[go: up one dir, main page]

CN103411607B - Pedestrian's step-size estimation and dead reckoning method - Google Patents

Pedestrian's step-size estimation and dead reckoning method Download PDF

Info

Publication number
CN103411607B
CN103411607B CN201310388466.9A CN201310388466A CN103411607B CN 103411607 B CN103411607 B CN 103411607B CN 201310388466 A CN201310388466 A CN 201310388466A CN 103411607 B CN103411607 B CN 103411607B
Authority
CN
China
Prior art keywords
pedestrian
walking
step length
portable terminal
total acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310388466.9A
Other languages
Chinese (zh)
Other versions
CN103411607A (en
Inventor
徐伟
刘守印
黄先莉
陆思梦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central China Normal University
Original Assignee
Central China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central China Normal University filed Critical Central China Normal University
Priority to CN201310388466.9A priority Critical patent/CN103411607B/en
Publication of CN103411607A publication Critical patent/CN103411607A/en
Application granted granted Critical
Publication of CN103411607B publication Critical patent/CN103411607B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Distances Traversed On The Ground (AREA)

Abstract

本发明公开了一种行人步长估计及航位推算方法,该方法包括如下步骤:a)利用具有加速度传感器的便携式终端测量行人按正常步长行走时个人步长参数K;b)检测行人行走一步过程中总加速度幅值的最大值amax和最小值amin;c)采用公式计算行人行走所述一步的步长stepsize。本发明提出的一种新的非线性步长模型,更准确地表示了行人行走一步的步长和期间总加速度幅值最大值、最小值之间的关系。所提出的行人步长估计及航位推算方法便于计算机实现,能实时推算行人的位置,以实现室内定位,具有实际应用意义。

The invention discloses a pedestrian step length estimation and dead reckoning method. The method includes the following steps: a) using a portable terminal with an acceleration sensor to measure the personal step length parameter K when the pedestrian walks according to the normal step length; b) detecting the pedestrian walking The maximum value a max and the minimum value a min of the total acceleration amplitude in one step process; c) using the formula Calculate the step size step size of the pedestrian's walking step. A new nonlinear step size model proposed by the invention more accurately represents the relationship between the step size of a pedestrian's walking step and the maximum value and minimum value of the total acceleration amplitude during the period. The proposed method of pedestrian step estimation and dead reckoning is easy to realize by computer, and can calculate the position of pedestrians in real time to realize indoor positioning, which has practical application significance.

Description

行人步长估计及航位推算方法Pedestrian Step Length Estimation and Dead Reckoning Method

技术领域 technical field

本发明涉及行人航迹推算领域。具体地说,本发明涉及一种新的行人步长估计及航位推算方法。 The invention relates to the field of pedestrian dead reckoning. Specifically, the present invention relates to a new pedestrian step estimation and dead reckoning method.

背景技术 Background technique

行走航迹推算是指对步行者行走的步数、步长、方向进行测量和估算,从而推算出步行者行走的轨迹和位置等信息,是实现室内定位的技术之一。其中行人行走方向可采用现有的航向测量仪器进行测量,如电子罗盘和陀螺仪。然而如何在行人行走过程中实时估算出行人的步长是个难题,步长估算将直接影响行走航迹推算的精度。为了估算步长,目前存在的模型可以分为四类:常数/伪常数步长模型,线性步长模型,非线性步长模型和人工智能步长模型。考虑算法实现的便利性和实时性,同时兼顾步长估计的准确性,常选取非线性步长模型。目前,常用的非线性步长模型主要有以下几种: Walking dead reckoning refers to the measurement and estimation of the number of steps, step length, and direction of pedestrians, so as to calculate the trajectory and position of pedestrians. It is one of the technologies for indoor positioning. The walking direction of pedestrians can be measured by existing heading measuring instruments, such as electronic compass and gyroscope. However, how to estimate the pedestrian's step length in real time during the walking process is a difficult problem, and the step length estimation will directly affect the accuracy of walking dead reckoning. For estimating step size, currently existing models can be divided into four categories: constant/pseudo-constant step size models, linear step size models, nonlinear step size models, and artificial intelligence step size models. Considering the convenience and real-time performance of the algorithm, as well as the accuracy of the step size estimation, the nonlinear step size model is often selected. At present, the commonly used nonlinear step size models mainly include the following types:

对比文献“H.Weinberg,“Using the ADXL202in Pedometer and Personal Navigation Applications,”Analog Devices AN-602Application Note,2002.”公开了Weinberg approach模型: The comparative literature "H.Weinberg, "Using the ADXL202in Pedometer and Personal Navigation Applications," Analog Devices AN-602Application Note, 2002." discloses the Weinberg approach model:

stepstep sizesize == KK ** aa maxmax -- aa minmin 44

对比文献“J.Scarlet,“Enhancing the Performance of Pedometers Using a Single Accelerometer,”Analog Devices AN-900Application Note,2005.”公开了Scarlet approach模型: Comparative literature "J.Scarlet, "Enhancing the Performance of Pedometers Using a Single Accelerometer," Analog Devices AN-900Application Note, 2005." discloses the Scarlet approach model:

stepstep sizesize == KK ** ΣΣ jj == 11 NN || aa jj || NN -- aa mm inin aa maxmax -- aa minmin

对比文献“J.W.Kim,H.J.Jang,D-H.Hwang,and C.Park,“A Step,Stride and Heading Determination for the Pedestrian Navigation System,”Journal of Global Positioning Systems,pp.273-279,2004.”公开了Kim approach模型: Comparative literature "J.W.Kim, H.J.Jang, D-H.Hwang, and C.Park, "A Step, Stride and Heading Determination for the Pedestrian Navigation System," Journal of Global Positioning Systems, pp.273-279, 2004." Kim approach model:

stepstep sizesize == KK ** ΣΣ jj == 11 NN || aa jj || NN 33

在这些公式中,amax和amin分别表示步行者行走一步时产生的最大总加速度幅值和最小总加速度幅值;aj表示步行者行走一步的过程中,共采集N个总加速度幅值中的第j个总加速度幅值;K表示各个公式针对不同步行者的参数,即不同步行者按照正常步长行走时通过统计比较实际步长与步长估算结果所给的参数。由于针对不同步行者,上述公式都给出了相应的参数,因此步行者以正常步长行走时,采用上述步长估计算法估算的步长大小与实际步长相比误差较小。 In these formulas, a max and a min represent the maximum and minimum total acceleration amplitudes generated when the pedestrian walks one step, respectively; The j-th total acceleration amplitude in ; K represents the parameters of each formula for different walkers, that is, the parameters given by the statistical comparison between the actual step length and the estimated step length when different walkers walk according to the normal step length. Since the above formulas give corresponding parameters for different walkers, when a walker walks with a normal step length, the error of the step size estimated by the above step size estimation algorithm is smaller than the actual step size.

但是通过实验发现,当同一个步行者以不同步长行走时,现有的非线性步长估计算法所估算出来的步长与实际步长相比误差比较大。 However, it is found through experiments that when the same pedestrian walks with different step lengths, the step size estimated by the existing nonlinear step size estimation algorithm has a larger error than the actual step size.

发明专利内容  Invention patent content

本发明的目的之一是为了克服现有技术的不足,提供一种新的行人步长估计方法,该方法提出了一种新的非线性步长模型,使其不仅能准确估算出不同步行者的正常步长,对同一步行者的不同步长也具有更好的适应性,不增加计算量的同时减小了同一个步行者不同步长估算的误差。 One of the purposes of the present invention is to provide a new pedestrian step size estimation method in order to overcome the deficiencies in the prior art. This method proposes a new nonlinear step size model, so that it can not only accurately estimate different pedestrian The normal step length of the same walker also has better adaptability to different step lengths of the same walker, and reduces the error of different step length estimation of the same walker without increasing the amount of calculation.

为实现该目的,本发明采用如下技术方案: To achieve this goal, the present invention adopts following technical scheme:

一种行人步长估计方法,该方法包括如下步骤: A pedestrian step length estimation method, the method comprises the steps of:

a)利用具有加速度传感器的便携式终端测量行人按正常步长行走时个人步长参数K; a) Using a portable terminal with an acceleration sensor to measure the personal step length parameter K when the pedestrian walks according to the normal step length;

b)检测行人行走一步过程中总加速度幅值的最大值amax和最小值 aminb) Detect the maximum value a max and the minimum value a min of the total acceleration amplitude during the pedestrian's walking step;

c)采用公式 step size = K * ( ( a max - a min ) + a max - a min 4 ) , 计算行人行走所述一步的步长stepsizec) Using the formula step size = K * ( ( a max - a min ) + a max - a min 4 ) , Calculate the step size step size of the pedestrian's walking step.

较佳的,在所述步骤a)中测量个人步长参数K的方法可包括如下步骤: Preferably, the method for measuring the personal step size parameter K in step a) may include the following steps:

a-1)设定参数Ki为任意常数;  a-1) Set the parameter Ki as an arbitrary constant;

a-2)行人携带便携式终端按正常步长试行走n步,测得实际行走X米,在此过程中,该便携式终端相对于携带它的行人的上半身保持静止状态; a-2) The pedestrian carries the portable terminal and walks n steps according to the normal step length, and the measured actual walking is X meters. During the process, the portable terminal remains stationary relative to the upper body of the pedestrian carrying it;

a-3)检测出行人行走n步的每一步过程中总加速度幅值的最大值amax和最小值amin,采用公式 step size = Ki * ( ( a max - a min ) + a max - a min 4 ) 估算出行人行走n步的每一步步长,将所述每一步步长累加,估算出行人n步行走的距离Y米; a-3) Detect the maximum value a max and the minimum value a min of the total acceleration amplitude during each step of the pedestrian walking n steps, using the formula step size = Ki * ( ( a max - a min ) + a max - a min 4 ) Estimating the step length of each step of the pedestrian's n steps, adding up the step length of each step, and estimating the distance Y meters of the pedestrian's n-step walk;

a-4)采用公式计算出个人步长参数K。 a-4) Using the formula Calculate the individual step size parameter K.

较佳的,在所述步骤b)中检测行人行走一步过程中总加速度幅值的最大值amax和最小值amin的方法可包括如下步骤: Preferably, in the step b), the method for detecting the maximum value a max and the minimum value a min of the total acceleration amplitude during the pedestrian walking one step may include the following steps:

b-1)行人携带相对于其上半身保持静止状态的便携式终端行走一步,通过嵌入到便携式终端的加速度传感器得到总加速度幅值accl,在行人行走一步过程中,加速度传感器检测加速度的频率不小于15Hz; b-1) The pedestrian carries a portable terminal that remains stationary relative to his upper body and walks one step, and obtains the total acceleration amplitude accl through the acceleration sensor embedded in the portable terminal. During the pedestrian's one-step walking process, the frequency of the acceleration sensor detecting acceleration is not less than 15Hz ;

b-2)探测一步过程中总加速度幅值的峰值和谷值; b-2) Detect peaks and valleys of the total acceleration amplitude during a step;

b-3)当总加速度幅值的峰值和谷值之间的差值超过阈值,且它们的时间间距在一定范围内,则此峰值即为行人行走一步的总加速度幅值的最大值amax,谷值即为行人行走一步的总加速度幅值的最小值aminb-3) When the difference between the peak value and the valley value of the total acceleration amplitude exceeds the threshold, and their time interval is within a certain range, the peak value is the maximum value a max of the total acceleration amplitude of the pedestrian walking one step , the valley value is the minimum value a min of the total acceleration amplitude when the pedestrian walks one step.

较佳的,在所述步骤b-1)之后还可包含步骤b-1-1): Preferably, step b-1-1) may also be included after the step b-1):

b-1-1)采用滑动窗口滤波器对得到的总加速度幅值accl进行信号滤波,使总加速度幅值信号曲线平滑。 b-1-1) Use a sliding window filter to perform signal filtering on the obtained total acceleration amplitude accl to make the total acceleration amplitude signal curve smooth.

较佳的,所述便携式终端的加速度传感器可为三轴加速度传感器,在所述步骤b-1)中三轴加速度传感器检测加速度三个轴的幅值(accl_x,accl_y,accl_z),然后采用公式 accl = ( accl _ x ) 2 + ( accl _ y ) 2 + ( accl _ z ) 2 计算出总加速度幅值accl。 Preferably, the acceleration sensor of the portable terminal can be a three-axis acceleration sensor. In the step b-1), the three-axis acceleration sensor detects the amplitudes of the three axes of acceleration (accl_x, accl_y, accl_z), and then uses the formula accl = ( accl _ x ) 2 + ( accl _ the y ) 2 + ( accl _ z ) 2 Calculate the total acceleration amplitude accl.

较佳的,便携式终端可包括加速度传感器和处理器,加速度传感器将检测到的加速度数据传送到处理器,由处理器进行计算实现本方法,或者处理器将数据上传至远端后台,在后台进行计算实现本方法。 Preferably, the portable terminal may include an acceleration sensor and a processor, the acceleration sensor transmits the detected acceleration data to the processor, and the processor performs calculations to implement the method, or the processor uploads the data to the remote background, and performs the calculation in the background. Computing implements this method.

本发明的目的之二是为了克服现有技术的不足,提供一种新的行人航位推算方法,便于利用计算机或其他电子设备实时估计行人步长并进行航位推算。 The second object of the present invention is to provide a new dead reckoning method for pedestrians in order to overcome the deficiencies of the prior art, which is convenient for real-time estimation of pedestrian step length and dead reckoning by using computers or other electronic devices.

为实现该目的,本发明采用如下技术方案: To achieve this goal, the present invention adopts following technical scheme:

一种利用权利要求1所述的行人步长估计方法进行行人航位推算方法,该方法包括如下步骤: A pedestrian dead reckoning method utilizing the pedestrian step length estimation method described in claim 1, the method comprising the steps of:

a)设置行人初始位置; a) Set the initial position of the pedestrian;

b)利用权利要求1所述的行人步长估计方法估算出行人行走一步的步长;同时利用航向测量仪器测量行人行走该步的航向角; b) Using the pedestrian step estimation method described in claim 1 to estimate the step length of a pedestrian's walking step; at the same time, using the heading measuring instrument to measure the heading angle of the pedestrian's walking step;

c)根据估算出行人行走一步的步长和航向角,估算出行人新的位置。 c) Estimate the new position of the pedestrian based on the estimated step length and heading angle of the pedestrian's walking step.

较佳的,所述设置行人初始位置可通过人工手动输入或者使用WIFI或者GPS定位方式获取。 Preferably, the set initial position of pedestrians can be obtained through manual input or by using WIFI or GPS positioning.

较佳的,行人行走一步的航向角可通过电子罗盘或陀螺仪测得。 Preferably, the heading angle at which the pedestrian takes one step can be measured by an electronic compass or a gyroscope.

本发明提出了一种新的非线性步长模型: The present invention proposes a new nonlinear step size model:

stepstep sizesize == KK ** (( (( aa maxmax -- aa minmin )) ++ aa maxmax -- aa minmin 44 )) ,,

这种模型更准确地表示了行人行走一步的步长和期间总加速度幅值最大值、最小值之间的关系。实验表明,采用该非线性步长模型的行人步长估计方法在不增加计算量的同时,对同一步行者的不同步长具有更好的适应性,使步长估计更加准确。本发明提出的行人航位推算方法便于计算机实现,实时推算行人的位置,以实现室内定位,具有实际应用意义。 This model more accurately represents the relationship between the step length of a pedestrian's walking step and the maximum and minimum values of the total acceleration amplitude during the period. Experiments show that the pedestrian step size estimation method using this nonlinear step size model has better adaptability to different step lengths of the same pedestrian without increasing the amount of calculation, making the step size estimation more accurate. The dead reckoning method for pedestrians proposed by the invention is convenient for computer implementation, and the position of pedestrians can be calculated in real time to realize indoor positioning, which has practical application significance.

通过以下的描述并结合附图,本发明将变得更加清晰,这些附图用于解释本发明的实施例。 The present invention will become clearer through the following description in conjunction with the accompanying drawings, which are used to explain the embodiments of the present invention.

附图说明 Description of drawings

图1是本发明实施例1的流程图; Fig. 1 is the flowchart of embodiment 1 of the present invention;

图2是本发明实施例1的步骤100的流程图; Fig. 2 is the flowchart of step 100 of embodiment 1 of the present invention;

图3是本发明实施例1的加速度幅值波形图; Fig. 3 is the acceleration amplitude waveform figure of embodiment 1 of the present invention;

图4至6是本发明实施例1的效果图; 4 to 6 are effect diagrams of Embodiment 1 of the present invention;

图7是本发明实施例2的原理图; Fig. 7 is a schematic diagram of Embodiment 2 of the present invention;

图8是本发明实施例2的流程图。 Fig. 8 is a flowchart of Embodiment 2 of the present invention.

具体实施方式 Detailed ways

实施例1,本实施例涉及一种行人步长估计方法,其流程图参照图1。首先,行人携带便携式终端按正常步长试行走,该便携式终端包括三轴加速度传感器和处理器,且该便携式终端相对于携带它的行人的上半身保持静止状态。具体来说,该便携式终端可以被握在行人的不摇摆的固定的手中,也可以被固定于行人的腰部,且不局限于此,在此过程中识别出个人步长参数K并存储(步骤100)。识别个人步长参数K的方法将在后续部分 具体描述。 Embodiment 1. This embodiment relates to a method for estimating pedestrian step length, and its flow chart refers to FIG. 1 . First, a pedestrian carries a portable terminal and tries to walk with a normal step length. The portable terminal includes a three-axis acceleration sensor and a processor, and the portable terminal remains stationary relative to the upper body of the pedestrian carrying it. Specifically, the portable terminal can be held in a pedestrian's non-swaying fixed hand, or can be fixed on the pedestrian's waist, and is not limited thereto. During this process, the personal step length parameter K is identified and stored (step 100). The method of identifying the individual step size parameter K will be described in detail in the subsequent section.

得到行人的个人步长参数K后,即可开始对该行人的步长进行估计。行人携带该便携式终端行走时,三轴加速度传感器检测加速度的频率不小于15Hz,三轴加速度传感器检测到加速度三个轴的幅值(accl_x,accl_y,accl_z)后用公式 accl = ( accl _ x ) 2 + ( accl _ y ) 2 + ( accl _ z ) 2 计算出总加速度幅值accl(步骤101)。 After obtaining the pedestrian's personal step length parameter K, the pedestrian's step length can be estimated. When a pedestrian walks with the portable terminal, the frequency of the acceleration detected by the three-axis acceleration sensor is not less than 15Hz, and the three-axis acceleration sensor detects the amplitude of the three axes of acceleration (accl_x, accl_y, accl_z) and then uses the formula accl = ( accl _ x ) 2 + ( accl _ the y ) 2 + ( accl _ z ) 2 Calculate the total acceleration amplitude accl (step 101).

接着,还可采用滑动窗口滤波器对得到的总加速度幅值accl进行信号滤波,使波形平滑。 Then, a sliding window filter can also be used to perform signal filtering on the obtained total acceleration amplitude accl to make the waveform smooth.

图3为本发明实施例的总加速度幅值波形图。如图所示,横坐标为加速度幅值的采样点编号,纵坐标为总加速度幅值,                                                  线型为步行者行走四步的原始总加速度信号波形,   线型为通过滑动窗口滤波后的总加速度信号波形。 Fig. 3 is a waveform diagram of the total acceleration amplitude of the embodiment of the present invention. As shown in the figure, the abscissa is the sampling point number of the acceleration amplitude, and the ordinate is the total acceleration amplitude. The line shape is the original total acceleration signal waveform of the pedestrian walking four steps, The line shape is the total acceleration signal waveform filtered by the sliding window.

从图3中可以发现,步行者每走一步,总加速度幅值都会出现最大值和最小值,加速度信号随着步行者行走呈现出周期性的特征。因此采用峰值探测法,检测出总加速度幅值的波峰值和波谷值,如果波峰值和波谷值之间的差值超过阈值,且它们的时间间距在一定范围内,就可判断步行者行走了一步。此波峰值即为行人走这一步中总加速度幅值的最大值amax,波谷值即为行人走这一步中总加速度幅值的最小值amin(步骤102)。所述波峰值和波谷值之间差值的阈值可根据统计行人试走过程中每一步的总加速度幅值的最大值和最小值决定,具体来说阈值可以等于行人试走过程中每一步的总加速度幅值的最大值和最小值的差的平均值乘以0.8。所述波峰值和波谷值时间间距的范围可根据行人的步频决定,通常行人的步频在1~3Hz左右,则时间间距的范围可为0.3秒到1秒。实际应用中,检测行人行走一步过程中加速度幅值的最大值amax和最小值amin的方法不仅限于上述方法,也可采用其他有效方法。 It can be seen from Figure 3 that the total acceleration amplitude will have a maximum value and a minimum value every time the pedestrian takes a step, and the acceleration signal presents a periodic characteristic as the pedestrian walks. Therefore, the peak detection method is used to detect the peak value and valley value of the total acceleration amplitude. If the difference between the peak value and the valley value exceeds the threshold and their time interval is within a certain range, it can be judged that the pedestrian is walking. step. The peak value of this wave is the maximum value a max of the total acceleration amplitude during the pedestrian's walking step, and the valley value is the minimum value a min of the total acceleration amplitude during the pedestrian's walking step (step 102 ). The threshold value of the difference between the peak value and the valley value can be determined according to the maximum and minimum values of the total acceleration amplitude of each step in the pedestrian trial walking process. Specifically, the threshold value can be equal to the pedestrian trial walking process of each step. The average value of the difference between the maximum and minimum values of the total acceleration magnitude is multiplied by 0.8. The range of the time interval between the peak value and the valley value can be determined according to the pedestrian's step frequency. Generally, the pedestrian's step frequency is about 1-3 Hz, and the time interval can range from 0.3 second to 1 second. In practical applications, the method of detecting the maximum value a max and the minimum value a min of the acceleration amplitude during a pedestrian's walking step is not limited to the above method, and other effective methods may also be used.

最后,采用公式 step size = K * ( ( a max - a min ) + a max - a min 4 ) 计算行人行走这一步的步长stepsize(步骤103)。此公式即为本发明提出的一种新的非线性步长模型, Finally, using the formula step size = K * ( ( a max - a min ) + a max - a min 4 ) Calculate the step size step size of the pedestrian's walking step (step 103). This formula is a kind of new nonlinear step size model that the present invention proposes,

参照图2,为本发明实施例1的步骤100的流程图。步骤100中识别个人步长参数K的方法如下:首先设定参数Ki为任意常数(步骤200),行人携带便携式终端按正常步长试行走n步,测得实际行走X米,在此过程中,该便携式终端相对于携带它的行人的上半身保持静止状态(步骤201)。检测出行人行走n步的每一步过程中总加速度幅值的最大值amax和最小值amin,采用公式 step size = Ki * ( ( a max - a min ) + a max - a min 4 ) 估算出行人行走n步的每一步步长,将所述每一步步长累加,估算出行人n步行走的距离Y米(步骤202)。采用公式计算出此行人的个人步长参数K(步骤203)。 Referring to FIG. 2 , it is a flowchart of step 100 in Embodiment 1 of the present invention. The method for identifying the personal step length parameter K in step 100 is as follows: first, set the parameter Ki to be an arbitrary constant (step 200), and carry a portable terminal to try to walk n steps according to the normal step length, and measure the actual walking X meters. , the portable terminal remains stationary relative to the upper body of the pedestrian carrying it (step 201). Detect the maximum value a max and the minimum value a min of the total acceleration amplitude during each step of the pedestrian walking n steps, using the formula step size = Ki * ( ( a max - a min ) + a max - a min 4 ) Estimate the step length of each step of the pedestrian's n steps, and accumulate the steps of each step to estimate the distance Y meters of the pedestrian's n steps (step 202 ). use the formula Calculate the personal step length parameter K of the pedestrian (step 203).

本实施例中,便携式终端的三轴加速度传感器将检测到的加速度数据传送到便携式终端的处理器,由该处理器进行计算实现行人步长的估计。实际应用中,还可将数据上传至远端后台,在后台进行计算实现本方法,实现本方法的硬件设备不做限制。 In this embodiment, the three-axis acceleration sensor of the portable terminal transmits the detected acceleration data to the processor of the portable terminal, and the processor performs calculations to estimate the pedestrian's step length. In practical applications, the data can also be uploaded to the remote background, and calculations are performed in the background to realize the method, and there is no limitation on the hardware devices used to realize the method.

参照图4至图6,为本发明实施例1的效果图。在XIAOMI M1智能手机平台上实现了本文提出的步长估计方法和背景技术中Weinberg、Kim、Scarlet三种步长估计方法。同一步行者手持手机分别以不同步长行走10m、30m和50m,实验结果如图4、5、6所示,其中   和   四种线型分别表示本文提出的步长估计方法和背景技术中Weinberg、Kim、Scarlet三种步长估计方法的结果,图中纵坐标表示采用步长估计方法估计 出的步行者行走的路程。其中Kim步长估计方法使用的总加速度幅值剔除了重力加速度。 Referring to FIG. 4 to FIG. 6 , they are effect diagrams of Embodiment 1 of the present invention. The step size estimation method proposed in this paper and the three step size estimation methods of Weinberg, Kim and Scarlet in the background technology are implemented on the XIAOMI M1 smart phone platform. The same walker walks 10m, 30m, and 50m with different step lengths while holding a mobile phone. The experimental results are shown in Figures 4, 5, and 6, where and The four line types represent the results of the step size estimation method proposed in this paper and the three step size estimation methods of Weinberg, Kim, and Scarlet in the background technology respectively. The vertical axis in the figure represents the walking distance estimated by the step size estimation method. The total acceleration amplitude used by the Kim step estimation method excludes the gravitational acceleration.

通过实验发现: Found through experiments:

步行者正常步长行走时(走10m用14步,走30m走41步,走50m用68步),如图3所示,四种算法估算结果基本一致,且误差不大; When a pedestrian walks with a normal step length (14 steps for 10m, 41 steps for 30m, 68 steps for 50m), as shown in Figure 3, the estimation results of the four algorithms are basically the same, and the error is not large;

当同一步行者大步行走时(走10m用10步,走30m用30步,走50m用51步),如图4所示,步行者实际走50m,本发明的步长估计方法估算结果是51.94m,而Weinberg,Kim和Scarlet步长估计方法的估算结果分别为41.62m,45.41m和40.32m左右,误差较大; When the same pedestrian strides (10 steps are used for walking 10m, 30 steps are used for walking 30m, and 51 steps are used for walking 50m), as shown in Figure 4, the pedestrian actually walks 50m, and the estimation result of the step length estimation method of the present invention is 51.94 m, while the estimation results of the Weinberg, Kim and Scarlet step length estimation methods are about 41.62m, 45.41m and 40.32m respectively, with large errors;

当同一步行者小步长行走时(走10m用20步,走30m用60步,走50m用100步),如图5所示,步行者实际走50m,本发明的步长估计方法估算结果是52.44m,而Weinberg,Kim和Scarlet步长估计方法的估算结果分别为60.57m,61.05m和76.12m左右,误差较大。 When the same walker walks with a small step length (20 steps for walking 10m, 60 steps for walking 30m, and 100 steps for walking 50m), as shown in Figure 5, the walker actually walks 50m, the estimated result of the step length estimation method of the present invention It is 52.44m, while the estimation results of Weinberg, Kim and Scarlet step length estimation methods are about 60.57m, 61.05m and 76.12m respectively, with large errors.

因此,通过实验证明,本发明较好的解决了当同一个步行者以不同步长行走时,现有的非线性步长估计方法所估算出来的步行者步长存在较大误差的问题,具有实际应用意义。 Therefore, it is proved by experiments that the present invention better solves the problem that the pedestrian's step length estimated by the existing nonlinear step length estimation method has a large error when the same pedestrian walks with different step lengths. practical significance.

实施例2,本发明实施例涉及一种利用行人航位推算方法实现室内定位的方法,流程图参照图8。行人在室内定位,首先要获取初始位置,行人的起始位置可以通过手动输入或者使用其他定位方式辅助获取,比如WIFI定位(步骤300)。然后,行人行走一步,按照实施例1所述的一种行人步长估计方法估计出行人行走这一步的步长(步骤301),同时利用电子罗盘或者陀螺仪或其他仪传感器得到行人行走该步的航向角(步骤302),最后根据估算出的步长和测得的航向角,估算出行人新的位置(步骤303),接着,用估算出的新的位置更新行人的初始位置(回到步骤300),行人再行走一 步,就按照步骤300、301、302、303重新估算出行人新的位置,以此类推,从而实现行人室内定位。 Embodiment 2, the embodiment of the present invention relates to a method for realizing indoor positioning by using the dead reckoning method for pedestrians, and refer to FIG. 8 for the flow chart. For indoor positioning of pedestrians, the initial position must first be obtained. The initial position of the pedestrian can be obtained through manual input or other positioning methods, such as WIFI positioning (step 300 ). Then, the pedestrian walks one step, according to a pedestrian step estimation method described in Embodiment 1, the step length of the pedestrian's walking step is estimated (step 301), and at the same time, the pedestrian's walking step is obtained by using an electronic compass or a gyroscope or other instrument sensors. heading angle (step 302), and finally estimate the new position of the pedestrian according to the estimated step size and the measured heading angle (step 303), and then update the initial position of the pedestrian with the estimated new position (back to Step 300), the pedestrian walks another step, and the new position of the pedestrian is re-estimated according to steps 300, 301, 302, 303, and so on, so as to realize the indoor positioning of the pedestrian.

参照图7,为本实施例中利用估算出的步长和测得的航向角估算行人新位置的方法的原理图。设某一时刻行人处于Pn-1(Xn-1,Yn-1)处,行走方向与E轴夹角为α,行走一步(步长为d)后到达Pn(Xn,Yn),则Pn(Xn,Yn)和Pn-1(Xn-1,Yn-1)两点之间的关系如下: X n = X n - 1 + d × cos α Y n = Y n - 1 + d × sin α . Referring to FIG. 7 , it is a schematic diagram of a method for estimating a new position of a pedestrian by using the estimated step size and the measured heading angle in this embodiment. Assume that a pedestrian is at P n-1 (X n-1 , Y n-1 ) at a certain moment, and the angle between the walking direction and the E axis is α. n ), then the relationship between P n (X n ,Y n ) and P n-1 (X n-1 ,Y n-1 ) is as follows: x no = x no - 1 + d × cos α Y no = Y no - 1 + d × sin α .

以上结合最佳实施例对本发明进行了描述,但本发明并不局限于以上揭示的实施例,而应当涵盖各种根据本发明的本质进行的修改、等效组合。 The present invention has been described above in conjunction with the best embodiments, but the present invention is not limited to the above-disclosed embodiments, but should cover various modifications and equivalent combinations made according to the essence of the present invention.

Claims (9)

1.一种行人步长估计方法,该方法包括如下步骤:1. A pedestrian step length estimation method, the method may further comprise the steps: a)利用具有加速度传感器的便携式终端测量行人按正常步长行走时个人步长参数K;a) Utilize a portable terminal with an acceleration sensor to measure the personal step length parameter K when the pedestrian walks according to the normal step length; b)检测行人行走一步过程中总加速度幅值的最大值amax和最小值aminb) Detect the maximum value a max and the minimum value a min of the total acceleration amplitude during the pedestrian's walking step; c)采用公式 step s i z e = K * ( ( a m a x - a m i n ) + a m a x - a m i n 4 ) , 计算行人行走所述一步的步长stepsizec) using the formula step the s i z e = K * ( ( a m a x - a m i no ) + a m a x - a m i no 4 ) , Calculate the step size step size of the pedestrian's walking step. 2.根据权利要求1所述的一种行人步长估计方法,其特征在于,在所述步骤a)中测量个人步长参数K的方法包括如下步骤:2. a kind of pedestrian step length estimation method according to claim 1, is characterized in that, the method for measuring personal step length parameter K in described step a) comprises the steps: a-1)设定参数Ki为任意常数;a-1) setting parameter Ki to be an arbitrary constant; a-2)行人携带便携式终端按正常步长试行走n步,测得实际行走X米,在此过程中,该便携式终端相对于携带它的行人的上半身保持静止状态;a-2) The pedestrian carries the portable terminal to try to walk n steps according to the normal step length, and the measured actual walking is X meters. During this process, the portable terminal remains stationary relative to the upper body of the pedestrian carrying it; a-3)检测出行人行走n步的每一步过程中总加速度幅值的最大值amax和最小值amin,采用公式 step s i z e = K i * ( ( a m a x - a m i n ) + a m a x - a m i n 4 ) 估算出行人行走n步的每一步步长,将所述每一步步长累加,估算出行人n步行走的距离Y米;a-3) Detect the maximum value a max and the minimum value a min of the total acceleration amplitude during each step of the pedestrian walking n steps, using the formula step the s i z e = K i * ( ( a m a x - a m i no ) + a m a x - a m i no 4 ) Estimating the step length of each step of the pedestrian's n steps, adding up the step length of each step, and estimating the distance Y meters of the pedestrian's n-step walk; a-4)采用公式计算出个人步长参数K。a-4) Using the formula Calculate the individual step size parameter K. 3.根据权利要求1所述的一种行人步长估计方法,其特征在于,在所述步骤b)中检测行人行走一步过程中总加速度幅值的最大值amax和最小值amin的方法包括如下步骤:3. a kind of pedestrian step length estimation method according to claim 1, is characterized in that, in described step b) in the method for detecting the maximum value a max and the minimum value a min of the total acceleration amplitude value in the step process of pedestrian walking Including the following steps: b-1)行人携带相对于其上半身保持静止状态的便携式终端行走一步,通过嵌入到便携式终端的加速度传感器得到总加速度幅值accl,在行人行走一步过程中,加速度传感器检测加速度的频率不小于15Hz;b-1) The pedestrian carries a portable terminal that remains stationary relative to his upper body and walks for one step, and obtains the total acceleration amplitude accl through the acceleration sensor embedded in the portable terminal. During the pedestrian's one-step walking process, the frequency of the acceleration sensor detecting acceleration is not less than 15Hz ; b-2)探测一步过程中总加速度幅值的峰值和谷值;b-2) Detect the peak value and valley value of the total acceleration amplitude during one step; b-3)当总加速度幅值的峰值和谷值之间的差值超过阈值,且它们的时间间距在一定范围内,则此峰值即为行人行走一步的总加速度幅值的最大值amax,谷值即为行人行走一步的总加速度幅值的最小值aminb-3) When the difference between the peak value and the valley value of the total acceleration amplitude exceeds the threshold, and their time interval is within a certain range, then this peak value is the maximum value a max of the total acceleration amplitude of the pedestrian walking one step , the valley value is the minimum value a min of the total acceleration amplitude when the pedestrian walks one step. 4.根据权利要求3所述的一种行人步长估计方法,其特征在于,在所述步骤b-1)之后还包含步骤b-1-1):4. a kind of pedestrian step length estimation method according to claim 3, is characterized in that, also comprises step b-1-1) after described step b-1): b-1-1)采用滑动窗口滤波器对得到的总加速度幅值accl进行信号滤波,使总加速度幅值信号曲线平滑。b-1-1) Use a sliding window filter to perform signal filtering on the obtained total acceleration amplitude accl to make the total acceleration amplitude signal curve smooth. 5.根据权利要求3所述的一种行人步长估计方法,其特征在于,便携式终端的加速度传感器为三轴加速度传感器,在所述步骤b-1)中三轴加速度传感器检测加速度三个轴的幅值(accl_x,accl_y,accl_z),然后采用公式 a c c l = ( a c c l _ x ) 2 + ( a c c l _ y ) 2 + ( a c c _ z ) 2 计算出总加速度幅值accl。5. a kind of pedestrian step length estimation method according to claim 3 is characterized in that, the acceleration sensor of portable terminal is a three-axis acceleration sensor, and in described step b-1), three axis acceleration sensors detect three axes of acceleration The magnitude of (accl_x,accl_y,accl_z), then use the formula a c c l = ( a c c l _ x ) 2 + ( a c c l _ the y ) 2 + ( a c c _ z ) 2 Calculate the total acceleration amplitude accl. 6.根据权利要求1所述的一种行人步长估计方法,其特征在于,便携式终端包括加速度传感器和处理器,加速度传感器将检测到的加速度数据传送到处理器,由处理器进行计算实现本方法,或者处理器将数据上传至远端后台,在后台进行计算实现本方法。6. A kind of pedestrian step estimation method according to claim 1, is characterized in that, portable terminal comprises acceleration sensor and processor, and acceleration sensor transmits the acceleration data that detects to processor, calculates and realizes this by processor. method, or the processor uploads the data to the remote background, and performs calculations in the background to realize the method. 7.一种利用权利要求1所述的行人步长估计方法进行行人航位推算方法,该方法包括如下步骤:7. A pedestrian dead reckoning method utilizing the pedestrian step length estimation method according to claim 1, the method comprising the steps of: a)设置行人初始位置Pn-1(Xn-1,Yn-1);a) Set the pedestrian's initial position P n-1 (X n-1 , Y n-1 ); b)利用权利要求1所述的行人步长估计方法估算出行人行走一步的步长d;同时利用航向测量仪器测量行人行走该步的航向角α;b) Utilize the method for estimating pedestrian step length described in claim 1 to estimate the step length d of the pedestrian walking one step; simultaneously utilize the heading measuring instrument to measure the heading angle α of the pedestrian walking the step; c)采用公式 X n = X n - 1 + d × cos α Y n = Y n - 1 + d × sin α 估算出行人新的位置。c) using the formula x no = x no - 1 + d × cos α Y no = Y no - 1 + d × sin α Estimate the new location of the pedestrian. 8.根据权利要求7所述的一种行人航位推算方法,其特征在于,所述设置行人初始位置通过人工手动输入或者使用WIFI或者GPS定位方式获取。8. A dead reckoning method for pedestrians according to claim 7, characterized in that the initial position of the set pedestrians is obtained through manual input or using WIFI or GPS positioning. 9.根据权利要求7所述的一种行人航位推算方法,其特征在于,行人行走一步的航向角通过电子罗盘或陀螺仪测得。9. A dead reckoning method for pedestrians according to claim 7, characterized in that the heading angle at which the pedestrian walks one step is measured by an electronic compass or a gyroscope.
CN201310388466.9A 2013-08-30 2013-08-30 Pedestrian's step-size estimation and dead reckoning method Active CN103411607B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310388466.9A CN103411607B (en) 2013-08-30 2013-08-30 Pedestrian's step-size estimation and dead reckoning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310388466.9A CN103411607B (en) 2013-08-30 2013-08-30 Pedestrian's step-size estimation and dead reckoning method

Publications (2)

Publication Number Publication Date
CN103411607A CN103411607A (en) 2013-11-27
CN103411607B true CN103411607B (en) 2015-10-14

Family

ID=49604635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310388466.9A Active CN103411607B (en) 2013-08-30 2013-08-30 Pedestrian's step-size estimation and dead reckoning method

Country Status (1)

Country Link
CN (1) CN103411607B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748735B (en) * 2013-12-25 2017-06-27 北京神州泰岳软件股份有限公司 Indoor orientation method and equipment based on intelligent terminal
CN103983273B (en) * 2014-04-29 2017-06-06 华南理工大学 A kind of real-time step-size estimation method based on acceleration transducer
CN104075714A (en) * 2014-06-26 2014-10-01 华东师范大学 Closed compartment positioning navigation system and method based on treading track calculation
CN104089624B (en) * 2014-07-18 2016-11-09 赵佳 Step-recording method and terminal device
CN104406603B (en) * 2014-11-12 2018-05-11 上海卓易科技股份有限公司 A kind of step-recording method and device based on acceleration transducer
CN104535077A (en) * 2014-12-29 2015-04-22 上海交通大学 Pedestrian step length estimation method based on intelligent mobile terminal equipment
CN104634345B (en) * 2015-01-28 2018-02-16 华侨大学 A kind of indoor trajectory track method of adaptive step
WO2016206119A1 (en) 2015-06-26 2016-12-29 Intel Corporation Technologies for pedestrian dead reckoning
US20170013590A1 (en) * 2015-07-09 2017-01-12 Qualcomm Incorporated Determining wireless scanning rate based on pedestrian dead reckoning reliability
CN105509763B (en) * 2015-12-01 2019-08-30 深圳市元征科技股份有限公司 Minimizing technology and device are interfered in step counting
CN105342583B (en) * 2015-12-17 2019-01-25 重庆邮电大学 An intelligent monitoring device for the elderly with high precision pedometer
CN105674989B (en) * 2016-01-27 2018-07-24 西北大学 A kind of indoor objects movement locus method of estimation based on mobile phone built-in sensors
CN105607104B (en) * 2016-01-28 2018-04-10 成都佰纳瑞信息技术有限公司 A kind of adaptive navigation alignment system and method based on GNSS and INS
CN105547285B (en) * 2016-01-30 2019-01-15 清华大学 Navigation system in building based on virtual reality technology
CN106017502B (en) * 2016-05-17 2019-02-26 中国地质大学(武汉) A step counting method and electronic device
CN106225801A (en) * 2016-06-30 2016-12-14 天津大学 A kind of method of personnel's step-length based on inertia sensing estimation
US10610132B2 (en) * 2016-08-02 2020-04-07 Medtronic, Inc. Step detection using accelerometer axis
CN106412827A (en) * 2016-09-09 2017-02-15 北京小米移动软件有限公司 Positioning method and device
CN107014388B (en) * 2016-12-22 2020-08-07 威海北洋电气集团股份有限公司 Pedestrian trajectory calculation method and device based on magnetic interference detection
CN109452728B (en) * 2017-04-12 2021-03-09 佛山市丈量科技有限公司 Intelligent insole based on step length calculation and step length calculation method thereof
CN107084718A (en) * 2017-04-14 2017-08-22 桂林电子科技大学 Indoor Positioning Method Based on Pedestrian Dead Reckoning
CN109282806B (en) * 2017-07-20 2024-03-22 罗伯特·博世有限公司 Method, apparatus and storage medium for determining pedestrian position
CN109782312A (en) * 2017-11-10 2019-05-21 北京金坤科创技术有限公司 A kind of adaptive outdoor positioning method of multi-source
CN110866419A (en) * 2018-08-28 2020-03-06 北京嘀嘀无限科技发展有限公司 Step length determination method, system and computer readable storage medium
CN109308947B (en) * 2018-11-23 2024-09-24 辽东学院 Health detection system and data analysis method for wearable equipment
CN111504433A (en) * 2020-04-23 2020-08-07 永康龙飘传感科技有限公司 Method and device for evaluating weight of animal during movement
CN112097775B (en) * 2020-09-22 2021-05-25 中国测绘科学研究院 A positioning method based on single-step robust filtering of electronic compass heading angle information
CN112255588A (en) * 2020-10-12 2021-01-22 浙江长元科技有限公司 Indoor positioning method and system
CN113670311A (en) * 2021-07-29 2021-11-19 华东计算技术研究所(中国电子科技集团公司第三十二研究所) Indoor pedestrian state perception and positioning tracking system, method and device, medium
CN113739810A (en) * 2021-09-03 2021-12-03 众能联合数字技术有限公司 Method for drawing walking path based on Flutter frame under network-free condition and intelligent device
CN114111833B (en) * 2021-10-09 2024-03-29 湘潭大学 Pedestrian step length estimation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250215B1 (en) * 2012-05-31 2013-04-03 삼성탈레스 주식회사 Pedestrian dead-reckoning system using kalman filter and walking state estimation algorithm and method for height estimation thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI122712B (en) * 2007-07-11 2012-06-15 Vti Technologies Oy Method and apparatus for measuring the forward movement of a moving person
US20110035185A1 (en) * 2009-08-10 2011-02-10 Thorsten Habel Sensor-based Tracking of Variable Locomotion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250215B1 (en) * 2012-05-31 2013-04-03 삼성탈레스 주식회사 Pedestrian dead-reckoning system using kalman filter and walking state estimation algorithm and method for height estimation thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A Step, Stride and Heading Determination for the Pedestrian Navigation System;Jeong Won Kim等;《Journal of Global Positioning Systems》;20041231;第3卷(第1期);273-279 *
Enhancing the Performance of Pedometers Using a Single Accelerometer;Jim Scarlett;《Analog Devices》;20051231(第900期);1-16 *
Using the ADXL202 in Pedometer and Personal Navigation Applications;Harvey Weinberg;《Analog Devices》;20021231(第602期);1-8 *
基于GPS和自包含传感器的行人室内外无缝定位算法研究;陈伟;《中国博士学位论文全文数据库信息科技辑》;20110615(第06期);140-205 *

Also Published As

Publication number Publication date
CN103411607A (en) 2013-11-27

Similar Documents

Publication Publication Date Title
CN103411607B (en) Pedestrian's step-size estimation and dead reckoning method
CN104061934B (en) Pedestrian indoor position tracking method based on inertial sensor
CN105607104B (en) A kind of adaptive navigation alignment system and method based on GNSS and INS
CN104132662B (en) Closed-loop Kalman filter inertial positioning method based on zero-speed correction
CN109115216B (en) Pedestrian step length detection method, device and system
CN103983273B (en) A kind of real-time step-size estimation method based on acceleration transducer
JP5704561B2 (en) Traveling direction estimation device, portable terminal, control program, computer-readable recording medium, and traveling direction estimation method
CN102353383B (en) Method for step counting and mileage reckoning based on single-axis gyroscope
CN107084718A (en) Indoor Positioning Method Based on Pedestrian Dead Reckoning
CN107396321B (en) Unsupervised indoor localization method based on mobile phone sensor and iBeacon
CN103680063B (en) Based on mobile phone accelerometer and gyrostatic old person abnormal condition decision method
CN104977006A (en) Indoor positioning method based on fuzzy theory and multi-sensor fusion
CN104215238A (en) Indoor positioning method of intelligent mobile phone
CN108020813B (en) Positioning method, positioning device and electronic device
CN106123900B (en) Indoor pedestrian navigation magnetic heading calculation method based on modified complementary filter
CN105320269B (en) Data analysis device and data analysis method
JP6804908B2 (en) Estimator, estimation method and computer program
CN103323615A (en) Mobile terminal and method for calculating walking speed through acceleration sensor
CN107515004B (en) Step length calculation device and method
US20170115131A1 (en) Inertial Positioning and Navigation Device Featuring a Novel Walk Detection Method
CN106225786A (en) A kind of adaptive pedestrian navigation system zero-speed section detecting method
CN109612463B (en) Pedestrian navigation positioning method based on lateral speed constraint optimization
CN107966161A (en) Walking detection method based on FFT
Gobana Survey of Inertial/magnetic Sensors Based pedestrian dead reckoning by multi-sensor fusion method
CN106643711A (en) An indoor positioning method and system based on a handheld device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant