[go: up one dir, main page]

CN103420647A - Conductive material co-doping conductive concrete and preparation method thereof - Google Patents

Conductive material co-doping conductive concrete and preparation method thereof Download PDF

Info

Publication number
CN103420647A
CN103420647A CN2013103141149A CN201310314114A CN103420647A CN 103420647 A CN103420647 A CN 103420647A CN 2013103141149 A CN2013103141149 A CN 2013103141149A CN 201310314114 A CN201310314114 A CN 201310314114A CN 103420647 A CN103420647 A CN 103420647A
Authority
CN
China
Prior art keywords
concrete
parts
carbon
conductive
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103141149A
Other languages
Chinese (zh)
Other versions
CN103420647B (en
Inventor
高培伟
李隽�
徐少云
耿飞
彭海龙
卢小琳
黄欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201310314114.9A priority Critical patent/CN103420647B/en
Publication of CN103420647A publication Critical patent/CN103420647A/en
Application granted granted Critical
Publication of CN103420647B publication Critical patent/CN103420647B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Road Paving Structures (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明提供一种复掺导电材料的导电混凝土及其制备方法,该混凝土由水泥、硅灰、碳纤维、碳纳米材料(碳纳米管+炭黑+石墨)、纳米氧化锌、减水剂、填充料、分散剂、消泡剂、和水组成。该复掺导电材料多功能导电混凝土制备方法简单,性能优良。用碳纳米材料替代部分碳纤维,比传统导电混凝土相比成本低、导电性能稳定,掺入纳米氧化锌,可显著提高混凝土的导电性。在通电的情况下,该混凝土具有良好的电热性能,应用于机场道面、桥面和水泥混凝土路面,能融冰化雪、检测道路承重荷载、混凝土结构物裂缝及扩展情况;不通电的情况下具有良好的电磁性能,能有效屏蔽电磁波、减少电磁辐射、降低电磁干扰。The invention provides a conductive concrete compounded with conductive materials and a preparation method thereof. The concrete is composed of cement, silica fume, carbon fiber, carbon nanomaterials (carbon nanotubes + carbon black + graphite), nano-zinc oxide, water reducing agent, filling Material, dispersant, defoamer, and water. The preparation method of the multifunctional conductive concrete mixed with conductive materials is simple and the performance is excellent. Replacing some carbon fibers with carbon nanomaterials has lower cost and stable electrical conductivity than traditional conductive concrete. Adding nano-zinc oxide can significantly improve the electrical conductivity of concrete. In the case of electrification, the concrete has good electrothermal performance, and it is applied to airport pavement, bridge deck and cement concrete pavement. It can melt ice and snow, detect road loads, cracks and expansion of concrete structures; It has good electromagnetic properties, can effectively shield electromagnetic waves, reduce electromagnetic radiation, and reduce electromagnetic interference.

Description

一种复掺导电材料的导电混凝土及其制备方法Conductive concrete mixed with conductive material and preparation method thereof

技术领域 technical field

本发明涉及建筑材料领域,具体是一种复掺导电材料的导电混凝土及其制备方法。 The invention relates to the field of building materials, in particular to conductive concrete compounded with conductive materials and a preparation method thereof.

背景技术 Background technique

    我国寒冷地区冬季公路养护中冬季路面结冰积雪问题的处理一直是最大的困扰。我国东北西北地区,冬季降雪较早,持续时间长达几个月,恶劣的冰雪天气对道路、铁道、公路和机场畅通及行车安全极为不利,给人们的生活生产带来诸多不便。2008年冰雪覆盖全国19个省份,造成了交通大面积的拥堵瘫痪,损失巨大。   The problem of freezing and snow accumulation on the road surface in winter has always been the biggest problem in winter road maintenance in cold regions of our country. In the Northeast and Northwest of my country, snow falls early in winter and lasts for several months. The severe ice and snow weather is extremely unfavorable to the smooth flow of roads, railways, highways and airports and driving safety, and brings many inconveniences to people's life and production. In 2008, ice and snow covered 19 provinces across the country, causing large-scale traffic congestion and paralysis, and huge losses.

目前除冰化雪的方法主要是人工、机械清除冰雪和化学方法除雪,但人工除雪费时费力、效率低、费用高、不能及时恢复交通,具有明显的滞后性;使用融雪剂或除冰盐给基础设施及周围环境带来不利影响,采用物理方法融雪(热融雪法)逐步引起科技工作者的重视。 At present, the main methods of deicing and snow removal are manual and mechanical snow removal and chemical snow removal, but manual snow removal is time-consuming, laborious, inefficient, high in cost, unable to restore traffic in time, and has obvious lag; using snow melting agent or deicing salt to The infrastructure and the surrounding environment have adverse effects, and the use of physical methods to melt snow (thermal snow melting method) has gradually attracted the attention of scientific and technological workers.

热融雪法有地热管法、红外加热灯法、电热丝法、流体加热法等。地热管法的安装和建造加热管道具有明显的复杂性;红外加热灯法,容易受到周围风向的影响,且升温缓慢,不利于快速融雪。因车流运动,电热丝会被拔出沥青混凝土铺装层;流体加热法需要建立一个融冰化雪系统,但系统本身施工麻烦,装置需要大量的资金投入,热水系统不易布置,又比较难控制,加热效果不理想,当自动控制系统失灵和PVC管渗漏时,热水控制系统必须停止工作;钢纤维导电混凝土中的钢纤维在混凝土中会发生锈蚀,电阻会随龄期的延长而增大。 Thermal snow melting methods include geothermal pipe method, infrared heating lamp method, electric heating wire method, fluid heating method, etc. The installation and construction of the geothermal pipe method is obviously complicated; the infrared heating lamp method is easily affected by the surrounding wind direction, and the temperature rises slowly, which is not conducive to rapid snow melting. Due to the movement of traffic, the heating wire will be pulled out of the asphalt concrete pavement layer; the fluid heating method needs to establish a system for melting ice and snow, but the construction of the system itself is troublesome, and the device requires a lot of capital investment. The hot water system is not easy to arrange, and it is more difficult Control, the heating effect is not ideal, when the automatic control system fails and the PVC pipe leaks, the hot water control system must stop working; the steel fiber in the steel fiber conductive concrete will rust in the concrete, and the resistance will increase with age increase.

    科学家从20世纪90年代开始实验制造导电混凝土,在混凝土里添加微量的导电钢纤维或碳纤维,尽管所占比例不到1%,可使混凝土具有导电效果;若压实该导电混凝土,混凝土中导电纤维会密实,改善混凝土的导电效果,碳纤维的价格较高,制备出的导电混凝土电阻率较大,不利用大规模使用。 Scientists have been experimenting with the manufacture of conductive concrete since the 1990s. Adding a small amount of conductive steel fiber or carbon fiber to the concrete, although the proportion is less than 1%, can make the concrete conductive; if the conductive concrete is compacted, the concrete will conduct electricity. The fibers will be dense and improve the conductive effect of concrete. The price of carbon fiber is high, and the resistivity of the prepared conductive concrete is relatively high, so it is not suitable for large-scale use.

发明内容 Contents of the invention

    本发明提供了一种复掺导电材料的导电混凝土及其制备方法,用碳纳米材料替代碳纤维,加入了纳米氧化锌,提高了导电率,降低了成本。 The present invention provides a conductive concrete compounded with conductive materials and its preparation method. Carbon nanomaterials are used instead of carbon fibers, and nano-zinc oxide is added to improve conductivity and reduce costs.

本发明所述的复掺导电材料的导电混凝土包含如下重量份数的组份: The conductive concrete mixed with conductive material according to the present invention comprises the following components in parts by weight:

水泥,20-40份; Cement, 20-40 parts;

硅灰,0-7份; Silica fume, 0-7 parts;

碳纤维,0.25-2份; Carbon fiber, 0.25-2 parts;

碳纳米材料,0-2份; Carbon nanomaterials, 0-2 parts;

纳米氧化锌,0.1-0.5份; Nano zinc oxide, 0.1-0.5 parts;

减水剂,0.02-0.3份; Water reducing agent, 0.02-0.3 parts;

填充料,50-150份; Filling material, 50-150 parts;

分散剂,1.5-3.7份; Dispersant, 1.5-3.7 parts;

消泡剂,0.1-0.3份; Defoamer, 0.1-0.3 parts;

水,8-21份。 Water, 8-21 parts.

进一步改进,所述的纳米氧化锌粒径为5-90nm。 As a further improvement, the particle size of the nanometer zinc oxide is 5-90nm.

进一步改进,所述的碳纳米材料为碳纳米管、炭黑和石墨,其质量比为碳纳米管: 炭黑: 石墨=1: 6: 3。 Further improvement, described carbon nanomaterial is carbon nanotube, carbon black and graphite, and its mass ratio is carbon nanotube: carbon black: graphite=1: 6: 3.

本发明还提供了一种复掺导电材料的导电混凝土的其制备方法,包括以下步骤: The present invention also provides a kind of its preparation method of the conductive concrete mixed with conductive material, comprising the following steps:

1)采用物理和化学复合分散技术对碳纤维、碳纳米材料及纳米氧化锌进行分散,备用; 1) Use physical and chemical composite dispersion technology to disperse carbon fiber, carbon nanomaterials and nano-zinc oxide for standby;

2)将水泥、硅灰、填充料均匀搅拌,加入分散好的碳纤维、碳纳米材料、纳米氧化锌以及减水剂、分散剂和消泡剂,再次搅拌,以确保碳纤维、碳纳米材料及纳米氧化锌在混凝土中分散均匀; 2) Stir cement, silica fume, and filler evenly, add dispersed carbon fiber, carbon nanomaterials, nano zinc oxide, water reducer, dispersant, and defoamer, and stir again to ensure that carbon fibers, carbon nanomaterials and nano Zinc oxide is evenly dispersed in concrete;

3)浇注混凝土,初步振捣、抹平; 3) Pouring concrete, preliminary vibrating and smoothing;

4)根据混凝土中骨料粒径的大小,埋入用于连接外部电路的电极; 4) According to the size of the aggregate particle size in the concrete, the electrodes used to connect the external circuit are embedded;

5)再次振捣,辅助压实,确保铜网与混凝土连接良好。 5) Vibrate again and assist in compaction to ensure a good connection between the copper mesh and the concrete.

进一步改进,步骤4)所述的电极为铜丝网。 As a further improvement, the electrode described in step 4) is a copper wire mesh.

    本发明的有益效果在于: The beneficial effects of the present invention are:

(1)本发明在混凝土中加入了纳米氧化锌,使其电阻率远远低于普通混凝土,导电性能良好; (1) The present invention adds nano-zinc oxide to the concrete, so that its resistivity is far lower than that of ordinary concrete, and its electrical conductivity is good;

(2)制备工艺简便易行,用碳纳米材料替代碳纤维,降低了成本。 (2) The preparation process is simple and easy, and carbon nanomaterials are used to replace carbon fibers, which reduces the cost.

(3)本发明制备的混凝土在通电的情况下具有良好的电热性能,应用于机场道面、桥面和水泥混凝土路面,能融冰化雪、检测道路承重荷载、混凝土结构物裂缝及扩展情况;不通电的情况下具有良好的电磁性能,能有效屏蔽电磁波、减少电磁辐射、降低电磁干扰。 (3) The concrete prepared by the present invention has good electrothermal performance when electrified, and can be applied to airport pavement, bridge deck and cement concrete pavement, and can melt ice and snow, detect road bearing load, cracks and expansion of concrete structures ; It has good electromagnetic performance without electricity, which can effectively shield electromagnetic waves, reduce electromagnetic radiation, and reduce electromagnetic interference.

(4)可以根据使用和施工条件的要求选取适宜的导电材料,来控制导电混凝土的电阻率,导电性能稳定、电热性能可控,控制其融冰化雪的性能。  (4) According to the requirements of use and construction conditions, suitable conductive materials can be selected to control the resistivity of conductive concrete, the conductive performance is stable, the electric heating performance is controllable, and its performance of melting ice and snow can be controlled. the

具体实施方式 Detailed ways

 下面结合具体实施例对本发明做进一步说明: The present invention will be further described below in conjunction with specific embodiment:

实施例1 Embodiment 1 :

(1)各组分所占的重量份数为: (1) The parts by weight of each component are:

水泥,20份; Cement, 20 parts;

硅灰,0份; Silica fume, 0 parts;

碳纤维,0.25份; Carbon fiber, 0.25 parts;

碳纳米材料,0份; Carbon nanomaterials, 0 parts;

纳米氧化锌,0.1份;  Nano zinc oxide, 0.1 part;

减水剂,0.02份; Water reducing agent, 0.02 part;

填充料,50份;  stuffing, 50 parts;

分散剂,1.5份;  Dispersant, 1.5 parts;

消泡剂,0.1份;  Defoamer, 0.1 parts;

水,8份。 water, 8 parts.

(2)制备过程: (2) Preparation process:

1)采用物理和化学复合分散技术对碳纤维、碳纳米材料及纳米氧化锌进行分散,备用; 1) Use physical and chemical composite dispersion technology to disperse carbon fiber, carbon nanomaterials and nano-zinc oxide for standby;

2)将水泥、填充料、碳纳米材料和纳米氧化锌均匀搅拌,加入分散好的碳纤维、碳纳米材料及纳米氧化锌,再加入减水剂、分散剂和消泡剂; 2) Stir cement, filler, carbon nanomaterials and nano-zinc oxide evenly, add dispersed carbon fiber, carbon nano-materials and nano-zinc oxide, then add water reducer, dispersant and defoamer;

3)用铜网制作电极,插入混凝土中,用来连接外部电路。 3) Use copper mesh to make electrodes and insert them into concrete to connect to external circuits.

通过上述组分及方法制备的40×40×160mm导电混凝土试块,在20℃±2℃、相对湿度95%以上环境中养护7d、28d和60d后的电阻率分别为245.6Ω·cm、248.3Ω·cm和249.5Ω·cm。 The resistivity of the 40×40×160mm conductive concrete test block prepared by the above components and methods after curing for 7 days, 28 days and 60 days at 20°C±2°C and relative humidity above 95% is 245.6Ω·cm and 248.3 Ω·cm and 249.5Ω·cm.

实施例2 Embodiment 2 :

(1)各组分所占的重量份数为: (1) The parts by weight of each component are:

水泥,30份;  Cement, 30 parts;

硅灰,3.5份; Silica fume, 3.5 parts;

碳纤维,0.5份; carbon fiber, 0.5 parts;

碳纳米材料,1.0份; Carbon nanomaterials, 1.0 parts;

纳米氧化锌,0.3份;  Nano zinc oxide, 0.3 parts;

减水剂,0.02份; Water reducing agent, 0.02 part;

填充料,100份;  Filling material, 100 parts;

分散剂,2.6份;  Dispersant, 2.6 parts;

消泡剂,0.2份;  Defoamer, 0.2 parts;

水,15份。 water, 15 parts.

(2)制备过程: (2) Preparation process:

1)采用物理和化学复合分散技术对碳纤维、碳纳米材料及纳米氧化锌进行分散,备用; 1) Use physical and chemical composite dispersion technology to disperse carbon fiber, carbon nanomaterials and nano-zinc oxide for standby;

2)将水泥、填充料、硅灰和纳米氧化锌均匀搅拌,加入分散好的碳纤维、碳纳米材料及纳米氧化锌,再加入减水剂、分散剂和消泡剂; 2) Mix cement, filler, silica fume and nano-zinc oxide evenly, add dispersed carbon fiber, carbon nano-materials and nano-zinc oxide, then add water reducer, dispersant and defoamer;

3)用铜网制作电极,插入混凝土中,用来连接外部电路。 3) Use copper mesh to make electrodes and insert them into concrete to connect to external circuits.

通过上述组分及方法制备的40×40×160mm导电混凝土试块,在20℃±2℃、相对湿度95%以上环境中养护7d、28d和60d后的电阻率分别为135.3Ω·cm、137.2Ω·cm和138.8Ω·cm。 The resistivity of the 40×40×160mm conductive concrete test block prepared by the above components and methods after curing for 7 days, 28 days and 60 days at 20℃±2℃ and relative humidity above 95% were 135.3Ω·cm and 137.2 Ω·cm and 138.8Ω·cm.

实施例3 Embodiment 3 :

(1)各组分所占的重量份数为: (1) The parts by weight of each component are:

水泥,40份;  Cement, 40 parts;

硅灰,7份; Silica fume, 7 parts;

碳纤维,1.5份; carbon fiber, 1.5 parts;

碳纳米材料,2份; Carbon nanomaterials, 2 parts;

纳米氧化锌,0.5份;  Nano zinc oxide, 0.5 parts;

减水剂,0.3份; Water reducer, 0.3 parts;

填充料,150份;  stuffing, 150 parts;

分散剂,3.7份;  Dispersant, 3.7 parts;

消泡剂,0.3份;  Defoamer, 0.3 parts;

水,21份。 water, 21 parts.

(2)制备过程 (2) Preparation process

1)采用物理和化学复合分散技术对碳纤维、碳纳米材料及纳米氧化锌进行分散,备用; 1) Use physical and chemical composite dispersion technology to disperse carbon fiber, carbon nanomaterials and nano-zinc oxide for standby;

2)将水泥、填充料、硅灰和纳米氧化锌均匀搅拌,加入分散好的碳纤维、碳纳米材料及纳米氧化锌,再加入减水剂、分散剂和消泡剂; 2) Mix cement, filler, silica fume and nano-zinc oxide evenly, add dispersed carbon fiber, carbon nano-materials and nano-zinc oxide, then add water reducer, dispersant and defoamer;

3)用铜网制作电极,插入混凝土中,用来连接外部电路。 3) Use copper mesh to make electrodes and insert them into concrete to connect to external circuits.

通过上述组分及方法制备的40×40×160mm导电混凝土试块,在20℃±2℃、相对湿度95%以上环境中养护7d、28d和60d后的电阻率分别为72.3Ω·cm、74.5Ω·cm和75.9Ω·cm。 The resistivity of the 40×40×160mm conductive concrete test block prepared by the above components and methods after curing for 7 days, 28 days and 60 days at 20℃±2℃ and relative humidity above 95% were 72.3Ω·cm and 74.5 Ω·cm and 75.9Ω·cm.

本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以进行改进,这些改进也应视为本发明的保护范围。 There are many ways of specific application of the present invention, and the above description is only a preferred embodiment of the present invention. It should be pointed out that for those of ordinary skill in the art, improvements can also be made without departing from the principles of the present invention. These improvements It should also be regarded as the protection scope of the present invention.

Claims (5)

1.一种复掺导电材料的导电混凝土,其特征在于包含如下重量份数的组份: 1. a conductive concrete compounded with conductive material is characterized in that comprising the following components in parts by weight: 水泥,20-40份; Cement, 20-40 parts; 硅灰,0-7份; Silica fume, 0-7 parts; 碳纤维,0.25-2份; Carbon fiber, 0.25-2 parts; 碳纳米材料,0-2份; Carbon nanomaterials, 0-2 parts; 纳米氧化锌,0.1-0.5份; Nano zinc oxide, 0.1-0.5 parts; 减水剂,0.02-0.3份; Water reducing agent, 0.02-0.3 parts; 填充料,50-150份; Filling material, 50-150 parts; 分散剂,1.5-3.7份; Dispersant, 1.5-3.7 parts; 消泡剂,0.1-0.3份; Defoamer, 0.1-0.3 parts; 水,8-21份。 Water, 8-21 parts. 2.根据权利要求1所述的一种复掺导电材料的导电混凝土,其特征在于:所述的纳米氧化锌粒径为5-90nm。 2. The conductive concrete compounded with conductive materials according to claim 1, characterized in that: the particle size of the nano zinc oxide is 5-90nm. 3.根据权利要求1所述的一种复掺导电材料的导电混凝土,其特征在于:所述的碳纳米材料为碳纳米管、炭黑和石墨,其质量比为碳纳米管: 炭黑: 石墨=1: 6: 3。 3. a kind of conductive concrete mixed with conductive material according to claim 1, is characterized in that: described carbon nanomaterial is carbon nanotube, carbon black and graphite, and its mass ratio is carbon nanotube: carbon black: Graphite=1:6:3. 4.一种权利要求1所述的复掺导电材料的导电混凝土的制备方法,其特征在于包括以下步骤: 4. a preparation method of the conductive concrete compounded with conductive material according to claim 1, is characterized in that comprising the following steps: 1)采用物理和化学复合分散技术对碳纤维、碳纳米材料及纳米氧化锌进行分散,备用; 1) Use physical and chemical composite dispersion technology to disperse carbon fiber, carbon nanomaterials and nano-zinc oxide for standby; 2)将水泥、硅灰、填充料均匀搅拌,加入分散好的碳纤维、碳纳米材料、纳米氧化锌以及减水剂、分散剂和消泡剂,再次搅拌,以确保碳纤维、碳纳米材料及纳米氧化锌在混凝土中分散均匀; 2) Stir cement, silica fume, and filler evenly, add dispersed carbon fiber, carbon nanomaterials, nano zinc oxide, water reducer, dispersant, and defoamer, and stir again to ensure that carbon fibers, carbon nanomaterials and nano Zinc oxide is evenly dispersed in concrete; 3)浇注混凝土,初步振捣、抹平; 3) Pouring concrete, preliminary vibrating and smoothing; 4)根据混凝土中骨料粒径的大小,埋入用于连接外部电路的电极; 4) According to the size of the aggregate particle size in the concrete, the electrodes used to connect the external circuit are embedded; 5)再次振捣,辅助压实,确保铜网与混凝土连接良好。 5) Vibrate again and assist in compaction to ensure a good connection between the copper mesh and the concrete. 5.根据权利要求3所述的复掺导电材料的导电混凝土的制备方法,其特征在于:步骤4)所述的电极为铜丝网。 5. The method for preparing conductive concrete compounded with conductive materials according to claim 3, characterized in that: the electrodes in step 4) are copper wire mesh.
CN201310314114.9A 2013-07-25 2013-07-25 Conductive material co-doping conductive concrete and preparation method thereof Expired - Fee Related CN103420647B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310314114.9A CN103420647B (en) 2013-07-25 2013-07-25 Conductive material co-doping conductive concrete and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310314114.9A CN103420647B (en) 2013-07-25 2013-07-25 Conductive material co-doping conductive concrete and preparation method thereof

Publications (2)

Publication Number Publication Date
CN103420647A true CN103420647A (en) 2013-12-04
CN103420647B CN103420647B (en) 2015-02-04

Family

ID=49646085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310314114.9A Expired - Fee Related CN103420647B (en) 2013-07-25 2013-07-25 Conductive material co-doping conductive concrete and preparation method thereof

Country Status (1)

Country Link
CN (1) CN103420647B (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104230196A (en) * 2014-09-15 2014-12-24 荣成炭谷有限公司 Novel cement and manufacturing method thereof
CN104591623A (en) * 2015-01-06 2015-05-06 安徽省无为县泉塘预制厂 Concrete special for marine environment
CN106167364A (en) * 2016-07-27 2016-11-30 四川大学 A kind of concrete modifying agent and preparation method thereof
KR101804202B1 (en) * 2016-12-01 2017-12-06 한국과학기술원 Electrically conductive cememtitious composite
CN108424068A (en) * 2018-03-21 2018-08-21 大连理工大学 A kind of conducting concrete material and preparation method thereof
CN108793819A (en) * 2018-07-23 2018-11-13 中建西部建设西南有限公司 A kind of compound concrete antimitotic agent and preparation method thereof
CN109301523A (en) * 2018-10-09 2019-02-01 国网重庆市电力公司长寿供电分公司 A kind of SAP composite grounding material for electrical engineering and preparation method
CN109574600A (en) * 2019-02-03 2019-04-05 黑龙江工业学院 A kind of highly conductive Graphite concrete
CN109608138A (en) * 2019-01-11 2019-04-12 东南大学 A cement-based composite material with thermoelectric power generation characteristics
CN109678427A (en) * 2019-01-18 2019-04-26 郑州大学 Nanometer carbon black cement-base composite material and preparation method thereof
CN109761559A (en) * 2019-02-27 2019-05-17 中交高新科技产业发展有限公司 The composite material and preparation method with monitoring is conserved for bridge concrete structure
CN110054464A (en) * 2019-03-11 2019-07-26 江苏锦宇环境工程有限公司 A kind of preparation method of composite carbon black reinforced cement-mortar board
CN110963758A (en) * 2019-11-14 2020-04-07 国家电网有限公司 Intelligent concrete containing multi-scale conductive material and preparation method thereof
CN111393098A (en) * 2020-03-16 2020-07-10 广东盖特奇新材料科技有限公司 Conductive heating high-strength cement-based composite fiber material and preparation method thereof
CN111892356A (en) * 2020-08-14 2020-11-06 盐城工学院 A kind of bending sensitive concrete and preparation method thereof
CN112030889A (en) * 2019-12-13 2020-12-04 天津大学 Intelligent temperature control system for roller compacted concrete dam overwintering in alpine regions
CN112433096A (en) * 2019-08-26 2021-03-02 南京工程学院 Method for testing resistivity of conductive concrete in loading process
CN112647381A (en) * 2020-09-27 2021-04-13 天津大学 Concrete electrothermal temperature control structure
CN112645659A (en) * 2020-12-29 2021-04-13 中国建筑材料科学研究总院有限公司 Cement-based composite material for shielding electromagnetic wave in wide frequency band and preparation method and application thereof
CN112727139A (en) * 2020-12-30 2021-04-30 哈尔滨工业大学 Filling type curing device and method for repairing concrete cracks in cold region in winter
CN113189146A (en) * 2021-04-16 2021-07-30 国网甘肃省电力公司经济技术研究院 Device and method for monitoring ground fissure landslide by conductive concrete grounding network
CN113480280A (en) * 2021-08-04 2021-10-08 天津大学 Conductive concrete and preparation method thereof
CN114195452A (en) * 2021-12-14 2022-03-18 苏州混凝土水泥制品研究院有限公司 Conductive mortar, high-conductivity conductive cement-based material and preparation method thereof
CN114477856A (en) * 2022-02-28 2022-05-13 南京林业大学 Design method of conductive asphalt mixture based on carbon black and carbon fibers
CN114855547A (en) * 2022-05-06 2022-08-05 中国建筑第八工程局有限公司 Snow-melting pavement structure and construction method thereof
CN118776521A (en) * 2024-08-09 2024-10-15 中国矿业大学(北京) Intelligent monitoring device for shield tunnel settlement deformation based on deformation self-sensing segments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130604A (en) * 1995-12-29 1996-09-11 王家君 Conducting concrete usable as electric heat-generating material
KR20090117259A (en) * 2008-05-09 2009-11-12 (주)콘스코 Conductive cement composition and anticorrosive method using the same
DE102008056469A1 (en) * 2008-11-04 2010-05-12 Bauhaus-Universität Weimar F.A. Finger - Institut für Baustoffkunde Building material for producing electromagnetically shielded buildings and its parts, comprises a portion of water and binder, a portion of aggregate having specific particle size, a portion of additives and a portion of flux material
CN103193421A (en) * 2013-03-12 2013-07-10 北京中企卓创科技发展有限公司 Method for preparing carbon fiber conductive concrete with melting snow and ice function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130604A (en) * 1995-12-29 1996-09-11 王家君 Conducting concrete usable as electric heat-generating material
KR20090117259A (en) * 2008-05-09 2009-11-12 (주)콘스코 Conductive cement composition and anticorrosive method using the same
DE102008056469A1 (en) * 2008-11-04 2010-05-12 Bauhaus-Universität Weimar F.A. Finger - Institut für Baustoffkunde Building material for producing electromagnetically shielded buildings and its parts, comprises a portion of water and binder, a portion of aggregate having specific particle size, a portion of additives and a portion of flux material
CN103193421A (en) * 2013-03-12 2013-07-10 北京中企卓创科技发展有限公司 Method for preparing carbon fiber conductive concrete with melting snow and ice function

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104230196A (en) * 2014-09-15 2014-12-24 荣成炭谷有限公司 Novel cement and manufacturing method thereof
CN104591623A (en) * 2015-01-06 2015-05-06 安徽省无为县泉塘预制厂 Concrete special for marine environment
CN106167364A (en) * 2016-07-27 2016-11-30 四川大学 A kind of concrete modifying agent and preparation method thereof
KR101804202B1 (en) * 2016-12-01 2017-12-06 한국과학기술원 Electrically conductive cememtitious composite
WO2018101545A1 (en) * 2016-12-01 2018-06-07 한국과학기술원 Electrical conductive cement-based composite composition
CN108424068B (en) * 2018-03-21 2019-09-27 大连理工大学 A kind of conductive concrete material and preparation method thereof
CN108424068A (en) * 2018-03-21 2018-08-21 大连理工大学 A kind of conducting concrete material and preparation method thereof
CN108793819A (en) * 2018-07-23 2018-11-13 中建西部建设西南有限公司 A kind of compound concrete antimitotic agent and preparation method thereof
CN108793819B (en) * 2018-07-23 2020-12-29 中建商品混凝土广西有限公司 A kind of composite concrete anti-cracking agent and preparation method thereof
CN109301523A (en) * 2018-10-09 2019-02-01 国网重庆市电力公司长寿供电分公司 A kind of SAP composite grounding material for electrical engineering and preparation method
CN109608138A (en) * 2019-01-11 2019-04-12 东南大学 A cement-based composite material with thermoelectric power generation characteristics
CN109608138B (en) * 2019-01-11 2021-06-22 东南大学 A cement-based composite material with thermoelectric power generation characteristics
CN109678427A (en) * 2019-01-18 2019-04-26 郑州大学 Nanometer carbon black cement-base composite material and preparation method thereof
CN109574600A (en) * 2019-02-03 2019-04-05 黑龙江工业学院 A kind of highly conductive Graphite concrete
CN109574600B (en) * 2019-02-03 2021-09-24 黑龙江工业学院 A kind of highly conductive graphite concrete
CN109761559A (en) * 2019-02-27 2019-05-17 中交高新科技产业发展有限公司 The composite material and preparation method with monitoring is conserved for bridge concrete structure
CN110054464A (en) * 2019-03-11 2019-07-26 江苏锦宇环境工程有限公司 A kind of preparation method of composite carbon black reinforced cement-mortar board
CN112433096A (en) * 2019-08-26 2021-03-02 南京工程学院 Method for testing resistivity of conductive concrete in loading process
CN110963758A (en) * 2019-11-14 2020-04-07 国家电网有限公司 Intelligent concrete containing multi-scale conductive material and preparation method thereof
CN112030889A (en) * 2019-12-13 2020-12-04 天津大学 Intelligent temperature control system for roller compacted concrete dam overwintering in alpine regions
CN111393098A (en) * 2020-03-16 2020-07-10 广东盖特奇新材料科技有限公司 Conductive heating high-strength cement-based composite fiber material and preparation method thereof
CN111892356A (en) * 2020-08-14 2020-11-06 盐城工学院 A kind of bending sensitive concrete and preparation method thereof
CN112647381A (en) * 2020-09-27 2021-04-13 天津大学 Concrete electrothermal temperature control structure
CN112645659A (en) * 2020-12-29 2021-04-13 中国建筑材料科学研究总院有限公司 Cement-based composite material for shielding electromagnetic wave in wide frequency band and preparation method and application thereof
CN112727139A (en) * 2020-12-30 2021-04-30 哈尔滨工业大学 Filling type curing device and method for repairing concrete cracks in cold region in winter
CN113189146A (en) * 2021-04-16 2021-07-30 国网甘肃省电力公司经济技术研究院 Device and method for monitoring ground fissure landslide by conductive concrete grounding network
CN113189146B (en) * 2021-04-16 2024-05-28 国网甘肃省电力公司经济技术研究院 Device and method for monitoring ground crack landslide through conductive concrete grounding grid
CN113480280A (en) * 2021-08-04 2021-10-08 天津大学 Conductive concrete and preparation method thereof
CN114195452A (en) * 2021-12-14 2022-03-18 苏州混凝土水泥制品研究院有限公司 Conductive mortar, high-conductivity conductive cement-based material and preparation method thereof
CN114195452B (en) * 2021-12-14 2023-01-17 苏州混凝土水泥制品研究院有限公司 Conductive mortar, highly conductive conductive cement-based material and preparation method thereof
CN114477856A (en) * 2022-02-28 2022-05-13 南京林业大学 Design method of conductive asphalt mixture based on carbon black and carbon fibers
CN114855547A (en) * 2022-05-06 2022-08-05 中国建筑第八工程局有限公司 Snow-melting pavement structure and construction method thereof
CN118776521A (en) * 2024-08-09 2024-10-15 中国矿业大学(北京) Intelligent monitoring device for shield tunnel settlement deformation based on deformation self-sensing segments

Also Published As

Publication number Publication date
CN103420647B (en) 2015-02-04

Similar Documents

Publication Publication Date Title
CN103420647B (en) Conductive material co-doping conductive concrete and preparation method thereof
CN102444070B (en) Double-ply stainless steel fiber conductive cement concrete
Zhang et al. Nickel particle based electrical resistance heating cementitious composites
Li et al. Novel conductive wearing course using a graphite, carbon fiber, and epoxy resin mixture for active de-icing of asphalt concrete pavement
Yehia et al. Thin conductive concrete overlay for bridge deck deicing and anti-icing
CN105297625B (en) It is applied to the construction method of the complex functional layer in ice-melt snowbridge face
CN101806028B (en) Layered steel fiber conductive bituminous concrete
CN101235621A (en) Electrothermal Method for Melting Snow and Ice on Cement Concrete Bridge Deck
CN203462377U (en) Snow-melting and deicing road surface
CN103396672B (en) A kind of thermal conductive asphalt matrix material and preparation method thereof
CN101413240A (en) Method for melting snow and ice based on carbon fiber-glass fiber composite braiding net
CN102815893B (en) Asphalt mixture with ice and snow removing function and preparation method thereof
CN105017786B (en) Polyethylene glycol is from snow melt composite phase-change material modified pitch and preparation method thereof
CN204491356U (en) There is the carbon fiber compound geogrid of electric heating function
CN207749415U (en) It is a kind of to have effects that the bridge deck pavement structure of deicing or snow melting
CN110055856A (en) Seif-citing rate road surface and heating cable mixing road surface ice melting system and its construction method
CN105272048A (en) Strain self-sensing multi-scale carbon-cement composite pavement material capable of melting snow and ice
Fulham-Lebrasseur et al. Prefabricated electrically conductive concrete (ECC) slabs with optimized electrode configuration and integrated sensor system
CN110003671B (en) Snow-melting anti-rutting agent and pavement comprehensive ice-melting system
CN118909491A (en) Self-temperature-limiting graphene material and preparation method thereof
Zhang et al. Stainless steel wires-modified asphalt concrete for self-heating and self-deicing
CN108424068B (en) A kind of conductive concrete material and preparation method thereof
CN109574553A (en) A kind of conductive asphalt mixture and preparation method thereof
CN114892469A (en) A kind of heating road based on graphene concrete and using method thereof
CN109133770A (en) A kind of conducting concrete and its application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150204