN101905395A (en) * | 2010-07-30 | 2010-12-08 | 西安理工大学 | FV520 (B) low hydrogen alkaline electrode for stainless steel welding |
CN102430876A (en) * | 2011-10-20 | 2012-05-02 | 四川大西洋焊接材料股份有限公司 | Nickel-based welding electrode for welding nickel-chromium-molybdenum alloy steel |
CN102500951A (en) * | 2011-10-20 | 2012-06-20 | 四川大西洋焊接材料股份有限公司 | Nickel-based welding electrode matched with 9Ni steel |
CN102773631A (en) * | 2012-08-09 | 2012-11-14 | 上海电力修造总厂有限公司 | Core wire and coating of nuclear-grade nickel base covered electrode of basic slag system, covered electrode and preparation methods |
CN102873473A (en) * | 2012-09-28 | 2013-01-16 | 西安理工大学 | Low-hydrogen alkaline electrode for online welding of X80 pipeline steel |
CN102962603A (en) * | 2012-11-08 | 2013-03-13 | 中国船舶重工集团公司第七二五研究所 | Nickel base welding rod of Ni-Cr-Mo alloy system |
CN103008923A (en) * | 2012-12-21 | 2013-04-03 | 西安理工大学 | Low-hydrogen basic welding rod for welding 1Ni9 steel and preparation method thereof |
CN103084757A (en) * | 2013-01-23 | 2013-05-08 | 西安理工大学 | High-tenacity low-hydrogen alkaline welding rod and preparation method thereof |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106181116A (en) * | 2014-08-25 | 2016-12-07 | 株式会社神户制钢所 | Ni base alloy covered electrode |
CN106181116B (en) * | 2014-08-25 | 2018-11-30 | 株式会社神户制钢所 | Ni based alloy covered electrode |
CN104493375A (en) * | 2014-10-31 | 2015-04-08 | 河海大学常州校区 | Titanium-reinforced hardfacing electrode and manufacturing method thereof |
CN106181115A (en) * | 2015-04-29 | 2016-12-07 | 海宁瑞奥金属科技有限公司 | Low spatter 9Ni steel nickel-based welding electrode |
CN106363313A (en) * | 2016-09-19 | 2017-02-01 | 四川大学 | Ultralow temperature steel nickel-based welding rod with core wire added with rare earth element and preparing method thereof |
CN107498054A (en) * | 2017-10-12 | 2017-12-22 | 东北大学 | A kind of method that toughness reinforcing 24CrNiMo steel alloys are prepared using selective laser smelting technology |
CN107498054B (en) * | 2017-10-12 | 2019-10-01 | 东北大学 | A method of toughening 24CrNiMo steel alloy is prepared using selective laser smelting technology |
CN110977245A (en) * | 2019-12-31 | 2020-04-10 | 江苏新华合金有限公司 | Nickel-chromium-molybdenum alloy welding wire for ball valve surfacing and process preparation method thereof |
CN110977245B (en) * | 2019-12-31 | 2022-03-04 | 江苏新华合金有限公司 | Process preparation method of nickel-chromium-molybdenum alloy welding wire for ball valve surfacing |
Also Published As
Publication number | Publication date |
---|---|
CN103433642B (en) | 2015-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113186472B (en) | Corrosion-resistant steel bar and its production method | |
CN102873473B (en) | Low-hydrogen alkaline electrode for online welding of X80 pipeline steel | |
CN101890594B (en) | Low-hydrogen basic electrode for 25Cr2Ni4MoV alloy steel welding | |
CN101898286B (en) | Low-hydrogen alkaline welding rod for 25Cr2Ni4MoV alloy steel manual arc welding | |
CN105256095B (en) | Smelting method of steel plate with excellent performance in large heat input welding heat affected zone | |
CN103433642B (en) | Low-hydrogen basic electrode for 1Ni9 low-temperature steel welding and preparation method of low-hydrogen basic electrode | |
CN103045929B (en) | Electro-aluminothermic process produces the method for vanadium iron | |
CN101905395A (en) | FV520 (B) low hydrogen alkaline electrode for stainless steel welding | |
CN101660020A (en) | Manufacturing method of steel | |
CN113249639B (en) | Production method for improving castability of silicon-manganese killed silicon steel | |
CN106834602A (en) | Rare earth aluminum-calcium-silicon-iron composite alloy for steelmaking and preparation method thereof | |
CN114378480B (en) | High heat input submerged arc welding wire steel wire rod and its preparation method, high heat input submerged arc welding wire, high heat input welding method | |
CN108544141A (en) | WH80 and 20Mn23Al self-protection flux-cored wires and preparation method thereof | |
CN103084758B (en) | Titanium-calcium welding rod | |
CN116445686A (en) | Production method of electrode flat steel | |
CN117070855A (en) | Corrosion-resistant ultra-large line energy welding steel plate and production method thereof | |
CN114749827B (en) | A kind of solid welding wire and its preparation method and application | |
CN110184539B (en) | A kind of low-cost high-conductivity electrode flat steel and its smelting method | |
CN118422068B (en) | Ship plate steel capable of being preheated before welding, preparation method thereof and welding method | |
CN105088087B (en) | High-toughness optimal welding micro-alloyed cast steel and preparation method thereof | |
CN106563888A (en) | High-cost-performance submerged-arc welding wire and producing method thereof | |
CN106498121A (en) | A kind of cracking of ethylene heat resisting steel boiler tube and preparation method thereof | |
CN116083780B (en) | Ultralow-carbon ultralow-silicon manganese electrode flat steel and production method and application thereof | |
CN111304404A (en) | A cored wire for oxide metallurgy in vacuum induction furnace and method of use | |
CN103031488B (en) | Manufacturing method of hot rolled steel and hot rolled steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150624 Termination date: 20200812 |