CN103403847A - Silicon nitride film deposition method, organic electronic device manufacturing method, and silicon nitride film deposition device - Google Patents
Silicon nitride film deposition method, organic electronic device manufacturing method, and silicon nitride film deposition device Download PDFInfo
- Publication number
- CN103403847A CN103403847A CN2012800105318A CN201280010531A CN103403847A CN 103403847 A CN103403847 A CN 103403847A CN 2012800105318 A CN2012800105318 A CN 2012800105318A CN 201280010531 A CN201280010531 A CN 201280010531A CN 103403847 A CN103403847 A CN 103403847A
- Authority
- CN
- China
- Prior art keywords
- silicon nitride
- plasma
- nitride film
- gas
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45574—Nozzles for more than one gas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/511—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02299—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
- H01L21/02312—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
- H01L21/02315—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/871—Self-supporting sealing arrangements
- H10K59/8722—Peripheral sealing arrangements, e.g. adhesives, sealants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Chemical Vapour Deposition (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明提供一种在收纳于处理容器内的基板上形成氮化硅膜的氮化硅膜的成膜方法,对上述处理容器内供给包含硅烷类气体、氮气和氢气的处理气体,使上述处理气体激发而生成等离子体,实施利用该等离子体进行的等离子体处理而在基板上形成氮化硅膜。上述氮化硅膜作为有机电子器件的密封膜使用。在利用上述等离子体进行的等离子体处理中,将上述处理容器内的压力维持为20Pa~60Pa。
The present invention provides a method of forming a silicon nitride film for forming a silicon nitride film on a substrate accommodated in a processing container, wherein a processing gas containing silane-based gas, nitrogen gas, and hydrogen gas is supplied into the processing container, and the above-mentioned processing The gas is excited to generate plasma, and plasma processing using the plasma is performed to form a silicon nitride film on the substrate. The aforementioned silicon nitride film is used as a sealing film for organic electronic devices. In the plasma processing using the plasma, the pressure in the processing container is maintained at 20 Pa to 60 Pa.
Description
技术领域technical field
本发明涉及氮化硅膜的成膜方法、有机电子器件的制造方法和氮化硅膜的成膜装置。The present invention relates to a method for forming a silicon nitride film, a method for manufacturing an organic electronic device, and a device for forming a silicon nitride film.
背景技术Background technique
近年,正在开发利用作为包含有机物层的发光器件的有机电致发光(EL:Electro Luminescence)的有机EL元件。有机EL元件由于为自发光,所以消耗电力小,另外具有与液晶显示器(LCD)等相比视角优秀等优点,今后的发展受到期待。In recent years, organic EL elements using organic electroluminescence (EL: Electro Luminescence), which are light-emitting devices including organic layers, are being developed. Since organic EL elements are self-illuminating, they consume less power and have advantages such as superior viewing angles compared with liquid crystal displays (LCDs), etc., and future development is expected.
该有机EL元件的最基本的构造是在玻璃基板上叠层正极(阳极)层、发光层和负极(阴极)层而形成的层叠构造(三明治构造)。其中,发光层对水、氧气较弱,当混入水、氧气时,其特性发生变化,产生非发光点(黑斑),成为有机EL元件的寿命缩短的一个原因。因此,在有机电子器件的制造中,以使外部的水、氧气不透过器件内的方式对有机元件进行封止。即,在有机电子器件的制造中,在玻璃基板上依次形成正极层、发光层、负极层,进而形成密封膜(封固膜)层。The most basic structure of this organic EL element is a laminated structure (sandwich structure) in which a positive electrode (anode) layer, a light-emitting layer, and a negative electrode (cathode) layer are laminated on a glass substrate. Among them, the light-emitting layer is weak against water and oxygen, and when water or oxygen is mixed, its characteristics change, resulting in non-luminous spots (dark spots), which is one of the causes of shortening the life of organic EL elements. Therefore, in the manufacture of organic electronic devices, organic elements are sealed so that external water and oxygen do not pass through the device. That is, in the manufacture of an organic electronic device, a positive electrode layer, a light-emitting layer, and a negative electrode layer are sequentially formed on a glass substrate, and a sealing film (sealing film) layer is further formed.
作为上述密封膜,例如能够使用氮化硅膜(SiN膜)。该氮化硅膜例如通过等离子体CVD(Chemical Vapor Deposiotion)形成。具体而言,例如利用微波的功率使包含硅烷(SiH4)气体、氮气(N2)的原料气体激发而生成等离子体,使用生成的等离子体形成氮化硅膜。另外,有机EL元件在玻璃基板的温度达到100℃以上的高温时存在受到损伤的问题,因此氮化硅膜在100℃以下的低温环境下形成(专利文献1)。As the sealing film, for example, a silicon nitride film (SiN film) can be used. The silicon nitride film is formed, for example, by plasma CVD (Chemical Vapor Deposition). Specifically, for example, a source gas including silane (SiH 4 ) gas and nitrogen (N 2 ) gas is excited by microwave power to generate plasma, and a silicon nitride film is formed using the generated plasma. In addition, the organic EL element has a problem of being damaged when the temperature of the glass substrate reaches a high temperature of 100° C. or higher, so the silicon nitride film is formed in a low temperature environment of 100° C. or lower (Patent Document 1).
现有技术文献prior art literature
专利文献patent documents
专利文献1:日本国特开2010-219112号公报Patent Document 1: Japanese Patent Laid-Open No. 2010-219112
发明内容Contents of the invention
发明要解决的问题The problem to be solved by the invention
但是,在使用专利文献1记载的方法的情况下,氮化硅膜在低温环境下形成,因此有时该氮化硅膜的膜特性降低。具体而言,例如有时氮化硅膜的阶梯覆盖(台阶覆盖性)、膜质(例如对氢氟酸的湿法蚀刻速率相关的致密度)低,另外有时氮化硅膜的膜应力(film stress)不适当。However, in the case of using the method described in
此外,在上述中,说明了在玻璃基板上形成氮化硅膜作为有机电子器件的密封膜的情况,但该问题有时在有机电子器件的密封膜以外的用途中形成氮化硅膜的情况下也存在。即,基板的温度在例如100℃以下的低温环境下在基板上形成氮化硅膜时,与上述相同,有时氮化硅膜的膜质降低。In addition, in the above, the case where a silicon nitride film is formed on a glass substrate as a sealing film for an organic electronic device has been described, but this problem may arise when a silicon nitride film is formed for applications other than a sealing film for an organic electronic device. also exist. That is, when the temperature of the substrate is, for example, 100° C. or lower, when the silicon nitride film is formed on the substrate, the film quality of the silicon nitride film may decrease as described above.
本发明是鉴于上述情况而完成的,目的在于,在基板的温度为100℃以下的低温环境下,在基板上适当地使氮化硅膜成膜,提高该氮化硅膜的膜特性。The present invention was made in view of the above circumstances, and an object of the present invention is to properly form a silicon nitride film on a substrate in a low-temperature environment where the temperature of the substrate is 100° C. or lower, and to improve the film characteristics of the silicon nitride film.
用于解决课题的技术方案Technical solutions for solving problems
为了达到上述目的,根据本发明的一个观点,是一种氮化硅膜的成膜方法,是在收纳于处理容器内的基板上形成氮化硅膜的成膜方法,对上述处理容器内供给包含硅烷类气体、氮气和氢气的处理气体,使上述处理气体激发而生成等离子体,实施利用该等离子体进行的等离子体处理而在基板上形成氮化硅膜。In order to achieve the above object, according to an aspect of the present invention, it is a film forming method of a silicon nitride film, which is a film forming method of forming a silicon nitride film on a substrate accommodated in a processing container. A processing gas containing silane-based gas, nitrogen gas, and hydrogen gas is excited to generate plasma, and plasma processing using the plasma is performed to form a silicon nitride film on the substrate.
发明者们深刻研究的结果是,可知在利用等离子体成膜方法在基板上使氮化硅膜成膜时,当使用包含硅烷类气体、氮气和氢气的处理气体时,对于氮化硅膜的湿法蚀刻速率的蚀刻特性提高。具体而言,通过对处理气体添加氢气,湿法蚀刻速率降低,氮化硅膜的阶梯覆盖提高。另外,当增大对处理气体的氢气的添加量时,氮化硅膜的膜应力成为负侧。即,可知能够适当控制氮化硅膜的膜应力。因而,根据本发明,即使处理容器内的基板的温度在例如100℃以下的低温环境下,也能够提高成膜在基板上的氮化硅膜的成膜的控制性。此外,通过这样对处理气体添加氢气,膜特性的控制性提高,对此在后述中详细说明。As a result of intensive research by the inventors, it was found that when a silicon nitride film is formed on a substrate by a plasma film forming method, when a processing gas containing silane-based gas, nitrogen gas, and hydrogen gas is used, the The etch characteristics of the wet etch rate are improved. Specifically, by adding hydrogen gas to the process gas, the wet etching rate is reduced and the step coverage of the silicon nitride film is improved. In addition, when the amount of hydrogen added to the process gas is increased, the film stress of the silicon nitride film becomes negative. That is, it can be seen that the film stress of the silicon nitride film can be appropriately controlled. Therefore, according to the present invention, even if the temperature of the substrate in the processing container is in a low-temperature environment such as 100° C. or lower, the controllability of the silicon nitride film formed on the substrate can be improved. In addition, by adding hydrogen gas to the processing gas in this way, the controllability of the film properties is improved, which will be described in detail later.
根据本发明的另一观点,是一种有机电子器件的制造方法,在基板上形成有机元件,然后,对收纳有该基板的处理容器内供给包含硅烷类气体、氮气和氢气的处理气体,使上述处理气体激发而生成等离子体,实施利用该等离子体进行的等离子体处理,以覆盖上述有机元件的方式形成氮化硅膜作为密封膜。According to another aspect of the present invention, it is a method of manufacturing an organic electronic device. An organic element is formed on a substrate, and then, a processing gas containing a silane gas, nitrogen gas, and hydrogen gas is supplied to a processing container containing the substrate, so that The process gas is excited to generate plasma, and a plasma process using the plasma is performed to form a silicon nitride film as a sealing film so as to cover the organic element.
另外,根据本发明的另一观点,是一种在基板上形成氮化硅膜的氮化硅膜的成膜装置,具备:收纳基板并对其进行处理的处理容器;对上述处理容器内供给包含硅烷类气体、氮气和氢气的处理气体的处理气体供给部;使上述处理气体激发而生成等离子体的等离子体激发部;和控制部,其控制上述处理气体供给部和上述等离子体激发部,以实施利用上述等离子体进行的等离子体处理而在基板上形成氮化硅膜。In addition, according to another aspect of the present invention, there is provided a silicon nitride film forming apparatus for forming a silicon nitride film on a substrate, comprising: a processing container for accommodating and processing a substrate; a processing gas supply unit for processing gas including silane-based gas, nitrogen gas, and hydrogen gas; a plasma excitation unit that excites the processing gas to generate plasma; and a control unit that controls the processing gas supply unit and the plasma excitation unit, A silicon nitride film is formed on the substrate by performing the plasma treatment using the aforementioned plasma.
发明的效果The effect of the invention
根据本发明,在基板的温度为100℃以下的低温环境下,在基板上适当地形成氮化硅膜,能够提高该氮化硅膜的膜特性的控制性。According to the present invention, the silicon nitride film is appropriately formed on the substrate in a low-temperature environment where the temperature of the substrate is 100° C. or lower, and the controllability of the film characteristics of the silicon nitride film can be improved.
附图说明Description of drawings
图1是用于实施本实施方式的有机EL器件的制造方法的基板处理系统的构成的概略的说明图。FIG. 1 is an explanatory diagram showing a schematic configuration of a substrate processing system for carrying out the method for manufacturing an organic EL device according to the present embodiment.
图2是表示本实施方式的有机EL器件的制造工序的说明图。FIG. 2 is an explanatory view showing a manufacturing process of the organic EL device of the present embodiment.
图3是表示等离子体成膜装置的构成的概略的纵截面图。3 is a longitudinal sectional view schematically showing the configuration of a plasma film forming apparatus.
图4是原料气体供给构造体的平面图。Fig. 4 is a plan view of a raw material gas supply structure.
图5是等离子体激发用气体供给构造体的平面图。5 is a plan view of a gas supply structure for plasma excitation.
图6是表示在使用本实施方式的等离子体成膜方法的情况下,氢气的供给流量和氮化硅膜的湿法蚀刻速率的关系的图表。6 is a graph showing the relationship between the supply flow rate of hydrogen gas and the wet etching rate of a silicon nitride film when the plasma film forming method of this embodiment is used.
图7是表示在使用本实施方式的等离子体成膜方法的情况下,氢气的供给流量和氮化硅膜的膜应力的关系的图表。7 is a graph showing the relationship between the supply flow rate of hydrogen gas and the film stress of the silicon nitride film when the plasma film forming method of this embodiment is used.
图8是表示在使用本实施方式的等离子体成膜方法的情况下,微波的功率和氮化硅膜的膜应力的关系的图表。8 is a graph showing the relationship between the microwave power and the film stress of the silicon nitride film when the plasma film forming method of this embodiment is used.
图9是对在如本实施方式的方式使用包含硅烷气体、氮气和氢气的处理气体形成了氮化硅膜的情况、和如现有技术使用包含硅烷气体和氨气的处理气体形成了氮化硅膜的情况进行了比较的说明图。FIG. 9 is a case where a silicon nitride film is formed using a processing gas containing silane gas, nitrogen gas, and hydrogen gas in the manner of the present embodiment, and a silicon nitride film is formed using a processing gas containing silane gas and ammonia gas as in the prior art. An explanatory diagram comparing the case of a silicon film.
图10是另一实施方式的原料气体供给构造体的平面图。Fig. 10 is a plan view of a raw material gas supply structure according to another embodiment.
图11是另一实施方式的原料气体供给管的截面图。Fig. 11 is a cross-sectional view of a raw material gas supply pipe according to another embodiment.
图12是另一实施方式的原料气体供给管的截面图。Fig. 12 is a cross-sectional view of a raw material gas supply pipe according to another embodiment.
具体实施方式Detailed ways
以下,参照附图对本发明的实施方式进行说明。其中,在本说明书和附图中,对于实质上具有相同功能的结构的构成要素标注相同的附图标记,由此省略重复说明。Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, in this specification and the drawings, the same reference numerals are attached to constituent elements having substantially the same functions, and repeated descriptions are omitted.
首先,关于本发明的实施方式的有机电子器件的制造方法,与用于实施该制造方法的基板处理系统一并进行说明。图1是表示基板处理系统1的构成的概略的说明图。图2是表示有机EL器件的制造工序的说明图。此外,在本实施方式中,对于制造有机EL器件作为有机电子器件的情况进行说明。First, a method for manufacturing an organic electronic device according to an embodiment of the present invention will be described together with a substrate processing system for implementing the method. FIG. 1 is an explanatory diagram showing a schematic configuration of a
如图1所示,群集型(cluster)的基板处理系统1具有输送室10。输送室10例如在俯视时具有大致多边形(图示的例中为六边形),内部可以密闭。在输送室10的周围,在俯视时顺时针方向上依次排列负载锁定室11、洗净装置12、蒸镀装置13、溅射装置14、蚀刻装置15、等离子体成膜装置16。As shown in FIG. 1 , a cluster-type
在输送室10的内部设置有能够伸缩和旋转的多关节状的输送臂17。通过该输送臂17,作为基板的玻璃基板被输送至负载锁定室11和各处理装置12~16。A telescopic and rotatable
负载锁定室11是为了将从大气环境(系统)输送来的玻璃基板输送至处于减压状态的输送室10而将内部保持为规定的减压状态的真空输送室。The
而且,对等离子体成膜装置16的构成在后面叙述中进行说明。另外,关于作为其它的处理装置的洗净装置12、蒸镀装置13、溅射装置14、蚀刻装置15使用一般的装置即可,省略其构成的说明。In addition, the configuration of the plasma
接着,对在如上述那样构成的基板处理系统1中进行的有机EL器件的制造方法进行说明。Next, a method of manufacturing an organic EL device performed in the
如图2(a)所示,在玻璃基板G的上表面预先使正极(阳极)层20成膜。正极层20例如包括氧化铟锡(ITO:Indium Tin Oxide)等透明的导电性材料。此外,正极层20例如利用溅射法等形成于玻璃基板G的上表面。As shown in FIG. 2( a ), a positive electrode (anode)
然后,在洗净装置12中,在将玻璃基板G上的正极层20的表面洗净后,如图2(a)所示,在蒸镀装置13中,在正极层20上通过蒸镀法使发光层(有机层)21成膜。而且,发光层21例如包括层叠有孔输送层、非发光层(电子块层)、蓝色发光层、红色发光层、绿色发光层、电子输送层的多层结构等。Then, in the
接着,如图2(b)所示,在溅射装置14中,在发光层21上形成有例如包括Ag、Al等的负极(阴极)层22。负极层22例如是通过利用溅射隔着图案掩膜在发光层21上堆积靶原子而形成的。此外,这些正极层20、发光层21和负极层22构成本发明的有机EL元件,以下有时简称为“有机EL元件”。Next, as shown in FIG. 2( b ), in the
接着,如图2(c)所示,在蚀刻装置15中,以负极层22为掩膜,对发光层21进行干蚀刻。这样,将发光层21图案形成为规定的图案。Next, as shown in FIG. 2( c ), dry etching is performed on the light emitting layer 21 in the
此外,也可以在发光层21的蚀刻后,对有机EL元件和玻璃基板G(正极层20)的露出部分进行洗净,除去吸附于有机EL元件的物质、例如有机物等,即进行预洗净。进而,在预洗净后,也可以进行例如使用偶合剂的硅烷基化处理,在负极层22上形成非常薄的粘附层(未图示)。该粘附层和有机EL元件牢固地粘合,并且粘附层和后述的氮化硅膜23牢固地粘合。In addition, after the etching of the light-emitting layer 21, the exposed part of the organic EL element and the glass substrate G (positive electrode layer 20) may be cleaned to remove substances adsorbed on the organic EL element, such as organic substances, that is, to perform pre-cleaning. . Furthermore, after precleaning, for example, silylation treatment using a coupling agent may be performed to form a very thin adhesive layer (not shown) on the negative electrode layer 22 . The adhesive layer is firmly bonded to the organic EL element, and the adhesive layer is firmly bonded to the silicon nitride film 23 described later.
接着,如图2(d)所示,在等离子体成膜装置16中,以覆盖发光层21、负极层22的周围和正极层20的露出部的方式,形成例如作为密封膜的氮化硅膜(SiN膜)23。该氮化硅膜23的形成如后所述例如通过微波等离子体CVD法进行。Next, as shown in FIG. 2( d ), in the plasma
如上所述,制造出的有机EL器件A,通过对正极层20与负极层22之间施加电压,能够使发光层21发光。该有机EL器件A能够适用于显示装置、面发光元件(照明、光源等),除此之外,能够用于各种电子设备。As described above, in the manufactured organic EL device A, the light emitting layer 21 can emit light by applying a voltage between the
接着,对于形成上述氮化硅膜23的成膜方法,与使该氮化硅膜23成膜的等离子体成膜装置16一并进行说明。图3是表示等离子体成膜装置16的构成的概略的纵截面图。此外,本实施方式的等离子体成膜装置16是使用径向线缝隙天线产生等离子体的CVD装置。Next, a film-forming method for forming the above-mentioned silicon nitride film 23 will be described together with the plasma film-forming
等离子体成膜装置16具有例如上表面开口的有底圆筒状的处理容器30。处理容器30例如由铝合金形成。另外,处理容器30接地。处理容器30的底部的大致中央部设置有载置台31作为用于载置例如玻璃基板G的载置部。The plasma
载置台31内置有例如电极板32,电极板32与设置在处理容器30的外部的直流电源33连接。利用该直流电源33在载置台31的表面产生静电力,能够将玻璃基板G静电吸附于载置台31上。此外,电极板32可以与例如偏压用高频电源(未图示)连接。The mounting table 31 includes, for example, an electrode plate 32 , and the electrode plate 32 is connected to a DC power supply 33 provided outside the
在处理容器30的上部开口隔着例如用于确保气密性的O型环等密封件40设置有电介质窗41。通过该电介质窗41将处理容器30内封闭。在电介质窗41的上部设置有径向线缝隙天线42作为供给等离子体生成用的微波的等离子体激发部。此外,电介质窗41例如能够使用氧化铝(Al2O3)。在该情况下,电介质窗41对于在干式洗净中所使用的三氟化氮(NF3)气体具有耐性(耐蚀性)。另外,为了进一步提高对三氟化氮的耐性,也可以在电介质窗41的氧化铝的表面覆盖三氧化二钇(Y2O3)、尖晶石(MgAl2O4)或者氮化铝(AlN)。A dielectric window 41 is provided at the upper opening of the
径向线缝隙天线42具备下表面开口的大致圆筒状的天线主体50。在天线主体50的下表面的开口部设置有形成有多个缝隙的圆盘状的缝隙板51。在天线主体50内的缝隙板51的上部设置有由低损失电介质材料形成的电介质板52。在天线主体50的上表面连接有通过微波振荡装置53的同轴导波管54。微波振荡装置53设置于处理容器30的外部,能够对径向线缝隙天线42振荡规定频率、例如2.45GHz的微波。利用该构成,从微波振荡装置53振荡出的微波被传递至径向线缝隙天线42内,被电介质板52压缩而短波长化后,在缝隙板51产生圆偏振波,从电介质窗41向处理容器30内辐射。The radial line slot antenna 42 includes a substantially
在处理容器30内的载置台31与径向线缝隙天线42之间设置有例如大致平板形状的原料气体供给构造体(结构体)60。原料气体供给构造体60外形形成为俯视时至少比玻璃基板G的直径大的圆形。通过该原料气体供给构造体60,处理容器30内被划分为径向线缝隙天线42侧的等离子体生成区域R1和载置台31侧的原料气体离解区域R2。此外,原料气体供给构造体60例如可以用氧化铝。在该情况下,由于氧化铝是陶瓷,因此与铝等的金属材料相比具有高耐热性、高强度。另外,由于不捕集(trap)在等离子体生成区域R1生成的等离子体,所以能够对玻璃基板照射充足的离子。而且,通过对玻璃基板上的膜照射充足的离子,能够生成致密的膜。另外,原料气体供给构造体60对干式洗净中所使用的三氟化氮气体具有耐性。进而,为了提高对三氟化氮气的耐性,在原料气体供给构造体60的氧化铝的表面可以覆盖三氧化二钇、尖晶石或氮化铝。Between the mounting table 31 and the radial line slot antenna 42 in the
如图4所示,原料气体供给构造体60由在同一平面上大致格子状地配置的连续的原料气体供给管61构成。原料气体供给管61形成为从轴向看时纵截面为方形。在原料气体供给管61彼此的间隙形成有多个开口部62。在原料气体供给构造体60的上侧的等离子体生成区域R1中生成的等离子体和自由基能够通过该开口部62进入载置台31侧的原料气体离解区域R2。As shown in FIG. 4 , the raw material
如图3所示,在原料气体供给构造体60的原料气体供给管61的下表面形成有多个原料气体供给口63。这些原料气体供给口63在原料气体供给构造体60面内均匀地配置。原料气体供给管61与气体管65连接,该气体管65与设置于处理容器30的外部的原料气体供给源64连通。原料气体供给源64中例如能够分别封入作为硅烷类气体的硅烷(SiH4)气体和氢气(H2)气体作为原料气体。气体管65设置有阀66、质量流量控制器67。利用该构成,从原料气体供给源64通过气体管65对原料气体供给管61分别导入规定流量的硅烷气体和氢气。而且,这些硅烷气体和氢气从各原料气体供给口63向下方的原料气体离解区域R2供给。As shown in FIG. 3 , a plurality of raw material
在覆盖等离子体生成区域R1的外周面的处理容器30的内周面,形成有供给成为等离子体的原料的等离子体激发用气体的第一等离子体激发用气体供给口70。第一等离子体激发用气体供给口70例如沿处理容器30的内周面形成于多个位置。第一等离子体激发用气体供给口70与第一等离子体激发用气体供给管72连接,该第一等离子体激发用气体供给管72例如贯通处理容器30的侧壁部,与设置于处理容器30的外部的第一等离子体激发用气体供给源71连通。在第一等离子体激发用气体供给管72设置有阀73、质量流量控制器74。利用该构成,能够从侧方对处理容器30内的等离子体生成区域R1内供给规定流量的等离子体激发用气体。在本实施方式中,在第一等离子体激发用气体供给源71中例如封入有氩气(Ar)气体作为等离子体激发用气体。On the inner peripheral surface of the
在原料气体供给构造体60的上表面叠层配置有例如具有与该原料气体供给构造体60同样的构成的大致平板形状的等离子体激发用气体供给构造体80。等离子体激发用气体供给构造体80由如图5所示格子状地配置的第二等离子体激发用气体供给管81构成。此外,等离子体激发用气体供给构造体80例如可以使用氧化铝。在该情况下,也如上所述,由于氧化铝是陶瓷,因此与铝等金属材料相比具有高耐热性、高强度。另外,由于不捕集(trap)在等离子体生成区域R1中生成的等离子体,所以能够对玻璃基板照射充足的离子。而且,通过对玻璃基板上的膜照射充足的离子,能够生成致密的膜。另外,等离子体激发用气体供给构造体80对干式洗净中所使用的三氟化氮气具有耐性。进而,为了提高对三氟化氮气的耐性,可以在等离子体激发用气体供给构造体80的氧化铝的表面覆盖三氧化二钇或尖晶石。On the upper surface of the source
如图3所述,在第二等离子体激发用气体供给管81的上表面形成有多个第二等离子体激发用气体供给口82。这些多个第二等离子体激发用气体供给口82在等离子体激发用气体供给构造体80面内均匀地配置。由此,能够对等离子体生成区域R1从下侧向上方供给等离子体激发用气体。此外,在本实施方式中,该等离子体激发用气体例如为氩气。另外,除了氩气之外,也能够从等离子体激发用气体供给构造体80对等离子体生成区域R1供给作为原料气体的氮气(N2)气体。As shown in FIG. 3 , a plurality of second plasma excitation gas supply ports 82 are formed on the upper surface of the second plasma excitation
在格子状的第二等离子体激发用气体供给管81彼此的间隙形成有开口部83,在等离子体生成区域R1中生成的等离子体和自由基能够通过等离子体激发用气体供给构造体80和原料气体供给构造体60进入下方的原料气体离解区域R2。
第二等离子体激发用气体供给管81与气体管85连接,该气体管85与设置在处理容器30的外部的第二等离子体激发用气体供给源84连通。在第二等离子体激发用气体供给源84中例如分别封入有作为等离子体激发用气体的氩气和作为原料气体的氮气。在气体管85设置有阀86、质量流量控制器87。利用该构成,能够从第二等离子体激发用气体供给口82对等离子体生成区域R1分别供给规定流量的氮气和氩气。The second plasma excitation
此外,上述的原料气体和等离子体激发用气体构成本发明的处理气体。另外,原料气体供给构造体60和等离子体激发用气体供给构造体80构成本发明的处理气体供给部。In addition, the above-mentioned source gas and gas for plasma excitation constitute the processing gas of the present invention. In addition, the source
在处理容器30的底部的夹着载置台31的两侧,设置有用于对处理容器30内的氛围进行排气的排气口90。排气口90与排气管92连接,该排气管92连通涡轮分子泵等排气装置91。利用来自该排气口90的排气,能够将处理容器30内维持在规定的压力,例如后文所述20Pa~60Pa。Exhaust ports 90 for exhausting the atmosphere in the
在以上的等离子体成膜装置16设置有控制部100。控制部100例如为计算机,具有程序收纳部(未图示)。在程序收纳部收纳有控制等离子体成膜装置16中的对玻璃基板G上的氮化硅膜23的成膜处理的程序。另外,在程序收纳部还收纳有控制上述的原料气体的供给、等离子体激发用气体的供给、微波的辐射、驱动系统的动作等,用于执行等离子体成膜装置16中的成膜处理的程序。此外,上述程序是例如计算机可读取的硬盘(HD)、软盘(FD)、光盘(CD)、磁光盘(MO)、存储卡等计算机可读取的存储介质中所存储的程序,也可以是从该存储介质安装于控制部100的程序。The above plasma
接着,说明如以上方式构成的等离子体成膜装置16中进行的氮化硅膜23的成膜方法。Next, a method of forming the silicon nitride film 23 performed in the plasma
首先,例如等离子体成膜装置16启动时,从第一等离子体激发用气体供给口70供给的氩气的供给流量和从第二等离子体激发用气体供给口82供给的氩气的供给流量,被调整为对等离子体生成区域R1内供给的氩气的浓度均匀。该供给流量调整中,例如使排气装置91工作,在处理容器30内形成与实际的成膜处理时相同的气流的状态下,从各等离子体激发用气体供给口70、82供给设定为适当的供给流量的氩气。然后,以该供给流量设定,在实际试验用的基板上实施成膜,检查该成膜在基板面内是否均匀地进行。等离子体生成区域R1内的氩气的浓度均匀的情况下,均匀地进行基板面内的成膜,因此检查的结果是,在基板面内没有均匀地进行成膜的情况下,改变各氩气的供给流量的设定,再次对试验用的基板实施成膜。重复以上步骤,以在基板面内均匀进行成膜并且等离子体生成区域R1内的氩气的浓度变得均匀的方式,设定来自各等离子体激发用气体供给口70、82的供给流量。First, for example, when the plasma
如上所述,在设定各等离子体激发用气体供给口70、82的供给流量后,开始等离子体成膜装置16中的玻璃基板G的成膜处理。首先,将玻璃基板G搬入处理容器30内,吸附保持于载置台31上。此时,玻璃基板G的温度维持为100℃以下,例如50℃~100℃。接着,利用排气装置91开始处理容器30内的排气,处理容器30内的压力被减压为规定的压力,例如20Pa~60Pa,维持该状态。此外,玻璃基板G的温度不限于100℃以下,只要是有机EL器件A不受到损伤的温度即可,通过该有机EL器件A的材质等而决定。As described above, after the supply flow rates of the plasma excitation
此处,发明者们深刻研究的结果是可知处理容器30内的压力比20Pa低时,有可能不能够在玻璃基板G上适当地成膜氮化硅膜23。另外,可知当处理容器30内的压力超过60Pa时,气相中的气体分子间的反应增加,有可能产生颗粒(particle)。因此,如上所述,将处理容器30内的压力维持在20Pa~60Pa。Here, as a result of intensive studies by the inventors, it has been found that when the pressure in the
处理容器30内被减压时,对等离子体生成区域R1内从侧方的第一等离子体激发用气体供给口70供给氩气,并且从下方的第二等离子体激发用气体供给口82供给氮气和氩气。此时,等离子体生成区域R1内的氩气的浓度在等离子体生成区域R1内维持为均匀。另外,氮气以例如21sccm的流量供给。从径向线缝隙天线42向正下方的等离子体生成区域R1以例如2.45GHz的频率辐射2.5kW~3.0kW的功率的微波。通过该微波的辐射,氩气在等离子体生成区域R1内被等离子体化,氮气自由基化(或离子化)。此外,此时,在下方行进的微波被所生成的等离子体吸收。该结果是,在等离子体生成区域R1内生成高密度的等离子体。When the pressure in the
在等离子体生成区域R1内生成的等离子体和自由基,通过等离子体激发用气体供给构造体80和原料气体供给构造体60进入下方的原料气体离解区域R2内。对原料气体离解区域R2从原料气体供给构造体60的各原料气体供给口63供给硅烷气体和氢气。此时,例如以18sccm的流量供给硅烷气体,例如以64sccm的流量供给氢气。此外,该氢气的供给流量如后文所述根据氮化硅膜23的膜特性设定。硅烷气体和氢气分别被从上方进入的等离子体离解。而且,利用这些自由基和从等离子体生成区域R1供给的氮气的自由基,在玻璃基板G上堆积氮化硅膜23。Plasma and radicals generated in the plasma generation region R1 pass through the plasma excitation
然后,进行氮化硅膜23的成膜,在玻璃基板G上形成规定厚度的氮化硅膜23时,微波的辐射、处理气体的供给停止。然后,从处理容器30搬出玻璃基板G,一系列的等离子体成膜处理结束。Then, the silicon nitride film 23 is formed, and when the silicon nitride film 23 of a predetermined thickness is formed on the glass substrate G, irradiation of microwaves and supply of processing gas are stopped. Then, the glass substrate G is unloaded from the
此处,发明者们深刻研究的结果是可知当通过上述的等离子体成膜处理而在玻璃基板G上成膜氮化硅膜23的情况下,使用包含硅烷气体、氮气和氢气的处理气体时,氮化硅膜23的膜特性的控制性提高。Here, as a result of intensive studies by the inventors, it has been found that when the silicon nitride film 23 is formed on the glass substrate G by the above-mentioned plasma film formation process, when a processing gas containing silane gas, nitrogen gas, and hydrogen gas is used, Therefore, the controllability of the film characteristics of the silicon nitride film 23 is improved.
图6表示在使用上述实施方式的等离子体成膜方法使处理气体中的氢气的供给流量变化的情况下,对于氢氟酸的氮化硅膜23的湿法蚀刻速率变化的样子。此外,此时硅烷气体的供给流量是18sccm,氮气的供给流量是21sccm。另外,在等离子体成膜处理中,玻璃基板G的温度是100℃。6 shows how the wet etching rate of the silicon nitride film 23 with hydrofluoric acid changes when the supply flow rate of hydrogen gas in the process gas is changed using the plasma film forming method of the above-mentioned embodiment. In addition, at this time, the supply flow rate of the silane gas was 18 sccm, and the supply flow rate of the nitrogen gas was 21 sccm. In addition, in the plasma film-forming process, the temperature of the glass substrate G was 100 degreeC.
参照图6可知,通过在包含硅烷气体和氮气的处理气体中进一步添加氢气,氮化硅膜23的湿法蚀刻速率降低。因而,通过处理气体中的氢气,氮化硅膜23的致密度提高,氮化硅膜23的膜质(耐药品性、致密性)提高。另外,氮化硅膜23的阶梯覆盖也提高。而且,可知氮化硅膜23的折射率例如提高至2.0±0.1。因而,通过控制氢气的供给流量,能够控制氮化硅膜23的湿法蚀刻速率,能够控制氮化硅膜23的膜特性。Referring to FIG. 6, it can be seen that the wet etching rate of the silicon nitride film 23 is reduced by further adding hydrogen gas to the process gas containing silane gas and nitrogen gas. Therefore, the density of the silicon nitride film 23 is improved by the hydrogen gas in the process gas, and the film quality (chemical resistance, density) of the silicon nitride film 23 is improved. In addition, the step coverage of the silicon nitride film 23 is also improved. Furthermore, it can be seen that the refractive index of the silicon nitride film 23 is increased to, for example, 2.0±0.1. Therefore, by controlling the supply flow rate of the hydrogen gas, the wet etching rate of the silicon nitride film 23 can be controlled, and the film characteristics of the silicon nitride film 23 can be controlled.
图7表示在使用上述实施方式的等离子体成膜方法使处理气体中的氢气的供给流量变动的情况下,氮化硅膜23的膜应力变化的样子。此外,此时硅烷气体的供给流量是18sccm,氮气的供给流量是21sccm。另外,等离子体成膜处理中,玻璃基板G的温度是100℃。FIG. 7 shows how the film stress of the silicon nitride film 23 changes when the supply flow rate of the hydrogen gas in the processing gas is changed using the plasma film forming method of the above-mentioned embodiment. In addition, at this time, the supply flow rate of the silane gas was 18 sccm, and the supply flow rate of the nitrogen gas was 21 sccm. In addition, in the plasma film-forming process, the temperature of the glass substrate G was 100 degreeC.
参照图7可知,通过在包含硅烷气体和氮气的处理气体中进一步添加氢气,氮化硅膜23的膜应力向负侧(压缩侧)变化。因而,通过控制氢气的供给流量,能够控制氮化硅膜23的膜应力。Referring to FIG. 7 , it can be seen that the film stress of the silicon nitride film 23 changes to the negative side (compression side) by further adding hydrogen gas to the process gas containing silane gas and nitrogen gas. Therefore, by controlling the supply flow rate of the hydrogen gas, the film stress of the silicon nitride film 23 can be controlled.
如上所述,根据本实施方式,通过使处理气体中的氢气的流量变化,能够使氮化硅膜23的膜特性变化。因而,能够适当地成膜氮化硅膜23作为有机EL器件A中的密封膜,因此能够适当地制造该有机EL器件A。此外,在用于密封膜的情况下,密封膜的应力的大小的绝对值小较好。As described above, according to the present embodiment, the film properties of the silicon nitride film 23 can be changed by changing the flow rate of the hydrogen gas in the processing gas. Therefore, since the silicon nitride film 23 can be suitably formed as a sealing film in the organic EL device A, the organic EL device A can be suitably manufactured. In addition, when used for a sealing film, it is preferable that the absolute value of the magnitude of the stress of the sealing film be small.
另外,本实施方式的等离子体成膜方法中,使用从径向线缝隙天线42辐射的微波生成等离子体。此处,发明者们研究讨论的结果可知,在处理气体包含硅烷气体、氮气和氢气的情况下,例如如图8所示微波的功率与氮化硅膜23的膜应力具有大致的比例关系。因而,根据本实施方式,即使通过控制微波的功率,也能够控制氮化硅膜23的膜应力。通过使氢气的流量最优化,使微波功率最优化,能够获得精密地具备所期望的膜特性的膜。具体而言,在决定微波的功率后,使氢气的流量最优化即可。In addition, in the plasma film forming method of the present embodiment, plasma is generated using microwaves radiated from the radial line slot antenna 42 . Here, as a result of research and discussion by the inventors, it has been found that when the processing gas includes silane gas, nitrogen gas, and hydrogen gas, for example, as shown in FIG. Therefore, according to the present embodiment, even by controlling the power of the microwave, the film stress of the silicon nitride film 23 can be controlled. By optimizing the flow rate of hydrogen gas and optimizing the microwave power, it is possible to obtain a film precisely having desired film properties. Specifically, after determining the power of the microwave, it is only necessary to optimize the flow rate of the hydrogen gas.
但是,现有技术中,在玻璃基板上形成氮化硅膜时,也可以使用上述包含硅烷气体和氨气(NH3)气体的处理气体进行。但是,玻璃基板的温度在100℃以下的低温环境下,在氮化硅膜的成膜前所供给的氨气腐蚀形成在该氮化硅膜的基底的金属电极、例如铝电极。另外,由于在低温环境下成膜,因此在氮化硅膜中未反应的氨被捕集(trap)。氮化硅膜中氨被捕集时,在进行了环境试验等后,该氨从氮化硅膜脱气,有可能使有机EL器件恶化。However, conventionally, when forming a silicon nitride film on a glass substrate, it is also possible to use the above-mentioned processing gas containing silane gas and ammonia gas (NH 3 ) gas. However, in a low-temperature environment where the temperature of the glass substrate is 100° C. or lower, the ammonia gas supplied before forming the silicon nitride film corrodes metal electrodes, such as aluminum electrodes, formed on the base of the silicon nitride film. In addition, since the film is formed in a low-temperature environment, unreacted ammonia is trapped in the silicon nitride film. When ammonia is trapped in the silicon nitride film, the ammonia may be degassed from the silicon nitride film after an environmental test or the like, which may deteriorate the organic EL device.
对此,在本实施方式中,替代氨气使用氮气。因而,能够防止上述基底的金属电极的腐食、有机EL器件的劣化。In contrast, in this embodiment, nitrogen gas is used instead of ammonia gas. Therefore, corrosion of the metal electrode of the above-mentioned base and deterioration of the organic EL device can be prevented.
而且,如本实施方式,使用氮气替代氨气,进而在处理气体中添加氢气的情况下,如图9所示能够提高成膜的氮化硅膜的膜特性。即,能够提高台阶部中的氮化硅膜的膜质(致密度)。此外,图9的上段表示在使用包含硅烷气体和氨气体的处理气体的情况下的氮化硅膜的样子,下层表示在使用包含硅烷气体、氮气和氢气的处理气体的情况下的氮化硅膜的样子。另外,图9的左列表示成膜之后的氮化硅膜的样子,右列表示利用缓冲氢氟酸(BHF)进行湿法蚀刻120秒后的氮化硅膜的样子。Furthermore, when nitrogen gas is used instead of ammonia gas as in the present embodiment, and hydrogen gas is added to the process gas, the film characteristics of the formed silicon nitride film can be improved as shown in FIG. 9 . That is, the film quality (density) of the silicon nitride film in the stepped portion can be improved. In addition, the upper stage of FIG. 9 shows the appearance of the silicon nitride film in the case of using a processing gas containing silane gas and ammonia gas, and the lower layer shows the state of the silicon nitride film in the case of using a processing gas containing silane gas, nitrogen gas, and hydrogen gas. The appearance of the film. In addition, the left column of FIG. 9 shows the state of the silicon nitride film after film formation, and the right column shows the state of the silicon nitride film after wet etching with buffered hydrofluoric acid (BHF) for 120 seconds.
在以上的实施方式的等离子体成膜装置16中,从原料气体供给构造体60供给硅烷气体和氢气,从等离子体激发用气体供给构造体80供给氮气和氩气,但是氢气也可以从等离子体激发用气体供给构造体80供给。或者,氢气也可以从原料气体供给构造体60和等离子体激发用气体供给构造体80双方供给。在任何情况下,如上所述,通过控制氢气的供给流量,都能够控制氮化硅膜23的膜特性。In the plasma
此处,发明者们研究讨论的结果可知,氮化硅膜23的膜质、特别是膜中的Si-N结合密度最多(大)的致密的膜质的情况下,该氮化硅膜23的折射率为约2.0。另外,从氮化硅膜23的屏障性(密封性)的观点出发可知,优选折射率为2.0±0.1。Here, as a result of research and discussion by the inventors, it is known that the film quality of the silicon nitride film 23, especially in the case of a dense film quality with the highest (large) Si-N bonding density in the film, the silicon nitride film 23 The refractive index is about 2.0. In addition, from the viewpoint of the barrier property (sealing property) of the silicon nitride film 23, it can be seen that the refractive index is preferably 2.0±0.1.
因而,为了使上述的折射率为2.0±0.1,优选在等离子体成膜装置16中,使氮气的供给流量相对于硅烷气体的供给流量的比为1~1.5。对此,通常(现有)的等离子体CVD装置中,利用硅烷气体和氮气使氮化硅膜成膜的情况下,氮气的供给流量相对于硅烷气体的供给流量的比通常为10~50。在通常的等离子体CVD装置中,由于如上述需要大量氮,因此为了提高成膜速度而提高硅烷气体流量的同时,需要与上述增加平衡的氮气流量,排气系统中产生界限。因此,在成膜速度大的条件下,作为氮化硅膜的折射率维持上述折射率2.0±0.1变得困难。因而,本实施方式的等离子体成膜装置16与通常的等离子体CVD装置相比起到非常优良的效果。Therefore, in order to make the above-mentioned refractive index 2.0±0.1, it is preferable to set the ratio of the supply flow rate of nitrogen gas to the supply flow rate of silane gas in the plasma
另外,通过控制氮气的供给流量相对于硅烷气体的供给流量的比,在折射率为2.0±0.1的范围内,能够控制氮化硅膜23的膜应力。具体而言,能够使该膜应力接近零。进而,该膜应力也能够调整来自径向线缝隙天线42的微波的功率、氢气的供给流量进行控制。In addition, by controlling the ratio of the supply flow rate of nitrogen gas to the supply flow rate of silane gas, the film stress of the silicon nitride film 23 can be controlled within the range of the refractive index of 2.0±0.1. Specifically, this film stress can be brought close to zero. Furthermore, this film stress can also be controlled by adjusting the power of the microwave from the radial line slot antenna 42 and the supply flow rate of the hydrogen gas.
此外,如上所述,与通常的等离子体CVD装置相比,能够使等离子体成膜装置16中的氮气的供给流量为少量,是因为容易使供给的氮气活性化、能够提高离解度。即,从等离子体激发用气体供给构造体80供给氮气时,位于非常接近等离子体生成的电介质窗41的位置,由此与上述等离子体激发用气体供给构造体80的第二等离子体激发用气体供给口82相比以比较高压的状态放出到处理容器30内的等离子体生成区域R1的氮气容易离子化大量地生成活性的氮自由基等。而且,如上所述,为了提高氮气的离解度,等离子体激发用气体供给构造体80配置于距径向线缝隙天线42(严格来说为电介质窗41)30mm以内的位置。发明者们进行调查时,在这种位置配置等离子体激发用气体供给构造体80的情况下,等离子体激发用气体供给构造体80自身配置于等离子体生成区域R1。因此,能够提高氮气的离解度。In addition, as described above, the nitrogen gas supply flow rate in the plasma
以上的实施方式的等离子体成膜装置16中,原料气体的供给也可以在等离子体的生成同时进行或等离子体生成前进行。即,首先,从原料气体供给构造体60供给硅烷气体和氢气(或仅硅烷气体)。在该硅烷气体和氢气的供给的同时或气体供给后,从等离子体激发用气体供给构造体80供给氩气和氮气(和氢气),从径向线缝隙天线42辐射微波。而且,在等离子体生成区域R1生成等离子体。In the plasma
此处,在形成氮化硅膜23的玻璃基板G上形成含有金属元素的负极层22。例如包含负极层22的有机EL器件A暴露于等离子体中时,负极层22从发光层21剥离,另外有时有机EL元件A受到损伤。对此,在本实施方式中,由于在硅烷气体和氢气的供给的同时或供给后生成等离子体,因此在该等离子体的生成的同时开始氮化硅膜23的成膜。因而,该负极层22的表面被保护,有机EL器件A不暴露于等离子体中,能够适当地制造有机EL器件A。Here, the negative electrode layer 22 containing a metal element is formed on the glass substrate G on which the silicon nitride film 23 is formed. For example, when the organic EL device A including the negative electrode layer 22 is exposed to plasma, the negative electrode layer 22 is peeled off from the light emitting layer 21 and the organic EL element A may be damaged. On the other hand, in this embodiment, since plasma is generated simultaneously with or after the supply of the silane gas and the hydrogen gas, the formation of the silicon nitride film 23 starts simultaneously with the generation of the plasma. Therefore, the surface of the negative electrode layer 22 is protected, the organic EL device A is not exposed to plasma, and the organic EL device A can be manufactured appropriately.
在以上的实施方式中,原料气体供给口63形成为从原料气体供给构造体60朝向下方,第二等离子体激发用气体供给口82形成为从等离子体激发用气体供给构造体80朝向上方,但是,这些原料气体供给口63和第二等离子体激发用气体供给口82也可以为水平方向或铅直下方以外的倾斜方向,更优选形成为从水平方向朝向倾斜45度的方向。In the above embodiments, the source
在该情况下,如图10所示,在原料气体供给构造体60形成有相互平行地延伸的多个原料气体供给管61。原料气体供给管61在原料气体供给构造体60中等间隔地配置。在原料气体供给管61的侧面两侧如图11所示形成有在水平方向上供给原料气体的原料气体供给口63。原料气体供给口63如图10所示等间隔地配置于原料气体供给管61上。另外,相邻的原料气体供给口63形成为朝向相互水平方向的相反方向。此外,等离子体激发用气体供给构造体80也可以具有与上記原料气体供给构造体60相同的构成。而且,以原料气体供给构造体60的原料气体供给管61和等离子体激发用气体供给构造体80的第二等离子体激发用气体供给管81呈大致格子状的方式,配置有原料气体供给构造体60和等离子体激发用气体供给构造体80。In this case, as shown in FIG. 10 , a plurality of raw material
从原料气体供给口63供给的原料气体主要作为氮化硅物堆积于原料气体供给口63,因此堆积的氮化硅物在维护时通过干式洗净而被除去。在该情况下,在原料气体供给口63朝向下方向形成的情况下,等离子难以进入原料气体供给口63内,因此有时不能将堆积于该原料气体供给口63的氮化硅物直至内部地完全除去。这点,如本实施方式,原料气体供给口63朝向水平方向的情况下,干式洗净时生成的等离子体进入至该原料气体供给口63的内部。因此,至原料气体供给口63的内部能够将氮化硅完全除去。因而,在维护后,能够从原料气体供给口63适当地供给原料气体,能够更加适当地使氮化硅膜23成膜。The raw material gas supplied from the raw material
另外,以原料气体供给构造体60的原料气体供给管61和等离子体激发用气体供给构造体80的第二等离子体激发用气体供给管81呈大致格子状的方式,配置有原料气体供给构造体60和等离子体激发用气体供给构造体80。因此,与使各原料气体供给构造体60和等离子体激发用气体供给构造体80自身呈大致格子状相比,能够容易地制作原料气体供给构造体60和等离子体激发用气体供给构造体80。另外,在等离子体生成区域R1中生成的等离子体也能够容易通过。In addition, the raw material gas supply structure is arranged so that the raw material
此外,如图12所示,原料气体供给口63也可以形成为其内径从内侧朝向外侧去呈锥形扩大。在该情况下,在干式洗净时,等离子体更加容易进入原料气体供给口63的内部。因而,能够更加可靠地除去堆积于原料气体供给口63的氮化硅物。此外,对于第二等离子体激发用气体供给口82,也同样可以形成为其内径从内侧朝向外侧去呈锥形扩大。In addition, as shown in FIG. 12 , the raw material
在以上的实施方式中,说明了作为硅烷类气体使用了硅烷气体的情况,但是硅烷类气体不限定于硅烷气体。发明者研究讨论后可知,在例如使用乙硅烷(Si2H6)气体的情况下,与使用硅烷气体的情况相比,氮化硅膜23的阶梯覆盖进一步提高。In the above embodiment, the case where the silane gas is used as the silane-based gas has been described, but the silane-based gas is not limited to the silane gas. After research and discussion by the inventors, it has been found that, for example, when disilane (Si 2 H 6 ) gas is used, the step coverage of the silicon nitride film 23 is further improved compared to the case where silane gas is used.
另外,在以上的实施方式的等离子体成膜装置16中,利用来自径向线缝隙天线42的微波生成等离子体,但该等离子体的生成不限于本实施方式。作为等离子体,也可以使用例如CCP(电容耦合等离子体)、ICP(电感耦合等离子体)、ECRP(电子回旋共振等离子体)、HWP(helicon wave plasma,螺旋波激发等离子体)等。在任一情况下,氮化硅膜23的成膜都在玻璃基板G的温度为100℃以下的低温度环境下进行,因此优选使用高密度的等离子体。In addition, in the plasma
进而,在以上的实施方式中,说明了在玻璃基板G上成膜氮化硅膜23作为密封膜,制造有机EL器件A的情况,但是本发明也能够适用于制造其它的有机电子器件的情况。例如作为有机电子器件制造有机晶体管、有机太阳能电池、有机FET(Field Effect Transistor,场效应晶体管)等的情况下,也能够使用本发明的氮化硅膜的成膜方法。并且,本发明除了这种有机电子器件的制造以外,在基板的温度为100℃以下的低温环境下,也能够广泛用于在基板上成膜氮化硅膜的情况。Furthermore, in the above embodiments, the case where the organic EL device A is manufactured by forming the silicon nitride film 23 as the sealing film on the glass substrate G has been described, but the present invention can also be applied to the case of manufacturing other organic electronic devices. . For example, when an organic transistor, an organic solar cell, an organic FET (Field Effect Transistor, field effect transistor) etc. are manufactured as an organic electronic device, the method for forming a silicon nitride film of the present invention can also be used. Furthermore, in addition to the production of such organic electronic devices, the present invention can also be widely used in the case of forming a silicon nitride film on a substrate in a low-temperature environment where the temperature of the substrate is 100° C. or lower.
以上,参照附图对本发明的适当的实施方式进行了说明,但是本发明不限定于该例。如果是本领域的技术人员,在专利权利要求的范围内所记载的思想的范畴内,当然能够想到各种的变形例和修正例,对于那些当然也属于本发明的技术范围。As mentioned above, although the suitable embodiment of this invention was described referring drawings, this invention is not limited to this example. Those skilled in the art can naturally conceive of various modifications and amendments within the scope of the ideas described in the claims, and those of course also belong to the technical scope of the present invention.
符号说明Symbol Description
1 基板处理系统1 Substrate processing system
16 等离子体成膜装置16 Plasma film forming device
20 正极层20 positive layer
21 发光层21 luminous layer
22 负极层22 Negative electrode layer
23 氮化硅膜23 Silicon nitride film
30 处理容器30 disposal containers
31 载置台31 Carrying table
42 径向线缝隙天线42 Radial Line Slot Antenna
60 原料气体供给构造体60 raw gas supply structure
62 开口部62 opening
63 原料气体供给口63 Raw material gas supply port
70 第1等离子体激发用气体供给口70 1st gas supply port for plasma excitation
80 等离子体激发用气体供给构造体80 Plasma excitation gas supply structure
82 第2等离子体激发用气体供给口82 Second gas supply port for plasma excitation
83 开口部83 opening
90 排气口90 Exhaust port
100 控制部100 Control Department
A 有机EL器件A organic EL device
G 玻璃基板G glass substrate
R1 等离子体生成区域R1 Plasma generation area
R2 原料气体离解区域R2 Raw material gas dissociation area
Claims (27)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011038342 | 2011-02-24 | ||
JP2011-038342 | 2011-02-24 | ||
JP2011-233620 | 2011-10-25 | ||
JP2011233620A JP5941653B2 (en) | 2011-02-24 | 2011-10-25 | Silicon nitride film forming method and silicon nitride film forming apparatus |
PCT/JP2012/052608 WO2012114856A1 (en) | 2011-02-24 | 2012-02-06 | Silicon nitride film deposition method, organic electronic device manufacturing method, and silicon nitride film deposition device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103403847A true CN103403847A (en) | 2013-11-20 |
Family
ID=46720642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012800105318A Pending CN103403847A (en) | 2011-02-24 | 2012-02-06 | Silicon nitride film deposition method, organic electronic device manufacturing method, and silicon nitride film deposition device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5941653B2 (en) |
KR (1) | KR101881470B1 (en) |
CN (1) | CN103403847A (en) |
TW (1) | TWI533378B (en) |
WO (1) | WO2012114856A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107275507A (en) * | 2016-03-31 | 2017-10-20 | 株式会社日本有机雷特显示器 | Organic EL display panel and preparation method thereof |
CN107507774A (en) * | 2016-06-14 | 2017-12-22 | 东京毅力科创株式会社 | The processing method of silicon nitride film and the forming method of silicon nitride film |
CN109468613A (en) * | 2017-09-07 | 2019-03-15 | 东京毅力科创株式会社 | Film formation device and film build method |
CN109952632A (en) * | 2016-11-11 | 2019-06-28 | 朗姆研究公司 | Reduce method of the wet etch rate of SiN film without damaging the substrate that underlies |
CN110408909A (en) * | 2018-04-26 | 2019-11-05 | Spts科技有限公司 | Methods of depositing SiN films |
US11832533B2 (en) | 2018-08-24 | 2023-11-28 | Lam Research Corporation | Conformal damage-free encapsulation of chalcogenide materials |
US12157945B2 (en) | 2019-08-06 | 2024-12-03 | Lam Research Corporation | Thermal atomic layer deposition of silicon-containing films |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014060378A (en) * | 2012-08-23 | 2014-04-03 | Tokyo Electron Ltd | Silicon nitride film deposition method, organic electronic device manufacturing method and silicon nitride film deposition device |
KR102418092B1 (en) | 2016-03-11 | 2022-07-06 | 다이요 닛산 가부시키가이샤 | Silicon nitride film manufacturing method and silicon nitride film |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1693537A (en) * | 2004-05-03 | 2005-11-09 | 应用材料公司 | Very Low Temperature Chemical Vapor Deposition Process with Independent Variable Conformity, Stress and Chemical Vapor Deposition Layer Composition |
US20060214270A1 (en) * | 2005-03-28 | 2006-09-28 | Eudyna Devices Inc. | Semiconductor device and fabrication method therefor, capacitive element and fabrication method therefor, and MIS type semiconductor device and fabrication method therefor |
US20090075098A1 (en) * | 2007-09-19 | 2009-03-19 | Jiro Tsukahara | Environment-sensitive device, and method for sealing environment- sensitive element |
CN101499411A (en) * | 2008-02-01 | 2009-08-05 | 东京毅力科创株式会社 | Plasma processing apparatus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003288983A (en) | 2002-01-24 | 2003-10-10 | Semiconductor Energy Lab Co Ltd | Light emitting device, method for preparing and manufacturing the device |
US7214600B2 (en) * | 2004-06-25 | 2007-05-08 | Applied Materials, Inc. | Method to improve transmittance of an encapsulating film |
JP4664119B2 (en) * | 2005-05-17 | 2011-04-06 | 東京エレクトロン株式会社 | Plasma processing equipment |
JP2009246130A (en) * | 2008-03-31 | 2009-10-22 | Tokyo Electron Ltd | Film forming device, film forming method, and method of manufacturing semiconductor integrated circuit device |
JP2010219112A (en) | 2009-03-13 | 2010-09-30 | Tokyo Electron Ltd | METHOD OF DEPOSITING AMORPHOUS HYDROCARBON NITRIDE (a-CN:Hx) FILM, ORGANIC EL DEVICE, AND PROCESS FOR PRODUCING THE SAME |
-
2011
- 2011-10-25 JP JP2011233620A patent/JP5941653B2/en active Active
-
2012
- 2012-02-06 KR KR1020137022207A patent/KR101881470B1/en active Active
- 2012-02-06 CN CN2012800105318A patent/CN103403847A/en active Pending
- 2012-02-06 WO PCT/JP2012/052608 patent/WO2012114856A1/en active Application Filing
- 2012-02-23 TW TW101105934A patent/TWI533378B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1693537A (en) * | 2004-05-03 | 2005-11-09 | 应用材料公司 | Very Low Temperature Chemical Vapor Deposition Process with Independent Variable Conformity, Stress and Chemical Vapor Deposition Layer Composition |
US20060214270A1 (en) * | 2005-03-28 | 2006-09-28 | Eudyna Devices Inc. | Semiconductor device and fabrication method therefor, capacitive element and fabrication method therefor, and MIS type semiconductor device and fabrication method therefor |
US20090075098A1 (en) * | 2007-09-19 | 2009-03-19 | Jiro Tsukahara | Environment-sensitive device, and method for sealing environment- sensitive element |
CN101499411A (en) * | 2008-02-01 | 2009-08-05 | 东京毅力科创株式会社 | Plasma processing apparatus |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107275507A (en) * | 2016-03-31 | 2017-10-20 | 株式会社日本有机雷特显示器 | Organic EL display panel and preparation method thereof |
CN107507774A (en) * | 2016-06-14 | 2017-12-22 | 东京毅力科创株式会社 | The processing method of silicon nitride film and the forming method of silicon nitride film |
CN107507774B (en) * | 2016-06-14 | 2021-02-02 | 东京毅力科创株式会社 | Method for processing silicon nitride film and method for forming silicon nitride film |
CN109952632A (en) * | 2016-11-11 | 2019-06-28 | 朗姆研究公司 | Reduce method of the wet etch rate of SiN film without damaging the substrate that underlies |
CN109952632B (en) * | 2016-11-11 | 2024-02-13 | 朗姆研究公司 | Method for reducing wet etching rate of SiN film without damaging underlying substrate |
CN109468613A (en) * | 2017-09-07 | 2019-03-15 | 东京毅力科创株式会社 | Film formation device and film build method |
CN110408909A (en) * | 2018-04-26 | 2019-11-05 | Spts科技有限公司 | Methods of depositing SiN films |
US11832533B2 (en) | 2018-08-24 | 2023-11-28 | Lam Research Corporation | Conformal damage-free encapsulation of chalcogenide materials |
US12157945B2 (en) | 2019-08-06 | 2024-12-03 | Lam Research Corporation | Thermal atomic layer deposition of silicon-containing films |
Also Published As
Publication number | Publication date |
---|---|
KR20140006907A (en) | 2014-01-16 |
WO2012114856A1 (en) | 2012-08-30 |
JP2012188735A (en) | 2012-10-04 |
KR101881470B1 (en) | 2018-07-24 |
TW201248729A (en) | 2012-12-01 |
JP5941653B2 (en) | 2016-06-29 |
TWI533378B (en) | 2016-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150194637A1 (en) | Method for forming silicon nitride film, and apparatus for forming silicon nitride film | |
CN103403847A (en) | Silicon nitride film deposition method, organic electronic device manufacturing method, and silicon nitride film deposition device | |
TWI674690B (en) | Method for forming sealing structure, manufacturing device for sealing structure, manufacturing method of organic EL element structure, and manufacturing apparatus therefor | |
JP5410978B2 (en) | Organic electronic device manufacturing method and storage medium storing control program | |
JP4853857B2 (en) | Substrate processing method, computer-readable recording medium, and substrate processing apparatus | |
KR101972148B1 (en) | Organic device manufacturing method and organic device manufacturing apparatus | |
US9926624B2 (en) | Film forming method and film forming apparatus | |
WO2007145255A1 (en) | Light-emitting device and method for manufacturing light-emitting device | |
WO2020077980A1 (en) | Display panel, and plasma etching method and system | |
WO2010104152A1 (en) | Method of depositing amorphous hydrocarbon nitride (a-cn:hx) film, organic el device, and process for producing same | |
JP2005339828A (en) | Organic electroluminescent element and its manufacturing method | |
JP4543691B2 (en) | Organic electroluminescence device and method for producing the same | |
US20090314635A1 (en) | Plasma processing apparatus, plasma processing method, and organic electron device | |
KR20140113386A (en) | Organic device manufacturing method, organic device manufacturing apparatus and organic device | |
KR20180028949A (en) | Plasma etching method | |
JP5124436B2 (en) | Organic electronic device, organic electronic device manufacturing method, and organic electronic device manufacturing apparatus | |
US10790472B2 (en) | Method of manufacturing a thin film encapsulation layer and organic light emitting diode display device | |
JP7540867B2 (en) | Silicon nitride film forming method and film forming apparatus | |
US20230272530A1 (en) | Large-area high-density plasma processing chamber for flat panel displays | |
WO2020024366A1 (en) | Preparation method for film packaging layer and oled display device | |
JP6232041B2 (en) | Film forming method and film forming apparatus | |
JP2013191494A (en) | Organic electronic device, manufacturing method therefor, plasma processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20131120 |