CN103427649A - Power converter and its control method - Google Patents
Power converter and its control method Download PDFInfo
- Publication number
- CN103427649A CN103427649A CN2012101656108A CN201210165610A CN103427649A CN 103427649 A CN103427649 A CN 103427649A CN 2012101656108 A CN2012101656108 A CN 2012101656108A CN 201210165610 A CN201210165610 A CN 201210165610A CN 103427649 A CN103427649 A CN 103427649A
- Authority
- CN
- China
- Prior art keywords
- pulse width
- width modulation
- signal
- trigger control
- output voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域 technical field
本发明有关一种电源转换器及其控制方法,尤指一种用于行动载具的充电装置的电源转换器及其控制方法。The present invention relates to a power converter and a control method thereof, in particular to a power converter for a charging device of a mobile vehicle and a control method thereof.
背景技术 Background technique
现今,行动载具发展已朝向无污染、高效能的电动驱动时。然而作为电动驱动的能源必须通过电池以作为能源储存的容器,使得能源能被储存到电池中。通过将能源,例如火力、水力、风力、热能、太阳能以及核能…等转换成电能后,才能够将电能做适当地转换后储存在电池中。然而,在电能转换的过程,必须考虑到安全性、高效能以及便利性等问题。Today, the development of mobile vehicles has moved towards pollution-free, high-efficiency electric drives. However, the energy for electric drive must pass through the battery as a container for energy storage, so that energy can be stored in the battery. By converting energy, such as firepower, waterpower, windpower, thermal energy, solar energy, and nuclear energy, etc. into electrical energy, the electrical energy can be properly converted and stored in the battery. However, in the process of power conversion, issues such as safety, high efficiency, and convenience must be considered.
请参见图1,为现有技术的行动载具充电装置的方块示意图。如图所示,该充电装置10A接收一外部交流电压Vs,并转换该外部交流电压Vs为一直流输出电压Vo,以对一充电电池20A进行充电。Please refer to FIG. 1 , which is a schematic block diagram of a mobile vehicle charging device in the prior art. As shown in the figure, the
该充电装置10A包含一电磁干扰滤波器102A、一功率因数校正器104A、一隔离型电源转换器106A(isolated DC-to-DC converter)以及一非隔离型电源转换器108A(non-isolated DC-to-DC converter)。该电磁干扰滤波器102A接收该外部交流电源Vs,以消除该交流电源Vs的噪声,并防止传导性电磁噪声的干扰。该功率因数校正器104A电性连接该电磁干扰滤波器102A,以改善转换后的直流电源的功率因数。该隔离型电源转换器106A电性连接该功率因数校正器104A,以转换并输出该功率因数校正器104A输出的直流电压所产生的能量。该非隔离型电源转换器108A电性连接该隔离型电源转换器106A,以提供不同直流输出电压Vo电平的转换与调整,进而输出该充电电池20A所需的充电电压电平。The
值得一提,现行实务应用上,该隔离型电源转换器106A主要采用LLC全桥串联谐振式转换器(LLC full-bridge series resonant converter)。谐振式转换器是通过谐振电路与频率调变的方式,并依照负载特性使得电流相位落后电压相位,以达到零电压切换;或是若电流相位超前电压相位,则能达到零电流切换。传统谐振型转换器主要分为串联谐振、并联谐振以及串并联谐振。虽然这三种电路架构都能达到零电压或零电流切换,但对串联谐振转换器来说,在轻载操作情况下,将会导致无法调整输出电压,而产生稳压上的问题。LLC谐振式转换器是由半桥式或全桥式转换器与串联谐振电路结合演变而来,正常工作电压操作时,功率开关的工作周期(duty cycle)操作于接近50%的互补信号,并且通过切换频率的调变来达到输出电压稳定。It is worth mentioning that in the current practical application, the
配合参见图2为现有技术的LLC全桥串联谐振式转换器的方块示意图。该隔离型电源转换器106A的控制架构为开回路设计。由于开回路电路架构,其输出电压的稳压特性与负载大小、工作周期大小以及功率元件的导通压降有关,因此,当该隔离型电源转换器106A于轻载模式操作下,其输出电压会不断地向上提升,而造成较差的稳压特性。故此,为求在轻载时能达到稳压控制,所以,控制回路通常使用过电压保护(over-voltage protection)。For reference, FIG. 2 is a schematic block diagram of an LLC full-bridge series resonant converter in the prior art. The control structure of the
请参见图2为现有技术充电装置的电源转换器的电路方块示意图。该充电装置的电源转换器106A电性连接一直流输入电压(未标示),以转换并输出该直流输入电压所产生的能量。该电源转换器106A包含一全桥式切换电路1061A、一谐振电路1062A、一变压器1063A、一过电压保护单元1064A、一脉冲宽度调变控制单元1065A以及一驱动单元1067A。Please refer to FIG. 2 , which is a schematic circuit block diagram of a power converter of a charging device in the prior art. The
该全桥式切换电路1061A包含四个功率开关元件所组成的两桥臂(未标示),以切换该直流输入电压为一方波电压(未图示)。该谐振电路1062A电性连接该全桥式切换电路1061A,以接收并转换该方波电压为一谐振电压(未图示)。其中,该谐振电路1062A包含一谐振电容Cr与两谐振电感(分别为一漏感Lr与一激磁电感(未图示)),所形成的一LLC谐振电路。该变压器1063A具有一输入侧与一输出侧,该输入侧电性连接该谐振电路1062A,以接收该谐振电压。其中,该输入侧包含至少一一次侧绕组(未标示),该输出侧包含至少一二次侧绕组(未标示)。承上所述,该谐振电路1062A所包含的该谐振电感为该变压器1063A一次侧内部的漏感Lr与激磁电感。The full-
该过电压保护单元1064A电性连接该变压器1063A的该输出侧,以检测该电源转换器106A输出电压,并产生一输出电压信号Sovp,进而对该电源转换器106A提供过电压输出的保护。该脉冲宽度调变(PWM)控制单元1065A,产生一脉冲宽度调变信号。其中,由于该全桥式切换电路1061A由两组桥臂所构成,并且每组桥臂由两个功率开关元件所组成,因此,该脉冲宽度调变控制单元1065A所产生该脉冲宽度调变信号包含一第一脉冲宽度调变信号Spwm1与一第二脉冲宽度调变信号Spwm2,其中,该第一脉冲宽度调变信号Spwm1与该第二脉冲宽度调变信号Spwm2的导通与截止为互补的电平。The
其中,当该过电压保护单元1064A检测到该电源转换器106A发生过电压输出时,该过电压保护单元1064A所产生该输出电压信号Sovp,以禁能(disable)该驱动单元1067A对该全桥式切换电路1061A的驱动。反之,当过电压输出状况排除后,该过电压保护单元1064A检测到该电源转换器106A为工作电压输出时,该过电压保护单元1064A所产生该输出电压信号Sovp以致能(enable)该驱动单元1067A对该全桥式切换电路1061A的驱动。此外,该电源转换器106A还包含一光耦合单元1068A,使得该过电压保护单元1064A可通过该光耦合单元1068A,将该输出电压信号Sovp传送至该驱动单元1067A。Wherein, when the
惟,上述该输出电压信号Sovp禁能或致能该驱动单元1067A,由于当该过电压保护单元1064A检测到该电源转换器106A发生过电压输出或过电压输出状况排除时,立即发生的随机关断与随机开启的动作。配合参见图3为现有技术该脉冲宽度调变控制单元与该驱动单元的控制时序图。如图所示,由上而下分别代表该第一脉冲宽度调变信号Spwm1、该第二脉冲宽度调变信号Spwm2、该短路防止时间Td、该输出电压信号Sovp、该栅极驱动信号Sga,Sgd以及该栅极驱动信号Sgb,Sgc。However, the above-mentioned output voltage signal Sovp disables or enables the
如上所述,该第一脉冲宽度调变信号Spwm1与该第二脉冲宽度调变信号Spwm2为互补导通与截止,其中,该第一脉冲宽度调变信号Spwm1在一时间区间t10~t11为导通状态(此时,该第二脉冲宽度调变信号Spwm2为截止状态);该第二脉冲宽度调变信号Spwm2在一时间区间t12~t13为导通状态(此时,该第一脉冲宽度调变信号Spwm1为截止状态),并且,该第一脉冲宽度调变信号Spwm1与该第二脉冲宽度调变信号Spwm2为周期性的互补切换导通与截止。As mentioned above, the first pulse width modulation signal Spwm1 and the second pulse width modulation signal Spwm2 are complementary on and off, wherein the first pulse width modulation signal Spwm1 is a conduction signal in a time interval t10-t11 On state (at this time, the second pulse width modulation signal Spwm2 is off state); the second pulse width modulation signal Spwm2 is on state in a time interval t12~t13 (at this time, the first pulse width modulation signal The signal Spwm1 is turned off), and the first pulse width modulation signal Spwm1 and the second pulse width modulation signal Spwm2 are periodically and complementary switched on and off.
再者,假设该电源转换器106A于一时间tov时发生过电压输出,亦即,该过电压保护单元1064A检测到该电源转换器106A发生过电压输出时,因此,该过电压保护单元1064A所产生该输出电压信号Sovp为低电平信号。由于当过电压输出发生时(亦即,发生在时间区间t12~t13),该第二脉冲宽度调变信号Spwm2为高电平导通状态(相对地,该第一脉冲宽度调变信号Spwm1为低电平截止状态),因此,该输出电压信号Sovp立即由高电平转变为低电平,而禁能该驱动单元1067A。同理,若在时间区间t12~t13内任意的时间点发生过电压输出,该过电压保护单元1064A所产生该输出电压信号Sovp则为随机关断该驱动单元1067A。Furthermore, assuming that the
反之,假设该电源转换器106A于一时间tnv时排除过电压输出状况,亦即,该过电压保护单元1064A检测到该电源转换器106A为工作电压输出,因此,该过电压保护单元1064A所产生该输出电压信号Sovp为高电平信号。由于当工作电压输出发生时(亦即,发生在时间区间t14~t15),该第一脉冲宽度调变信号Spwm1为高电平导通状态(相对地,该第二脉冲宽度调变信号Spwm2为低电平截止状态),因此,该输出电压信号Sovp立即由低电平转变为高电平,而致能该驱动单元1067A对该全桥式切换电路1061A的驱动。同理,若在时间区间t14~t15内任意的时间点排除过电压输出状况,该过电压保护单元1064A所产生该输出电压信号Sovp则为随机开启该驱动单元1067A。On the contrary, assuming that the
因此,将导致该禁能或致能该驱动单元1067A的方波信号的工作周期(duty cycle)为不完全周期,亦即,可能为5%、10%或15%不等的方波周期随机关断与随机开启该驱动单元1067A,如此,将导致储存于储能元件内的能量在一工作周期内无法释放,反而于下一个周期中瞬间释放能量,致终造成短路(short through)现象发生。Therefore, the duty cycle (duty cycle) of the square wave signal that will cause the disabling or enabling the
因此,如何设计出一种电源转换器及其控制方法,当过电压保护单元侦测到电源转换器发生过电压输出时,过电压保护单元所产生之输出电压信号控制触发控制单元,使得触发控制单元在脉波宽度调变信号之工作周期结束时,输出触发控制信号以禁能驱动单元,乃为本案创作人所欲行克服并加以解决的一大课题。Therefore, how to design a power converter and its control method, when the overvoltage protection unit detects the overvoltage output of the power converter, the output voltage signal generated by the overvoltage protection unit controls the trigger control unit, so that the trigger control At the end of the duty cycle of the pulse width modulation signal, the unit outputs a trigger control signal to disable the driving unit, which is a major problem that the creators of this project want to overcome and solve.
发明内容 Contents of the invention
本发明的一目的在于提供一种电源转换器,以克服现有技术的问题。An object of the present invention is to provide a power converter to overcome the problems of the prior art.
本发明电源转换器包含一全桥式切换电路、一谐振电路、一变压器、一过电压保护单元、一脉冲宽度调变控制单元、一触发控制单元以及一驱动单元。The power converter of the present invention includes a full bridge switching circuit, a resonant circuit, a transformer, an overvoltage protection unit, a pulse width modulation control unit, a trigger control unit and a drive unit.
该全桥式切换电路转换一直流输入电压为一方波电压。该谐振电路电性连接该全桥式切换电路,接收该方波电压并转换为一谐振电压。该变压器具有一输入侧与一输出侧,该输入侧电性连接该谐振电路,接收该谐振电压。该过电压保护单元电性连接该输出侧,检测该输出侧的一输出电压,并产生一输出电压信号。该脉冲宽度调变控制单元产生一脉冲宽度调变信号。该触发控制单元接收该输出电压信号与该脉冲宽度调变信号,并产生一触发控制信号。该驱动单元接收该触发控制信号与该脉冲宽度调变信号,以驱动该全桥式切换电路导通与截止。The full bridge switching circuit converts a DC input voltage into a square wave voltage. The resonant circuit is electrically connected to the full bridge switching circuit, receives the square wave voltage and converts it into a resonant voltage. The transformer has an input side and an output side, and the input side is electrically connected to the resonant circuit to receive the resonant voltage. The overvoltage protection unit is electrically connected to the output side, detects an output voltage of the output side, and generates an output voltage signal. The PWM control unit generates a PWM signal. The trigger control unit receives the output voltage signal and the pulse width modulation signal, and generates a trigger control signal. The driving unit receives the trigger control signal and the pulse width modulation signal to drive the full-bridge switching circuit to be turned on and off.
其中,当该过电压保护单元检测到该输出电压为一过电压时,该触发控制单元在该脉冲宽度调变信号的工作周期结束时,输出低电平的该触发控制信号,以禁能(disable)该驱动单元。Wherein, when the overvoltage protection unit detects that the output voltage is an overvoltage, the trigger control unit outputs the low level trigger control signal to disable ( disable) the drive unit.
本发明的另一目的在于提供一种电源转换器的控制方法,以克服现有技术的问题。因此本发明电源转换器的控制方法的步骤包含:(a)提供一全桥式切换电路、一谐振电路以及一变压器;(b)提供一过电压保护单元,检测该电源转换器的一输出电压,并产生一输出电压信号;(c)提供一脉冲宽度调变控制单元,产生一脉冲宽度调变信号;(d)提供一触发控制单元,接收该输出电压信号与该脉冲宽度调变信号,并产生一触发控制信号;(e)提供一驱动单元,接收该触发控制信号与该脉冲宽度调变信号,驱动该全桥式切换电路导通与截止;以及(f)当该过电压保护单元检测到该输出电压为一过电压时,该触发控制单元在该脉冲宽度调变信号的工作周期结束时,输出低电平的该触发控制信号,以禁能(disable)该驱动单元。Another object of the present invention is to provide a control method of a power converter to overcome the problems of the prior art. Therefore, the steps of the control method of the power converter of the present invention include: (a) providing a full-bridge switching circuit, a resonant circuit and a transformer; (b) providing an overvoltage protection unit to detect an output voltage of the power converter , and generate an output voltage signal; (c) provide a pulse width modulation control unit to generate a pulse width modulation signal; (d) provide a trigger control unit to receive the output voltage signal and the pulse width modulation signal, And generate a trigger control signal; (e) provide a driving unit, receive the trigger control signal and the pulse width modulation signal, drive the full bridge switching circuit on and off; and (f) when the overvoltage protection unit When detecting that the output voltage is an overvoltage, the trigger control unit outputs the trigger control signal at a low level to disable the driving unit when the duty cycle of the PWM signal ends.
为了能更进一步了解本发明为达成预定目的所采取的技术、手段及功效,请参阅以下有关本发明的详细说明与附图,相信本发明的目的、特征与特点,当可由此得一深入且具体的了解,然而所附图式仅提供参考与说明用,并非用来对本发明加以限制者。In order to further understand the technology, means and effects that the present invention adopts to achieve the predetermined purpose, please refer to the following detailed description and accompanying drawings of the present invention. It is believed that the purpose, characteristics and characteristics of the present invention can be obtained from this For specific understanding, the accompanying drawings are only for reference and illustration, and are not intended to limit the present invention.
附图说明Description of drawings
图1为现有技术的行动载具充电装置的方块示意图;FIG. 1 is a schematic block diagram of a mobile vehicle charging device in the prior art;
图2为现有技术的LLC全桥串联谐振式转换器的方块示意图;2 is a schematic block diagram of a prior art LLC full-bridge series resonant converter;
图3为现有技术该脉冲宽度调变控制单元与该驱动单元的控制时序图;FIG. 3 is a control timing diagram of the pulse width modulation control unit and the drive unit in the prior art;
图4为本发明充电装置的电源转换器的电路方块示意图;Fig. 4 is a circuit block diagram of a power converter of the charging device of the present invention;
图5为本发明该触发控制单元的电路图;Fig. 5 is the circuit diagram of this trigger control unit of the present invention;
图6为本发明该脉冲宽度调变控制单元、该触发控制单元与该驱动单元的控制时序图;及6 is a control timing diagram of the pulse width modulation control unit, the trigger control unit and the drive unit of the present invention; and
图7为本发明充电装置电源转换器的控制方法的流程图。FIG. 7 is a flow chart of the control method of the power converter of the charging device according to the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
﹝现有技术﹞﹝current technology﹞
10A充电装置;10A charging device;
102A电磁干扰滤波器;102A electromagnetic interference filter;
104A功率因数校正器;104A power factor corrector;
106A隔离型电源转换器;106A isolated power converter;
108A非隔离型电源转换器;108A non-isolated power converter;
20A充电电池;20A rechargeable battery;
1061A全桥式切换电路;1061A full bridge switching circuit;
1062A谐振电路;1062A resonant circuit;
1063A变压器;1063A transformer;
1064A过电压保护单元;1064A overvoltage protection unit;
1065A脉冲宽度调变控制单元;1065A pulse width modulation control unit;
1067A驱动单元;1067A drive unit;
1068A光耦合单元;1068A optical coupling unit;
Vs外部交流电压;Vs external AC voltage;
Vo直流输出电压;Vo DC output voltage;
Cr谐振电容;Cr resonant capacitor;
Lr谐振电感;Lr resonant inductance;
Sovp输出电压信号;Sovp output voltage signal;
Spwm1第一脉冲宽度调变信号;Spwm1 first pulse width modulation signal;
Spwm2第二脉冲宽度调变信号;Spwm2 second pulse width modulation signal;
Td短路防止时间;Td short circuit prevention time;
Sga~Sgd栅极驱动信号;Sga~Sgd gate drive signal;
t10~t15时间;t10~t15 time;
tov过电压输出时间;tov overvoltage output time;
tnv工作电压输出时间;tnv working voltage output time;
﹝本发明﹞﹝this invention﹞
102电磁干扰滤波器;102 electromagnetic interference filter;
104功率因数校正器;104 power factor corrector;
106隔离型电源转换器;106 isolated power converters;
108非隔离型电源转换器;108 non-isolated power converters;
1061全桥式切换电路;1061 full bridge switching circuit;
1062谐振电路;1062 resonant circuit;
1063变压器;1063 transformer;
1064过电压保护单元;1064 overvoltage protection unit;
1065脉冲宽度调变控制单元;1065 pulse width modulation control unit;
1066触发控制单元;1066 trigger control unit;
1067驱动单元;1067 drive units;
1068光耦合单元;1068 optical coupling unit;
10662正缘触发D型触发器;10662 positive edge triggered D-type flip-flop;
10664或非门;10664 NOR gate;
Qa第一功率开关元件;Qa first power switching element;
Qb第二功率开关元件;Qb second power switching element;
Qc第三功率开关元件;Qc third power switching element;
Qd第四功率开关元件;Qd fourth power switching element;
Cr谐振电容;Cr resonant capacitor;
Lr谐振电感;Lr resonant inductance;
Sovp输出电压信号;Sovp output voltage signal;
Spwm1第一脉冲宽度调变信号;Spwm1 first pulse width modulation signal;
Spwm2第二脉冲宽度调变信号;Spwm2 second pulse width modulation signal;
Td短路防止时间;Td short circuit prevention time;
Ty1延迟时间;Ty1 delay time;
Ty2延迟时间;Ty2 delay time;
Sen触发控制信号;Sen triggers the control signal;
Sga第一栅极驱动信号;Sga first gate drive signal;
Sgb第二栅极驱动信号;Sgb second gate drive signal;
Sgc第三栅极驱动信号;Sgc third gate drive signal;
Sgd第四栅极驱动信号;Sgd fourth gate drive signal;
D数据输入端;D data input terminal;
CLK时脉输入端;CLK clock pulse input terminal;
Q输出端;Q output;
t20~t25时间;t20~t25 time;
tov过电压输出时间;tov overvoltage output time;
tnv工作电压输出时间;tnv working voltage output time;
S100~S600步骤。Steps S100 to S600.
具体实施方式 Detailed ways
兹有关本发明的技术内容及详细说明,配合图式说明如下:Hereby, the technical content and detailed description of the present invention are described as follows in conjunction with the drawings:
请参见图4为本发明充电装置的电源转换器的电路方块示意图。其中,该充电装置包含一电磁干扰滤波器、一功率因数校正器104、一隔离型电源转换器106(isolated DC-to-DC converter)以及一非隔离型电源转换器108(non-isolated DC-to-DC converter)。除了该隔离型电源转换器106外,上述的电路装置及其电路架构皆与现有技术所揭示相同,因此,在此不再赘述。在后文中,将针对该电源转换器106加以详细说明。Please refer to FIG. 4 , which is a schematic circuit block diagram of the power converter of the charging device of the present invention. Wherein, the charging device includes an electromagnetic interference filter, a
该充电装置的电源转换器106电性连接一直流输入电压(未标示),以转换并输出该直流输入电压所产生的能量。该电源转换器106包含一全桥式切换电路1061、一谐振电路1062、一变压器1063、一过电压保护单元1064、一脉冲宽度调变控制单元1065、一触发控制单元1066以及一驱动单元1067。The
该全桥式切换电路1061包含四个功率开关元件所组成的两桥臂(未标示),以切换该直流输入电压为一方波电压(未图示)。亦即,该全桥式切换电路1061具有一第一功率开关元件Qa、一第二功率开关元件Qb、一第三功率开关元件Qc以及一第四功率开关元件Qd。此外,该全桥式切换电路1061由两组桥臂(未标示)所构成,每组桥臂由上述两个功率开关元件所组成。其中,该第一功率开关元件Qa与该第二功率开关元件Qb形成一第一桥臂;该第三功率开关元件Qc与该第四功率开关元件Qd形成一第二桥臂。值得一提的,该全桥式切换电路1061的该第一桥臂与该第二桥臂互补导通与截止间隔一短路防止时间(dead time)或称死区时间,以避免同一桥臂上两功率开关元件在非完全导通或截止状态下发生短路的情况。The full-
该谐振电路1062电性连接该全桥式切换电路1061,以接收并转换该方波电压为一谐振电压(未图示)。其中,该谐振电路1062包含一谐振电容Cr与两谐振电感(分别为一漏感Lr与一激磁电感(未图示)),所形成的一LLC谐振电路。The
该变压器1063具有一输入侧与一输出侧,该输入侧电性连接该谐振电路1062,以接收该谐振电压。其中,该输入侧包含至少一一次侧绕组(未标示),该输出侧包含至少一二次侧绕组(未标示)。承上所述,该谐振电路1062所包含的该谐振电感为该变压器1063一次侧内部的漏感Lr与激磁电感。The
该过电压保护单元1064电性连接该变压器1063的该输出侧,以检测该电源转换器106输出电压,并产生一输出电压信号Sovp,进而对该电源转换器106提供过电压输出的保护。亦即,当该电源转换器106在操作过程中,出现超过其工作电压的不正常电压时,该过电压保护单元1064产生该输出电压信号Sovp,进而对该电源转换器106提供过电压输出的保护。该脉冲宽度调变(PWM)控制单元1065,产生一脉冲宽度调变信号。其中,由于该全桥式切换电路1061由两组桥臂所构成,并且每组桥臂由两个功率开关元件所组成,因此,该脉冲宽度调变控制单元1065所产生该脉冲宽度调变信号包含一第一脉冲宽度调变信号Spwm1与一第二脉冲宽度调变信号Spwm2,其中,该第一脉冲宽度调变信号Spwm1与该第二脉冲宽度调变信号Spwm2的导通与截止为互补的电平。再者,以本实施例为例,该第一脉冲宽度调变信号Spwm1控制该第一功率开关元件Qa与该第四功率开关元件Qd;该第二脉冲宽度调变信号Spwm2控制该第二功率开关元件Qb与该第三功率开关元件Qc。The
该触发控制单元1066接收该输出电压信号Sovp与该脉冲宽度调变信号Spwm1,Spwm2,并产生一触发控制信号Sen。至于该触发控制单元1066的操作,将在后文有更详细的说明。该驱动单元1067接收该触发控制信号Sen与该脉冲宽度调变信号Spwm1,Spwm2,以产生驱动该多个功率开关元件Qa~Qd导通与截止所对应的栅极驱动信号Sga~Sgd。亦即,该第一栅极驱动信号Sga驱动该第一功率开关元件Qa、该第二栅极驱动信号Sgb驱动该第二功率开关元件Qb、该第三栅极驱动信号Sgc驱动该第三功率开关元件Qc以及该第四栅极驱动信号Sgd驱动该第四功率开关元件Qd。The
其中,当该过电压保护单元1064检测到该输出电压为一过电压时,该过电压保护单元1064所产生该输出电压信号Sovp控制该触发控制单元1066,使得该触发控制单元1066在该脉冲宽度调变信号Spwm1,Spwm2的工作周期结束时,输出该触发控制信号Sen,以禁能(disable)该驱动单元1067对该全桥式切换电路1061的驱动。反之,当过电压输出状况排除后,该过电压保护单元1064检测到该电源转换器106为工作电压输出时,该过电压保护单元1064所产生该输出电压信号Sovp控制该触发控制单元1066,使得该触发控制单元1066在该脉冲宽度调变信号Spwm1,Spwm2的工作周期结束时,输出该触发控制信号Sen以致能(enable)该驱动单元1067对该全桥式切换电路1061的驱动。至于该触发控制信号Sen对该触发控制单元1066的禁能或致能的控制,将在后文有更详细的说明。此外,该电源转换器106还包含一光耦合单元1068,使得该过电压保护单元1064可通过该光耦合单元1068,将该输出电压信号Sovp传送至该触发控制单元1066。Wherein, when the
请参见图5为本发明该触发控制单元的电路图。在本实施例中,该触发控制单元1066包含一正缘触发D型触发器(leading-edge triggered D-typeflip-flop)10662以及一或非门(NOR gate)10664。该正缘触发D型触发器10662包含一数据输入端D、一时脉输入端CLK以及至少一输出端Q。该或非门10664包含两输入端(未标示)与一输出端(未标示),并且该输出端连接该时脉输入端CLK。其中,该数据输入端D接收该过电压保护单元1064所产生该输出电压信号Sovp。该或非门10664的该两输入端分别接收该脉冲宽度调变信号Spwm1,Spwm2。Please refer to FIG. 5 which is a circuit diagram of the trigger control unit of the present invention. In this embodiment, the
其中,当该电源转换器106为过电压输出,并且该第一脉冲宽度调变信号Spwm1与该第二脉冲宽度调变信号Spwm2皆为低电平时,该正缘触发D型触发器10662输出低电平的该触发控制信号Sen,以禁能该驱动单元1067对该全桥式切换电路的驱动。亦即,当该过电压保护单元1064检测到该输出电压为该过电压时,该过电压保护单元1064所产生该输出电压信号Sovp控制该触发控制单元1066,使得该触发控制单元1066在该脉冲宽度调变信号Spwm1,Spwm2的工作周期结束时,输出低电平的该触发控制信号Sen,以禁能该驱动单元1067对该全桥式切换电路1061的驱动。Wherein, when the
此外,当该电源转换器106为工作电压输出,并且该第一脉冲宽度调变信号Spwm1与该第二脉冲宽度调变信号Spwm2皆为低电平时,该正缘触发D型触发器10662输出高电平的该触发控制信号Sen,以致能该驱动单元1067对该全桥式切换电路1061的驱动。亦即,当过电压输出状况排除后,该过电压保护单元1064检测到该电源转换器106为工作电压输出时,该过电压保护单元1064所产生该输出电压信号Sovp控制该触发控制单元1066,使得该触发控制单元1066在该脉冲宽度调变信号Spwm1,Spwm2的工作周期结束时,输出高电平的该触发控制信号Sen,以致能该驱动单元1067对该全桥式切换电路1061的驱动。至于上述该控制方式,将在后文配合时序图加以详细说明。In addition, when the
请参见图6为本发明该脉冲宽度调变控制单元、该触发控制单元与该驱动单元之控制时序图。如图所示,由上而下分别代表该第一脉冲宽度调变信号Spwm1、该第二脉冲宽度调变信号Spwm2、该短路防止时间Td、该触发控制信号Sen、该栅极驱动信号Sga,Sgd以及该栅极驱动信号Sgb,Sgc。Please refer to FIG. 6 which is a control timing diagram of the pulse width modulation control unit, the trigger control unit and the driving unit of the present invention. As shown in the figure, from top to bottom respectively represent the first pulse width modulation signal Spwm1, the second pulse width modulation signal Spwm2, the short circuit prevention time Td, the trigger control signal Sen, the gate drive signal Sga, Sgd and the gate drive signals Sgb, Sgc.
如上所述,该第一脉冲宽度调变信号Spwm1与该第二脉冲宽度调变信号Spwm2为互补导通与截止,其中,该第一脉冲宽度调变信号Spwm1在一时间区间t20~t21为导通状态(此时,该第二脉冲宽度调变信号Spwm2为截止状态);该第二脉冲宽度调变信号Spwm2在一时间区间t22~t23为导通状态(此时,该第一脉冲宽度调变信号Spwm1为截止状态),并且,该第一脉冲宽度调变信号Spwm1与该第二脉冲宽度调变信号Spwm2为周期性的互补切换导通与截止。此外,一时间区间t21~t22即为所述的短路防止时间Td。As mentioned above, the first pulse width modulation signal Spwm1 and the second pulse width modulation signal Spwm2 are complementary on and off, wherein the first pulse width modulation signal Spwm1 is a conduction signal in a time interval t20-t21 On state (at this time, the second pulse width modulation signal Spwm2 is off state); the second pulse width modulation signal Spwm2 is on state in a time interval t22~t23 (at this time, the first pulse width modulation signal Spwm2 The signal Spwm1 is turned off), and the first pulse width modulation signal Spwm1 and the second pulse width modulation signal Spwm2 are periodically and complementary switched on and off. In addition, a time interval t21-t22 is the short-circuit prevention time Td.
再者,假设该电源转换器106于一时间tov时为过电压输出,亦即,该过电压保护单元1064检测到该电源转换器106为过电压输出时,因此,该过电压保护单元1064所产生该输出电压信号Sovp为低电平信号。由于当过电压输出发生时(亦即,发生在时间区间t22~t23),该第二脉冲宽度调变信号Spwm2为高电平导通状态(相对地,该第一脉冲宽度调变信号Spwm1为低电平截止状态),因此,该触发控制单元1066的该或非门10664两输入端所接收到的电平分别为逻辑0电平与逻辑1电平,故此,该或非门10664的输出端产生逻辑0电平。此时,该逻辑0电平提供至该正缘触发D型触发器10662的该时脉输入端CLK。此外,假设该正缘触发D型触发器10662为一正缘触发D型触发器,并且初始输出值为逻辑1电平。对该正缘触发D型触发器10662而言,由于该时脉输入端CLK为逻辑0电平,因此,该正缘触发D型触发器10662的输出为逻辑1电平(即为该初始输出值),以维持致能该驱动单元1067的操作。Furthermore, assuming that the
直到时间t23时,该第二脉冲宽度调变信号Spwm2由高电平导通状态转变为低电平截止状态时(此时,该第一脉冲宽度调变信号Spwm1仍为低电平截止状态),由于该第一脉冲宽度调变信号Spwm1与该第二脉冲宽度调变信号Spwm2于时间t23时(亦即,短路防止时间dead time发生时),该两信号皆提供该或非门10664的输入端为逻辑0电平,因此,经过NOR逻辑运算后,该或非门10664输出产生逻辑1电平,提供至该正缘触发D型触发器10662的该时脉输入端CLK。对该正缘触发D型触发器10662而言,由于该时脉输入端CLK接收一个高电平电压,因此,该正缘触发D型触发器10662的输出转态为逻辑0电平(即为低电平信号的该输出电压信号Sovp),以禁能该驱动单元1067的操作。Until time t23, when the second pulse width modulation signal Spwm2 changes from a high level on state to a low level off state (at this time, the first pulse width modulation signal Spwm1 is still in a low level off state) Since the first pulse width modulation signal Spwm1 and the second pulse width modulation signal Spwm2 are at time t23 (that is, when the short circuit prevention time dead time occurs), the two signals both provide the input of the NOR
反之,假设该电源转换器106于一时间tnv时排除过电压输出状况,亦即,该过电压保护单元1064检测到该电源转换器106为工作电压输出时,因此,该过电压保护单元1064所产生该输出电压信号Sovp为高电平信号。由于当工作电压输出发生时(亦即,发生在时间区间t24~t25),该第一脉冲宽度调变信号Spwm1为高电平导通状态(相对地,该第二脉冲宽度调变信号Spwm2为低电平截止状态),因此,该触发控制单元1066的该或非门10664两输入端所接收到的电平分别为逻辑1电平与逻辑0电平,故此,该或非门10664的输出端产生逻辑0电平。此时,该逻辑0电平提供至该正缘触发D型触发器10662的该时脉输入端CLK。对该正缘触发D型触发器10662而言,由于该时脉输入端CLK为逻辑0电平,因此,该正缘触发D型触发器10662的输出为逻辑0电平(即为维持前态的逻辑0电平输出值),以维持禁能该驱动单元1067的操作。On the contrary, assuming that the
直到时间t25时,该第一脉冲宽度调变信号Spwm1由高电平导通状态转变为低电平截止状态时(此时,该第二脉冲宽度调变信号Spwm2仍为低电平截止状态),由于该第一脉冲宽度调变信号Spwm1与该第二脉冲宽度调变信号Spwm2于时间t25时(亦即,短路防止时间dead time发生时),该两信号皆提供该或非门10664的输入端为逻辑0电平,因此,经过NOR逻辑运算后,该或非门10664输出产生逻辑1电平,提供至该正缘触发D型触发器10662的该时脉输入端CLK。对该正缘触发D型触发器10662而言,由于该时脉输入端CLK接收一个高电平电压,因此,该正缘触发D型触发器10662的输出转态为逻辑1电平(即为高电平信号的该输出电压信号Sovp),以致能该驱动单元1067的操作。Until time t25, when the first pulse width modulation signal Spwm1 changes from a high level on state to a low level off state (at this time, the second pulse width modulation signal Spwm2 is still in a low level off state) Since the first pulse width modulation signal Spwm1 and the second pulse width modulation signal Spwm2 are at time t25 (that is, when the short circuit prevention time dead time occurs), the two signals both provide the input of the NOR
简而言之,通过该触发控制单元1066的操作,使得当该电源转换器106于时间tov为过电压输出时,该触发控制单元1066将维持原本高电平的该触发控制信号Sen,以维持致能该驱动单元1067对该全桥式切换电路1061的驱动;直到经过一延迟时间Ty1后(亦即,该延迟时间Ty1=t23-tov),该触发控制单元1066在该脉冲宽度调变信号Spwm1,Spwm2的工作周期结束时(亦即,该短路防止时间发生时),该触发控制单元1066才产生低电平的该触发控制信号Sen,以禁能该驱动单元1067对该全桥式切换电路1061的驱动。反之,使得当该电源转换器106于时间tnv发生工作电压输出时,该触发控制单元1066将维持原本低电平的该触发控制信号Sen,以维持禁能该驱动单元1067对该全桥式切换电路1061的驱动;直到经过一延迟时间Ty2后(亦即,该延迟时间Ty2=t25-tnv),该触发控制单元1066在该脉冲宽度调变信号Spwm1,Spwm2的工作周期结束时(亦即,该短路防止时间发生时),该触发控制单元1066才产生高电平的该触发控制信号Sen,以致能该驱动单元1067对该全桥式切换电路1061的驱动。In short, through the operation of the
请参见图7为本发明充电装置电源转换器的控制方法的流程图。该控制方法包含下列步骤:提供一全桥式切换电路、一谐振电路以及一变压器(S100)。其中,该全桥式切换电路包含四个功率开关元件所组成的两桥臂,以切换该直流输入电压为一方波电压。该谐振电路电性连接该全桥式切换电路,以接收并转换该方波电压为一谐振电压。该变压器具有一输入侧与一输出侧,该输入侧电性连接该谐振电路,以接收该谐振电压。提供一过电压保护单元,以检测该电源转换器的一输出电压,并产生一输出电压信号(S200)。其中,该过电压保护单元电性连接该变压器的该输出侧。提供一脉冲宽度调变控制单元,以产生一脉冲宽度调变信号(S300)。提供一触发控制单元,接收该输出电压信号与该脉冲宽度调变信号,并产生一触发控制信号(S400)。其中,该触发控制单元包含一正缘触发D型触发器(leading-edge triggeredD-type flip-flop)与一或非门(NOR gate)。该正缘触发D型触发器包含一数据输入端、一时脉输入端以及至少一输出端。该或非门包含两输入端与一输出端,并且该输出端连接该正缘触发D型触发器的该时脉输入端。该数据输入端接收该过电压保护单元所产生该输出电压信号;该或非门的该两输入端分别接收该脉冲宽度调变信号。Please refer to FIG. 7 which is a flow chart of the control method of the power converter of the charging device according to the present invention. The control method includes the following steps: providing a full bridge switching circuit, a resonant circuit and a transformer (S100). Wherein, the full-bridge switching circuit includes two bridge arms composed of four power switching elements to switch the DC input voltage into a square wave voltage. The resonant circuit is electrically connected to the full-bridge switching circuit to receive and convert the square wave voltage into a resonant voltage. The transformer has an input side and an output side, and the input side is electrically connected to the resonant circuit to receive the resonant voltage. An overvoltage protection unit is provided to detect an output voltage of the power converter and generate an output voltage signal (S200). Wherein, the overvoltage protection unit is electrically connected to the output side of the transformer. A PWM control unit is provided to generate a PWM signal (S300). A trigger control unit is provided to receive the output voltage signal and the pulse width modulation signal, and generate a trigger control signal (S400). Wherein, the trigger control unit includes a leading-edge triggered D-type flip-flop and a NOR gate. The positive-edge triggered D-type flip-flop includes a data input terminal, a clock input terminal and at least one output terminal. The NOR gate includes two input terminals and an output terminal, and the output terminal is connected to the clock input terminal of the positive-edge triggered D-type flip-flop. The data input end receives the output voltage signal generated by the overvoltage protection unit; the two input ends of the NOR gate respectively receive the pulse width modulation signal.
提供一驱动单元,接收该触发控制信号与该脉冲宽度调变信号,以驱动该全桥式切换电路导通与截止(S500)。当该过电压保护单元检测到该输出电压为一过电压时,该过电压保护单元所产生该输出电压信号控制该触发控制单元,使得该触发控制单元在该脉冲宽度调变信号的工作周期结束时,输出该触发控制信号,以禁能(disable)该驱动单元对该全桥式切换电路的驱动(S600)。其中当该过电压保护单元检测到该输出电压为该过电压输出时,该过电压保护单元所产生该输出电压信号为一过电压信号,以控制该触发控制单元输出低电平的该触发控制信号,以禁能该驱动单元对该全桥式切换电路的驱动。其中,该过电压保护单元可通过一光耦合单元,将该输出电压信号传送至该触发控制单元。当该电源转换器为过电压输出,并且该脉冲宽度调变信号皆为低电平时,该正缘触发D型触发器输出低电平的该触发控制信号,以禁能该驱动单元对该全桥式切换电路的驱动。此外,该全桥式切换电路的该两桥臂互补导通与截止间隔一短路防止时间(dead time),因此,当该电源转换器为过电压输出,并且该短路防止时间发生时,该正缘触发D型触发器输出低电平的该触发控制信号,以禁能该驱动单元对该全桥式切换电路的驱动。A driving unit is provided to receive the trigger control signal and the pulse width modulation signal to drive the full-bridge switching circuit on and off (S500). When the overvoltage protection unit detects that the output voltage is an overvoltage, the output voltage signal generated by the overvoltage protection unit controls the trigger control unit, so that the trigger control unit ends the duty cycle of the pulse width modulation signal , outputting the trigger control signal to disable (disable) the drive unit from driving the full-bridge switching circuit (S600). Wherein when the overvoltage protection unit detects that the output voltage is the overvoltage output, the output voltage signal generated by the overvoltage protection unit is an overvoltage signal to control the trigger control unit to output a low level trigger control signal to disable the drive unit from driving the full-bridge switching circuit. Wherein, the overvoltage protection unit can transmit the output voltage signal to the trigger control unit through an optical coupling unit. When the power converter is an over-voltage output and the pulse width modulation signals are all at low level, the positive-edge triggered D-type flip-flop outputs the trigger control signal at low level to disable the drive unit for all Bridge switching circuit driver. In addition, the two bridge arms of the full-bridge switching circuit are complementary turned on and off at intervals of a short-circuit prevention time (dead time). Therefore, when the power converter is an overvoltage output and the short-circuit prevention time occurs, the positive The edge-triggered D-type flip-flop outputs the low-level trigger control signal to disable the drive unit from driving the full-bridge switching circuit.
当过电压输出状况排除后,该过电压保护单元检测到该输出电压为一工作电压时,该过电压保护单元所产生该输出电压信号控制该触发控制单元,使得该触发控制单元在该脉冲宽度调变信号的工作周期结束时,输出该触发控制信号,以致能(enable)该驱动单元对该全桥式切换电路的驱动。当该电源转换器为工作电压输出,并且该脉冲宽度调变信号皆为低电平时,该正缘触发D型触发器输出高电平的该触发控制信号,以致能该驱动单元对该全桥式切换电路的驱动。亦即,当该电源转换器为工作电压输出,并且该短路防止时间发生时,该正缘触发D型触发器输出高电平的该触发控制信号,以致能该驱动单元对该全桥式切换电路的驱动。When the overvoltage output condition is eliminated, when the overvoltage protection unit detects that the output voltage is a working voltage, the output voltage signal generated by the overvoltage protection unit controls the trigger control unit, so that the trigger control unit is at the pulse width When the duty cycle of the modulation signal ends, the trigger control signal is output to enable the drive unit to drive the full-bridge switching circuit. When the power converter is the working voltage output and the pulse width modulation signals are all at low level, the positive-edge triggered D-type flip-flop outputs the high-level trigger control signal, so as to enable the drive unit to control the full bridge drive of switching circuits. That is, when the power converter is the working voltage output and the short-circuit prevention time occurs, the positive-edge triggered D-type flip-flop outputs the high-level trigger control signal to enable the drive unit to switch the full-bridge circuit drive.
惟,以上所述,仅为本发明较佳具体实施例的详细说明与图式,惟本发明的特征并不局限于此,并非用以限制本发明,本发明的所有范围应以下述的申请专利权利要求范围为准,凡合于本发明申请专利权利要求范围的精神与其类似变化的实施例,皆应包含于本发明的范畴中,任何本领域技术人员在本发明的领域内,可轻易思及的变化或修饰皆可涵盖在本案的专利权利要求范围。However, the above description is only a detailed description and drawings of preferred embodiments of the present invention, but the features of the present invention are not limited thereto, and are not intended to limit the present invention. The scope of the patent claims is the criterion, and all embodiments that meet the spirit of the scope of the patent claims of the present invention and its similar changes should be included in the scope of the present invention, and any skilled person in the field of the present invention can easily All conceivable changes or modifications can be covered by the scope of the patent claims of this case.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101656108A CN103427649A (en) | 2012-05-25 | 2012-05-25 | Power converter and its control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101656108A CN103427649A (en) | 2012-05-25 | 2012-05-25 | Power converter and its control method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103427649A true CN103427649A (en) | 2013-12-04 |
Family
ID=49651948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101656108A Pending CN103427649A (en) | 2012-05-25 | 2012-05-25 | Power converter and its control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103427649A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108063555A (en) * | 2016-11-07 | 2018-05-22 | 台达电子工业股份有限公司 | Multi-stage power converter and control method thereof |
TWI746294B (en) * | 2020-11-27 | 2021-11-11 | 宏碁股份有限公司 | Power supply device with low loss |
TWI855959B (en) * | 2024-01-26 | 2024-09-11 | 致茂電子股份有限公司 | Battery charging and discharge system and battery discharge dynamic adjustment method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3898387A (en) * | 1973-08-21 | 1975-08-05 | Charles P Fort | Digital data switching system utilizing voice encoding and decoding circuitry |
US20040160794A1 (en) * | 1999-07-22 | 2004-08-19 | Yung-Lin Lin | High-efficiency adaptive DC/AC converter |
CN1950998A (en) * | 2003-10-23 | 2007-04-18 | 舒马克电器公司 | System and methods for charging batteries |
US20100328974A1 (en) * | 2009-06-30 | 2010-12-30 | Kenny John F | Resonant converter for achieving low common-mode noise, along with isolated power supply and method employing the same |
CN102369654A (en) * | 2009-03-13 | 2012-03-07 | 富士电机株式会社 | Switching power supply device, integrated circuit, and method for setting operation state of switching power supply device |
TW201215239A (en) * | 2010-09-30 | 2012-04-01 | Beyond Innovation Tech Co Ltd | Apparatus and method for driving fluorescent lamp |
-
2012
- 2012-05-25 CN CN2012101656108A patent/CN103427649A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3898387A (en) * | 1973-08-21 | 1975-08-05 | Charles P Fort | Digital data switching system utilizing voice encoding and decoding circuitry |
US20040160794A1 (en) * | 1999-07-22 | 2004-08-19 | Yung-Lin Lin | High-efficiency adaptive DC/AC converter |
CN1950998A (en) * | 2003-10-23 | 2007-04-18 | 舒马克电器公司 | System and methods for charging batteries |
CN102369654A (en) * | 2009-03-13 | 2012-03-07 | 富士电机株式会社 | Switching power supply device, integrated circuit, and method for setting operation state of switching power supply device |
US20100328974A1 (en) * | 2009-06-30 | 2010-12-30 | Kenny John F | Resonant converter for achieving low common-mode noise, along with isolated power supply and method employing the same |
TW201215239A (en) * | 2010-09-30 | 2012-04-01 | Beyond Innovation Tech Co Ltd | Apparatus and method for driving fluorescent lamp |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108063555A (en) * | 2016-11-07 | 2018-05-22 | 台达电子工业股份有限公司 | Multi-stage power converter and control method thereof |
CN108063555B (en) * | 2016-11-07 | 2020-04-03 | 台达电子工业股份有限公司 | Multilevel power converter and control method thereof |
TWI746294B (en) * | 2020-11-27 | 2021-11-11 | 宏碁股份有限公司 | Power supply device with low loss |
US11336191B1 (en) | 2020-11-27 | 2022-05-17 | Acer Incorporated | Power supply device with low loss |
TWI855959B (en) * | 2024-01-26 | 2024-09-11 | 致茂電子股份有限公司 | Battery charging and discharge system and battery discharge dynamic adjustment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201349724A (en) | Power converter and method for controlling the same | |
CN102263508B (en) | Resonant conversion system and overcurrent protection method | |
CN101599710B (en) | Monopole inverter capable of boosting voltage | |
CN203482091U (en) | Converter and power factor controller | |
TWI433426B (en) | Battery charging system | |
US9231488B2 (en) | Power converter and method for controlling the same | |
CN103427656B (en) | A kind of crisscross parallel inverse-excitation type LED drive power and PFM control circuit thereof | |
KR102136564B1 (en) | Power supply apparatus and driving method thereof | |
CN102104341B (en) | A single-stage boost inverter | |
CN103516204A (en) | Multi-level converter, inverter and solar power supply apparatus | |
CN110149044B (en) | Two-stage converter, starting method thereof, LLC converter and application system | |
Wu et al. | Interleaved phase-shift full-bridge converter with transformer winding series–parallel autoregulated (SPAR) current doubler rectifier | |
CN116345916A (en) | Constant Frequency DC/DC Power Converter | |
Poon et al. | A constant-power battery charger with inherent soft switching and power factor correction | |
CN102820775A (en) | Integrated buck-boost converter of charging device | |
CN117439419A (en) | Flyback conversion circuit, control method thereof and control chip | |
WO2024060728A1 (en) | Bidirectional power conversion apparatus and control method therefor, and computer device and computer-readable storage medium | |
CN103427649A (en) | Power converter and its control method | |
CN114640255B (en) | A series resonant converter and control method thereof | |
CN105553281B (en) | The peak point current numerical control system and method for the grid-connected micro- inverter of inverse-excitation type | |
Safaee et al. | Time-domain steady-state analysis of fixed-frequency series resonant converters with phase-shift modulation | |
KR101338921B1 (en) | Grid-tied power converter for battery energy storage composed of 2-stage dc-dc converter | |
CN110149052B (en) | Resonant circuit topology structure for battery charging | |
Lin et al. | Analysis, design and implementation of a high‐voltage gain DC‐DC converter | |
Xie et al. | A novel high power density dual-buck inverter with coupled filter inductors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20131204 |