CN103422007A - Preparation method of high temperature resistant and abrasion resistant alloy steel containing aluminum-boron-chromium - Google Patents
Preparation method of high temperature resistant and abrasion resistant alloy steel containing aluminum-boron-chromium Download PDFInfo
- Publication number
- CN103422007A CN103422007A CN2013103888710A CN201310388871A CN103422007A CN 103422007 A CN103422007 A CN 103422007A CN 2013103888710 A CN2013103888710 A CN 2013103888710A CN 201310388871 A CN201310388871 A CN 201310388871A CN 103422007 A CN103422007 A CN 103422007A
- Authority
- CN
- China
- Prior art keywords
- boron
- chromium
- steel
- temperature
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000851 Alloy steel Inorganic materials 0.000 title claims abstract description 51
- -1 aluminum-boron-chromium Chemical compound 0.000 title claims abstract description 40
- 238000005299 abrasion Methods 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims description 14
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 56
- 239000010959 steel Substances 0.000 claims abstract description 56
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 53
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 48
- 239000000956 alloy Substances 0.000 claims abstract description 48
- 229910000604 Ferrochrome Inorganic materials 0.000 claims abstract description 37
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 20
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 15
- 229910000519 Ferrosilicon Inorganic materials 0.000 claims abstract description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 claims abstract 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 44
- 239000000203 mixture Substances 0.000 claims description 43
- 229910052710 silicon Inorganic materials 0.000 claims description 36
- 239000000126 substance Substances 0.000 claims description 32
- 239000011651 chromium Substances 0.000 claims description 23
- 229910052804 chromium Inorganic materials 0.000 claims description 22
- 229910052698 phosphorus Inorganic materials 0.000 claims description 17
- 229910052717 sulfur Inorganic materials 0.000 claims description 17
- 150000004767 nitrides Chemical class 0.000 claims description 11
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 229910052791 calcium Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 229910018540 Si C Inorganic materials 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 4
- 238000003723 Smelting Methods 0.000 abstract description 2
- 238000005275 alloying Methods 0.000 abstract description 2
- 238000010791 quenching Methods 0.000 abstract description 2
- 230000000171 quenching effect Effects 0.000 abstract description 2
- 238000005496 tempering Methods 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 21
- 239000003921 oil Substances 0.000 description 15
- 239000000758 substrate Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 238000001816 cooling Methods 0.000 description 10
- 238000000576 coating method Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910000990 Ni alloy Inorganic materials 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000004321 preservation Methods 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 239000011195 cermet Substances 0.000 description 5
- 238000005253 cladding Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910000943 NiAl Inorganic materials 0.000 description 3
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 3
- 238000004372 laser cladding Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- TVJORGWKNPGCDW-UHFFFAOYSA-N aminoboron Chemical compound N[B] TVJORGWKNPGCDW-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 229960002449 glycine Drugs 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000013905 glycine and its sodium salt Nutrition 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RVPVRDXYQKGNMQ-UHFFFAOYSA-N lead(2+) Chemical compound [Pb+2] RVPVRDXYQKGNMQ-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
一种含铝-硼-铬耐高温磨蚀合金钢的制备方法,其特征在于采用电炉熔炼,先将质量分数8~10%的硼铁、4~5%的金属铝,3~4%的氮化铬铁,2.5~3.0%的硅铁,4~5%的中碳铬铁,4~5%的高碳铬铁和69~73%的Q235废钢,在电炉内熔化,钢水全部进入钢包后,用喂丝机将合金线送入到钢包内的钢水中对钢水进行微合金化处理,然后将钢水直接浇入铸型,得到铸造含铝-硼-铬耐高温磨蚀合金钢,经油冷淬火和高温回火后,得到的合金钢具有良好的力学性能和耐高温磨蚀性能。A method for preparing aluminum-boron-chromium-containing high-temperature abrasion-resistant alloy steel, which is characterized in that electric furnace smelting is used, and the mass fraction is 8-10% of boron-iron, 4-5% of metal aluminum, 3-4% of nitrogen Ferrochrome, 2.5-3.0% ferrosilicon, 4-5% medium-carbon ferrochrome, 4-5% high-carbon ferrochrome and 69-73% Q235 scrap steel are melted in the electric furnace, and all molten steel enters the ladle , use a wire feeder to feed the alloy wire into the molten steel in the ladle to perform micro-alloying treatment on the molten steel, and then pour the molten steel directly into the mold to obtain a cast aluminum-boron-chromium-containing high-temperature wear-resistant alloy steel, which is cooled by oil After quenching and high-temperature tempering, the obtained alloy steel has good mechanical properties and high-temperature abrasion resistance.
Description
技术领域technical field
本发明公开了一种耐高温磨蚀合金钢及其制备方法,特别涉及一种含铝-硼-铬耐高温磨蚀合金钢及其制备方法,属于高温材料技术领域。The invention discloses a high-temperature abrasion-resistant alloy steel and a preparation method thereof, in particular to an aluminum-boron-chromium-containing high-temperature abrasion-resistant alloy steel and a preparation method thereof, belonging to the technical field of high-temperature materials.
背景技术Background technique
高温磨损是一种极其严酷的磨损工况,对材料性能要求高,不仅要求材料具有优异的抗磨损性能,还要求具有良好的抗氧化腐蚀性能,传统耐磨材料很难满足其使用要求。为了提高材料的抗高温磨损能力,中国发明专利CN85100649公开了超高温耐磨铸造镍基合金,该合金具有在高温(≥1200℃)下保持高温耐磨性和抗氧化性的特点,适用于制造轧钢厂高温加热炉部件,尤其是超高温磨损部件。优先选用的合金成分(重量)是:铬30-35%、钨10-15%、硅0.5-0.8%、锰0.4-0.8%、稀土0.1-0.2%或钙0.05-0.08%、碳0.40-0.50%、铁5%以下、镍46-52%,其它为杂质。中国发明专利CN102978499A还公开了一种NiAl合金化粘结相的抗高温磨损硬质合金,硬质相为WC和/TiC,粘结相为NiAl合金化的Co和/Fe,体积百分比为10~40%;制备工艺包括:按Ni-50at.%Al的成分比例,把0.03~21.04wt%镍粉和铝粉,与碳化物粉末混合均匀;置于石墨容器中铺平,非氧化性气氛下,升温加热至660~1300℃,保温,然后自然冷却,获得碳化物与NiAl的混合物;碾磨、破碎、过筛,获得混合粉末;400±50℃的氢气氛下脱氧预处理;将45.77-96.34wt%的混合粉末,与余量的Co和/Fe粉末湿磨;湿磨混合料喷雾干燥、压制;压坯1350~1550℃低压液相烧结获得抗高温磨损硬质合金。但是上述抗高温磨损材料贵重合金加入量多,价格昂贵,推广应用困难。High-temperature wear is an extremely severe wear condition, which requires high material performance. It not only requires the material to have excellent anti-wear performance, but also requires good anti-oxidation and corrosion performance. Traditional wear-resistant materials are difficult to meet its use requirements. In order to improve the high-temperature wear resistance of materials, Chinese invention patent CN85100649 discloses ultra-high temperature wear-resistant cast nickel-based alloys, which have the characteristics of maintaining high-temperature wear resistance and oxidation resistance at high temperatures (≥1200°C), and are suitable for manufacturing High-temperature heating furnace components in rolling mills, especially ultra-high temperature wear parts. The preferred alloy composition (weight) is: chromium 30-35%, tungsten 10-15%, silicon 0.5-0.8%, manganese 0.4-0.8%, rare earth 0.1-0.2% or calcium 0.05-0.08%, carbon 0.40-0.50 %, less than 5% iron, 46-52% nickel, and others are impurities. Chinese invention patent CN102978499A also discloses a high-temperature wear-resistant cemented carbide with a NiAl alloyed binder phase, the hard phase is WC and /TiC, the binder phase is NiAl alloyed Co and /Fe, and the volume percentage is 10~ 40%; the preparation process includes: according to the composition ratio of Ni-50at.%Al, mix 0.03~21.04wt% nickel powder and aluminum powder with carbide powder evenly; place it in a graphite container and lay it flat under a non-oxidizing atmosphere , heated to 660-1300°C, kept warm, and then naturally cooled to obtain a mixture of carbide and NiAl; ground, crushed, and sieved to obtain a mixed powder; deoxidation pretreatment under a hydrogen atmosphere of 400±50°C; 45.77- 96.34wt% mixed powder is wet-milled with the balance of Co and/Fe powder; the wet-milled mixture is spray-dried and pressed; the compact is sintered at 1350-1550°C in low-pressure liquid phase to obtain a high-temperature wear-resistant cemented carbide. However, the above-mentioned high-temperature wear-resistant material precious alloy has a large amount of addition, is expensive, and is difficult to popularize and apply.
在此基础上,又开发成功了多种抗高温磨损的表面处理技术。中国发明专利CN102912339A公开了一种等离子弧熔覆制备耐高温磨损衬板的方法,其方法步骤包括:清除金属基材表面的锈蚀、油污、氧化皮,根据金属基材和工况要求,配制金属基陶瓷颗粒增强型合金粉末,将混合后的合金粉末与乳白胶混合,然后将混合好的合金粉末均匀涂刷在金属基材的表面,预涂层厚度为0.8~2mm,自然干燥,将带有预涂合层的金属基材固定在等离子弧熔覆设备加工机床上,等离子弧对金属基材表面预涂层进行单道扫描,随着等离子弧的移动,在金属基材表面均匀熔覆得到熔覆厚度为0.3~1.5mm的熔覆层。该发明所制备的耐高温复合衬板,具有成本低,质量稳定,适合大规模生产,可满足现场高温磨损工况的需要,有效提高了衬板使用寿命。中国发明专利CN102912254A还公开了一种抗高温磨损导位板,由WC颗粒棒状增强相与高铬镍合金基体复合而成,在宏观上构成“蜂窝”状结构,制备方法是先制备高铬镍合金导位板,然后在高铬镍合金导位板工作表层加工均匀交替排列的盲孔,将WC颗粒与Ni基钎料放入球磨机中球磨混料,向混合料内加入酚醛树脂和无水乙醇,混合均匀后压坯造粒,然后把所得的粉料填入高铬镍合金导位板工作表层的盲孔中并压实,将压入粉料的高铬镍合金导位板放入烘干炉中进行烘干,随后把烘干的高铬镍合金导位板放到真空炉中或者气体保护炉中进行熔烧钎焊,然后炉冷至室温,该发明导位板具有硬度高、耐磨性和抗氧化性好的特点。中国发明专利CN102909380A还公开了一种微冶金制备耐高温复合衬板的方法,其方法步骤包括:清除金属基材表面的锈蚀、油污、氧化皮杂质,根据金属基材和工况要求,配制金属基陶瓷颗粒增强型合金粉末进行混合,将混合后的合金粉末与乳白胶混合,然后将混合好的合金粉末均匀涂刷在金属基材的表面,干燥后用黑墨汁将合金粉末层涂黑,再干燥,通过半导体激光光束高密度能量,使得金属基陶瓷颗粒增强型合金粉末与基材表面金属实现了快速微冶金反应,在金属基材表面获得与基材呈冶金结合的0.2~0.35mm厚度的耐高温金属陶瓷层。该发明的耐高温复合衬板,具有成本低,质量稳定,适合大规模生产,可满足现场高温磨损特殊工况的需要,有效提高了衬板使用寿命。中国发明专利CN102744525A还公开了一种耐高温磨损内衬的复合制备方法,先对钢基材表面进行预处理,然后将基材预热;接着将钢基材固定在激光熔覆设备工作台上;在钢基材表面激光熔覆Ni基高温合金粉末;在钢基材激光熔覆层表面进行堆焊,最后,将堆焊完成的内衬进行缓冷。该发明与现有技术相比具有内衬表面硬度高,整体韧性好,实用性强,结合紧密,工艺操作简单、灵活,成本低,效果好等优点。中国发明专利CN102212820A还公开了一种干熄焦焦罐用耐高温磨损衬板的制备方法,所述耐高温磨损衬板为金属衬板上熔覆金属陶瓷层,其按照下述步骤进行制备:(1)配制均匀混合的金属陶瓷粉末;(2)将吸光涂料均匀涂刷在金属衬板表面;(3)待吸光涂料的涂层干后,采用气动送粉的方法,或者铺粉方式,或者重力送粉方式送粉,粉层厚度达到0.5~4.0mm;(4)通过大功率激光器扫描铺好的或输送到位的金属陶瓷粉末,在金属衬板上形成熔覆的耐高温磨损金属陶瓷层。采用该发明制备干熄焦焦罐用耐高温磨损金属衬板,成本低,生产质量稳定,而且实施方便,便于大规模生产。中国发明专利CN1928155还公开了一种合金镀液和与之配套的处理技术工艺,生产出耐高温腐蚀、耐高温磨损性能的低成本、低耗能、价值高的抽油泵,其目的是在抽油泵生产制造、修复领域把高成本、高耗能最大限度的降下来。具体实施:将氯化镍、氨基乙酸、胺基硼烷、氟化石墨、硼酸、糖精钠、铅离子等按比例称重量,放入带搅拌器的容器内进行搅拌,待全部溶解后便可使用。需镀时将镀液加温40~60℃,根据所需厚度确定施镀时间。其中的材料为,纯净水∶氯化镍∶氨基乙酸∶胺基硼烷∶氟化石墨∶硼酸∶糖精钠∶铅离子∶氨水∶氢氧化钠=90∶3∶2.5∶0.45∶0.6∶3∶0.3∶0.003∶0.35∶0.15。中国发明专利CN1459514还公开了制备耐高温磨损涂层的方法,该方法通过原子束沉积进行涂层的制备;通过电子束或激光束处理控制涂层体部份的微观结构;通过离子束等技术强化涂层与基体之间,不同涂层之间的结合。采用该工艺可在热加工工具如无缝钢管生产用顶头、轧辊等表面涂覆耐高温磨损涂层。但是,上述抗高温磨损的表面处理技术存在着复合层和基体材料在高温磨损复杂工况下,易发生开裂、剥落现象,严重影响工件使用寿命。On this basis, a variety of high-temperature wear-resistant surface treatment technologies have been successfully developed. Chinese invention patent CN102912339A discloses a method for preparing a high-temperature wear-resistant liner by plasma arc cladding. Base ceramic particle-reinforced alloy powder, mix the mixed alloy powder with milky white glue, and then evenly brush the mixed alloy powder on the surface of the metal substrate, the thickness of the pre-coating is 0.8-2mm, and dry naturally. The metal substrate with the pre-coated layer is fixed on the processing machine tool of the plasma arc cladding equipment, and the plasma arc scans the pre-coating on the surface of the metal substrate in a single pass. With the movement of the plasma arc, the metal substrate surface is uniformly clad A cladding layer with a cladding thickness of 0.3-1.5 mm is obtained. The high-temperature-resistant composite liner prepared by the invention has low cost and stable quality, is suitable for large-scale production, can meet the needs of on-site high-temperature wear conditions, and effectively improves the service life of the liner. Chinese invention patent CN102912254A also discloses a high-temperature wear-resistant guide plate, which is composed of WC particle rod-shaped reinforcement phase and high-chromium-nickel alloy matrix, forming a "honeycomb" structure on a macroscopic level. The preparation method is to prepare a high-chromium-nickel alloy guide plate first. , and then process blind holes evenly and alternately arranged on the working surface of the high-chromium-nickel alloy guide plate, put WC particles and Ni-based solder into the ball mill to grind the mixture, add phenolic resin and absolute ethanol to the mixture, mix evenly and press The billet is granulated, and then the obtained powder is filled into the blind hole of the working surface of the high-chromium-nickel alloy guide plate and compacted, and the high-chromium-nickel alloy guide plate pressed into the powder is put into a drying furnace for drying, and then the The dried high-chromium-nickel alloy guide plate is put into a vacuum furnace or a gas shielded furnace for melting and brazing, and then the furnace is cooled to room temperature. The guide plate of the invention has the characteristics of high hardness, good wear resistance and oxidation resistance. Chinese invention patent CN102909380A also discloses a method for preparing a high-temperature resistant composite lining by micro-metallurgy. Mix the alloy powder reinforced with base ceramic particles, mix the mixed alloy powder with milky white glue, then evenly paint the mixed alloy powder on the surface of the metal substrate, and paint the alloy powder layer black with black ink after drying, Then dry, through the high-density energy of the semiconductor laser beam, the metal-based ceramic particle-reinforced alloy powder and the metal on the surface of the substrate realize a rapid micro-metallurgical reaction, and a thickness of 0.2-0.35mm that is metallurgically bonded to the substrate is obtained on the surface of the metal substrate. High temperature resistant cermet layer. The high-temperature-resistant composite liner of the invention has low cost and stable quality, is suitable for large-scale production, can meet the needs of special working conditions of high-temperature wear on site, and effectively improves the service life of the liner. Chinese invention patent CN102744525A also discloses a composite preparation method of a high-temperature wear-resistant lining. First, the surface of the steel substrate is pretreated, and then the substrate is preheated; then the steel substrate is fixed on the workbench of the laser cladding equipment. ; Laser cladding Ni-based superalloy powder on the surface of the steel substrate; surfacing welding on the surface of the laser cladding layer of the steel substrate, and finally, slowly cooling the inner lining after the surfacing welding. Compared with the prior art, the invention has the advantages of high lining surface hardness, good overall toughness, strong practicability, tight combination, simple and flexible process operation, low cost and good effect. Chinese invention patent CN102212820A also discloses a method for preparing a high-temperature wear-resistant liner for CDQ coke tanks. The high-temperature wear-resistant liner is a metal liner clad with a cermet layer, which is prepared according to the following steps: (1) Prepare evenly mixed cermet powder; (2) Apply the light-absorbing paint evenly on the surface of the metal lining; (3) After the coating of the light-absorbing paint is dry, use the method of pneumatic powder feeding, or the method of powder spreading, Or powder feeding by gravity powder feeding, the thickness of the powder layer reaches 0.5-4.0mm; (4) Scan the paved or transported cermet powder by a high-power laser, and form cladding high-temperature wear-resistant cermet powder on the metal liner layer. Adopting the invention to prepare the high-temperature wear-resistant metal liner for CDQ coke tanks has low cost, stable production quality, convenient implementation and large-scale production. Chinese invention patent CN1928155 also discloses an alloy plating solution and its supporting processing technology to produce low-cost, low-energy, and high-value oil pumps with high-temperature corrosion resistance and high-temperature wear resistance. In the field of oil pump manufacturing and repair, the high cost and high energy consumption are minimized. Specific implementation: Weigh nickel chloride, aminoacetic acid, aminoborane, fluorinated graphite, boric acid, sodium saccharin, lead ions, etc. in proportion, put them in a container with a stirrer and stir them, and wait until they are completely dissolved. use. When plating is required, heat the plating solution to 40-60°C, and determine the plating time according to the required thickness. The materials are: pure water: nickel chloride: glycine: aminoborane: graphite fluoride: boric acid: sodium saccharin: lead ion: ammonia water: sodium hydroxide=90:3:2.5:0.45:0.6:3: 0.3:0.003:0.35:0.15. Chinese invention patent CN1459514 also discloses a method for preparing a high-temperature wear-resistant coating, which is prepared by atomic beam deposition; the microstructure of the coating body is controlled by electron beam or laser beam treatment; Strengthen the bonding between the coating and the substrate, and between different coatings. This process can be used to coat the surface of hot processing tools such as plugs and rolls for seamless steel pipe production with high temperature and wear resistant coatings. However, the above-mentioned high-temperature wear-resistant surface treatment technology has the problem that the composite layer and the base material are prone to cracking and peeling under the complex high-temperature wear conditions, which seriously affects the service life of the workpiece.
发明内容Contents of the invention
本发明针对现有抗高温磨损材料存在的问题,提出以铝、硼、铬为主要合金元素,开发一种含铝-硼-铬耐高温磨蚀合金钢,为了提高这一耐高温磨蚀合金钢的力学性能,在钢水冶炼过程中,通过喂丝机加入多元微合金,达到提高材料性能的目的。Aiming at the problems existing in the existing high-temperature wear-resistant materials, the present invention proposes to use aluminum, boron, and chromium as the main alloy elements to develop an aluminum-boron-chromium-containing high-temperature wear-resistant alloy steel, in order to improve the performance of this high-temperature wear-resistant alloy steel Mechanical properties, in the molten steel smelting process, multi-element microalloys are added through the wire feeder to achieve the purpose of improving material properties.
本发明的目的可以通过以下措施来实现:Object of the present invention can be achieved through the following measures:
本发明含铝-硼-铬耐高温磨蚀合金钢的制备方法如下:先将质量分数8~10%的硼铁、4~5%的金属铝,3~4%的氮化铬铁,2.5~3.0%的硅铁,4~5%的中碳铬铁,4~5%的高碳铬铁和69~73%的Q235废钢,在电炉内熔化,当钢水温度达到1600~1620℃,将钢水出炉到钢包,钢水全部进入钢包后,立即用喂丝机将合金线送入到钢包内的钢水中,合金线距离钢包底部20~35mm。合金线直径合金线加入量是钢包内钢水质量分数的3.0~4.5%。合金线的化学成分及其质量分数是12~15%Ce,6~8%Y,15~18%Ca,3~5%Ba,3~5%Zr,3~5%K,8~10%Si,3~5%Na,余量为Fe和不可避免的微量杂质。当合金线全部进入钢包6~8分钟后,将钢水直接浇入铸型,得到铸造含铝-硼-铬耐高温磨蚀合金钢,然后将铸造含铝-硼-铬耐高温磨蚀合金钢随炉加热至1050~1080℃,保温2~4小时后,在温度为60~100℃的油池中油冷30~60分钟,最后将油冷后的含铝-硼-铬耐高温磨蚀合金钢随炉加热至500~530℃,保温6~10小时后出炉空冷至室温,得到具有优异抗高温磨蚀性能的合金钢。The preparation method of the present invention containing aluminum-boron-chromium high-temperature wear-resistant alloy steel is as follows: first, 8-10% of the mass fraction of ferroboron, 4-5% of metallic aluminum, 3-4% of ferrochromium nitride, 2.5- 3.0% ferrosilicon, 4-5% medium-carbon ferrochrome, 4-5% high-carbon ferrochrome and 69-73% Q235 steel scrap are melted in an electric furnace. When the temperature of molten steel reaches 1600-1620℃, the molten steel is After being released into the ladle and all the molten steel enters the ladle, the alloy wire is immediately fed into the molten steel in the ladle by a wire feeder, and the distance between the alloy wire and the bottom of the ladle is 20-35mm. Alloy Wire Diameter The amount of alloy wire added is 3.0-4.5% of the mass fraction of molten steel in the ladle. The chemical composition and mass fraction of the alloy wire are 12-15% Ce, 6-8% Y, 15-18% Ca, 3-5% Ba, 3-5% Zr, 3-5% K, 8-10% Si, 3-5% Na, the balance is Fe and unavoidable trace impurities. After all the alloy wires enter the ladle for 6-8 minutes, the molten steel is directly poured into the mold to obtain the cast aluminum-boron-chromium high-temperature wear-resistant alloy steel, and then the cast aluminum-boron-chromium high-temperature wear-resistant alloy steel is placed in the furnace Heating to 1050-1080°C, keeping it warm for 2-4 hours, oil cooling in an oil pool at a temperature of 60-100°C for 30-60 minutes, and finally putting the aluminum-boron-chromium-containing high-temperature abrasion-resistant alloy steel after oil cooling into the furnace Heating to 500-530°C, holding the temperature for 6-10 hours, then taking it out of the furnace and air-cooling to room temperature to obtain an alloy steel with excellent high-temperature abrasion resistance.
如上所述的硼铁的化学成分质量分数为:19.0~21.0%B,≤0.5%C,≤2%Si,≤0.5%Al,≤0.01%S,≤0.1%P,余量Fe。The chemical composition mass fraction of ferroboron mentioned above is: 19.0~21.0%B, ≤0.5%C, ≤2%Si, ≤0.5%Al, ≤0.01%S, ≤0.1%P, and the balance is Fe.
如上所述的氮化铬铁的化学成分质量分数为:60~63%Cr,5.0~6.5%N,C≤0.1%,Si≤2.5%,P≤0.03%,S≤0.04%,余量Fe。The chemical composition mass fraction of ferrochrome nitride as mentioned above is: 60~63%Cr, 5.0~6.5%N, C≤0.1%, Si≤2.5%, P≤0.03%, S≤0.04%, the balance Fe .
如上所述的中碳铬铁的化学成分质量分数为:60.0~65.0%的Cr,1.2~2.0%的C,1.0~2.0%的Si,余量为Fe。The chemical composition mass fraction of the medium-carbon ferrochrome mentioned above is: 60.0-65.0% Cr, 1.2-2.0% C, 1.0-2.0% Si, and the balance is Fe.
如上所述的高碳铬铁的化学成分质量分数为:62.0~68.0%的Cr,7.0~8.5%的C,2.0~3.5%的Si,余量为Fe。The chemical composition mass fraction of the high-carbon ferrochrome mentioned above is: 62.0-68.0% Cr, 7.0-8.5% C, 2.0-3.5% Si, and the balance is Fe.
如上所述的硅铁的化学成分质量分数为:72~80%的Si,<0.2%的C,≤0.02%的S,≤0.04%的P,余量为Fe。The chemical composition mass fraction of ferrosilicon mentioned above is: 72-80% Si, <0.2% C, ≤0.02% S, ≤0.04% P, and the balance is Fe.
如上所述的Q235废钢的化学成分质量分数为:0.14~0.22%的C,0.30~0.65%的Mn,≤0.30%的Si,≤0.050%的S,≤0.045%的P,余量为Fe。The chemical composition mass fraction of Q235 steel scrap as mentioned above is: 0.14-0.22% C, 0.30-0.65% Mn, ≤0.30% Si, ≤0.050% S, ≤0.045% P, and the balance is Fe.
在本发明材料中,先将质量分数8~10%的硼铁、4~5%的金属铝,3~4%的氮化铬铁,2.5~3.0%的硅铁,4~5%的中碳铬铁,4~5%的高碳铬铁和69~73%的Q235废钢,在电炉内熔化,其中加入8~10%的硼铁,主要是利用硼部分进入基体,提高基体的淬透性和淬硬性,另外,部分硼与铁、铬反应,生成高硬度的Fe2(B,C)和(Cr,Fe)7(B,C)3硼碳化物,有利于提高合金钢的抗磨性能。加入4~5%的金属铝和2.5~3.0%的硅铁,除了起脱氧作用外,主要是利用铝、硅进入基体,提高金属基体抗高温软化性能,有利于提高合金钢的高温耐磨性,另外,加入铬铁主要是用于改善钢的抗氧化能力,氮的加入,有利于提高合金钢的淬透性。在此基础上,用喂丝机将质量分数是12~15%Ce,6~8%Y,15~18%Ca,3~5%Ba,3~5%Zr,3~5%K,8~10%Si,3~5%Na,余量为Fe和不可避免的微量杂质合金线送入到钢包内的钢水中,合金线距离钢包底部20~35mm。合金线直径合金线加入量是钢包内钢水质量分数的3.0~4.5%。主要是利用合金线中的合金元素,对钢水进行微合金化处理,达到净化和细化凝固组织,改善钢中夹杂物形态和分布,特别是改善硼碳化物的形态和分布,从而促进合金钢力学性能的提高,最后对合金钢进行油淬和高温回火,主要是消除铸态组织中的铁素体和珠光体,得到高硬度的回火马氏体基体,从而可进一步提高合金钢的抗高温磨蚀能力。In the material of the present invention, 8-10% of the mass fraction of ferroboron, 4-5% of metal aluminum, 3-4% of ferrochromium nitride, 2.5-3.0% of ferrosilicon, 4-5% of Carbon ferrochrome, 4-5% high-carbon ferrochrome and 69-73% Q235 scrap steel are melted in an electric furnace, and 8-10% ferro-boron is added to it, mainly to use the boron part to enter the matrix to improve the hardenability of the matrix In addition, part of boron reacts with iron and chromium to form high hardness Fe 2 (B,C) and (Cr,Fe) 7 (B,C) 3 boron carbides, which is beneficial to improve the resistance of alloy steel grinding performance. Adding 4-5% metal aluminum and 2.5-3.0% ferrosilicon, in addition to deoxidation, mainly uses aluminum and silicon to enter the matrix to improve the high-temperature softening resistance of the metal matrix, which is conducive to improving the high-temperature wear resistance of alloy steel , In addition, the addition of ferrochromium is mainly used to improve the oxidation resistance of steel, and the addition of nitrogen is beneficial to improve the hardenability of alloy steel. On this basis, the mass fraction is 12-15% Ce, 6-8% Y, 15-18% Ca, 3-5% Ba, 3-5% Zr, 3-5% K, 8 ~10%Si, 3~5%Na, the balance is Fe and unavoidable trace impurities. The alloy wire is fed into the molten steel in the ladle, and the alloy wire is 20~35mm away from the bottom of the ladle. Alloy Wire Diameter The amount of alloy wire added is 3.0-4.5% of the mass fraction of molten steel in the ladle. It is mainly to use the alloying elements in the alloy wire to micro-alloy the molten steel to purify and refine the solidification structure, improve the shape and distribution of inclusions in the steel, especially to improve the shape and distribution of boron carbides, thereby promoting alloy steel. To improve the mechanical properties, oil quenching and high-temperature tempering are carried out on the alloy steel, mainly to eliminate the ferrite and pearlite in the as-cast structure, and obtain a tempered martensite matrix with high hardness, which can further improve the alloy steel. High temperature abrasion resistance.
本发明与现有技术相比,具有以下优点:Compared with the prior art, the present invention has the following advantages:
1)本发明含铝-硼-铬耐高温磨蚀合金钢中,不含价格昂贵的钨、钼、钴、镍、铌等昂贵合金元素,具有较低的生产成本。1) The aluminum-boron-chromium-containing high-temperature and abrasion-resistant alloy steel of the present invention does not contain expensive alloy elements such as tungsten, molybdenum, cobalt, nickel, niobium, etc., and has lower production costs.
2)本发明含铝-硼-铬耐高温磨蚀合金钢采用铸造方法生产,效率高,易于实现批量生产。2) The aluminum-boron-chromium-containing high-temperature and abrasion-resistant alloy steel of the present invention is produced by a casting method, which has high efficiency and is easy to realize mass production.
3)本发明含铝-硼-铬耐高温磨蚀合金钢具有优异的力学性能,其硬度达到60~62HRC,抗拉强度达到750~850MPa,冲击韧性达到15~18J/cm2,在500℃下的抗高温磨蚀性能性能优于高铬铸铁,比高铬铸铁(Cr20Mo2Cu1)提高35%以上。3) The aluminum-boron-chromium-containing high-temperature abrasion-resistant alloy steel of the present invention has excellent mechanical properties, its hardness reaches 60-62HRC, its tensile strength reaches 750-850MPa, and its impact toughness reaches 15-18J/cm 2 . The high temperature and abrasion resistance performance is better than that of high chromium cast iron, which is more than 35% higher than that of high chromium cast iron (Cr20Mo2Cu1).
具体实施方式Detailed ways
下面结合实施例对本发明做进一步详述:Below in conjunction with embodiment the present invention is described in further detail:
实施例1Example 1
本发明含铝-硼-铬耐高温磨蚀合金钢采用1000公斤中频感应电炉熔炼。制备方法如下:先将质量分数8%的硼铁(硼铁化学成分质量分数为:19.0~21.0%B,≤0.5%C,≤2%Si,≤0.5%Al,≤0.01%S,≤0.1%P,余量Fe)、5%的金属铝,4%的氮化铬铁(氮化铬铁化学成分质量分数为:60~63%Cr,5.0~6.5%N,C≤0.1%,Si≤2.5%,P≤0.03%,S≤0.04%,余量Fe),2.5%的硅铁(硅铁化学成分质量分数为:72~80%的Si,<0.2%的C,≤0.02%的S,≤0.04%的P,余量为Fe),4%的中碳铬铁(中碳铬铁化学成分质量分数为:60.0~65.0%的Cr,1.2~2.0%的C,1.0~2.0%的Si,余量为Fe),5%的高碳铬铁(高碳铬铁化学成分质量分数为:62.0~68.0%的Cr,7.0~8.5%的C,2.0~3.5%的Si,余量为Fe)和71.5%的Q235废钢(Q235废钢的化学成分质量分数为:0.14~0.22%的C,0.30~0.65%的Mn,≤0.30%的Si,≤0.050%的S,≤0.045%的P,余量为Fe),在电炉内熔化,当钢水温度达到1603℃时,将钢水出炉到钢包,钢水全部进入钢包后,立即用喂丝机将合金线送入到钢包内的钢水中,合金线距离钢包底部20mm。合金线直径合金线加入量是钢包内钢水质量分数的3.0%。合金线的化学成分及其质量分数是12.05%Ce,7.86%Y,15.23%Ca,4.99%Ba,3.06%Zr,3.1%K,9.77%Si,4.95%Na,余量为Fe和不可避免的微量杂质。当合金线全部进入钢包6.5分钟后,将钢水直接浇入铸型,得到铸造含铝-硼-铬耐高温磨蚀合金钢,然后将铸造含铝-硼-铬耐高温磨蚀合金钢随炉加热至1050℃,保温4小时后,在温度为65℃的油池中油冷30分钟,最后将油冷后的含铝-硼-铬耐高温磨蚀合金钢随炉加热至530℃,保温6小时后出炉空冷至室温,得到具有优异抗高温磨蚀性能的合金钢,其力学性能见表1。The aluminum-boron-chromium-containing high-temperature and abrasion-resistant alloy steel of the invention is smelted in a 1000-kg medium-frequency induction furnace. The preparation method is as follows: Firstly, the mass fraction of 8% ferroboron (the mass fraction of ferroboron chemical composition is: 19.0~21.0%B, ≤0.5%C, ≤2%Si, ≤0.5%Al, ≤0.01%S, ≤0.1 %P, balance Fe), 5% metal aluminum, 4% ferrochromium nitride (mass fraction of ferrochrome nitride chemical composition: 60~63%Cr, 5.0~6.5%N, C≤0.1%, Si ≤2.5%, P≤0.03%, S≤0.04%, balance Fe), 2.5% ferrosilicon (mass fraction of ferrosilicon chemical composition: 72-80% Si, <0.2% C, ≤0.02% S, ≤0.04% P, the balance being Fe), 4% medium-carbon ferrochrome (the chemical composition mass fraction of medium-carbon ferrochrome is: 60.0-65.0% Cr, 1.2-2.0% C, 1.0-2.0% Si, the balance is Fe), 5% high-carbon ferrochromium (mass fraction of high-carbon ferrochromium: 62.0-68.0% Cr, 7.0-8.5% C, 2.0-3.5% Si, the balance Fe) and 71.5% of Q235 steel scrap (the chemical composition mass fraction of Q235 steel scrap is: 0.14-0.22% of C, 0.30-0.65% of Mn, ≤0.30% of Si, ≤0.050% of S, ≤0.045% of P , the balance is Fe), melted in the electric furnace, when the temperature of the molten steel reaches 1603 ℃, the molten steel is taken out of the furnace into the ladle, and after all the molten steel enters the ladle, the alloy wire is immediately fed into the molten steel in the ladle by a wire feeder, the alloy The line is 20mm from the bottom of the ladle. Alloy Wire Diameter The amount of alloy wire added is 3.0% of the mass fraction of molten steel in the ladle. The chemical composition and mass fraction of the alloy wire are 12.05%Ce, 7.86%Y, 15.23%Ca, 4.99%Ba, 3.06%Zr, 3.1%K, 9.77%Si, 4.95%Na, the balance being Fe and unavoidable Trace impurities. After all the alloy wires enter the ladle for 6.5 minutes, the molten steel is directly poured into the mold to obtain the cast aluminum-boron-chromium high-temperature abrasion-resistant alloy steel, and then the cast aluminum-boron-chromium high-temperature abrasion-resistant alloy steel is heated with the furnace to 1050°C, after 4 hours of heat preservation, oil cooling in an oil pool at a temperature of 65°C for 30 minutes, and finally heat the aluminum-boron-chromium-containing high-temperature abrasion-resistant alloy steel after oil cooling to 530°C with the furnace, and leave the furnace after 6 hours of heat preservation Air-cooled to room temperature to obtain an alloy steel with excellent high-temperature abrasion resistance, and its mechanical properties are shown in Table 1.
实施例2Example 2
本发明含铝-硼-铬耐高温磨蚀合金钢采用1000公斤中频感应电炉熔炼。制备方法如下:先将质量分数10%的硼铁(硼铁化学成分质量分数为:19.0~21.0%B,≤0.5%C,≤2%Si,≤0.5%Al,≤0.01%S,≤0.1%P,余量Fe)、4%的金属铝,3%的氮化铬铁(氮化铬铁化学成分质量分数为:60~63%Cr,5.0~6.5%N,C≤0.1%,Si≤2.5%,P≤0.03%,S≤0.04%,余量Fe),3.0%的硅铁(硅铁化学成分质量分数为:72~80%的Si,<0.2%的C,≤0.02%的S,≤0.04%的P,余量为Fe),5%的中碳铬铁(中碳铬铁化学成分质量分数为:60.0~65.0%的Cr,1.2~2.0%的C,1.0~2.0%的Si,余量为Fe),4%的高碳铬铁(高碳铬铁化学成分质量分数为:62.0~68.0%的Cr,7.0~8.5%的C,2.0~3.5%的Si,余量为Fe)和71%的Q235废钢(Q235废钢的化学成分质量分数为:0.14~0.22%的C,0.30~0.65%的Mn,≤0.30%的Si,≤0.050%的S,≤0.045%的P,余量为Fe),在电炉内熔化,当钢水温度达到1618℃,将钢水出炉到钢包,钢水全部进入钢包后,立即用喂丝机将合金线送入到钢包内的钢水中,合金线距离钢包底部35mm。合金线直径合金线加入量是钢包内钢水质量分数的4.5%。合金线的化学成分及其质量分数是14.94%Ce,6.11%Y,17.78%Ca,3.01%Ba,4.81%Zr,4.90%K,8.13%Si,3.10%Na,余量为Fe和不可避免的微量杂质。当合金线全部进入钢包8分钟后,将钢水直接浇入铸型,得到铸造含铝-硼-铬耐高温磨蚀合金钢,然后将铸造含铝-硼-铬耐高温磨蚀合金钢随炉加热至1080℃,保温2小时后,在温度为90℃的油池中油冷60分钟,最后将油冷后的含铝-硼-铬耐高温磨蚀合金钢随炉加热至500℃,保温8小时后出炉空冷至室温,得到具有优异抗高温磨蚀性能的合金钢,其力学性能见表1。The aluminum-boron-chromium-containing high-temperature and abrasion-resistant alloy steel of the invention is smelted in a 1000-kg medium-frequency induction furnace. The preparation method is as follows: First, the mass fraction of 10% ferroboron (the mass fraction of ferroboron chemical composition is: 19.0~21.0%B, ≤0.5%C, ≤2%Si, ≤0.5%Al, ≤0.01%S, ≤0.1 %P, balance Fe), 4% metal aluminum, 3% ferrochromium nitride (mass fraction of ferrochrome nitride chemical composition: 60~63%Cr, 5.0~6.5%N, C≤0.1%, Si ≤2.5%, P≤0.03%, S≤0.04%, balance Fe), 3.0% ferrosilicon (mass fraction of ferrosilicon chemical composition: 72-80% Si, <0.2% C, ≤0.02% S, ≤0.04% P, the balance being Fe), 5% medium-carbon ferrochrome (the chemical composition mass fraction of medium-carbon ferrochrome is: 60.0-65.0% Cr, 1.2-2.0% C, 1.0-2.0% Si, the balance is Fe), 4% high-carbon ferrochromium (mass fraction of high-carbon ferrochromium: 62.0-68.0% Cr, 7.0-8.5% C, 2.0-3.5% Si, the balance Fe) and 71% Q235 steel scrap (the chemical composition mass fraction of Q235 steel scrap is: 0.14-0.22% C, 0.30-0.65% Mn, ≤0.30% Si, ≤0.050% S, ≤0.045% P , the balance is Fe), melted in the electric furnace, when the temperature of the molten steel reaches 1618 ℃, the molten steel is taken out of the furnace and put into the ladle. 35mm from the bottom of the ladle. Alloy Wire Diameter The amount of alloy wire added is 4.5% of the mass fraction of molten steel in the ladle. The chemical composition and mass fraction of the alloy wire are 14.94%Ce, 6.11%Y, 17.78%Ca, 3.01%Ba, 4.81%Zr, 4.90%K, 8.13%Si, 3.10%Na, the balance being Fe and unavoidable Trace impurities. After the alloy wires have all entered the ladle for 8 minutes, the molten steel is directly poured into the mold to obtain the cast aluminum-boron-chromium high-temperature abrasion-resistant alloy steel, and then the cast aluminum-boron-chromium high-temperature abrasion-resistant alloy steel is heated with the furnace to 1080°C, after 2 hours of heat preservation, oil cooling in an oil pool at a temperature of 90°C for 60 minutes, and finally heat the aluminum-boron-chromium-containing high-temperature abrasion-resistant alloy steel after oil cooling to 500°C with the furnace, and leave the furnace after 8 hours of heat preservation Air-cooled to room temperature to obtain an alloy steel with excellent high-temperature abrasion resistance, and its mechanical properties are shown in Table 1.
实施例3Example 3
本发明含铝-硼-铬耐高温磨蚀合金钢采用1000公斤中频感应电炉熔炼。制备方法如下:先将质量分数9%的硼铁(硼铁化学成分质量分数为:19.0~21.0%B,≤0.5%C,≤2%Si,≤0.5%Al,≤0.01%S,≤0.1%P,余量Fe)、4.5%的金属铝,3.5%的氮化铬铁(氮化铬铁化学成分质量分数为:60~63%Cr,5.0~6.5%N,C≤0.1%,Si≤2.5%,P≤0.03%,S≤0.04%,余量Fe),2.8%的硅铁(硅铁化学成分质量分数为:72~80%的Si,<0.2%的C,≤0.02%的S,≤0.04%的P,余量为Fe),4.5%的中碳铬铁(中碳铬铁化学成分质量分数为:60.0~65.0%的Cr,1.2~2.0%的C,1.0~2.0%的Si,余量为Fe),4.5%的高碳铬铁(高碳铬铁化学成分质量分数为:62.0~68.0%的Cr,7.0~8.5%的C,2.0~3.5%的Si,余量为Fe)和71.2%的Q235废钢(Q235废钢的化学成分质量分数为:0.14~0.22%的C,0.30~0.65%的Mn,≤0.30%的Si,≤0.050%的S,≤0.045%的P,余量为Fe),在电炉内熔化,当钢水温度达到1612℃,将钢水出炉到钢包,钢水全部进入钢包后,立即用喂丝机将合金线送入到钢包内的钢水中,合金线距离钢包底部25mm。合金线直径合金线加入量是钢包内钢水质量分数的3.5%。合金线的化学成分及其质量分数是13.04%Ce,6.99%Y,16.72%Ca,4.11%Ba,3.85%Zr,3.92%K,9.07%Si,4.18%Na,余量为Fe和不可避免的微量杂质。当合金线全部进入钢包7分钟后,将钢水直接浇入铸型,得到铸造含铝-硼-铬耐高温磨蚀合金钢,然后将铸造含铝-硼-铬耐高温磨蚀合金钢随炉加热至1060℃,保温3小时后,在温度为80℃的油池中油冷50分钟,最后将油冷后的含铝-硼-铬耐高温磨蚀合金钢随炉加热至520℃,保温10小时后出炉空冷至室温,得到具有优异抗高温磨蚀的合金钢,其力学性能见表1。The aluminum-boron-chromium-containing high-temperature and abrasion-resistant alloy steel of the invention is smelted in a 1000-kg medium-frequency induction furnace. The preparation method is as follows: First, the mass fraction of 9% ferroboron (mass fraction of ferroboron chemical composition: 19.0~21.0%B, ≤0.5%C, ≤2%Si, ≤0.5%Al, ≤0.01%S, ≤0.1 %P, balance Fe), 4.5% metal aluminum, 3.5% ferrochromium nitride (mass fraction of ferrochrome nitride chemical composition: 60~63%Cr, 5.0~6.5%N, C≤0.1%, Si ≤2.5%, P≤0.03%, S≤0.04%, balance Fe), 2.8% ferrosilicon (mass fraction of ferrosilicon chemical composition: 72-80% Si, <0.2% C, ≤0.02% S, ≤0.04% P, the balance is Fe), 4.5% medium-carbon ferrochrome (the chemical composition mass fraction of medium-carbon ferrochrome is: 60.0-65.0% Cr, 1.2-2.0% C, 1.0-2.0% Si, the balance is Fe), 4.5% high-carbon ferrochromium (mass fraction of high-carbon ferrochromium: 62.0-68.0% Cr, 7.0-8.5% C, 2.0-3.5% Si, the balance Fe) and 71.2% Q235 steel scrap (the chemical composition mass fraction of Q235 steel scrap is: 0.14-0.22% C, 0.30-0.65% Mn, ≤0.30% Si, ≤0.050% S, ≤0.045% P , the balance is Fe), melted in the electric furnace, when the temperature of the molten steel reaches 1612 ℃, the molten steel is taken out of the furnace into the ladle, and after all the molten steel enters the ladle, the alloy wire is immediately fed into the molten steel in the ladle by a wire feeder, 25mm from the bottom of the ladle. Alloy Wire Diameter The amount of alloy wire added is 3.5% of the mass fraction of molten steel in the ladle. The chemical composition and mass fraction of the alloy wire are 13.04%Ce, 6.99%Y, 16.72%Ca, 4.11%Ba, 3.85%Zr, 3.92%K, 9.07%Si, 4.18%Na, the balance being Fe and unavoidable Trace impurities. After the alloy wires have all entered the ladle for 7 minutes, the molten steel is directly poured into the mold to obtain the cast aluminum-boron-chromium high-temperature abrasion-resistant alloy steel, and then the cast aluminum-boron-chromium high-temperature abrasion-resistant alloy steel is heated with the furnace to 1060°C, after 3 hours of heat preservation, oil cooling in an oil pool at a temperature of 80°C for 50 minutes, and finally heat the aluminum-boron-chromium-containing high-temperature abrasion-resistant alloy steel after oil cooling to 520°C with the furnace, and leave the furnace after 10 hours of heat preservation Air-cooled to room temperature, the alloy steel with excellent high temperature corrosion resistance was obtained, and its mechanical properties are shown in Table 1.
表1含铝-硼-铬耐高温磨蚀合金钢力学性能Table 1 Mechanical properties of aluminum-boron-chromium-containing high-temperature wear-resistant alloy steel
本发明含铝-硼-铬耐高温磨蚀合金钢具有优异的力学性能,其硬度达到60~62HRC,抗拉强度达到750~850MPa,冲击韧性达到15~18J/cm2。高温磨损试验结果显示,本发明含铝-硼-铬耐高温磨蚀合金钢在500℃下的抗高温磨蚀性能性能优于高铬铸铁,比高铬铸铁(Cr20Mo2Cu1)提高35%以上。本发明含铝-硼-铬耐高温磨蚀合金钢可用于制造轧机导卫,导辊,以及热镀锌沉没辊轴套等抗高温磨损部件。本发明材料不含价格昂贵的镍、钼、钨、钒等合金元素,在高温磨损领域有良好的推广应用前景。The aluminum-boron-chromium-containing high-temperature abrasion-resistant alloy steel of the invention has excellent mechanical properties, the hardness reaches 60-62HRC, the tensile strength reaches 750-850MPa, and the impact toughness reaches 15-18J/cm 2 . The results of high-temperature wear tests show that the high-temperature wear-resistant alloy steel containing aluminum-boron-chromium of the present invention has better high-temperature wear resistance performance at 500°C than high-chromium cast iron, which is more than 35% higher than high-chromium cast iron (Cr20Mo2Cu1). The aluminum-boron-chromium-containing high-temperature abrasion-resistant alloy steel of the invention can be used to manufacture rolling mill guides, guide rollers, hot-dip galvanized sinker roller sleeves and other high-temperature wear-resistant parts. The material of the invention does not contain expensive alloy elements such as nickel, molybdenum, tungsten, vanadium, etc., and has good promotion and application prospects in the field of high-temperature wear.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310388871.0A CN103422007B (en) | 2013-08-30 | 2013-08-30 | A preparation method of aluminum-boron-chromium-containing high-temperature wear-resistant alloy steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310388871.0A CN103422007B (en) | 2013-08-30 | 2013-08-30 | A preparation method of aluminum-boron-chromium-containing high-temperature wear-resistant alloy steel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103422007A true CN103422007A (en) | 2013-12-04 |
CN103422007B CN103422007B (en) | 2015-07-08 |
Family
ID=49647392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310388871.0A Expired - Fee Related CN103422007B (en) | 2013-08-30 | 2013-08-30 | A preparation method of aluminum-boron-chromium-containing high-temperature wear-resistant alloy steel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103422007B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103741043A (en) * | 2013-12-19 | 2014-04-23 | 马鞍山市方圆材料工程有限公司 | Boron-contained alloy steel material for roller and preparation method thereof |
CN104087846A (en) * | 2014-07-07 | 2014-10-08 | 北京工业大学 | High carbon-silicon-boron austenite-bainite abrasion-proof cast steel and manufacturing method thereof |
CN106086587A (en) * | 2016-06-14 | 2016-11-09 | 北京工业大学 | A kind of containing aluminum high-boron high-speed steel and preparation method thereof |
CN107378300A (en) * | 2017-08-26 | 2017-11-24 | 安徽鼎恒再制造产业技术研究院有限公司 | Ni-based self-fluxing alloy powder and its welding procedure are used in gear teeth reparation and pre- protection |
CN113235087A (en) * | 2021-05-31 | 2021-08-10 | 芜湖舍达激光科技有限公司 | Process for zinc pot roller shaft sleeve surface laser cladding |
CN114059059A (en) * | 2021-10-09 | 2022-02-18 | 邢台德龙机械轧辊有限公司 | High-boron high-speed steel composite roller and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983000703A1 (en) * | 1981-08-27 | 1983-03-03 | Yabuki, Ritsue | Heat- and wear-resistant tough alloy |
CN1710134A (en) * | 2005-07-06 | 2005-12-21 | 燕山大学 | Ultra-fine bainite wear-resistant steel and its manufacturing process |
CN101550518A (en) * | 2009-05-11 | 2009-10-07 | 西安国丰机械制造有限责任公司 | Boron-containing multi-element low alloy wear resistant cast steel and preparing method thereof |
CN102251183A (en) * | 2011-07-12 | 2011-11-23 | 北京工业大学 | Boron-containing high-chromium wear-resistant alloy and preparation method thereof |
CN102534398A (en) * | 2012-01-06 | 2012-07-04 | 北京工业大学 | Ferroboron-containing alloy wear-resistant material and preparation method thereof |
CN102560258A (en) * | 2012-01-06 | 2012-07-11 | 北京工业大学 | Low-carbon high-boron cast wear-resistant alloy steel and preparation method thereof |
CN103060700A (en) * | 2013-01-07 | 2013-04-24 | 北京工业大学 | Boride particle reinforced Fe-Cr-Al composite material and its preparation method |
-
2013
- 2013-08-30 CN CN201310388871.0A patent/CN103422007B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983000703A1 (en) * | 1981-08-27 | 1983-03-03 | Yabuki, Ritsue | Heat- and wear-resistant tough alloy |
CN1710134A (en) * | 2005-07-06 | 2005-12-21 | 燕山大学 | Ultra-fine bainite wear-resistant steel and its manufacturing process |
CN101550518A (en) * | 2009-05-11 | 2009-10-07 | 西安国丰机械制造有限责任公司 | Boron-containing multi-element low alloy wear resistant cast steel and preparing method thereof |
CN102251183A (en) * | 2011-07-12 | 2011-11-23 | 北京工业大学 | Boron-containing high-chromium wear-resistant alloy and preparation method thereof |
CN102534398A (en) * | 2012-01-06 | 2012-07-04 | 北京工业大学 | Ferroboron-containing alloy wear-resistant material and preparation method thereof |
CN102560258A (en) * | 2012-01-06 | 2012-07-11 | 北京工业大学 | Low-carbon high-boron cast wear-resistant alloy steel and preparation method thereof |
CN103060700A (en) * | 2013-01-07 | 2013-04-24 | 北京工业大学 | Boride particle reinforced Fe-Cr-Al composite material and its preparation method |
Non-Patent Citations (2)
Title |
---|
农登等: ""含钼镍高铬铸铁中温三体磨损性能研究"", 《铸造技术》, vol. 33, no. 7, 31 July 2012 (2012-07-31), pages 762 - 764 * |
张妍等: ""抗高温磨损高铬铸铁的研究"", 《热加工工艺》, no. 2, 28 February 2002 (2002-02-28), pages 48 - 50 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103741043A (en) * | 2013-12-19 | 2014-04-23 | 马鞍山市方圆材料工程有限公司 | Boron-contained alloy steel material for roller and preparation method thereof |
CN103741043B (en) * | 2013-12-19 | 2015-12-30 | 马鞍山市方圆材料工程有限公司 | A kind of boron-containing roller alloy steel material and preparation method thereof |
CN104087846A (en) * | 2014-07-07 | 2014-10-08 | 北京工业大学 | High carbon-silicon-boron austenite-bainite abrasion-proof cast steel and manufacturing method thereof |
CN104087846B (en) * | 2014-07-07 | 2016-04-20 | 北京工业大学 | A kind of high-carbon silicon boron shellfish wearable cast steel difficult to understand and preparation method thereof |
CN106086587A (en) * | 2016-06-14 | 2016-11-09 | 北京工业大学 | A kind of containing aluminum high-boron high-speed steel and preparation method thereof |
CN106086587B (en) * | 2016-06-14 | 2018-02-23 | 北京工业大学 | A kind of high-boron high-speed steel containing aluminium and preparation method thereof |
CN107378300A (en) * | 2017-08-26 | 2017-11-24 | 安徽鼎恒再制造产业技术研究院有限公司 | Ni-based self-fluxing alloy powder and its welding procedure are used in gear teeth reparation and pre- protection |
CN113235087A (en) * | 2021-05-31 | 2021-08-10 | 芜湖舍达激光科技有限公司 | Process for zinc pot roller shaft sleeve surface laser cladding |
CN114059059A (en) * | 2021-10-09 | 2022-02-18 | 邢台德龙机械轧辊有限公司 | High-boron high-speed steel composite roller and preparation method thereof |
CN114059059B (en) * | 2021-10-09 | 2024-03-08 | 邢台德龙机械轧辊有限公司 | High-boron high-speed steel composite roller and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103422007B (en) | 2015-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103422007B (en) | A preparation method of aluminum-boron-chromium-containing high-temperature wear-resistant alloy steel | |
CN103436773B (en) | Preparation method of wear-resistant high-chromium cast iron | |
CN100453681C (en) | A kind of high boron wear-resistant cast steel and preparation method thereof | |
CN102251183B (en) | Boron-containing high-chromium wear-resistant alloy and preparation method thereof | |
CN100526495C (en) | Boron-containing casting die steel and preparation method thereof | |
CN101481779B (en) | High plasticity, high tenacity and ultra-high tensile steel, and manufacturing method thereof | |
CN1924070A (en) | Casting high boron abrasion-proof stainless steel containing high hardness boride and preparation method thereof | |
CN101956140B (en) | Lining plate for large ball mill and casting method thereof | |
CN1424423A (en) | High-speed steel roll ring and its production | |
CN104195362B (en) | A kind of high boron wear-resisting erosion alloy preparation method | |
CN103320720A (en) | Vanadium-containing high-boron high-chromium wear-resistant alloy and preparation method thereof | |
CN105506442B (en) | A kind of Si Mn alloyings wear-resisting ductile iron abrading-ball and preparation method thereof | |
CN107034411B (en) | A kind of abrasion-resistant roller and preparation method thereof | |
CN106834888B (en) | A kind of high-strength abrasion-proof cast steel lining board and preparation method thereof | |
CN101215671B (en) | Anti-corrosion wear material of molten zinc and manufacturing method thereof | |
CN102560258A (en) | Low-carbon high-boron cast wear-resistant alloy steel and preparation method thereof | |
CN105081612A (en) | Plasma arc overlaying alloy powder used for heat-working die | |
CN103436769B (en) | The wear-resistant Fe-Cr-B-Al casting alloy of a kind of high temperature | |
CN111321356B (en) | A kind of laser additive manufacturing sunken roller composite bushing and preparation method thereof | |
CN102851569B (en) | High-temperature resistant and abrasion-resistant white cast iron piece and production method | |
CN108145340B (en) | High-temperature-resistant abrasive-particle-wear-resistant welding wire for distribution chute and preparation method | |
CN108971799A (en) | A kind of plasma arc surfacing cermet powder | |
CN105886881B (en) | A kind of multicomponent microalloying chromium manganese wear-resisting alloy steel sand suction pipe and preparation method thereof | |
CN103484794B (en) | Multi-component alloy cast iron preparation method | |
CN108220804B (en) | Chromium Alloyed Fe-B Alloy Resistant to Zinc Liquid Corrosion Wear and Manufacturing Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150708 Termination date: 20210830 |