[go: up one dir, main page]

CN103428130A - Minimum mean square error linear equalization method for eliminating impulse noise - Google Patents

Minimum mean square error linear equalization method for eliminating impulse noise Download PDF

Info

Publication number
CN103428130A
CN103428130A CN2013103899024A CN201310389902A CN103428130A CN 103428130 A CN103428130 A CN 103428130A CN 2013103899024 A CN2013103899024 A CN 2013103899024A CN 201310389902 A CN201310389902 A CN 201310389902A CN 103428130 A CN103428130 A CN 103428130A
Authority
CN
China
Prior art keywords
overbar
sigma
equalizer
square error
mean square
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103899024A
Other languages
Chinese (zh)
Other versions
CN103428130B (en
Inventor
杨宗菲
肖悦
李慧蕾
但黎琳
李少谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201310389902.4A priority Critical patent/CN103428130B/en
Publication of CN103428130A publication Critical patent/CN103428130A/en
Application granted granted Critical
Publication of CN103428130B publication Critical patent/CN103428130B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

The invention belongs to the technical field of mobile communication, and particularly relates to a minimum mean square error linear equalization method for eliminating impulse noise. According to the minimum mean square error linear equalization method for eliminating the impulse noise, a tap coefficient calculation method of a minimum mean square error linear equalizer of the impulse noise under a Bernoulli-Gaussian Model is obtained through theoretical knowledge derivation of the minimum mean square error, and therefore better detection performance can be obtained under the condition of lower complexity.

Description

一种消除脉冲噪声的最小均方误差线性均衡方法A Minimum Mean Square Error Linear Equalization Method for Eliminating Impulse Noise

技术领域technical field

本发明属移动通信技术领域,具体涉及一种消除脉冲噪声的最小均方误差线性均衡方法。The invention belongs to the technical field of mobile communication, and in particular relates to a minimum mean square error linear equalization method for eliminating impulse noise.

背景技术Background technique

脉冲噪声是非连续的,由持续时间短、幅度大的不规则脉冲或噪声尖峰组成。脉冲噪声的持续时间小于1秒,且其峰值比均方根值大至少10dB,而其重复频率低于10Hz,是一种间断性的噪声。产生脉冲噪声的原因多种多样,其中包括电磁干扰以及通信系统的故障和缺陷,也可能在通信系统的电气开关和继电器改变状态时产生。在数字式数据通信中,脉冲噪声是出错的主要原因。一种常用的脉冲噪声模型为伯努利-高斯模型。Impulse noise is discontinuous and consists of irregular pulses or noise spikes of short duration and large amplitude. The duration of impulse noise is less than 1 second, and its peak value is at least 10dB greater than the root mean square value, and its repetition frequency is lower than 10Hz, which is a kind of intermittent noise. Impulse noise can be generated for a variety of reasons, including electromagnetic interference, failures and defects in communication systems, or when electrical switches and relays in communication systems change state. Impulse noise is a major source of errors in digital data communications. A commonly used impulse noise model is the Bernoulli-Gaussian model.

最小均方误差(Minimum mean-square error,MMSE)线性均衡(linear equalization,LE)是一种使均衡器输出的估计符号与发送符号之间的均方误差最小化的方法。MMSE均衡考虑了信噪比的因素,在既要消除码间干扰(Intersymbol Interference,ISI)又不放大噪声之间实现了一种平衡,且复杂度较低,是一种较优的均衡算法。Minimum mean-square error (MMSE) linear equalization (linear equalization, LE) is a method to minimize the mean square error between the estimated symbol output by the equalizer and the transmitted symbol. MMSE equalization takes the factor of signal-to-noise ratio into consideration, and achieves a balance between eliminating intersymbol interference (ISI) and not amplifying noise, and has low complexity. It is a better equalization algorithm.

发明内容Contents of the invention

为了方便地描述本发明的内容,首先对本发明中所使用的术语进行说明:In order to describe content of the present invention conveniently, at first the terms used in the present invention are explained:

伯努利-高斯模型:一种常用的脉冲噪声模型,该模型下的随机变量可表达为η=w+b·g,其中w,g服从均值为0、方差分别为的高斯分布,b服从伯努利分布,且P(b=1)=p,P(b=0)=1-p,,P(·)表示括号内的事件发生的概率。Bernoulli-Gaussian model: a commonly used impulse noise model, the random variable under this model can be expressed as η=w+b g, where w and g obey the mean value of 0 and the variance of Gaussian distribution, b obeys Bernoulli distribution, and P(b=1)=p, P(b=0)=1-p, P(·) indicates the probability of occurrence of the event in brackets.

数学期望:统计学术语,反映随机变量平均取值的大小,又称期望或均值,记为E(·)。Mathematical expectation: A statistical term that reflects the average value of a random variable, also known as expectation or mean, denoted as E(·).

方差:统计学术语,度量随机变量和其数学期望之间的偏离程度,记为D(·)。Variance: A statistical term that measures the degree of deviation between a random variable and its mathematical expectation, denoted as D(·).

比特的先验概率:比特分别为0或1的概率,一般根据以往经验和分析得到的概率。The prior probability of a bit: the probability that a bit is 0 or 1, generally based on previous experience and analysis.

高斯分布:又称正态分布,在数学、物理及工程等领域都非常重要的概率分布,若随机变量X服从均值为μ、方差为σ2的高斯分布,则记为X定义为N(μ,σ2),且其概率密度函数为 f ( x ) = 1 2 π σ exp ( - ( x - μ ) 2 2 σ 2 ) . Gaussian distribution: Also known as normal distribution, it is a very important probability distribution in the fields of mathematics, physics, and engineering. If a random variable X obeys a Gaussian distribution with a mean of μ and a variance of σ2 , it is recorded as X and defined as N(μ ,σ 2 ), and its probability density function is f ( x ) = 1 2 π σ exp ( - ( x - μ ) 2 2 σ 2 ) .

本发明提供一种消除脉冲噪声的最小均方误差线性均衡方法,用以提高系统接收机的检测性能,消除通信系统中的脉冲噪声。The invention provides a minimum mean square error linear equalization method for eliminating impulse noise, which is used to improve the detection performance of a system receiver and eliminate impulse noise in a communication system.

为实现上述发明目的,本发明的技术方案如下:For realizing the above-mentioned purpose of the invention, the technical scheme of the present invention is as follows:

一种消除脉冲噪声的最小均方误差线性均衡方法,包括如下步骤:A minimum mean square error linear equalization method for eliminating impulse noise, comprising the steps of:

S1:接收机第n(n>0)时刻的接收信号为:S1: The received signal of the receiver at the nth (n>0) moment is:

Figure BDA0000375321800000021
其中,M为时延路径的总长度,hk(k∈{0,1,...,M-1})为第k条时延路径的衰落系数,xn,n>0为发射机第n时刻的发送符号,并且假设xn=0,n≤0,wn服从均值为0、方差为
Figure BDA0000375321800000022
的高斯分布,gn服从均值为0、方差为
Figure BDA0000375321800000023
的高斯分布,bn服从伯努利分布,且P(bn=1)=p,P(bn=0)=1-p,,P(·)表示括号内的事件发生的概率;
Figure BDA0000375321800000021
Among them, M is the total length of the delay path, h k (k∈{0,1,...,M-1}) is the fading coefficient of the kth delay path, x n ,n>0 is the transmitter The transmitted symbol at the nth moment, and assuming that x n = 0, n≤0, w n obeys the mean value of 0 and the variance of
Figure BDA0000375321800000022
The Gaussian distribution of g n obeys the mean value of 0 and the variance of
Figure BDA0000375321800000023
Gaussian distribution of b n obeys Bernoulli distribution, and P(b n =1)=p, P(b n =0)=1-p, P(·) represents the probability of occurrence of events in brackets;

S2:根据均值 x ‾ n = E ( x n ) = Σ x ∈ β x · P ( x n = x ) , 方差 v n = Σ x ∈ β | x - E ( x n ) | 2 · P ( x n = x ) , β为调制符号集合,获取每个时刻的

Figure BDA0000375321800000026
vn,其中,E(·)表示随机变量的数学期望;S2: According to the mean x ‾ no = E. ( x no ) = Σ x ∈ β x &Center Dot; P ( x no = x ) , variance v no = Σ x ∈ β | x - E. ( x no ) | 2 &Center Dot; P ( x no = x ) , β is a set of modulation symbols, to obtain the
Figure BDA0000375321800000026
v n , where E(·) represents the mathematical expectation of the random variable;

S3:设第n时刻最小均方误差线性均衡器的抽头系数为cn,k,k=-N1,1-N1,...,N2,总长度为N=N1+N2+1,同时,取N个接收符号

Figure BDA00003753218000000216
,其中(·)T表示矩阵或向量的转置)作为最小均方误差线性均衡器的输入,并且假设zn=0,n≤0,则均衡器第n时刻输出对xn的估计符号
Figure BDA0000375321800000027
为: x ^ n = E ( x n ) + Cov ( x n , z n ) Cov ( z n , z n ) - 1 ( z n - H x ‾ n ) , 其中,Cov(x,y)表示向量x与y的协方差矩阵,即Cov(x,y)=E(xyH)-E(x)E(yH),(·)H表示矩阵或向量的共轭转置,(·)-1表示矩阵的求逆, x ‾ n = x ‾ n - M - N 2 + 1 x ‾ n - M - N 2 + 2 . . . x ‾ n + N 1 T ,
Figure BDA00003753218000000210
S3: Let the tap coefficients of the minimum mean square error linear equalizer at the nth moment be c n,k ,k=-N 1 ,1-N 1 ,...,N 2 , and the total length is N=N 1 +N 2 +1, at the same time, take N received symbols
Figure BDA00003753218000000216
, where (·) T represents the transpose of a matrix or vector) as the input of the minimum mean square error linear equalizer, and assuming z n =0,n≤0, then the equalizer outputs the estimated sign of x n at the nth moment
Figure BDA0000375321800000027
for: x ^ no = E. ( x no ) + Cov ( x no , z no ) Cov ( z no , z no ) - 1 ( z no - h x ‾ no ) , Among them, Cov(x,y) represents the covariance matrix of vector x and y, that is, Cov(x,y)=E(xy H )-E(x)E(y H ), ( ) H represents the matrix or vector The conjugate transpose of , ( ) -1 means the inversion of the matrix, x ‾ no = x ‾ no - m - N 2 + 1 x ‾ no - m - N 2 + 2 . . . x ‾ no + N 1 T ,
Figure BDA00003753218000000210

S4:为使第n时刻的均衡器输出符号

Figure BDA00003753218000000211
独立于P(xn=x),使
Figure BDA00003753218000000212
vn=1,则第n时刻均衡器输出的估计符号
Figure BDA00003753218000000213
变为:S4: In order to make the equalizer output symbols at the nth moment
Figure BDA00003753218000000211
Independent of P(x n =x), such that
Figure BDA00003753218000000212
v n =1, then the estimated symbol output by the equalizer at the nth moment
Figure BDA00003753218000000213
becomes:

xx ^^ nno == xx ‾‾ nno ++ vv nno sthe s Hh [[ (( σσ ww 22 ++ pσpσ ii 22 )) II NN ++ HVHV nno Hh Hh ]] -- 11 (( zz nno -- Hh xx ‾‾ nno )) ,,

其中, s = H 0 1 × ( N 2 + M - 1 ) 1 0 1 × N 1 T , IN为N×N的单位矩阵,in, the s = h 0 1 × ( N 2 + m - 1 ) 1 0 1 × N 1 T , I N is the identity matrix of N×N,

V n = Diag v n - M - N 2 + 1 v n - M - N 2 + 2 . . . v n + N 1 , Diag(·)表示将长度为l的向量变为l×l的方阵,且向量元素位于方阵的对角线上,并且,假设均衡器的抽头系数向量为 c n = c n , N 2 * c n , N 2 - 1 * . . . c n , - N 1 * T , V no = Diag v no - m - N 2 + 1 v no - m - N 2 + 2 . . . v no + N 1 , Diag( ) means to change the vector with length l into a square matrix of l×l, and the vector elements are located on the diagonal of the square matrix, and assume that the tap coefficient vector of the equalizer is c no = c no , N 2 * c no , N 2 - 1 * . . . c no , - N 1 * T , but

cc nno == [[ (( σσ ww 22 ++ pp σσ ii 22 )) II NN ++ HVHV nno Hh Hh ]] -- 11 sthe s ;;

S5:假设

Figure BDA0000375321800000032
的概率密度函数服从均值为μn,x,μn,x定义为方差为
Figure BDA0000375321800000034
定义为 Cov ( x ^ n , x ^ n | x n = x ) 的高斯分布,则:S5: Suppose
Figure BDA0000375321800000032
The probability density function of obeys the mean value of μ n,x , μ n,x is defined as Variance is
Figure BDA0000375321800000034
defined as Cov ( x ^ no , x ^ no | x no = x ) Gaussian distribution of , then:

μμ nno ,, xx == cc nno Hh (( EE. (( zz nno || xx nno == xx )) -- Hh xx ‾‾ nno ++ xx ‾‾ nno sthe s )) == xx ·&Center Dot; cc nno Hh sthe s

σσ nno ,, xx 22 == cc nno Hh CovCov (( zz nno ,, zz nno || xx nno == xx )) cc nno

== cc nno Hh (( σσ ww 22 II NN ++ HVHV nno Hh Hh -- vv nno ssss Hh )) cc nno

== cc nno Hh sthe s (( 11 -- sthe s Hh cc nno ))

通过高斯分布的概率密度函数可计算得到The probability density function of the Gaussian distribution can be calculated as ;

S6:根据 x ‾ n = Σ x ∈ β x · P ( x n = x ) , v n = Σ x ∈ β | x - x ‾ n | 2 · P ( x n = x ) , 代入 P ( x n = x ) = p ( x ^ n | x n = x ) 可以获得新的第n时刻的和vn值,可以用于更新第n+1时刻的均衡器抽头系数;S6: According to x ‾ no = Σ x ∈ β x &Center Dot; P ( x no = x ) , v no = Σ x ∈ β | x - x ‾ no | 2 &Center Dot; P ( x no = x ) , substitute P ( x no = x ) = p ( x ^ no | x no = x ) can get the new nth moment And the value of v n can be used to update the equalizer tap coefficient at the n+1th moment;

S7:对每个时刻均衡器输出的估计符号

Figure BDA00003753218000000315
进行解调,恢复出原始的二进制比特信息序列。S7: Estimated sign of equalizer output for each time instant
Figure BDA00003753218000000315
Demodulate to recover the original binary bit information sequence.

本发明的有益效果:通过对最小均方误差的理论知识进行推导,得到伯努利-高斯模型下脉冲噪声的最小均方误差线性均衡器的抽头系数计算方法,从而在较低复杂度的情况下获取较优的检测性能。Beneficial effect of the present invention: by deriving the theoretical knowledge of the minimum mean square error, the tap coefficient calculation method of the minimum mean square error linear equalizer of the impulse noise under the Bernoulli-Gaussian model is obtained, thereby in the case of lower complexity to obtain better detection performance.

附图说明Description of drawings

图1是本发明的消除脉冲噪声的最小均方误差线性均衡方法第n时刻的具体实施过程示意图;Fig. 1 is the specific implementation process schematic diagram of the nth moment of the minimum mean square error linear equalization method for eliminating impulse noise of the present invention;

图2是最小均方误差线性均衡器的结构模型。Fig. 2 is the structural model of the minimum mean square error linear equalizer.

具体实施方式Detailed ways

下面结合附图来说明本发明的具体实施方式:The specific embodiment of the present invention is described below in conjunction with accompanying drawing:

设通信系统的发射机第n时刻发送调制符号xn,共发送了L个调制符号x=(x1 x2 ... xL)T,且通信系统经过的信道有M条时延路径,第k条时延路径的衰落系数为hk(k∈{0,1,...,M-1})。接收机第n时刻的接收信号为zn,共接收了L个符号z=(z1 z2 ... zL)TAssuming that the transmitter of the communication system sends modulation symbol x n at the nth moment, a total of L modulation symbols x=(x 1 x 2 ... x L ) T are sent, and the channel passed by the communication system has M delay paths, The fading coefficient of the kth delay path is h k (k∈{0,1,...,M-1}). The received signal of the receiver at the nth moment is z n , and a total of L symbols z=(z 1 z 2 ... z L ) T have been received.

图1是本发明消除脉冲噪声的最小均方误差线性均衡方法第n时刻的具体实施过程示意图。如图1所示,本发明消除脉冲噪声的最小均方误差线性均衡方法包括以下步骤:FIG. 1 is a schematic diagram of the specific implementation process at the nth moment of the minimum mean square error linear equalization method for eliminating impulse noise in the present invention. As shown in Figure 1, the minimum mean square error linear equalization method for eliminating impulse noise of the present invention comprises the following steps:

S1:接收机第n(n∈{1,2,...,L})时刻的接收信号znS1: The received signal z n of the receiver at the nth (n∈{1,2,...,L}) moment is

zz nno == ΣΣ kk == 00 Mm -- 11 hh kk xx nno -- kk ++ ww nno ++ bb nno ·&Center Dot; gg nno ,,

其中M为时延路径的总长度,hk(k∈{0,1,...,M-1})为第k条时延路径的衰落系数,xn(n∈{1,2,...,L})为发射机第n时刻的发送符号,并且假设xn=0(n≤0或n>L),wn,gn服从均值为0、方差分别为

Figure BDA0000375321800000042
的高斯分布,bn服从伯努利分布,且P(bn=1)=p,P(bn=0)=1-p,,P(·)表示括号内的事件发生的概率;where M is the total length of the delay path, h k (k∈{0,1,...,M-1}) is the fading coefficient of the kth delay path, x n (n∈{1,2, ...,L}) is the transmitted symbol of the transmitter at the nth moment, and assuming that x n =0 (n≤0 or n>L), w n , g n obey the mean value of 0, and the variance is respectively
Figure BDA0000375321800000042
Gaussian distribution of b n obeys Bernoulli distribution, and P(b n =1)=p, P(b n =0)=1-p, P(·) represents the probability of occurrence of events in brackets;

S2:根据 x ‾ n = E ( x n ) = Σ x ∈ β x · P ( x n = x ) , v n = Σ x ∈ β | x - E ( x n ) | 2 · P ( x n = x ) , β为调制符号集合,获取每个时刻的

Figure BDA0000375321800000045
vn,其中,E(·)表示随机变量的数学期望;S2: According to x ‾ no = E. ( x no ) = Σ x ∈ β x &Center Dot; P ( x no = x ) , v no = Σ x ∈ β | x - E. ( x no ) | 2 &Center Dot; P ( x no = x ) , β is a set of modulation symbols, to obtain the
Figure BDA0000375321800000045
v n , where E(·) represents the mathematical expectation of the random variable;

S3:设第n时刻的最小均方误差线性均衡器的抽头系数为cn,k,k=-N1,1-N1,...,N2,总长度为N=N1+N2+1,图2为最小均方误差线性均衡器的结构模型;同时,取N个接收符号

Figure BDA00003753218000000414
(其中(·)T表示矩阵或向量的转置)作为最小均方误差线性均衡器的输入,并且假设zn=0(n≤0或n>L),则均衡器第n时刻输出对xn的估计符号
Figure BDA0000375321800000046
为S3: Let the tap coefficients of the minimum mean square error linear equalizer at the nth moment be c n,k ,k=-N 1 ,1-N 1 ,...,N 2 , and the total length is N=N 1 +N 2 +1, Figure 2 is the structural model of the minimum mean square error linear equalizer; at the same time, take N received symbols
Figure BDA00003753218000000414
(where (·) T represents the transpose of a matrix or vector) as the input of the minimum mean square error linear equalizer, and assuming z n =0 (n≤0 or n>L), then the equalizer outputs the pair x at the nth moment estimated sign of n
Figure BDA0000375321800000046
for

xx ^^ nno == EE. (( xx nno )) ++ CovCov (( xx nno ,, zz nno )) CovCov (( zz nno ,, zz nno )) -- 11 (( zz nno -- Hh xx ‾‾ nno ))

其中,Cov(x,y)表示向量x与y的协方差矩阵,即Cov(x,y)=E(xyH)-E(x)E(yH),(·)H表示矩阵或向量的共轭转置,(·)-1表示矩阵的求逆,Among them, Cov(x,y) represents the covariance matrix of vector x and y, that is, Cov(x,y)=E(xy H )-E(x)E(y H ), ( ) H represents the matrix or vector The conjugate transpose of , ( ) -1 means the inversion of the matrix,

xx ‾‾ nno == xx ‾‾ nno -- Mm -- NN 22 ++ 11 xx ‾‾ nno -- Mm -- NN 22 ++ 22 .. .. .. xx ‾‾ nno ++ NN 11 TT ,,

Figure BDA0000375321800000049
Figure BDA0000375321800000049

S4:为使第n时刻的均衡器输出符号

Figure BDA00003753218000000410
独立于P(xn=x),使
Figure BDA00003753218000000411
vn=1,同时,经过理论推导可得
Figure BDA00003753218000000412
则第n时刻均衡器输出的估计符号
Figure BDA00003753218000000413
变为S4: In order to make the equalizer output symbols at the nth moment
Figure BDA00003753218000000410
Independent of P(x n =x), such that
Figure BDA00003753218000000411
v n =1, at the same time, after theoretical derivation, we can get
Figure BDA00003753218000000412
Then the estimated symbol output by the equalizer at the nth moment
Figure BDA00003753218000000413
becomes

xx ^^ nno == xx ‾‾ nno ++ vv nno sthe s Hh [[ (( σσ ww 22 ++ pσpσ ii 22 )) II NN ++ HVHV nno Hh Hh ]] -- 11 (( zz nno -- Hh xx ‾‾ nno ))

其中, s = H 0 1 × ( N 2 + M - 1 ) 1 0 1 × N 1 T ,IN为N×N的单位矩阵,in, the s = h 0 1 × ( N 2 + m - 1 ) 1 0 1 × N 1 T , I N is the identity matrix of N×N,

V n = Diag v n - M - N 2 + 1 v n - M - N 2 + 2 . . . v n + N 1 , Diag(·)表示将长度为l的向量变为l×l的方阵,且向量元素位于方阵的对角线上; V no = Diag v no - m - N 2 + 1 v no - m - N 2 + 2 . . . v no + N 1 , Diag( ) means to change the vector with length l into a square matrix of l×l, and the vector elements are located on the diagonal of the square matrix;

并且,假设均衡器的抽头系数向量cn定义为 c n = c n , N 2 * c n , N 2 - 1 * . . . c n , - N 1 * T , And, suppose the tap coefficient vector c n of the equalizer is defined as c no = c no , N 2 * c no , N 2 - 1 * . . . c no , - N 1 * T , but

cc nno == [[ (( σσ ww 22 ++ pp σσ ii 22 )) II NN ++ HVHV nno Hh Hh ]] -- 11 sthe s ;;

S5:假设

Figure BDA0000375321800000054
的概率密度函数服从均值为μn,x,μn,x定义为
Figure BDA0000375321800000055
方差为
Figure BDA0000375321800000056
定义为 Cov ( x ^ n , x ^ n | x n = x ) 的高斯分布,则S5: Suppose
Figure BDA0000375321800000054
The probability density function of obeys the mean value of μ n,x , μ n,x is defined as
Figure BDA0000375321800000055
Variance is
Figure BDA0000375321800000056
defined as Cov ( x ^ no , x ^ no | x no = x ) Gaussian distribution of , then

μμ nno ,, xx == cc nno Hh (( EE. (( zz nno || xx nno == xx )) -- Hh xx ‾‾ nno ++ xx ‾‾ nno sthe s )) == xx ·&Center Dot; cc nno Hh sthe s

σσ nno ,, xx 22 == cc nno Hh CovCov (( zz nno ,, zz nno || xx nno == xx )) cc nno

== cc nno Hh (( σσ ww 22 II NN ++ HVHV nno Hh Hh -- vv nno ssss Hh )) cc nno

== cc nno Hh sthe s (( 11 -- sthe s Hh cc nno ))

通过高斯分布的概率密度函数可计算得到

Figure BDA00003753218000000512
;The probability density function of the Gaussian distribution can be calculated as
Figure BDA00003753218000000512
;

S6:根据 x ‾ n = Σ x ∈ β x · P ( x n = x ) , v n = Σ x ∈ β | x - x ‾ n | 2 · P ( x n = x ) , 代入 P ( x n = x ) = p ( x ^ n | x n = x ) 可以获得新的第n时刻的和vn值,可以用于更新第n+1时刻的均衡器抽头系数;S6: According to x ‾ no = Σ x ∈ β x &Center Dot; P ( x no = x ) , v no = Σ x ∈ β | x - x ‾ no | 2 &Center Dot; P ( x no = x ) , substitute P ( x no = x ) = p ( x ^ no | x no = x ) can get the new nth moment And the value of v n can be used to update the equalizer tap coefficient at the n+1th moment;

S7:对每个时刻均衡器输出的估计符号

Figure BDA00003753218000000517
进行解调,恢复出原始的二进制比特信息序列。S7: Estimated sign of equalizer output for each time instant
Figure BDA00003753218000000517
Demodulate to recover the original binary bit information sequence.

Claims (1)

1.一种消除脉冲噪声的最小均方误差线性均衡方法,其特征在于:其步骤如下所述:1. a minimum mean square error linear equalization method for eliminating impulse noise, is characterized in that: its steps are as follows: S1:接收机第n(n>0)时刻的接收信号为:S1: The received signal of the receiver at the nth (n>0) moment is:
Figure FDA0000375321790000011
其中,M为时延路径的总长度,hk(k∈{0,1,...,M-1})为第k条时延路径的衰落系数,xn,n>0为发射机第n时刻的发送符号,并且假设xn=0,n≤0,wn服从均值为0、方差为
Figure FDA0000375321790000012
的高斯分布,gn服从均值为0、方差为的高斯分布,bn服从伯努利分布,且P(bn=1)=p,P(bn=0)=1-p,,P(·)表示括号内的事件发生的概率;
Figure FDA0000375321790000011
Among them, M is the total length of the delay path, h k (k∈{0,1,...,M-1}) is the fading coefficient of the kth delay path, x n ,n>0 is the transmitter The transmitted symbol at the nth moment, and assuming that x n = 0, n≤0, w n obeys the mean value of 0 and the variance of
Figure FDA0000375321790000012
The Gaussian distribution of g n obeys the mean value of 0 and the variance of Gaussian distribution of b n obeys Bernoulli distribution, and P(b n =1)=p, P(b n =0)=1-p, P(·) represents the probability of occurrence of events in brackets;
S2:根据均值 x ‾ n = E ( x n ) = Σ x ∈ β x · P ( x n = x ) , 方差 v n = Σ x ∈ β | x - E ( x n ) | 2 · P ( x n = x ) , β为调制符号集合,获取每个时刻的
Figure FDA0000375321790000016
vn,其中,E(·)表示随机变量的数学期望;
S2: According to the mean x ‾ no = E. ( x no ) = Σ x ∈ β x &Center Dot; P ( x no = x ) , variance v no = Σ x ∈ β | x - E. ( x no ) | 2 · P ( x no = x ) , β is a set of modulation symbols, to obtain the
Figure FDA0000375321790000016
v n , where E(·) represents the mathematical expectation of the random variable;
S3:设第n时刻最小均方误差线性均衡器的抽头系数为cn,k,k=-N1,1-N1,...,N2,总长度为N=N1+N2+1,同时,取N个接收符号
Figure FDA00003753217900000115
,其中(·)T表示矩阵或向量的转置)作为最小均方误差线性均衡器的输入,并且假设zn=0,n≤0,则均衡器第n时刻输出对xn的估计符号
Figure FDA0000375321790000017
为: x ^ n = E ( x n ) + Cov ( x n , z n ) Cov ( z n , z n ) - 1 ( z n - H x ‾ n ) , 其中,Cov(x,y)表示向量x与y的协方差矩阵,即Cov(x,y)=E(xyH)-E(x)E(yH),(·)H表示矩阵或向量的共轭转置,(·)-1表示矩阵的求逆, x ‾ n = x ‾ n - M - N 2 + 1 x ‾ n - M - N 2 + 2 . . . x ‾ n + N 1 T ,
Figure FDA00003753217900000110
S3: Let the tap coefficients of the minimum mean square error linear equalizer at the nth moment be c n,k ,k=-N 1 ,1-N 1 ,...,N 2 , and the total length is N=N 1 +N 2 +1, at the same time, take N received symbols
Figure FDA00003753217900000115
, where (·) T represents the transpose of a matrix or vector) as the input of the minimum mean square error linear equalizer, and assuming z n =0,n≤0, then the equalizer outputs the estimated sign of x n at the nth moment
Figure FDA0000375321790000017
for: x ^ no = E. ( x no ) + Cov ( x no , z no ) Cov ( z no , z no ) - 1 ( z no - h x ‾ no ) , Among them, Cov(x,y) represents the covariance matrix of vector x and y, that is, Cov(x,y)=E(xy H )-E(x)E(y H ), ( ) H represents the matrix or vector The conjugate transpose of , ( ) -1 means the inversion of the matrix, x ‾ no = x ‾ no - m - N 2 + 1 x ‾ no - m - N 2 + 2 . . . x ‾ no + N 1 T ,
Figure FDA00003753217900000110
S4:为使第n时刻的均衡器输出符号
Figure FDA00003753217900000111
独立于P(xn=x),使
Figure FDA00003753217900000112
vn=1,则第n时刻均衡器输出的估计符号变为:
S4: In order to make the equalizer output symbols at the nth moment
Figure FDA00003753217900000111
Independent of P(x n =x), such that
Figure FDA00003753217900000112
v n =1, then the estimated symbol output by the equalizer at the nth moment becomes:
xx ^^ nno == xx ‾‾ nno ++ vv nno sthe s Hh [[ (( σσ ww 22 ++ pσpσ ii 22 )) II NN ++ HVHV nno Hh Hh ]] -- 11 (( zz nno -- Hh xx ‾‾ nno )) ,, 其中, s = H 0 1 × ( N 2 + M - 1 ) 1 0 1 × N 1 T , IN为N×N的单位矩阵,in, the s = h 0 1 × ( N 2 + m - 1 ) 1 0 1 × N 1 T , I N is the identity matrix of N×N, V n = Diag v n - M - N 2 + 1 v n - M - N 2 + 2 . . . v n + N 1 , Diag(·)表示将长度为l的向量变为l×l的方阵,且向量元素位于方阵的对角线上,并且,假设均衡器的抽头系数向量为 c n = c n , N 2 * c n , N 2 - 1 * . . . c n , - N 1 * T , V no = Diag v no - m - N 2 + 1 v no - m - N 2 + 2 . . . v no + N 1 , Diag( ) means to change the vector with length l into a square matrix of l×l, and the vector elements are located on the diagonal of the square matrix, and assume that the tap coefficient vector of the equalizer is c no = c no , N 2 * c no , N 2 - 1 * . . . c no , - N 1 * T , but cc nno == [[ (( σσ ww 22 ++ pp σσ ii 22 )) II NN ++ HVHV nno Hh Hh ]] -- 11 sthe s ;; S5:假设
Figure FDA0000375321790000023
的概率密度函数服从均值为μn,x,μn,x定义为
Figure FDA0000375321790000024
方差为
Figure FDA0000375321790000025
定义为 Cov ( x ^ n , x ^ n | x n = x ) 的高斯分布,则:
S5: Suppose
Figure FDA0000375321790000023
The probability density function of obeys the mean value of μ n,x , μ n,x is defined as
Figure FDA0000375321790000024
Variance is
Figure FDA0000375321790000025
defined as Cov ( x ^ no , x ^ no | x no = x ) Gaussian distribution of , then:
μμ nno ,, xx == cc nno Hh (( EE. (( zz nno || xx nno == xx )) -- Hh xx ‾‾ nno ++ xx ‾‾ nno sthe s )) == xx ·&Center Dot; cc nno Hh sthe s σσ nno ,, xx 22 == cc nno Hh CovCov (( zz nno ,, zz nno || xx nno == xx )) cc nno == cc nno Hh (( σσ ww 22 II NN ++ HVHV nno Hh Hh -- vv nno ssss Hh )) cc nno == cc nno Hh sthe s (( 11 -- sthe s Hh cc nno )) 通过高斯分布的概率密度函数可计算得到
Figure FDA00003753217900000211
The probability density function of the Gaussian distribution can be calculated as
Figure FDA00003753217900000211
;
S6:根据 x ‾ n = Σ x ∈ β x · P ( x n = x ) , v n = Σ x ∈ β | x - x ‾ n | 2 · P ( x n = x ) , 代入 P ( x n = x ) = p ( x ^ n | x n = x ) 可以获得新的第n时刻的
Figure FDA00003753217900000215
和vn值,可以用于更新第n+1时刻的均衡器抽头系数;
S6: According to x ‾ no = Σ x ∈ β x · P ( x no = x ) , v no = Σ x ∈ β | x - x ‾ no | 2 &Center Dot; P ( x no = x ) , substitute P ( x no = x ) = p ( x ^ no | x no = x ) can get the new nth moment
Figure FDA00003753217900000215
And the value of v n can be used to update the equalizer tap coefficient at the n+1th moment;
S7:对每个时刻均衡器输出的估计符号
Figure FDA00003753217900000216
进行解调,恢复出原始的二进制比特信息序列。
S7: Estimated sign of equalizer output for each time instant
Figure FDA00003753217900000216
Demodulate to recover the original binary bit information sequence.
CN201310389902.4A 2013-08-30 2013-08-30 A kind of minimum Mean Square Error Linear equalization methods eliminating impulsive noise Expired - Fee Related CN103428130B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310389902.4A CN103428130B (en) 2013-08-30 2013-08-30 A kind of minimum Mean Square Error Linear equalization methods eliminating impulsive noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310389902.4A CN103428130B (en) 2013-08-30 2013-08-30 A kind of minimum Mean Square Error Linear equalization methods eliminating impulsive noise

Publications (2)

Publication Number Publication Date
CN103428130A true CN103428130A (en) 2013-12-04
CN103428130B CN103428130B (en) 2016-08-10

Family

ID=49652314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310389902.4A Expired - Fee Related CN103428130B (en) 2013-08-30 2013-08-30 A kind of minimum Mean Square Error Linear equalization methods eliminating impulsive noise

Country Status (1)

Country Link
CN (1) CN103428130B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391315A (en) * 2018-09-13 2019-02-26 东南大学 A kind of MIMO receiver of data model double drive
CN110830400A (en) * 2018-08-13 2020-02-21 上海澜至半导体有限公司 Decision feedback equalization processing device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585396A (en) * 2003-07-22 2005-02-23 三星电子株式会社 Method and apparatus for reducing impulse noise of multicarrier modulated signal
CN101379722A (en) * 2006-02-01 2009-03-04 日本电气株式会社 Equalization device and equalization method
CN102487368A (en) * 2010-03-26 2012-06-06 浙江大学 The Design Method and Implementation Device of Per-tone Equalizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585396A (en) * 2003-07-22 2005-02-23 三星电子株式会社 Method and apparatus for reducing impulse noise of multicarrier modulated signal
CN101379722A (en) * 2006-02-01 2009-03-04 日本电气株式会社 Equalization device and equalization method
CN102487368A (en) * 2010-03-26 2012-06-06 浙江大学 The Design Method and Implementation Device of Per-tone Equalizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙妍: "基于OFDM系统的时域均衡技术应用研究", 《中国优秀硕士论文电子期刊网》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830400A (en) * 2018-08-13 2020-02-21 上海澜至半导体有限公司 Decision feedback equalization processing device and method
CN109391315A (en) * 2018-09-13 2019-02-26 东南大学 A kind of MIMO receiver of data model double drive
CN109391315B (en) * 2018-09-13 2021-07-20 东南大学 A Data Model Dual-Driven MIMO Receiver

Also Published As

Publication number Publication date
CN103428130B (en) 2016-08-10

Similar Documents

Publication Publication Date Title
EP3092755B1 (en) Pre-coding in a faster-than-nyquist transmission system
CN101409694B (en) Method and system for implementing single carrier frequency domain equilibrium
CN103957176A (en) Self-adaptive RLS decision feedback equalizing system and implementing method thereof
CN107294616B (en) A Doppler Diversity Communication Method for Double-Expanded Underwater Acoustic Channels Based on Basis-Expanded Model
CN101022433A (en) High-speed digital receiver parallel adaptive blind equalizing method
CN103338168A (en) Iteration time domain MMSE (minimum mean square error) equilibrium method based on weighted-type fractional Fourier transform (WFRFT) in doubly dispersive channel
CN103326976B (en) Based on the iterative frequency-domain least mean-square error equalization methods under the double dispersive channel of weight score Fourier conversion
CN113497773B (en) Equalization method and system of scattering communication system, computer equipment and processing terminal
CN101136896B (en) Frequency Domain Iterative Equalization Method Based on Fast Fourier Transform
Zhang et al. An adaptive matching pursuit algorithm for sparse channel estimation
Zhang et al. Channel estimation for OTFS system over doubly spread sparse acoustic channels
Fischer et al. Adaptive neural network-based OFDM receivers
CN102215072B (en) Method for detecting signals in multi-antenna communication system and receiver
CN104506465A (en) Power line communication channel estimation method
Li et al. Data-driven receiver for OTFS system with deep learning
CN103428130B (en) A kind of minimum Mean Square Error Linear equalization methods eliminating impulsive noise
CN106130936A (en) A kind of non linear channel equalization method under Alpha Stable distritation noise circumstance
CN101478509B (en) Orthogonal wavelet transform and time diversity technique fused blind equalizing method
CN106209716A (en) A kind of method reducing extensive MU MIMO ofdm system peak-to-average power ratio
CN106452652A (en) A multipath interference suppression method based on a chaotic wireless communication system
CN103501182B (en) A kind of blind estimating method of convolutional code generator polynomial
CN101895487A (en) Confidence-based method and device for suppressing noises in channel estimation results
CN110233808A (en) A kind of FTN system signal detection method
CN104135455A (en) Iterative receiving method for communication system
Kasiselvanathan et al. BER performance analysis and comparison for large scale MIMO receiver

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160810

Termination date: 20170830