[go: up one dir, main page]

CN103412287A - Linear frequency modulation signal parameter evaluation method based on LVD (Lv's distribution) - Google Patents

Linear frequency modulation signal parameter evaluation method based on LVD (Lv's distribution) Download PDF

Info

Publication number
CN103412287A
CN103412287A CN2013103913271A CN201310391327A CN103412287A CN 103412287 A CN103412287 A CN 103412287A CN 2013103913271 A CN2013103913271 A CN 2013103913271A CN 201310391327 A CN201310391327 A CN 201310391327A CN 103412287 A CN103412287 A CN 103412287A
Authority
CN
China
Prior art keywords
signal
lvd
spectrum
frequency modulation
collected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103913271A
Other languages
Chinese (zh)
Other versions
CN103412287B (en
Inventor
金艳
段鹏婷
姬红兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201310391327.1A priority Critical patent/CN103412287B/en
Publication of CN103412287A publication Critical patent/CN103412287A/en
Application granted granted Critical
Publication of CN103412287B publication Critical patent/CN103412287B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于LVD的线性调频信号参数估计方法,利用线性调频信号在LVD域具有能量冲激特性,实现交叉项的相对抑制,精确估计线性调频信号的中心频率和调频斜率参数值。具体步骤包括:1、采集信号,2、判别是否含有脉冲噪声,3、降阶预处理,4、提取自相关特征,5、相位尺度变换,6、LVD谱特征提取,7、搜索LVD谱峰。本发明克服了已有技术无法兼顾交叉项抑制和分辨率增强的缺陷,将解耦自相关信号转换为独立分布的LVD谱,提高了复杂噪声环境中信号的参数估计精度,为未来信号相位特征提取技术的设计提供了一条新的途径。

Figure 201310391327

The invention discloses a method for estimating parameters of a linear frequency modulation signal based on LVD, which utilizes the energy impulse characteristic of the linear frequency modulation signal in the LVD domain, realizes relative suppression of cross items, and accurately estimates the center frequency and frequency modulation slope parameter values of the linear frequency modulation signal. Specific steps include: 1. Acquire signal, 2. Determine whether it contains impulse noise, 3. Reduce order preprocessing, 4. Extract autocorrelation features, 5. Phase scale transformation, 6. Extract LVD spectrum features, 7. Search for LVD spectrum peaks . The present invention overcomes the defect that the prior art cannot take into account cross-term suppression and resolution enhancement, converts the decoupled autocorrelation signal into an independently distributed LVD spectrum, improves the parameter estimation accuracy of the signal in a complex noise environment, and contributes to future signal phase characteristics. The design of extraction technology provides a new way.

Figure 201310391327

Description

基于LVD的线性调频信号参数估计方法Parameter Estimation Method of LFM Signal Based on LVD

技术领域technical field

本发明属于通信技术领域,更进一步涉及雷达信号处理技术领域中基于LVD(Lv’s Distribution LVD)的线性调频信号参数估计方法。本发明利用低阶预处理方法对脉冲噪声进行抑制,LVD变换估计线性调频信号的中心频率和调频斜率参数,实现复杂噪声环境中线性调频信号的相位特征提取。The invention belongs to the technical field of communication, and further relates to a method for estimating parameters of linear frequency modulation signals based on LVD (Lv's Distribution LVD) in the technical field of radar signal processing. The invention uses a low-order preprocessing method to suppress pulse noise, and LVD transforms to estimate the center frequency and frequency modulation slope parameters of the linear frequency modulation signal, so as to realize phase feature extraction of the linear frequency modulation signal in a complex noise environment.

背景技术Background technique

线性调频信号具有大时宽带宽积,采用脉冲压缩技术可以使雷达的峰值发射功率显著降低,从而低于截获接收机的灵敏度,实现发射信号低截获的目的。线性调频信号作为一种最成熟的低截获概率雷达信号,广泛应用于脉冲压缩雷达中。因而,在数字接收的情况下,对线性调频信号中心频率和调频斜率参数进行精确估计,可以实现电子侦察系统中的目标检测和识别。目前,线性调频信号的参数估计方法主要有以维格纳一维利分布(WVD)为代表的双线性时频分析方法和以短时傅里叶变换为代表的线性时频分析方法。The chirp signal has a large time-width-bandwidth product, and the use of pulse compression technology can significantly reduce the peak transmit power of the radar, thereby lowering the sensitivity of the intercepting receiver and achieving the purpose of low interception of the transmitted signal. As one of the most mature low probability of intercept radar signals, chirp signal is widely used in pulse compression radar. Therefore, in the case of digital reception, accurate estimation of the center frequency and FM slope parameters of the chirp signal can realize target detection and recognition in electronic reconnaissance systems. At present, the parameter estimation methods of LFM signal mainly include bilinear time-frequency analysis method represented by Wigner-Villi distribution (WVD) and linear time-frequency analysis method represented by short-time Fourier transform.

以WVD为代表的双线性时频分析方法是将线性调频信号通过二次型函数变换到时频域,该类方法对于单分量线性调频信号具有良好的能量积聚性,但是当信号分量变多时,该变换过程不可避免的具有严重的交叉项,导致无法正确提取信号项的特征参数。为了抑制交叉项,许多WVD的改进类型被提了出来,如信号分解,固定核函数设计,自适应核函数等。The bilinear time-frequency analysis method represented by WVD transforms the chirp signal into the time-frequency domain through a quadratic function. This type of method has good energy accumulation for single-component chirp signals, but when the signal components increase , the transformation process inevitably has serious cross terms, which leads to the inability to correctly extract the characteristic parameters of the signal term. In order to suppress the cross term, many improved types of WVD have been proposed, such as signal decomposition, fixed kernel function design, adaptive kernel function and so on.

重庆邮电大学拥有的专利技术“一种抑制多分量线性调频信号时频分布中交叉项的方法”(申请号201010550784.7,申请日2010.11.19,授权号CN102158443A,授权日2011.08.17)中提出一种基于子空间分解的改进方法,该方法通过特征分解将含噪声和交叉项的时频分布矩阵分解成信号子空间和噪声子空间,将信号子空间分离出来,可以在一定程度上减少交叉项干扰。该专利技术存在的不足是,在子空间分解过程中信号相互分离难以利用相关信息,导致利用该专利技术不能充分体现线性调频信号的时频特征,且当数据量较大时,计算速率不够理想。A patented technology owned by Chongqing University of Posts and Telecommunications "A method for suppressing cross terms in the time-frequency distribution of multi-component linear frequency modulation signals" (application number 201010550784.7, application date 2010.11.19, authorization number CN102158443A, authorization date 2011.08.17) proposes a An improved method based on subspace decomposition, which decomposes the time-frequency distribution matrix containing noise and cross-terms into signal subspace and noise subspace through eigendecomposition, and separates the signal subspace, which can reduce cross-term interference to a certain extent . The disadvantage of this patented technology is that in the process of subspace decomposition, the signals are separated from each other and it is difficult to use relevant information, resulting in the use of this patented technology cannot fully reflect the time-frequency characteristics of the chirp signal, and when the amount of data is large, the calculation rate is not ideal. .

以短时傅里叶变换为代表的线性时频分析方法,对观测信号进行加窗移位,然后求取加窗信号的傅里叶变换。The linear time-frequency analysis method represented by the short-time Fourier transform performs window shift on the observed signal, and then obtains the Fourier transform of the windowed signal.

中北大学拥有的专利技术“基于短时傅里叶变换和分数阶傅里叶变换的多目标检测方法”(申请号201210335020.5,申请日2012.09.05,授权号CN102866391A,授权日2013.01.09)中提出了一种基于短时傅里叶变换和分数阶傅里叶变换相结合的线性调频雷达信号探测方法。该方法利用单一变量来表示时频信息,在一定程度上能够有效避免交叉项的出现,提高了待检测信号的信噪比。但是,该专利技术存在的不足是,由于短时傅里叶变换窄的观察窗降低了时频域的分辨率,因而在低信噪比条件下信号参数的估计性能降低,并且各分量的分数阶傅里叶谱相互遮蔽。The patented technology "multi-target detection method based on short-time Fourier transform and fractional Fourier transform" owned by North University of China (application number 201210335020.5, application date 2012.09.05, authorization number CN102866391A, authorization date 2013.01.09) A chirp radar signal detection method based on the combination of short-time Fourier transform and fractional order Fourier transform is proposed. This method uses a single variable to represent time-frequency information, which can effectively avoid the occurrence of cross terms to a certain extent and improve the signal-to-noise ratio of the signal to be detected. However, the disadvantage of this patented technology is that because the narrow observation window of the short-time Fourier transform reduces the resolution of the time-frequency domain, the estimation performance of the signal parameters is reduced under the condition of low signal-to-noise ratio, and the fraction of each component order Fourier spectra mask each other.

综上所述,对于线性调频信号的参数估计方法,已有时频分析方法仅仅考虑了线性调频信号随时间变化的时频特征,没有考虑到中心频率和调频斜率对信号瞬时频率的唯一确定性,提取出的时频特征不能直接体现线性调频信号的变化特性,利用该类方法进行参数估计,估计精度不高。To sum up, for the parameter estimation method of chirp signal, the existing time-frequency analysis method only considers the time-frequency characteristics of chirp signal changing with time, and does not consider the unique certainty of the center frequency and FM slope on the instantaneous frequency of the signal. The extracted time-frequency features cannot directly reflect the changing characteristics of the chirp signal, and the estimation accuracy is not high by using this method for parameter estimation.

发明内容Contents of the invention

本发明目的在于克服上述已有技术的不足,提出一种基于LVD的线性调频信号参数估计方法。本发明充分考虑线性调频信号在LVD平面由中心频率和调频斜率唯一确定的信息,通过二维傅里叶变换,将解耦自相关信号转换为独立分布的LVD谱,以便取得更高的参数估计精度。The purpose of the present invention is to overcome the above-mentioned deficiencies in the prior art, and propose a method for estimating parameters of linear frequency modulation signals based on LVD. The present invention fully considers the information that the linear frequency modulation signal is uniquely determined by the central frequency and the frequency modulation slope on the LVD plane, and converts the decoupled autocorrelation signal into an independently distributed LVD spectrum through two-dimensional Fourier transform, so as to obtain higher parameter estimation precision.

实现本发明目的的具体思路是:采集雷达天线中含有实际噪声的线性调频信号,判别采集信号中是否含有脉冲噪声,若存在脉冲噪声,通过降阶预处理,实现脉冲噪声的抑制;采用瞬时自相关函数提取采集信号的自相关信息,再利用傅里叶变换转换为LVD谱;多分量线性调频信号的LVD谱表现为相互独立的脉冲尖峰,搜索尖峰所在的位置坐标,将该坐标值作为线性调频信号的中心频率和调频斜率参数值。The concrete train of thought that realizes the object of the present invention is: collect the chirp signal that contains actual noise in the radar antenna, judge whether to contain pulse noise in the collected signal, if there is pulse noise, realize the suppression of pulse noise by step reduction preprocessing; The correlation function extracts the autocorrelation information of the collected signal, and then uses Fourier transform to convert it into an LVD spectrum; the LVD spectrum of a multi-component chirp signal is represented as independent pulse peaks, and the position coordinates of the peaks are searched, and the coordinate values are used as linear The center frequency and FM slope parameter values of the FM signal.

根据上述主要思路,本发明的具体实现步骤如下:According to above-mentioned main train of thought, concrete realization steps of the present invention are as follows:

(1)采集信号:(1) Acquisition signal:

信号采集系统通过脉压雷达的接收机设备,采集雷达天线中任意一段含有实际噪声的线性调频信号。The signal acquisition system collects any chirp signal containing actual noise in the radar antenna through the receiver equipment of the pulse pressure radar.

(2)判别采集的线性调频信号中是否含有脉冲噪声:(2) Determine whether the collected chirp signal contains impulse noise:

2a)采用局部幅值特征方法得到局部阈值,将该阈值作为判别门限;2a) Using the local amplitude feature method to obtain a local threshold, and use this threshold as the discrimination threshold;

2b)幅值统计模块将采集的线性调频信号局部幅值与判别门限进行比较,判别采集的线性调频信号中是否含有脉冲噪声;若存在脉冲噪声,则幅值统计模块发出脉冲指示信号,则执行步骤3;若不存在脉冲噪声,则幅值统计模块发出采集信号,执行步骤4。2b) The amplitude statistics module compares the local amplitude of the collected chirp signal with the discrimination threshold, and judges whether the collected chirp signal contains impulse noise; if there is impulse noise, the amplitude statistics module sends a pulse indication signal, and executes Step 3: If there is no impulse noise, then the amplitude statistics module sends a collection signal, and executes step 4.

(3)根据幅值统计模块发出的脉冲指示信号,设置降阶预处理的阶数p,p的范围满足大于0小于脉冲噪声的特征参数,利用降阶预处理公式,对采集信号进行低阶运算,得到降阶预处理后的采集信号。(3) According to the pulse indication signal sent by the amplitude statistics module, set the order p of the reduced-order preprocessing, and the range of p satisfies the characteristic parameters greater than 0 and smaller than the pulse noise. operation to obtain the acquisition signal after the order reduction preprocessing.

(4)提取自相关特征:(4) Extract autocorrelation features:

按照下式,降阶预处理后的采集信号的自相关特征信号:According to the following formula, the autocorrelation characteristic signal of the acquired signal after the order reduction preprocessing:

RR == xx (( tt ++ ττ ++ 11 22 )) xx ** (( tt -- ττ ++ 11 22 ))

其中,R表示采集信号的自相关特征信号;x表示采集信号;t表示采集信号的采样时间;τ表示采集信号相位的延时时长;*表示共轭符号。Among them, R represents the autocorrelation characteristic signal of the collected signal; x represents the collected signal; t represents the sampling time of the collected signal; τ represents the delay time of the phase of the collected signal; * represents the conjugate symbol.

(5)相位尺度变换:(5) Phase scale transformation:

5a)采用离散傅里叶变换方法,以采样时间为转换因子,将自相关特征信号变换到频域,得到瞬时自相关的频谱序列;5a) Using the discrete Fourier transform method and taking the sampling time as the conversion factor, the autocorrelation characteristic signal is transformed into the frequency domain to obtain the instantaneous autocorrelation spectrum sequence;

5b)采用辛格函数内插方法,将频谱序列中的采样时间进行尺度变换,得到插值后的频谱序列;5b) Using the Singer function interpolation method, the sampling time in the spectrum sequence is scale-transformed to obtain the interpolated spectrum sequence;

5c)采用逆离散傅里叶变换方法,以尺度变换后的采样时间为转换因子,将频谱序列变换为时域信号,得到解耦自相关信号。5c) Using the inverse discrete Fourier transform method, using the scale-transformed sampling time as the conversion factor, the spectrum sequence is transformed into a time-domain signal to obtain a decoupled autocorrelation signal.

(6)LVD谱特征提取:(6) LVD spectrum feature extraction:

利用二维离散傅里叶变换方法,依次将解耦自相关信号中的相位延时和采样时间作为转换因子,进行时频域转换,得到LVD谱。Using the two-dimensional discrete Fourier transform method, the phase delay and sampling time in the decoupled autocorrelation signal are used as conversion factors in turn, and the time-frequency domain conversion is performed to obtain the LVD spectrum.

(7)估计中心频率和调频斜率的参数值:(7) Estimate the parameter values of center frequency and FM slope:

利用峰值检测方法搜索LVD谱的峰值,搜索LVD谱的峰值,得到谱峰值所在点对应的坐标,将该坐标作为线性调频信号的中心频率和调频斜率的参数值。Use the peak detection method to search for the peak value of the LVD spectrum, search the peak value of the LVD spectrum, obtain the coordinates corresponding to the point where the peak value of the spectrum is located, and use the coordinates as the parameter values of the center frequency of the linear frequency modulation signal and the frequency modulation slope.

本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:

第一,本发明由于充分考虑了线性调频信号相位时间和相位延时之间存在耦合关系的自相关信息,克服了现有技术中无法充分体现线性调频信号时频特征的局限性,使得本发明能够有效地抑制交叉项,提高LVD平面信号自项的时频特征分辨率。First, because the present invention fully considers the autocorrelation information of the coupling relationship between the chirp signal phase time and the phase delay, it overcomes the limitation that the time-frequency characteristics of the chirp signal cannot be fully reflected in the prior art, making the present invention The cross-term can be effectively suppressed, and the time-frequency feature resolution of the self-term of the LVD planar signal can be improved.

第二,本发明由于采用二维离散傅里叶变换直接提取参数信息,克服了现有技术中信号分数阶傅里叶谱相互遮蔽的缺点,使得本发明能够实现多分量线性调频信号独立分布,有效提高参数估计精度和运算速率。Second, because the present invention directly extracts parameter information by using two-dimensional discrete Fourier transform, it overcomes the shortcoming of signal fractional Fourier spectrum mutual shielding in the prior art, so that the present invention can realize the independent distribution of multi-component chirp signals, Effectively improve parameter estimation accuracy and operation speed.

附图说明Description of drawings

图1是本发明的流程图;Fig. 1 is a flow chart of the present invention;

图2是本发明中判别采集信号中是否含有脉冲噪声的子流程图;Fig. 2 is the sub-flow chart of judging whether to contain impulse noise in the acquisition signal among the present invention;

图3是本发明中相位尺度变换的子流程图;Fig. 3 is the sub-flow chart of phase scale conversion among the present invention;

图4是白噪声环境中线性调频信号的LVD谱仿真图;Fig. 4 is the LVD spectrum simulation diagram of chirp signal in the white noise environment;

图5是脉冲噪声环境中降阶预处理前后LVD谱仿真效果比较图。Figure 5 is a comparison diagram of LVD spectrum simulation effects before and after order reduction preprocessing in an impulsive noise environment.

具体实施方式Detailed ways

下面结合附图对本发明做进一步的描述。The present invention will be further described below in conjunction with the accompanying drawings.

参照图1,本发明的具体实施步骤如下:With reference to Fig. 1, concrete implementation steps of the present invention are as follows:

步骤1,采集信号:Step 1, collect the signal:

信号采集系统通过脉压雷达的接收机设备,采集雷达天线中任意一段含有实际噪声的线性调频信号,其混合信号模型可表示如下:The signal acquisition system collects the chirp signal containing actual noise in any section of the radar antenna through the receiver equipment of the pulse pressure radar, and its mixed signal model can be expressed as follows:

xx (( nno )) == ΣΣ ii == 11 KK -- 11 AA ii ee jfjf ii nno ++ jj rr ii 22 nno 22 ++ ww (( nno ))

其中,x(·)表示采集信号,n表示采样时间,i表示第i个信号分量,j表示虚数单位,K表示信号分量总数,Ai、fi、ri分别表示各分量线性调频信号的幅度、中心频率、调频斜率,w(n)表示噪声项,包含高斯噪声和脉冲噪声。Among them, x(·) represents the collected signal, n represents the sampling time, i represents the i-th signal component, j represents the imaginary number unit, K represents the total number of signal components, A i , f i , r i represent the linear frequency modulation signal of each component Amplitude, center frequency, FM slope, w(n) represents the noise term, including Gaussian noise and impulse noise.

步骤2,判别采集的线性调频信号中是否含有脉冲噪声:Step 2, to determine whether the collected chirp signal contains impulse noise:

参照图2,判别采集的线性调频信号中是否含有脉冲噪声的详细步骤如下。Referring to Fig. 2, the detailed steps of judging whether the collected linear frequency modulation signal contains impulse noise are as follows.

第一步,将采集信号输入判别模块,作为判别信号。In the first step, the collected signal is input into the discrimination module as a discrimination signal.

第二步,设置一个固定长度为N的检测窗口,长度N的取值范围为大于0小于线性调频信号采样点总数的值。In the second step, a detection window with a fixed length N is set, and the value range of the length N is greater than 0 and less than the total number of sampling points of the chirp signal.

第三步,利用检测窗口的时域平滑,将线性调频信号按时间段截断,划分为多个等长度时间段、互不重叠的子信号,采用局部幅值特征方法计算子信号的幅度均值,得到局部阈值。The third step is to use the time-domain smoothing of the detection window to truncate the chirp signal according to the time period, divide it into multiple sub-signals of equal length and non-overlapping each other, and use the local amplitude characteristic method to calculate the amplitude mean value of the sub-signals. Get the local threshold.

第四步,将该阈值作为判别门限,幅值统计模块将采集的线性调频信号局部幅值与判别门限进行比较,判别采集的线性调频信号中是否含有脉冲噪声;In the fourth step, the threshold is used as a discrimination threshold, and the amplitude statistics module compares the local amplitude of the collected chirp signal with the discrimination threshold to determine whether the collected chirp signal contains impulse noise;

第五步,判别采集信号中存在脉冲噪声,则幅值统计模块发出脉冲指示信号,则执行步骤3;The fifth step is to judge that there is pulse noise in the collected signal, then the amplitude statistics module sends a pulse indication signal, and then execute step 3;

第六步,判别采集信号中不存在脉冲噪声,则幅值统计模块发出采集信号,执行步骤4。In the sixth step, it is judged that there is no impulse noise in the collected signal, and then the amplitude statistics module sends out the collected signal, and then step 4 is performed.

步骤3,降阶预处理:Step 3, order reduction preprocessing:

根据幅值统计模块发出的脉冲指示信号,设置降阶预处理的阶数p,p的范围满足大于0小于脉冲噪声的特征参数,利用降阶预处理公式,对采集信号进行低阶运算,按照下式进行:According to the pulse indication signal sent by the amplitude statistics module, set the order p of the reduced-order preprocessing, and the range of p satisfies the characteristic parameters greater than 0 and smaller than the impulse noise. Use the reduced-order preprocessing formula to perform low-order calculations on the collected signals, according to The following formula is carried out:

x<p>=|x|p+1/x*,x-<p>=(x*)<p>=(x<p>)* x <p> =|x| p+1 /x * , x -<p> = (x * ) <p> = (x <p> ) *

其中,x<p>表示p阶降阶预处理后的采集信号,p表示降阶预处理的阶数,<·>表示降阶预处理符号,|·|表示取模函数符号,*表示共轭符号,x-<p>表示对采集信号进行p阶预处理后的共轭信号。Among them, x <p> represents the collected signal after the p-order reduction preprocessing, p represents the order of the reduction preprocessing, <·> represents the symbol of the reduction preprocessing, |·| represents the symbol of the modulo function, * represents the common The conjugate symbol, x -<p> represents the conjugate signal after the p-order preprocessing of the acquired signal.

降阶预处理后得到了低阶信号,使原采集信号中的奇异值幅值降低,却完整地保留了信号的相位信息,对于信号的瞬时频率参数估计提供了有效的依据。The low-order signal is obtained after order reduction preprocessing, which reduces the singular value amplitude in the original acquisition signal, but completely retains the phase information of the signal, which provides an effective basis for the estimation of the instantaneous frequency parameter of the signal.

步骤4,提取自相关特征:Step 4, extract autocorrelation features:

按照下式,提取降阶预处理后的采集信号的自相关特征信号:According to the following formula, the autocorrelation characteristic signal of the acquired signal after the order reduction preprocessing is extracted:

RR == xx (( tt ++ &tau;&tau; ++ 11 22 )) xx ** (( tt -- &tau;&tau; ++ 11 22 ))

其中,R表示采集信号的自相关特征信号,x表示采集信号,t表示采集信号的采样时间,τ表示采集信号相位的延时时长,*表示共轭符。Among them, R represents the autocorrelation characteristic signal of the collected signal, x represents the collected signal, t represents the sampling time of the collected signal, τ represents the delay time of the phase of the collected signal, and * represents the conjugate symbol.

步骤5,相位尺度变换:Step 5, phase scale transformation:

参照图3,相位尺度变换的详细步骤如下。Referring to FIG. 3 , the detailed steps of phase scale transformation are as follows.

第一步,将自相关特征信号作为输入信号,进行尺度变换。In the first step, the autocorrelation feature signal is used as the input signal for scale transformation.

第二步,采用快速离散傅里叶变换方法,以采样时间为转换因子,将自相关特征信号变换到频域,得到瞬时自相关的频谱序列。In the second step, the fast discrete Fourier transform method is used, and the sampling time is used as the conversion factor to transform the autocorrelation characteristic signal into the frequency domain to obtain the instantaneous autocorrelation spectrum sequence.

第三步,采用辛格函数内插方法,将频谱序列中的采样时间进行尺度变换,得到插值后的频谱序列。利用辛格函数因子对频谱序列中的时间变量进行伸缩变换后,采样时间和延时时长之间的不再存在耦合关系。In the third step, the Singer function interpolation method is used to scale the sampling time in the spectrum sequence to obtain the interpolated spectrum sequence. After scaling and transforming the time variable in the spectrum sequence by using the Singer function factor, there is no coupling relationship between the sampling time and the delay time.

利用尺度变换是指按照下式进行:The use of scale transformation refers to the following formula:

t=(τ+1)Tt=(τ+1)T

其中,t表示频谱序列中的采样时间,τ表示采集信号相位的延时时长,T表示尺度变换后的采样时间。Among them, t represents the sampling time in the spectrum sequence, τ represents the delay time of the acquisition signal phase, and T represents the sampling time after scale transformation.

第四步,采用逆离散傅里叶变换方法,以尺度变换后的采样时间为转换因子,将频谱序列变换为时域信号,得到解耦自相关信号。In the fourth step, the inverse discrete Fourier transform method is used, and the sampling time after scale transformation is used as the conversion factor to transform the spectrum sequence into a time domain signal to obtain a decoupled autocorrelation signal.

第五步,尺度变换后得到解耦自相关信号,消除了时间变量耦合关系后的线性调频信号信息,能够抑制信号在参数域不同分量之间的时频模糊。In the fifth step, the decoupled autocorrelation signal is obtained after scale transformation, and the chirp signal information after the time variable coupling relationship is eliminated, which can suppress the time-frequency ambiguity between different components of the signal in the parameter domain.

步骤6,LVD谱特征提取:Step 6, LVD spectrum feature extraction:

利用二维离散傅里叶变换,依次将解耦自相关信号中的相位延时和采样时间作为转换因子,进行时频域转换,得到LVD谱;将自相关信号R进行二维傅里叶变换,每个信号自项均能建模为理想的脉冲尖峰函数:Using two-dimensional discrete Fourier transform, the phase delay and sampling time in the decoupled autocorrelation signal are used as conversion factors in turn, and the time-frequency domain conversion is performed to obtain the LVD spectrum; the autocorrelation signal R is subjected to two-dimensional Fourier transform , each signal self-term can be modeled as an ideal impulse spike function:

LL == Ff &tau;&tau; (( Ff tt nno (( RR )) )) == &Sigma;&Sigma; ii == 00 KK -- 11 AA ii 22 ee jj 22 &pi;&pi; ff ii &delta;&delta; (( ff -- ff ii )) &delta;&delta; (( rr -- rr ii )) ++ &Sigma;&Sigma; ii == 00 KK -- 22 &Sigma;&Sigma; jj == ii ++ 11 KK -- 11 LL xx ii xx jj

其中,L表示LVD谱,Fτ(·)、

Figure BDA0000375645200000062
(·)分别表示关于τ、
Figure BDA0000375645200000063
的快速傅里叶变换,R表示采集信号的自相关特征信号,i表示第i个信号分量,K表示信号分量总数,Ai、fi、ri分别表示各分量线性调频信号的幅度、中心频率、调频斜率,j表示虚数单位,δ(·)表示冲激函数,xi表示第i个采集信号,xj表示第j个采集信号
Figure BDA0000375645200000064
表示第i个采集信号和第j个采集信号的LVD交叉项谱。Among them, L represents the LVD spectrum, F τ (·),
Figure BDA0000375645200000062
(·) respectively represent about τ,
Figure BDA0000375645200000063
R represents the autocorrelation characteristic signal of the collected signal, i represents the i-th signal component, K represents the total number of signal components, A i , f i , r i represent the amplitude and center of the linear frequency modulation signal of each component Frequency, FM slope, j represents the imaginary number unit, δ(·) represents the impulse function, x i represents the i-th acquisition signal, x j represents the j-th acquisition signal
Figure BDA0000375645200000064
Indicates the LVD cross-term spectrum of the i-th acquisition signal and the j-th acquisition signal.

对于无噪声现实环境中的单分量线性调频信号,LVD平面只存在建模为单频函数的信号自项。对于多分量线性调频信号,LVD变换使信号自项具有能量冲激特性,使交叉项忽略不计,具有近似线性的特性。For a single-component chirp signal in a noise-free real environment, only the self-term of the signal modeled as a single-frequency function exists in the LVD plane. For multi-component LFM signals, LVD transformation makes the self-term of the signal have energy impulse characteristics, makes the cross-term negligible, and has approximately linear characteristics.

步骤7,搜索LVD谱峰值坐标:Step 7, search for LVD spectrum peak coordinates:

利用峰值检测方法,搜索LVD谱的峰值,得到谱峰值所在点对应的坐标,将该坐标作为线性调频信号的中心频率和调频斜率的参数值。Use the peak detection method to search for the peak of the LVD spectrum to obtain the coordinates corresponding to the point where the peak of the spectrum is located, and use the coordinates as the parameter values of the center frequency and the frequency modulation slope of the linear frequency modulation signal.

下面结合仿真图对本发明做进一步的描述。The present invention will be further described below in conjunction with the simulation diagram.

1.仿真条件:1. Simulation conditions:

本发明仿真实验的运行系统为Intel(R)Core(TM)i5CPU6503.20GHz,32位Windows操作系统,仿真软件采用MATLAB R(2011a)。The operating system of the simulation experiment of the present invention is Intel(R) Core(TM) i5CPU6503.20GHz, 32-bit Windows operating system, and the simulation software adopts MATLAB R (2011a).

仿真参数设置如下所示。The simulation parameter settings are as follows.

选取三分量线性调频信号的中心频率和初始频率分别为:f1=-15.95Hz,r1=9.44Hz/s;f2=6.34Hz,r2=9.44Hz/s;f3=6.34Hz,r3=-20.41Hz/s;采样率为fs=256Hz,采样点数N=256。信号幅值A3=1,A1=A2=0.8。加性噪声分别设为白噪声和脉冲噪声,信噪比均取-3dB。Select the center frequency and initial frequency of the three-component LFM signal as follows: f 1 =-15.95Hz, r 1 =9.44Hz/s; f 2 =6.34Hz, r 2 =9.44Hz/s; f 3 =6.34Hz, r 3 =-20.41Hz/s; the sampling rate is f s =256Hz, and the number of sampling points N=256. Signal amplitude A 3 =1, A 1 =A 2 =0.8. The additive noise was set as white noise and impulse noise respectively, and the signal-to-noise ratio was taken as -3dB.

2.仿真结果:2. Simulation results:

LVD变换将线性调频信号从时间域映射到参数空间,使得线性调频信号的能量聚集在中心频率和调频斜率唯一确定的峰值点上,呈现为尖峰单频信号,单频信号的峰值表示线性调频信号的能量聚集值。The LVD transform maps the chirp signal from the time domain to the parameter space, so that the energy of the chirp signal gathers at the peak point uniquely determined by the center frequency and the chirp slope, presenting a peak single-frequency signal, and the peak of the single-frequency signal represents the chirp signal energy accumulation value.

图4所示为白噪声环境中线性调频信号的LVD谱仿真图。图4中,x坐标表示LVD变换中线性调频信号的中心频率/Hz参数值,y坐标表示LVD变换中线性调频信号的调频频率/Hz/s参数值,z坐标表示线性调频信号的LVD谱能量值,“信号1”、“信号2”、“信号3”分别表示第一、第二、第三个线性调频信号分量的LVD谱峰。Fig. 4 shows the LVD spectrum simulation diagram of the chirp signal in the white noise environment. In Figure 4, the x coordinate represents the center frequency/Hz parameter value of the chirp signal in LVD transformation, the y coordinate represents the frequency modulation frequency/Hz/s parameter value of the chirp signal in LVD transformation, and the z coordinate represents the LVD spectrum energy of the chirp signal Values, "Signal 1", "Signal 2", and "Signal 3" represent the LVD spectrum peaks of the first, second, and third chirp components, respectively.

由图4可以看出,在参数空间中共有三个呈现高能量聚集的尖峰单频信号,搜索尖峰峰值点,找出与三个峰值点相对应的坐标值,依次作为线性调频信号三个分量的中心频率和调频斜率参数估计值。It can be seen from Figure 4 that there are three peak single-frequency signals with high energy accumulation in the parameter space, search for the peak peak points, find the coordinate values corresponding to the three peak points, and use them in turn as the three components of the chirp signal Center frequency and FM slope parameter estimates.

在白噪声干扰条件下,采用现有技术的蒙特卡洛方法进行仿真,不同输入信噪比下分别模拟100次LVD变换,得到如表1所示的线性调频信号参数估计值的算术平均值。表1中的实际值表示仿真条件中所设置的仿真信号参数值。Under the condition of white noise interference, the Monte Carlo method of the prior art is used for simulation, and 100 LVD transformations are simulated under different input SNRs, and the arithmetic mean value of the estimated values of the chirp signal parameters is obtained as shown in Table 1. The actual values in Table 1 represent the simulation signal parameter values set in the simulation conditions.

表1-3dB白噪声条件下三分量线性调频信号参数估计值Table 1-3dB white noise condition three-component chirp signal parameter estimation

由表1所示的估计值可以看出,在白噪声干扰源存在的情况下,本发明的估计值与信号参数实际值进行对比,误差较小,说明采用本发明能够对信号参数进行准确的估计。As can be seen from the estimated values shown in Table 1, in the presence of white noise interference sources, the estimated values of the present invention are compared with the actual values of the signal parameters, and the error is small, indicating that the present invention can be used to accurately estimate the signal parameters estimate.

参照附图5所示为脉冲噪声环境中降阶预处理前后LVD谱仿真效果比较图。图5(a)中,x坐标表示LVD变换中线性调频信号的中心频率/Hz参数值,y坐标表示LVD变换中线性调频信号的调频频率/Hz/s参数值,z坐标表示线性调频信号的LVD谱能量值。图5(b)中,x坐标表示LVD变换中线性调频信号的中心频率/Hz参数值,y坐标表示LVD变换中线性调频信号的调频频率/Hz/s参数值,z坐标表示线性调频信号的LVD谱能量值,“信号1”、“信号2”、“信号3”分别表示第一、第二、第三个线性调频信号分量的LVD谱峰。Referring to Figure 5, it is a comparison diagram of LVD spectrum simulation effects before and after order reduction preprocessing in an impulse noise environment. In Fig. 5(a), the x coordinate represents the center frequency/Hz parameter value of the chirp signal in the LVD transform, the y coordinate represents the frequency modulation frequency/Hz/s parameter value of the chirp signal in the LVD transform, and the z coordinate represents the chirp signal’s LVD spectrum energy value. In Figure 5(b), the x coordinate represents the center frequency/Hz parameter value of the chirp signal in the LVD transform, the y coordinate represents the frequency modulation frequency/Hz/s parameter value of the chirp signal in the LVD transform, and the z coordinate represents the chirp signal’s LVD spectrum energy value, "Signal 1", "Signal 2", and "Signal 3" represent the LVD spectrum peaks of the first, second and third chirp signal components respectively.

当LVD变换处理脉冲噪声环境中的线性调频信号时,如果不采用低阶预处理技术抑制脉冲噪声影响,则无法在参数空间准确提取LVD谱特征。由图5(a)可以看出,在参数空间中三分量线性调频信号的LVD谱被脉冲噪声的LVD谱完全淹没,无法识别三个LVD谱峰值点。而采用低阶预处理方法抑制脉冲噪声的影响后,通过LVD变换将线性调频信号映射到参数空间,得到LVD谱。由图5(b)可以看出,在参数空间中共有三个LVD谱峰值点,搜索峰值点,找出与三个LVD谱峰值点相对应的坐标值,依次作为线性调频信号三个分量的中心频率和调频斜率参数估计值。When the LVD transform processes the chirp signal in the impulsive noise environment, if the low-order preprocessing technology is not used to suppress the impact of the impulsive noise, it is impossible to accurately extract the LVD spectral features in the parameter space. It can be seen from Figure 5(a) that the LVD spectrum of the three-component LFM signal is completely submerged by the LVD spectrum of the impulse noise in the parameter space, and the three peak points of the LVD spectrum cannot be identified. After the low-order preprocessing method is used to suppress the influence of impulse noise, the linear frequency modulation signal is mapped to the parameter space through LVD transformation, and the LVD spectrum is obtained. It can be seen from Figure 5(b) that there are three LVD spectrum peak points in the parameter space, search for the peak points, find the coordinate values corresponding to the three LVD spectrum peak points, and use them as the centers of the three components of the chirp signal in turn Frequency and FM slope parameter estimates.

在脉冲噪声干扰条件下,采用现有技术的蒙特卡洛方法进行仿真,不同输入信噪比下分别模拟100次LVD变换,得到如表2所示的线性调频信号参数估计值的算术平均值。表2中的实际值表示仿真条件中所设置的仿真信号参数值。Under the condition of impulse noise interference, the Monte Carlo method of the prior art is used for simulation, and 100 LVD transformations are simulated under different input signal-to-noise ratios, and the arithmetic mean value of the estimated value of the chirp signal parameters is obtained as shown in Table 2. The actual values in Table 2 represent the simulation signal parameter values set in the simulation conditions.

表2-3dB脉冲噪声条件下三分量线性调频信号参数估计值Table 2-Estimated values of three-component linear frequency modulation signal parameters under the condition of 3dB impulse noise

Figure BDA0000375645200000091
Figure BDA0000375645200000091

由表2所示的估计值可以看出,在脉冲噪声干扰源存在的情况下,本发明的估计值与信号参数实际值进行对比,误差较小,说明本发明的方法能够对信号的参数进行准确的估计。As can be seen from the estimated values shown in Table 2, in the presence of impulse noise sources of interference, the estimated values of the present invention are compared with the actual values of the signal parameters, and the error is relatively small, indicating that the method of the present invention can be used for signal parameters. accurate estimate.

综上所述,由以上仿真实验所获得的结果表明,本发明能够抑制脉冲噪声的影响,使线性调频信号在参数空间具有能量高度聚集的特性,提高了参数空间的分辨率,从而精确估计线性调频信号中心频率和调频斜率参数值,实现信号相位特征的精确提取。在满足参数估计精度要求的前提下,本发明能够实时地对线性调频信号的相位参数进行准确的估计。In summary, the results obtained from the above simulation experiments show that the present invention can suppress the influence of impulse noise, make the chirp signal have the characteristics of high energy concentration in the parameter space, improve the resolution of the parameter space, and accurately estimate the linearity FM signal center frequency and FM slope parameter values to achieve accurate extraction of signal phase features. On the premise of meeting the requirement of parameter estimation accuracy, the present invention can accurately estimate the phase parameters of the linear frequency modulation signal in real time.

Claims (4)

1.基于LVD的线性调频信号参数估计方法,包括如下步骤:1. The linear frequency modulation signal parameter estimation method based on LVD comprises the steps: (1)采集信号:(1) Acquisition signal: 信号采集系统通过脉压雷达的接收机设备,采集雷达天线中任意一段含有实际噪声的线性调频信号;The signal acquisition system collects any chirp signal containing actual noise in the radar antenna through the receiver equipment of the pulse pressure radar; (2)判别采集的线性调频信号中是否含有脉冲噪声:(2) Determine whether the collected chirp signal contains impulse noise: 2a)采用局部幅值特征方法得到局部阈值,将该阈值作为判别门限;2a) Using the local amplitude feature method to obtain a local threshold, and use this threshold as the discrimination threshold; 2b)幅值统计模块将采集的线性调频信号局部幅值与判别门限进行比较,判别采集的线性调频信号中是否含有脉冲噪声;若存在脉冲噪声,则幅值统计模块发出脉冲指示信号,执行步骤3;若不存在脉冲噪声,则幅值统计模块发出采集信号,执行步骤4;2b) The amplitude statistics module compares the local amplitude of the collected chirp signal with the discrimination threshold, and judges whether the collected chirp signal contains impulse noise; if there is impulse noise, the amplitude statistics module sends a pulse indication signal, and executes the steps 3; If there is no impulse noise, the amplitude statistics module sends out a collection signal, and executes step 4; (3)降阶预处理:(3) Reduced order preprocessing: 根据幅值统计模块发出的脉冲指示信号,设置降阶预处理的阶数p,p为满足大于0小于脉冲噪声的特征参数值;利用降阶预处理公式,对采集信号进行低阶运算,得到降阶预处理后的采集信号;According to the pulse indication signal sent by the amplitude statistics module, set the order p of the reduced-order preprocessing, p is the characteristic parameter value satisfying that it is greater than 0 and smaller than the pulse noise; using the reduced-order preprocessing formula to perform low-order operations on the collected signal, we get Acquisition signal after order reduction preprocessing; (4)提取自相关特征:(4) Extract autocorrelation features: 按照下式,提取降阶预处理后的采集信号的自相关特征信号:According to the following formula, the autocorrelation characteristic signal of the acquired signal after the order reduction preprocessing is extracted: RR == xx (( tt ++ &tau;&tau; ++ 11 22 )) xx ** (( tt -- &tau;&tau; ++ 11 22 )) 其中,R表示采集信号的自相关特征信号,x表示采集信号,t表示采集信号的采样时间,τ表示采集信号相位的延时时长,*表示共轭符号;Among them, R represents the autocorrelation characteristic signal of the collected signal, x represents the collected signal, t represents the sampling time of the collected signal, τ represents the delay time of the phase of the collected signal, and * represents the conjugate symbol; (5)相位尺度变换:(5) Phase scale transformation: 5a)采用离散傅里叶变换方法,以采样时间为转换因子,将自相关特征信号变换到频域,得到瞬时自相关的频谱序列;5a) Using the discrete Fourier transform method and taking the sampling time as the conversion factor, the autocorrelation characteristic signal is transformed into the frequency domain to obtain the instantaneous autocorrelation spectrum sequence; 5b)采用辛格函数内插方法,将频谱序列中的采样时间进行尺度变换,得到插值后的频谱序列;5b) Using the Singer function interpolation method, the sampling time in the spectrum sequence is scale-transformed to obtain the interpolated spectrum sequence; 5c)采用逆离散傅里叶变换方法,以尺度变换后的采样时间为转换因子,将频谱序列变换为时域信号,得到解耦自相关信号;5c) Using the inverse discrete Fourier transform method, using the scale-transformed sampling time as the conversion factor, transforming the spectrum sequence into a time-domain signal to obtain a decoupled autocorrelation signal; (6)LVD谱特征提取:(6) LVD spectrum feature extraction: 利用二维离散傅里叶变换方法,依次将解耦自相关信号中的相位延时和采样时间作为转换因子,进行时频域转换,得到LVD谱;Using the two-dimensional discrete Fourier transform method, the phase delay and sampling time in the decoupled autocorrelation signal are used as conversion factors in turn, and the time-frequency domain conversion is performed to obtain the LVD spectrum; (7)搜索LVD谱峰值:利用峰值检测方法,搜索LVD谱的峰值,得到谱峰值所在点对应的坐标,将该坐标作为线性调频信号的中心频率和调频斜率的参数值。(7) Search for the peak value of the LVD spectrum: use the peak detection method to search for the peak value of the LVD spectrum, and obtain the coordinates corresponding to the point where the peak value of the spectrum is located, and use the coordinates as the parameter values of the center frequency and FM slope of the chirp signal. 2.根据权利要求1所述的基于LVD的线性调频信号参数估计方法,其特征在于:步骤2a)中所述的局部幅值特征方法的步骤如下:2. The LVD-based linear frequency modulation signal parameter estimation method according to claim 1, characterized in that: the steps of the local amplitude characteristic method described in step 2a) are as follows: 第一步,设置一个固定长度为N的检测窗口,长度N的取值范围为大于0小于线性调频信号采样点总数的值;The first step is to set a detection window with a fixed length of N, and the value range of the length N is greater than 0 and less than the value of the total number of chirp signal sampling points; 第二步,利用检测窗口的时域平滑,将线性调频信号按时间段截断,划分为多个等长度时间段、互不重叠的子信号,计算子信号的幅度均值,得到局部阈值。In the second step, using the time-domain smoothing of the detection window, the chirp signal is truncated according to the time period, divided into multiple sub-signals of equal length and non-overlapping each other, and the amplitude mean value of the sub-signals is calculated to obtain the local threshold. 3.根据权利要求1所述的基于LVD的线性调频信号参数估计方法,其特征在于:步骤3所述的降阶预处理公式如下:3. the LVD-based linear frequency modulation signal parameter estimation method according to claim 1, is characterized in that: the step-down pretreatment formula described in step 3 is as follows: x<p>=|x|p+1/x*,x-<p>=(x*)<p>=(x<p>)* x <p> =|x| p+1 /x * , x -<p> = (x * ) <p> = (x <p> ) * 其中,x<p>表示p阶降阶预处理后的采集信号,p表示降阶预处理的阶数,<·>表示降阶预处理符号,|·|表示取模函数符号,*表示共轭符号,x-<p>表示对采集信号进行p阶预处理后的共轭信号。Among them, x <p> represents the collected signal after the p-order reduction preprocessing, p represents the order of the reduction preprocessing, <·> represents the symbol of the reduction preprocessing, |·| represents the symbol of the modulo function, * represents the common The conjugate symbol, x -<p> represents the conjugate signal after the p-order preprocessing of the acquired signal. 4.根据权利要求1所述的基于LVD的线性调频信号参数估计方法,其特征在于:步骤5b)所述的尺度变换是指按照下式进行:4. The LVD-based linear frequency modulation signal parameter estimation method according to claim 1, characterized in that: the scale transformation described in step 5b) refers to performing according to the following formula: t=(τ+1)Tt=(τ+1)T 其中,t表示频谱序列中的采样时间,τ表示采集信号相位的延时时长,T表示尺度变换后的采样时间。Among them, t represents the sampling time in the spectrum sequence, τ represents the delay time of the acquisition signal phase, and T represents the sampling time after scale transformation.
CN201310391327.1A 2013-09-01 2013-09-01 Linear frequency modulation signal parameter evaluation method based on LVD (Lv's distribution) Expired - Fee Related CN103412287B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310391327.1A CN103412287B (en) 2013-09-01 2013-09-01 Linear frequency modulation signal parameter evaluation method based on LVD (Lv's distribution)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310391327.1A CN103412287B (en) 2013-09-01 2013-09-01 Linear frequency modulation signal parameter evaluation method based on LVD (Lv's distribution)

Publications (2)

Publication Number Publication Date
CN103412287A true CN103412287A (en) 2013-11-27
CN103412287B CN103412287B (en) 2015-04-22

Family

ID=49605314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310391327.1A Expired - Fee Related CN103412287B (en) 2013-09-01 2013-09-01 Linear frequency modulation signal parameter evaluation method based on LVD (Lv's distribution)

Country Status (1)

Country Link
CN (1) CN103412287B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760531A (en) * 2014-01-23 2014-04-30 西安电子科技大学 Method for restraining noise of aerial target echoes of narrow-band radar
CN105785324A (en) * 2016-03-11 2016-07-20 西安电子科技大学 MGCSTFT-based chirp signal parameter estimation method
CN106101034A (en) * 2016-05-26 2016-11-09 中国人民解放军空军工程大学 A kind of sine FM Fourier transformation cross term suppressing method
CN107248869A (en) * 2017-05-24 2017-10-13 电子科技大学 A kind of multicomponent linear frequency-modulated signalses noise-removed technology being distributed based on Lv
CN107301381A (en) * 2017-06-01 2017-10-27 西安电子科技大学昆山创新研究院 Recognition Method of Radar Emitters based on deep learning and multi-task learning strategy
CN107679456A (en) * 2017-09-06 2018-02-09 中国海洋大学 A kind of ocean platform vibratory response noise-eliminating method decomposed based on extreme value residual
CN109490853A (en) * 2017-09-10 2019-03-19 北京遥感设备研究所 Spectral line value determines method at a kind of chirp pulse signal centre frequency
CN109490852A (en) * 2017-09-10 2019-03-19 北京遥感设备研究所 A kind of chirp pulse signal chirp rate polarity determination method
CN109782216A (en) * 2018-12-26 2019-05-21 中国电子科技集团公司第二十研究所 A Simple Method for Peak Search in Two-dimensional Space Spectrum
CN111610503A (en) * 2020-06-03 2020-09-01 西安电子科技大学 Parameter Estimation Method of Chirp Signal Based on Improved LVD
CN111766444A (en) * 2020-07-08 2020-10-13 电子科技大学 Method and system for parameter estimation of multi-component chirp signal based on synthesis algorithm
CN116643250A (en) * 2023-07-27 2023-08-25 西安电子科技大学 Broadband radar high-speed target coherent accumulation method based on sparse linear frequency modulation signal
CN116861173A (en) * 2023-09-01 2023-10-10 中国科学院空天信息创新研究院 An LFM signal parameter estimation method based on PNAT-LVD
CN117118536A (en) * 2023-10-25 2023-11-24 南京派格测控科技有限公司 Method, device, equipment and storage medium for determining frequency modulation stability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158443A (en) * 2010-11-19 2011-08-17 重庆邮电大学 Method for inhibiting cross terms in time-frequency division of multi-component linear frequency modulation (LFM) signals
CN102866391A (en) * 2012-09-05 2013-01-09 中北大学 Multi-target detection method based on short-time Fourier transform and fractional Fourier transform

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158443A (en) * 2010-11-19 2011-08-17 重庆邮电大学 Method for inhibiting cross terms in time-frequency division of multi-component linear frequency modulation (LFM) signals
CN102866391A (en) * 2012-09-05 2013-01-09 中北大学 Multi-target detection method based on short-time Fourier transform and fractional Fourier transform

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIAOLEI LV ET AL.: "Lv’s Distribution: Principle, Implementation,Properties, and Performance", 《IEEE TRANSACTIONS ON SIGNAL PROCESSING》 *
金艳 等: "复杂噪声环境下基于LVD的LFM信号参数估计", 《电子与信息学报》 *
金艳: "低截获概率信号的循环平稳检测与参数估计研究", 《万方数据》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760531A (en) * 2014-01-23 2014-04-30 西安电子科技大学 Method for restraining noise of aerial target echoes of narrow-band radar
CN105785324A (en) * 2016-03-11 2016-07-20 西安电子科技大学 MGCSTFT-based chirp signal parameter estimation method
CN105785324B (en) * 2016-03-11 2018-05-04 西安电子科技大学 Linear frequency-modulated parameter estimating method based on MGCSTFT
CN106101034A (en) * 2016-05-26 2016-11-09 中国人民解放军空军工程大学 A kind of sine FM Fourier transformation cross term suppressing method
CN106101034B (en) * 2016-05-26 2019-06-07 中国人民解放军空军工程大学 A kind of sine FM Fourier transformation cross term suppressing method
CN107248869A (en) * 2017-05-24 2017-10-13 电子科技大学 A kind of multicomponent linear frequency-modulated signalses noise-removed technology being distributed based on Lv
CN107248869B (en) * 2017-05-24 2019-05-14 电子科技大学 A kind of multicomponent linear frequency-modulated signals denoising method based on Lyu's distribution
CN107301381A (en) * 2017-06-01 2017-10-27 西安电子科技大学昆山创新研究院 Recognition Method of Radar Emitters based on deep learning and multi-task learning strategy
CN107679456B (en) * 2017-09-06 2021-07-06 中国海洋大学 A Noise Removal Method for Offshore Platform Vibration Response Based on Extremal-Residual Decomposition
CN107679456A (en) * 2017-09-06 2018-02-09 中国海洋大学 A kind of ocean platform vibratory response noise-eliminating method decomposed based on extreme value residual
CN109490853A (en) * 2017-09-10 2019-03-19 北京遥感设备研究所 Spectral line value determines method at a kind of chirp pulse signal centre frequency
CN109490852A (en) * 2017-09-10 2019-03-19 北京遥感设备研究所 A kind of chirp pulse signal chirp rate polarity determination method
CN109782216A (en) * 2018-12-26 2019-05-21 中国电子科技集团公司第二十研究所 A Simple Method for Peak Search in Two-dimensional Space Spectrum
CN109782216B (en) * 2018-12-26 2022-08-23 中国电子科技集团公司第二十研究所 Simple method for searching two-dimensional space spectrum peak
CN111610503A (en) * 2020-06-03 2020-09-01 西安电子科技大学 Parameter Estimation Method of Chirp Signal Based on Improved LVD
CN111610503B (en) * 2020-06-03 2022-12-23 西安电子科技大学 Linear frequency modulation signal parameter estimation method based on improved LVD
CN111766444A (en) * 2020-07-08 2020-10-13 电子科技大学 Method and system for parameter estimation of multi-component chirp signal based on synthesis algorithm
CN116643250A (en) * 2023-07-27 2023-08-25 西安电子科技大学 Broadband radar high-speed target coherent accumulation method based on sparse linear frequency modulation signal
CN116643250B (en) * 2023-07-27 2023-10-20 西安电子科技大学 Broadband radar high-speed target coherent accumulation method based on sparse linear frequency modulation signal
CN116861173A (en) * 2023-09-01 2023-10-10 中国科学院空天信息创新研究院 An LFM signal parameter estimation method based on PNAT-LVD
CN116861173B (en) * 2023-09-01 2023-11-17 中国科学院空天信息创新研究院 LFM signal parameter estimation method based on PNAT-LVD
CN117118536A (en) * 2023-10-25 2023-11-24 南京派格测控科技有限公司 Method, device, equipment and storage medium for determining frequency modulation stability
CN117118536B (en) * 2023-10-25 2023-12-19 南京派格测控科技有限公司 Method, device, equipment and storage medium for determining frequency modulation stability

Also Published As

Publication number Publication date
CN103412287B (en) 2015-04-22

Similar Documents

Publication Publication Date Title
CN103412287B (en) Linear frequency modulation signal parameter evaluation method based on LVD (Lv&#39;s distribution)
CN106597408B (en) High-order PPS signal parameter estimation method based on time-frequency analysis and instantaneous frequency curve fitting
CN110109076B (en) Target detection method based on phase cancellation agile coherent radar clutter suppression
CN105785324B (en) Linear frequency-modulated parameter estimating method based on MGCSTFT
CN105572649A (en) Radar target detection method based on sparse Fourier transform
CN103954951A (en) Power mid value and normalization covariance estimation based sea-surface target detection method
CN103926599A (en) GNSS multipath effect suppression method based on EMD iteration threshold value smoothing
CN110133632A (en) A kind of multiplex modulated signal recognition methods based on CWD time frequency analysis
CN110988834B (en) A Pulse Arrival Time Measurement Method Based on Adaptive Threshold and Double Threshold
CN107329115B (en) Parameter Estimation Method of LFM Signal Based on GCRBF Network
CN111610503B (en) Linear frequency modulation signal parameter estimation method based on improved LVD
CN105527614B (en) The anti-DRFM interference methods of LFM pulse radars detected based on moving-target
CN102778674A (en) Chirp pulse time delay estimation method for non-uniform sampling
CN112987003A (en) HFM signal separation method and system in active sonar
CN103675758A (en) Method for estimating cycle slope and starting frequency of hyperbolic frequency modulated signals
CN116643250B (en) Broadband radar high-speed target coherent accumulation method based on sparse linear frequency modulation signal
CN102841337A (en) Method for removing non-linear phase pollution from sky wave OTHR (over-the-horizon radar) echo signal
CN108333568B (en) Sigmoid Transform-Based Broadband Echo Doppler and Time Delay Estimation Method in Impulse Noise Environment
CN102879642A (en) Frequency estimation method for sine signal
CN116449326A (en) Broadband multi-target translational parameter estimation and compensation method
CN102571671B (en) Modified smoothed pseudo Wigner-Ville distribution-based (MSPWVD-based) blind estimation method for pseudo code sequence of pseudo-random Bi-phase code-linear frequency modulation (PRBC-LFM) composite signal
CN104199064B (en) BOC signal parameter blind estimation method based on relevant fluctuation
CN106501787A (en) Coded Signals method for parameter estimation based on smooth pseudo derivative feedback
CN102819012B (en) Phase-control gust profile radar signal processing method based on non-negative ICA (independent component analysis)
CN115166648B (en) Low signal-to-noise ratio radar signal processing method and device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

Termination date: 20200901

CF01 Termination of patent right due to non-payment of annual fee