CN103397385B - Mix ytterbium lutetium GGG laser crystal and preparation method thereof and application - Google Patents
Mix ytterbium lutetium GGG laser crystal and preparation method thereof and application Download PDFInfo
- Publication number
- CN103397385B CN103397385B CN201310361507.5A CN201310361507A CN103397385B CN 103397385 B CN103397385 B CN 103397385B CN 201310361507 A CN201310361507 A CN 201310361507A CN 103397385 B CN103397385 B CN 103397385B
- Authority
- CN
- China
- Prior art keywords
- crystal
- laser
- ytterbium
- mix
- lutetium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 134
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- JGILFSIYQSWGJK-UHFFFAOYSA-N [Lu].[Yb] Chemical compound [Lu].[Yb] JGILFSIYQSWGJK-UHFFFAOYSA-N 0.000 title claims 10
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000002994 raw material Substances 0.000 claims description 15
- 239000002223 garnet Substances 0.000 claims description 14
- 229910052733 gallium Inorganic materials 0.000 claims description 13
- 238000005245 sintering Methods 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- -1 ytterbium lutetium gadolinium Chemical compound 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 239000007791 liquid phase Substances 0.000 claims description 4
- 238000003786 synthesis reaction Methods 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000000155 melt Substances 0.000 abstract description 6
- 150000002500 ions Chemical class 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 27
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 20
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- 229910052769 Ytterbium Inorganic materials 0.000 description 7
- ZPDRQAVGXHVGTB-UHFFFAOYSA-N gallium;gadolinium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Gd+3] ZPDRQAVGXHVGTB-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 7
- 229910052688 Gadolinium Inorganic materials 0.000 description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 6
- 229910052765 Lutetium Inorganic materials 0.000 description 6
- 239000006096 absorbing agent Substances 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 6
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- UYVZCGGFTICJMW-UHFFFAOYSA-N [Ir].[Au] Chemical compound [Ir].[Au] UYVZCGGFTICJMW-UHFFFAOYSA-N 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 3
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 3
- 239000001099 ammonium carbonate Substances 0.000 description 3
- 239000010431 corundum Substances 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004033 diameter control Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- OSGMVZPLTVJAFX-UHFFFAOYSA-N [Gd].[Lu] Chemical compound [Gd].[Lu] OSGMVZPLTVJAFX-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
Landscapes
- Lasers (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明提供一种掺镱镥钆镓石榴石激光晶体及其制备方法与应用。该晶体的分子式为(YbyLuxGd1-x-y)3Ga5O12,0<x<1,0.01≤y≤0.5,且x+y≤1;Yb3+作为激活离子,在激光二极管(LD)或者其他激光器泵浦下,可实现1μm附近连续和脉冲激光输出。本发明采用熔体提拉法生长该晶体Yb:(LuxGd1-x)3Ga5O12。本发明在Yb:GGG晶体的十二面体格位掺入部分Lu3+获得Yb:LGGG晶体。该晶体生长界面稳定,晶体质量高,可作为产生连续激光输出、调Q激光、锁模激光的激光晶体的应用。
The invention provides a ytterbium-doped lutetium-gadolinium-gallium garnet laser crystal and a preparation method and application thereof. The molecular formula of the crystal is (Yb y Lu x Gd 1-xy ) 3 Ga 5 O 12 , 0<x<1, 0.01≤y≤0.5, and x+y≤1; Yb 3+ acts as an active ion in the laser diode (LD) or other laser pumps can achieve continuous and pulsed laser output near 1 μm. The present invention adopts the melt pulling method to grow the crystal Yb:(Lux Gd 1-x ) 3 Ga 5 O 12 . In the present invention, part of Lu 3+ is doped into the dodecahedral site of Yb:GGG crystal to obtain Yb:LGGG crystal. The crystal growth interface is stable, the crystal quality is high, and it can be used as a laser crystal for generating continuous laser output, Q-switched laser, and mode-locked laser.
Description
技术领域technical field
本发明涉及一种新型激光晶体及其生长与应用,特别涉及掺镱镥钆镓石榴石激光晶体(Yb:LGGG)、生长方法和应用,属于晶体与器件技术领域。The invention relates to a new type of laser crystal and its growth and application, in particular to a laser crystal doped with ytterbium, lutetium, gadolinium and gallium garnet (Yb:LGGG), a growth method and application, and belongs to the technical field of crystals and devices.
技术背景technical background
激光是20世纪最伟大的发明之一,它具有相干性好、方向性好、亮度高等优异特性。自1960年第一台红宝石激光器诞生以来,激光技术在小型化、高功率、窄脉冲等方面呈现快速发展趋势,并广泛应用于工业、军事、医疗、通讯等领域,开创了光学领域的崭新局面,促进了光电子技术的发展。Laser is one of the greatest inventions of the 20th century. It has excellent characteristics such as good coherence, good directionality, and high brightness. Since the birth of the first ruby laser in 1960, laser technology has shown a rapid development trend in miniaturization, high power, narrow pulse, etc., and has been widely used in industry, military, medical, communication and other fields, creating a new situation in the field of optics , to promote the development of optoelectronic technology.
目前激光器种类繁多,按工作物质分类,可分为气体、固体、染料和半导体激光器等。其中固体激光技术作为当今信息、工业、国防等重要领域不可替代的尖端技术,受到人们的广泛关注。激光工作物质是固体激光技术发展的核心和基础,因此高效激光材料对于固体激光的发展具有里程碑般的意义。At present, there are many kinds of lasers, which can be divided into gas, solid, dye and semiconductor lasers according to the classification of working substances. Among them, solid-state laser technology, as an irreplaceable cutting-edge technology in important fields such as information, industry, and national defense, has attracted widespread attention. Laser working substances are the core and foundation of the development of solid-state laser technology, so high-efficiency laser materials are a milestone in the development of solid-state lasers.
掺镱钆镓石榴石晶体(Yb:GGG)是一种有潜在应用价值的激光材料:一方面,激活离子Yb3+具有很多优异特性:①能级结构简单,仅有两个电子态(基态2F7/2和激发态2F5/2),不存在激发态吸收和上转换,光转换效率高;②泵浦波长与激光发射波长接近,理论上量子效率可高达90%;③在相对较高的掺杂浓度下也不会出现浓度淬灭;④荧光寿命长,有利于储能。另一方面,钆镓石榴石具有机械性能好、热导率高、硬度大、物理化学性质稳定等优点,可通过提拉法实现大尺寸、无核心晶体生长,是高功率激光输出的优选基质材料。因此,人们对掺镱钆镓石榴石晶体的热学、光谱和激光性能进行了广泛研究。通过深入的研究发现,Yb3+的离子半径小于Gd3+,因此,其在晶体中的有效分凝系数大于1,这会导致Yb3+在晶体中的浓度从上到下逐渐减小。尤其在生长大尺寸的晶体时,原料的使用量将非常大,这时晶体中的浓度梯度问题将更加突出。晶体中Yb3+掺杂的不均匀,将导致晶体的光学均匀性差,直接影响激光的光束质量。此外,分凝系数远大于1时,会给晶体生长也带来一系列问题,比如:组分过冷问题、生长界面不稳定问题等。Ytterbium-doped gadolinium-gallium garnet crystal (Yb:GGG) is a laser material with potential application value: on the one hand, the active ion Yb 3+ has many excellent characteristics: ①The energy level structure is simple, with only two electronic states (ground state 2 F 7/2 and excited state 2 F 5/2 ), there is no excited state absorption and upconversion, and the photoconversion efficiency is high; ②The pump wavelength is close to the laser emission wavelength, and the quantum efficiency can be as high as 90% in theory; ③In Concentration quenching will not occur at a relatively high doping concentration; ④The fluorescence lifetime is long, which is conducive to energy storage. On the other hand, gadolinium gallium garnet has the advantages of good mechanical properties, high thermal conductivity, high hardness, and stable physical and chemical properties. It can grow large-sized, core-free crystals by pulling method, and is the preferred matrix for high-power laser output. Material. Therefore, the thermal, spectroscopic and laser properties of ytterbium-gadolinium-gallium garnet crystals have been extensively studied. Through in-depth research, it is found that the ionic radius of Yb 3+ is smaller than that of Gd 3+ , so its effective segregation coefficient in the crystal is greater than 1, which will cause the concentration of Yb 3+ in the crystal to gradually decrease from top to bottom. Especially when growing large-sized crystals, the amount of raw materials used will be very large, and the problem of concentration gradients in the crystals will be more prominent at this time. The uneven doping of Yb 3+ in the crystal will lead to poor optical uniformity of the crystal, which will directly affect the beam quality of the laser. In addition, when the segregation coefficient is much greater than 1, it will bring a series of problems to the crystal growth, such as: the problem of supercooling of the components, the instability of the growth interface, etc.
发明内容Contents of the invention
针对现有技术存在的问题,本发明提供一种掺镱镥钆镓石榴石激光晶体及其制备方法与应用。该掺镱镥钆镓石榴石晶体可实现高效连续和脉冲激光输出。Aiming at the problems existing in the prior art, the present invention provides a ytterbium-doped lutetium-gadolinium-gallium garnet laser crystal and its preparation method and application. The ytterbium-lutetium-gadolinium-gallium garnet crystal can realize high-efficiency continuous and pulsed laser output.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种掺镱镥钆镓石榴石激光晶体,该晶体的分子式为(YbyLuxGd1-x-y)3Ga5O12,0<x<1,0.01≤y≤0.5,且x+y≤1。A ytterbium-lutetium-gadolinium-gallium garnet laser crystal doped with a molecular formula of (Yb y Lu x Gd 1-xy ) 3 Ga 5 O 12 , 0<x<1, 0.01≤y≤0.5, and x+y≤ 1.
该晶体属于立方晶系,空间群为Oh(10)-Ia3d。其中,Yb3+和Lu3+都是取代晶体十二面体格位的Gd3+。The crystal belongs to the cubic crystal system, and the space group is Oh (10) -Ia3d . Among them, both Yb 3+ and Lu 3+ are Gd 3+ replacing crystal dodecahedral sites.
掺镱镥钆镓石榴石激光晶体,化学式为Yb:(LuxGd1-x)3Ga5O12,其中,Yb3+的掺杂浓度为1-50at.%。Yb3+作为激活离子,在激光二极管(LD)或者其他激光器泵浦下,可实现1μm附近连续和脉冲激光输出。Yb-doped lutetium-gadolinium-gallium garnet laser crystal, the chemical formula is Yb:(Lux Gd 1-x ) 3 Ga 5 O 12 , where the doping concentration of Yb 3+ is 1-50 at.%. Yb 3+ is used as an active ion, and under the pump of laser diode (LD) or other lasers, it can realize continuous and pulsed laser output near 1 μm.
根据本发明优选的,分子式(YbyLuxGd1-x-y)3Ga5O12中,x=0.05-0.25,y=0.05-0.45;进一步优选的,x=0.05,y=0.05-0.15。Preferably according to the present invention, in the molecular formula (Yb y Lu x Gd 1-xy ) 3 Ga 5 O 12 , x=0.05-0.25, y=0.05-0.45; more preferably, x=0.05, y=0.05-0.15.
一种掺镱镥钆镓石榴石晶体的制备方法,采用熔体提拉法生长,步骤如下:A method for preparing ytterbium-lutetium-gadolinium-gallium garnet crystals is grown by a melt pulling method, and the steps are as follows:
(1)多晶料合成(1) Synthesis of polycrystalline materials
按分子式(YbyLuxGd1-x-y)3Ga5O12化学计量比,称取原料Yb2O3、Lu2O3、Gd2O3和Ga2O3,并在此基础上再使Ga2O3过量1-3wt.%,以按化学计量比计算得到的Ga2O3质量计;According to the molecular formula (Yb y Lu x Gd 1-xy ) 3 Ga 5 O 12 stoichiometric ratio, weigh raw materials Yb 2 O 3 , Lu 2 O 3 , Gd 2 O 3 and Ga 2 O 3 Make Ga 2 O 3 excess 1-3wt.%, based on the Ga 2 O 3 mass calculated according to the stoichiometric ratio;
采用固相烧结法或液相法合成掺镱镥钆镓石榴石的多晶料。The polycrystalline material of ytterbium, lutetium, gadolinium and gallium garnet is synthesized by solid phase sintering method or liquid phase method.
(2)晶体生长(2) Crystal growth
将制得的多晶料装入铱金坩埚中,装入提拉炉,抽真空,充保护气;升温使多晶料熔化,待熔体充分混合均匀后,下籽晶,开始生长晶体;提拉速度:0.5-5mm/小时,转速:5-60转/分钟;晶体生长至所需尺寸时,提脱晶体,以10-60℃/小时的速率降温到室温,出炉;出炉后的晶体在空气中进行退火,退火温度为1200-1500℃。Put the prepared polycrystalline material into an iridium gold crucible, put it into a pulling furnace, evacuate, and fill with protective gas; heat up to melt the polycrystalline material, and after the melt is fully mixed, place the seed crystal and start growing the crystal; Pulling speed: 0.5-5mm/hour, rotating speed: 5-60 rpm; when the crystal grows to the required size, extract the crystal, cool it down to room temperature at a rate of 10-60℃/hour, and take it out of the furnace; the crystal after being out of the furnace Annealing is carried out in air, and the annealing temperature is 1200-1500°C.
本发明的制备方法,特别考虑到在晶体生长过程中存在Ga2O3的挥发和分解,步骤(1)在配料时使其过量1-3wt.%,优选的,Ga2O3过量2wt.%,以按化学计量比计算得到的Ga2O3质量为基数计。In the preparation method of the present invention, especially considering the volatilization and decomposition of Ga 2 O 3 during the crystal growth process, step (1) makes the excess 1-3wt.% when batching, preferably, the excess of Ga 2 O 3 is 2wt. %, based on the mass of Ga 2 O 3 calculated according to the stoichiometric ratio.
根据本发明的制备方法,步骤(2)中充保护气是氩气或氮气。According to the preparation method of the present invention, the protective gas in step (2) is argon or nitrogen.
根据本发明的制备方法,步骤(2)中所述籽晶为Nd:GGG晶体。Nd:GGG为掺钕钆镓石榴石的简写,是本领域现有晶体。According to the preparation method of the present invention, the seed crystal in step (2) is Nd:GGG crystal. Nd:GGG is an abbreviation for neodymium-doped gadolinium gallium garnet, which is an existing crystal in the field.
根据本发明的制备方法,优选的,步骤(2)中生长晶体时,提拉速度:1-3mm/小时,转速20-25转/分钟。According to the preparation method of the present invention, preferably, when growing the crystal in step (2), the pulling speed is 1-3 mm/hour, and the rotating speed is 20-25 rpm.
本发明使用的原料Yb2O3、Lu2O3、Gd2O3和Ga2O3,纯度均为99.99%。The raw materials Yb 2 O 3 , Lu 2 O 3 , Gd 2 O 3 and Ga 2 O 3 used in the present invention all have a purity of 99.99%.
根据本发明优选的,步骤(1)所述的固相烧结法合成掺镱镥钆镓石榴石的多晶料是:将配好的原料充分混合,然后,把原料压成圆柱体的块体,放入刚玉坩埚中,用烧结炉在1200-1500℃下煅烧25-35小时,即可获得掺镱镥钆镓石榴石多晶料。Preferably, according to the present invention, the solid phase sintering method described in step (1) synthesizes the polycrystalline material of ytterbium, lutetium, gadolinium and gallium garnet: fully mixing the prepared raw materials, and then pressing the raw materials into a cylindrical block , put it into a corundum crucible, and use a sintering furnace to calcinate at 1200-1500°C for 25-35 hours to obtain polycrystalline material of ytterbium-doped lutetium-gadolinium-gallium garnet.
根据本发明优选的,步骤(1)所述的液相法合成掺镱镥钆镓石榴石的多晶料是:将配好的原料与浓硝酸反应,获得Yb(NO3)3、Lu(NO3)3、Gd(NO3)3和Ga(NO3)3硝酸盐混合溶液,然后用氨水调节混合溶液pH值到4-5,接着加入碳酸氢铵溶液进行沉淀,将所得的沉淀经过多次离心、烘干,最后进行压片、煅烧,得到掺镱镥钆镓石榴石的多晶料。Preferably, according to the present invention, the liquid-phase method described in step (1) to synthesize the polycrystalline material of ytterbium-lutetium-gadolinium-gallium garnet is: react the prepared raw materials with concentrated nitric acid to obtain Yb(NO 3 ) 3 , Lu( NO 3 ) 3 , Gd(NO 3 ) 3 and Ga(NO 3 ) 3 nitrate mixed solution, then adjust the pH value of the mixed solution to 4-5 with ammonia water, then add ammonium bicarbonate solution for precipitation, and pass the obtained precipitate through Multiple times of centrifugation, drying, and finally tableting and calcination to obtain a polycrystalline material doped with ytterbium, lutetium, gadolinium and gallium garnet.
以上所述的浓硝酸为本领域熟知的浓度质量分数为65-68%;氨水是pH调节剂,浓度不限,常规市售的质量分数为25-28%的氨水即可。碳酸氢铵,市售工业级,配制成浓度为2-2.6mol/L的溶液。The concentrated nitric acid mentioned above has a concentration mass fraction of 65-68% well known in the art; ammonia water is a pH regulator, and the concentration is not limited, and conventional commercially available ammonia water with a mass fraction of 25-28% is sufficient. Ammonium bicarbonate, commercially available industrial grade, prepared into a solution with a concentration of 2-2.6mol/L.
本发明的掺镱镥钆镓石榴石晶体作为激光晶体材料使用时,需要对生长的晶体进行加工、抛光后使用;晶体两端抛光或再进一步镀有介质膜,晶体的通光面为圆形或者方形。When the ytterbium-doped lutetium-gadolinium-gallium garnet crystal of the present invention is used as a laser crystal material, the grown crystal needs to be processed and polished before use; both ends of the crystal are polished or further coated with a dielectric film, and the light-transmitting surface of the crystal is circular or square.
掺镱镥钆镓石榴石晶体作为激光晶体材料的应用,包括如下任一种:The application of ytterbium-lutetium-gadolinium-gallium garnet crystals as laser crystal materials includes any of the following:
掺镱镥钆镓石榴石晶体作为产生连续激光输出的激光晶体的应用;Application of ytterbium-lutetium-gadolinium-gallium garnet crystals doped with laser crystals for continuous laser output;
掺镱镥钆镓石榴石晶体作为产生调Q激光物质的应用;Application of ytterbium-lutetium-gadolinium-gallium garnet crystal doped with Q-switched laser material;
掺镱镥钆镓石榴石晶体作为产生锁模激光物质的应用。Application of ytterbium-lutetium-gadolinium-gallium garnet crystal doped with mode-locked laser material.
根据本发明优选的:Preferred according to the invention:
1、本发明的掺镱镥钆镓石榴石晶体用于连续激光器件,掺镱镥钆镓石榴石晶体作为激光晶体,采用激光二极管(LD)或者其他激光器泵浦,实现1025nm附近连续激光输出。1. The ytterbium-lutetium-gadolinium-gallium-doped garnet crystal of the present invention is used in continuous laser devices, and the ytterbium-lutetium-gadolinium-gallium garnet crystal is used as a laser crystal, which is pumped by a laser diode (LD) or other lasers to achieve continuous laser output near 1025nm.
2、掺镱镥钆镓石榴石晶体用于调Q激光器件,掺镱镥钆镓石榴石晶体作为激光晶体与调Q元件,包括电光调Q元件、声光调Q元件或饱和吸收体,置于激光腔内,采用激光二极管(LD)或者其他激光器泵浦,实现1025nm附近调Q激光输出。2. Ytterbium-doped lutetium-gadolinium-gallium garnet crystals are used for Q-switched laser devices, and ytterbium-doped lutetium-gadolinium-gallium garnet crystals are used as laser crystals and Q-switching components, including electro-optical Q-switching components, acousto-optic Q-switching components or saturable absorbers. In the laser cavity, laser diode (LD) or other laser pumps are used to achieve Q-switched laser output near 1025nm.
3、掺镱镥钆镓石榴石晶体作为实现锁模激光输出工作物质的应用。3. The application of ytterbium-lutetium-gadolinium-gallium garnet crystal doped as a working material for mode-locked laser output.
本发明在掺镱钆镓石榴石(Yb:GGG)晶体的十二面体格位掺入部分Lu3+获得掺镱镥钆镓石榴石晶体(Yb:LGGG)。该晶体不但与掺镱钆镓石榴石晶体同构,是一种性能优良的激光工作物质,而且还具备如下优越性:①Lu3+的引入使晶体结构变得更加复杂和无序,而且Gd3+和Lu3+在Yb3+周围随机分布会导致激活离子配位场不均匀,这些因素会带来晶体的光谱非均匀展宽,有利于超快激光的运转;②通过掺杂离子半径较小的Lu3+能够使掺镱镥钆镓石榴石晶体中Yb3+的有效分凝系数趋向理想值1,解决组分过冷、生长界面不稳定等问题,有利于晶体质量提高。③掺镱镥钆镓石榴石晶体是一种新型激光材料,目前国内外还没有掺镱镥钆镓石榴石晶体作为激光晶体的相关报道。In the present invention, part of Lu 3+ is doped into the dodecahedral site of the ytterbium-doped gadolinium-gallium garnet (Yb:GGG) crystal to obtain the ytterbium-doped lutetium-gadolinium-gallium garnet crystal (Yb:LGGG). The crystal is not only isomorphic with the ytterbium-doped gadolinium-gallium garnet crystal, but also has the following advantages: ①The introduction of Lu 3+ makes the crystal structure more complex and disordered, and the addition of Gd 3 The random distribution of + and Lu 3+ around Yb 3+ will lead to the inhomogeneity of the coordination field of the activated ions. These factors will bring about the non-uniform broadening of the spectrum of the crystal, which is conducive to the operation of ultrafast lasers; ② the radius of doping ions is small Lu 3+ can make the effective segregation coefficient of Yb 3+ in the ytterbium-lutetium-gadolinium-gallium garnet crystal tend to the ideal value of 1, solve the problems of component overcooling and unstable growth interface, and help improve the crystal quality. ③ Ytterbium-doped lutetium-gadolinium-gallium garnet crystal is a new type of laser material. At present, there are no relevant reports on Ytterbium-doped lutetium-gadolinium-gallium garnet crystal as a laser crystal at home and abroad.
本发明采用提拉法生长掺镱镥钆镓石榴石晶体,操作简单,生长周期短;制备的晶体具有可高掺杂(无浓度淬灭)、上能级寿命长、吸收和发射谱带宽、量子效率高、热学和光谱性能优异等优点,并可实现平界面无核心晶体生长;使用大尺寸坩埚可制备大尺寸单晶;获得的晶体可方便加工成激光器件实现高效激光输出;本方法使用的原料皆可在市场获得。The invention adopts the pulling method to grow the garnet crystal doped with ytterbium, lutetium, gadolinium and gallium, and the operation is simple and the growth period is short; the prepared crystal has high doping (no concentration quenching), long upper energy level life, absorption and emission spectral bandwidth, It has the advantages of high quantum efficiency, excellent thermal and spectral properties, and can realize the growth of flat interface core-free crystals; large-sized single crystals can be prepared by using large-sized crucibles; the obtained crystals can be easily processed into laser devices to achieve high-efficiency laser output; this method uses All raw materials are available in the market.
附图说明Description of drawings
图1是实施例1制备的掺镱镥钆镓石榴石多晶粉末的XRD(上)和钆镓石榴石标准衍射谱(下)的对照。Fig. 1 is a comparison of the XRD (upper) and the standard diffraction spectrum (lower) of the gadolinium-gallium garnet of the polycrystalline powder of ytterbium-lutetium-gadolinium-gallium garnet prepared in Example 1.
图2是实施例1制备的近平界面掺镱镥钆镓石榴石晶体照片。Fig. 2 is a photo of the nearly flat interface doped ytterbium lutetium gadolinium gallium garnet crystal prepared in Example 1.
图3是实施例5和实施例6使用的激光装置测试示意图。图中,1、半导体激光器,2、光纤耦合系统,3、聚焦系统,4、凹面镜,5、掺镱镥钆镓石榴石晶体,6、饱和吸收体V3+:YAG晶体,7、输出耦合镜。Fig. 3 is a schematic diagram of the laser device test used in Example 5 and Example 6. Among the figure, 1. semiconductor laser, 2. fiber coupling system, 3. focusing system, 4. concave mirror, 5. ytterbium-doped lutetium-gadolinium-gallium garnet crystal, 6. saturable absorber V 3+ : YAG crystal, 7. output coupling mirror.
图4是实施例5中的连续激光输出曲线。FIG. 4 is a continuous laser output curve in Example 5.
图5是现有技术上称重自动直径控制(ADC)系统装置示意图。图中,21、提拉杆,22、籽晶,23、生长的晶体,24、多晶料熔体,25、铱金坩埚,26、石英套筒,27、氧化锆砂,28、射频线圈,29、氧化锆毛毡,30、氧化锆套筒,31、支架,32、氧化锆砂,33、基座,34、自动控制系统,35、DSP中频电源。Fig. 5 is a schematic diagram of a weighing automatic diameter control (ADC) system device in the prior art. In the figure, 21, lifting rod, 22, seed crystal, 23, growing crystal, 24, polycrystalline material melt, 25, iridium gold crucible, 26, quartz sleeve, 27, zirconia sand, 28, radio frequency coil, 29. Zirconia felt, 30. Zirconia sleeve, 31. Support, 32. Zirconia sand, 33. Base, 34. Automatic control system, 35. DSP intermediate frequency power supply.
具体实施方式detailed description
下面结合实施例对本发明做进一步说明,但不限于此。The present invention will be further described below in conjunction with the examples, but not limited thereto.
实施例1:x=0.05,y=0.05,掺镱镥钆镓石榴石晶体化学式为Yb0.15Lu0.15Gd2.7Ga5O12 Example 1: x=0.05, y=0.05, ytterbium lutetium gadolinium gallium garnet crystal chemical formula is Yb 0.15 Lu 0.15 Gd 2.7 Ga 5 O 12
掺镱镥钆镓石榴石晶体制备方法如下:The preparation method of doped ytterbium lutetium gadolinium gallium garnet crystal is as follows:
(1)采用固相烧结法进行多晶料的合成(1) Synthesis of polycrystalline material by solid phase sintering method
初始原料为Yb2O3、Lu2O3、Gd2O3和Ga2O3,纯度均为99.99%。化学反应方程式如下:The initial raw materials are Yb 2 O 3 , Lu 2 O 3 , Gd 2 O 3 and Ga 2 O 3 , all of which have a purity of 99.99%. The chemical reaction equation is as follows:
0.15Yb2O3+0.15Lu2O3+2.7Gd2O3+5Ga2O3=2Yb0.15Lu0.15Gd2.7Ga5O12 0.15Yb 2 O 3 +0.15Lu 2 O 3 +2.7Gd 2 O 3 +5Ga 2 O 3 =2Yb 0.15 Lu 0.15 Gd 2.7 Ga 5 O 12
按照Yb0.15Lu0.15Gd2.7Ga5O12化学计量比称取相应原料Yb2O3、Lu2O3、Gd2O3和Ga2O3,考虑到在晶体生长过程中存在Ga2O3的挥发和分解,在配料时使Ga2O3过量2wt.%(以按化学计量比计算得到的Ga2O3质量计)。然后放入混料机中充分混合,混料时间为48小时。混料完毕后,用液压机把原料压成圆柱体的块体,放入刚玉坩埚中,采用烧结炉在1300℃下煅烧30小时,即可获得掺镱镥钆镓石榴石多晶料,其粉末XRD如图1所示,图中各峰与钆镓石榴石标准衍射图谱吻合良好,表明所合成的是高纯掺镱镥钆镓石榴石多晶料。Weigh the corresponding raw materials Yb 2 O 3 , Lu 2 O 3 , Gd 2 O 3 and Ga 2 O 3 according to the stoichiometric ratio of Yb 0.15 Lu 0.15 Gd 2.7 Ga 5 O 12 , considering the presence of Ga 2 O 3 in the crystal growth process The volatilization and decomposition of Ga 2 O 3 in the batching process make the Ga 2 O 3 excess 2wt.% (according to the Ga 2 O 3 mass calculated according to the stoichiometric ratio). Then put into the mixer and mix fully, the mixing time is 48 hours. After the mixing is completed, use a hydraulic press to press the raw materials into a cylindrical block, put them into a corundum crucible, and use a sintering furnace to calcinate at 1300 ° C for 30 hours to obtain ytterbium-doped lutetium-gadolinium-gallium garnet polycrystalline material, and its powder XRD is shown in Figure 1, the peaks in the figure are in good agreement with the standard diffraction pattern of gadolinium gallium garnet, indicating that the synthesized is a high-purity ytterbium doped lutetium gadolinium gallium garnet polycrystalline material.
(2)采用熔体提拉法生长掺镱镥钆镓石榴石晶体(2) Growth of ytterbium, lutetium, gadolinium and gallium garnet crystals by melt pulling method
在整个晶体生长过程中,炉膛中充满氩气作为保护气体,防止铱金坩埚氧化。晶体生长的具体过程包括:将烧结好的掺镱镥钆镓石榴石多晶料置于干净的铱金坩埚中,坩埚尺寸为Φ60mm×35mm,中频感应加热化料,并在过热20℃左右条件下恒温20-60min,使熔体充分混合均匀,并减少熔体中存在的微晶。随后缓慢下入Nd:GGG籽晶,调节好下种温度使籽晶微熔收径,当籽晶直径收细至2-3mm时,进入自动直径控制程序进行放肩、等径、收尾等阶段。生长过程中的拉速和转速分别为1毫米/小时和20-25转/分钟。晶体生长至约53mm(高度)时提脱晶体,然后按50-55℃/小时速率缓慢降至室温,出炉。During the whole crystal growth process, the furnace is filled with argon as a protective gas to prevent oxidation of the iridium crucible. The specific process of crystal growth includes: placing the sintered ytterbium-doped lutetium-gadolinium-gallium garnet polycrystalline material in a clean iridium gold crucible, the size of the crucible is Φ60mm×35mm, heating the material by medium frequency induction, and overheating at about 20°C Keep the temperature constant for 20-60 minutes to make the melt fully mixed evenly and reduce the crystallites existing in the melt. Then slowly insert the Nd:GGG seed crystal, adjust the seeding temperature to make the seed crystal micro-melt and shrink the diameter, when the diameter of the seed crystal is reduced to 2-3mm, enter the automatic diameter control program to carry out the stages of shouldering, equal diameter, and finishing. . The pulling speed and rotational speed during the growth were 1 mm/h and 20-25 rpm, respectively. When the crystal grows to about 53mm (height), extract the crystal, then slowly lower it to room temperature at a rate of 50-55°C/hour, and take it out of the furnace.
以上称重自动直径控制(ADC)系统为现有技术,装置示意图如图5所示。The above automatic diameter control (ADC) system for weighing is the prior art, and the schematic diagram of the device is shown in FIG. 5 .
晶体生长结束后,对掺镱镥钆镓石榴石晶体进行高温空气气氛退火,以消除晶体中的热应力以及缺氧环境导致的氧空位,提高晶体质量。具体退火程序为:将生长得到的掺镱镥钆镓石榴石晶体升温到1400℃恒温15小时,然后缓慢降到室温。图2为生长获得的近平界面掺镱镥钆镓石榴石晶体的照片,晶体尺寸为Φ26mm×30mm,外形完整,无开裂。After the crystal growth is completed, high-temperature air atmosphere annealing is performed on the ytterbium-lutetium-gadolinium-gallium garnet crystal to eliminate thermal stress in the crystal and oxygen vacancies caused by an oxygen-deficient environment and improve crystal quality. The specific annealing procedure is as follows: the grown ytterbium-lutetium-gadolinium-gallium garnet crystal is heated to 1400° C. for 15 hours at a constant temperature, and then slowly lowered to room temperature. Fig. 2 is a photo of the nearly flat interface doped ytterbium lutetium gadolinium gallium garnet crystal obtained by growth, the crystal size is Φ26mm×30mm, the shape is complete, and there is no crack.
实施例2:x=0.05,y=0.15,掺镱镥钆镓石榴石晶体化学式为Yb0.45Lu0.15Gd2.4Ga5O12 Example 2: x=0.05, y=0.15, ytterbium-doped lutetium-gadolinium-gallium garnet crystal chemical formula is Yb 0.45 Lu 0.15 Gd 2.4 Ga 5 O 12
按照Yb0.45Lu0.15Gd2.4Ga5O12化学计量比称取相应原料Yb2O3、Lu2O3、Gd2O3和Ga2O3,并使Ga2O3过量3wt.%(以按化学计量比计算得到的Ga2O3质量计),然后充分混合,混料时间为50小时。用液压机把原料压成圆柱体的块体,放入刚玉坩埚中,采用烧结炉在1350℃下煅烧30小时,即得掺镱镥钆镓石榴石多晶料。Weigh the corresponding raw materials Yb 2 O 3 , Lu 2 O 3 , Gd 2 O 3 and Ga 2 O 3 according to the stoichiometric ratio of Yb 0.45 Lu 0.15 Gd 2.4 Ga 5 O 12 , and make Ga 2 O 3 excess 3wt.% (by According to the Ga2O3 mass calculated by the stoichiometric ratio ) , and then fully mixed, the mixing time is 50 hours. Use a hydraulic press to press the raw material into a cylindrical block, put it into a corundum crucible, and use a sintering furnace to calcinate at 1350 ° C for 30 hours to obtain the ytterbium-doped lutetium-gadolinium-gallium garnet polycrystalline material.
(2)晶体生长(2) Crystal growth
如实施例1中步骤(2)所述,所不同的是:晶体生长过程中拉速降至:0.5mm/小时;晶体生长完毕提脱后,降温速率为40℃/小时。As described in step (2) in Example 1, the difference is: during the crystal growth process, the pulling speed is reduced to: 0.5mm/hour; after the crystal growth is completed and stripped, the cooling rate is 40°C/hour.
实施例3:Example 3:
如实施例1所述,所不同的是采用液相法进行多晶料的合成As described in Example 1, the difference is that the liquid phase method is used to synthesize the polycrystalline material
将原料Yb2O3、Lu2O3、Gd2O3和Ga2O3和浓硝酸(质量分数约为65%)反应,并加入原料总质量10%的盐酸(质量分数约为35%)促进反应过程,得到Yb(NO3)3、Lu(NO3)3、Gd(NO3)3和Ga(NO3)3四种硝酸盐混合溶液,然后用氨水调节混合溶液pH值到4.5,接着缓慢加入2mol·L-1的碳酸氢铵溶液,直到溶液中没有气泡产生,此时pH=7。将所得的沉淀经过离心机离心出来,随后用蒸馏水洗涤再离心,反复操作两次。然后将沉淀用干燥箱烘干,用压力机压成薄片后在800℃下煅烧10个小时,得到掺镱镥钆镓石榴石的多晶料。React raw materials Yb 2 O 3 , Lu 2 O 3 , Gd 2 O 3 and Ga 2 O 3 with concentrated nitric acid (mass fraction about 65%), and add hydrochloric acid (mass fraction about 35% ) to promote the reaction process to obtain Yb(NO 3 ) 3 , Lu(NO 3 ) 3 , Gd(NO 3 ) 3 and Ga(NO 3 ) 3 four nitrate mixed solutions, and then use ammonia water to adjust the pH value of the mixed solution to 4.5 , and then slowly add 2mol·L -1 ammonium bicarbonate solution until no bubbles are generated in the solution, and the pH=7 at this time. The obtained precipitate was centrifuged out by a centrifuge, then washed with distilled water and centrifuged again, and the operation was repeated twice. Then the precipitate is dried in a drying oven, pressed into thin sheets by a press and calcined at 800°C for 10 hours to obtain a polycrystalline material of ytterbium-doped lutetium-gadolinium-gallium garnet.
实施例4:x=0.25,y=0.45,掺镱镥钆镓石榴石晶体化学式为Yb1.35Lu0.75Gd0.9Ga5O12 Example 4: x=0.25, y=0.45, ytterbium lutetium gadolinium gallium garnet crystal chemical formula is Yb 1.35 Lu 0.75 Gd 0.9 Ga 5 O 12
如实施例1所述,所不同的是:按照Yb1.35Lu0.75Gd0.9Ga5O12化学计量比称取相应原料Yb2O3、Lu2O3、Gd2O3和Ga2O3,考虑到在晶体生长过程中存在Ga2O3的挥发和分解,在配料时使Ga2O3过量2wt.%(以按化学计量比计算得到的Ga2O3质量计)。As described in Example 1, the difference is: Weigh the corresponding raw materials Yb 2 O 3 , Lu 2 O 3 , Gd 2 O 3 and Ga 2 O 3 according to the stoichiometric ratio of Yb 1.35 Lu 0.75 Gd 0.9 Ga 5 O 12 , Considering the volatilization and decomposition of Ga 2 O 3 during the crystal growth process, the excess of Ga 2 O 3 is 2wt.% (based on the mass of Ga 2 O 3 calculated according to the stoichiometric ratio) when batching.
将烧结好的掺镱镥钆镓石榴石多晶料置于铱金坩埚中,加热使多晶料化料,并过热20℃恒温40min,使熔体充分混合均匀,随后缓慢下入Nd:GGG籽晶。生长过程中的拉速和转速分别为1.5毫米/小时和25-30转/分钟。晶体生长至约45mm时提脱晶体,然后按30-40℃/小时速率缓慢降至室温,出炉。Put the sintered ytterbium-doped lutetium-gadolinium-gallium garnet polycrystalline material in an iridium gold crucible, heat the polycrystalline material, and overheat at 20°C for 40 minutes to make the melt fully mixed evenly, and then slowly pour Nd:GGG seed crystal. The pulling speed and rotational speed during the growth were 1.5 mm/h and 25-30 rpm, respectively. When the crystal grows to about 45mm, the crystal is extracted, and then slowly lowered to room temperature at a rate of 30-40°C/hour, and then taken out of the furnace.
实施例5:Example 5:
用实施例1激光晶体制造的激光器件实现1025nm附近连续激光输出,激光测试装置如图3所示(连续激光运转时,需要移除图中饱和吸收体V3+:YAG晶体6),沿光路依次由半导体激光器1、光纤耦合系统2、聚焦系统3、凹面镜4、掺镱镥钆镓石榴石晶体5、饱和吸收体V3+:YAG晶体6、输出耦合镜7组成。The laser device manufactured by the laser crystal of Example 1 realizes continuous laser output near 1025nm, and the laser test device is shown in Figure 3 (during continuous laser operation, it is necessary to remove the saturable absorber V 3+ in the figure: YAG crystal 6), along the optical path It consists of semiconductor laser 1, fiber coupling system 2, focusing system 3, concave mirror 4, ytterbium-doped lutetium-gadolinium-gallium garnet crystal 5, saturable absorber V 3+ :YAG crystal 6, and output coupling mirror 7.
测试样品Yb0.15Lu0.15Gd2.7Ga5O12晶体,尺寸为4mm×4mm×5mm,通光面为镀膜,用铟箔包好放于水冷的铝块中,冷却水的温度维持在16℃。凹面镜4的曲率半径为100mm,前表面镀增透940nm的介质膜(940nm处光波反射率小于0.5%),后表面镀高透942nm并高反1010-1100nm的介质膜(1010-1100nm处光波反射率大于99.8%);平面镜7是输出耦合镜,在1010~1070nm处的透过率分别为1%和5%。泵浦源为半导体激光器1,其可输出最大泵浦功率为30W,发射的中心波长为942nm,光斑半径和数值孔径分别为400μm和0.22,通过光纤耦合系统2和聚焦系统3,将泵浦光聚焦到掺镱镥钆镓石榴石晶体5中,再通过饱和吸收体V3+:YAG晶体6、输出耦合镜7输出激光。采用功率计(FieldmaxⅡ,Coherent)测试激光输出平均功率。激光腔长优化为20mm,当输出镜透过率为5%时,实现1025nm附近最大连续激光输出功率4.3W,如图4所示。The test sample is Yb 0.15 Lu 0.15 Gd 2.7 Ga 5 O 12 crystal, the size is 4mm×4mm×5mm, the transparent surface is coated, wrapped with indium foil and placed in a water-cooled aluminum block, the temperature of the cooling water is maintained at 16°C. The radius of curvature of the concave mirror 4 is 100mm, the front surface is coated with an anti-reflective dielectric film of 940nm (the reflectance of light waves at 940nm is less than 0.5%), and the rear surface is coated with a dielectric film with high transparency of 942nm and high reflection of 1010-1100nm (light waves at 1010-1100nm The reflectivity is greater than 99.8%); the plane mirror 7 is an output coupling mirror, and the transmittance at 1010-1070nm is 1% and 5% respectively. The pumping source is a semiconductor laser 1, which can output a maximum pumping power of 30W, the center wavelength of emission is 942nm, and the spot radius and numerical aperture are 400μm and 0.22 respectively. The laser is focused into the ytterbium-doped lutetium-gadolinium-gallium garnet crystal 5, and then the laser is output through the saturable absorber V 3+ :YAG crystal 6 and the output coupling mirror 7 . A power meter (Fieldmax II, Coherent) was used to test the average laser output power. The laser cavity length is optimized to 20mm. When the transmittance of the output mirror is 5%, the maximum continuous laser output power near 1025nm is 4.3W, as shown in Figure 4.
实施例6:用实施例2的激光晶体制造的激光器件实现1025nm附近被动调Q激光输出。Embodiment 6: The laser device manufactured by the laser crystal of Embodiment 2 realizes the passive Q-switched laser output near 1025 nm.
采用实施例5中的激光装置进行被动调Q激光测试。V3+:YAG晶体作为饱和吸收体,其尺寸和最初透过率分别为3mm×3mm×2mm和97%。激光脉冲信号通过泰克示波器TektronixDPL7104(带宽1GHz,采样速度5Gs/s)和光电探测器(Newfocus,型号1611,上升速度≤1ns)进行记录。在泵浦光作用下,可实现1025nm附近被动调Q激光输出。The passive Q-switched laser test was performed using the laser device in Example 5. V 3+ : YAG crystal is used as a saturable absorber, its size and initial transmittance are 3mm×3mm×2mm and 97% respectively. The laser pulse signal is recorded by a Tektronix DPL7104 oscilloscope (bandwidth 1GHz, sampling speed 5Gs/s) and a photodetector (Newfocus, model 1611, rising speed ≤ 1ns). Under the action of pump light, passive Q-switched laser output near 1025nm can be realized.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310361507.5A CN103397385B (en) | 2013-08-19 | 2013-08-19 | Mix ytterbium lutetium GGG laser crystal and preparation method thereof and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310361507.5A CN103397385B (en) | 2013-08-19 | 2013-08-19 | Mix ytterbium lutetium GGG laser crystal and preparation method thereof and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103397385A CN103397385A (en) | 2013-11-20 |
CN103397385B true CN103397385B (en) | 2016-04-20 |
Family
ID=49561080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310361507.5A Expired - Fee Related CN103397385B (en) | 2013-08-19 | 2013-08-19 | Mix ytterbium lutetium GGG laser crystal and preparation method thereof and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103397385B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3851562A4 (en) * | 2019-08-21 | 2022-02-09 | Meishan Boya Advanced Materials Co., Ltd. | METHOD AND EQUIPMENT FOR GROWING MULTI-COMPONENT GARNET STRUCTURE SCINTILLATOR CRYSTALS |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103668456B (en) * | 2013-12-12 | 2016-04-27 | 福建福晶科技股份有限公司 | A kind of terbium gallium garnet crystal growth clout recoverying and utilizing method |
CN104711677B (en) * | 2015-02-13 | 2017-08-29 | 山东大学 | A kind of garnet crystal of self Q switch and its self Q switch device of making, self Q switch pulse laser |
CN105297136A (en) * | 2015-11-13 | 2016-02-03 | 孙雷 | Cerium-doped gadolinium lutecium aluminate garnet crystal for laser illumination and preparation method thereof |
CN108085743A (en) * | 2017-12-25 | 2018-05-29 | 吉林建筑大学 | Mix ytterbium lutetium yttrium yttrium aluminmiu garnet crystal and preparation method thereof |
CN112941630B (en) * | 2021-01-18 | 2022-10-14 | 枣庄学院 | Dysprosium, lutecium and aluminum triple-doped lanthanum calcium gallate intermediate infrared laser crystal and preparation method and application thereof |
CN115386956B (en) * | 2021-05-24 | 2023-09-08 | 中国科学院上海硅酸盐研究所 | Method for growing gadolinium gallium garnet crystal by moving flux floating zone method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101654807A (en) * | 2009-09-18 | 2010-02-24 | 广州半导体材料研究所 | Tombarthite and ytterbium ion activation garnet scintillation crystal containing lutetium, yttrium and aluminum and preparation method thereof |
CN101768779A (en) * | 2009-11-06 | 2010-07-07 | 中国科学院上海光学精密机械研究所 | Yb3+Or Nd3+Doped yttrium lutetium aluminum garnet laser crystal and growth method thereof |
-
2013
- 2013-08-19 CN CN201310361507.5A patent/CN103397385B/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3851562A4 (en) * | 2019-08-21 | 2022-02-09 | Meishan Boya Advanced Materials Co., Ltd. | METHOD AND EQUIPMENT FOR GROWING MULTI-COMPONENT GARNET STRUCTURE SCINTILLATOR CRYSTALS |
US12152315B2 (en) | 2019-08-21 | 2024-11-26 | Meishan Boya Advanced Materials Co., Ltd. | Methods and devices for growing scintillation crystals with multi-component garnet structure |
Also Published As
Publication number | Publication date |
---|---|
CN103397385A (en) | 2013-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103397385B (en) | Mix ytterbium lutetium GGG laser crystal and preparation method thereof and application | |
WO2021004078A1 (en) | Praseodymium-doped gadolinium scandate visible waveband laser crystal and preparation method therefor | |
CN102618928B (en) | High-efficiency mid-infrared laser crystal and preparation method thereof | |
CN101619492A (en) | Chromium and praseodymium sensitized ions co-doped gadolinium gallium garnet novel laser crystal activated by erbium ions | |
CN108130591A (en) | One kind mixes dysprosium luteium oxide visible waveband laser crystal and preparation method thereof | |
CN117448961A (en) | A rare earth element-doped calcium yttrium aluminate near-infrared laser single crystal fiber and its preparation method | |
CN101212123A (en) | A kind of ytterbium-doped calcium oxyborate yttrium-lanthanum laser crystal and its preparation method and application | |
CN101597797B (en) | Ytterbium-doped lithium gadolinium borate laser crystal and preparation method thereof | |
CN102766905B (en) | Erbium ion activated 1.55 micron waveband gallate laser crystalss and preparation method thereof | |
CN101212122A (en) | A kind of ytterbium-doped oxycalcium-gadolinium-lanthanum borate laser crystal and its preparation method and application | |
CN101377015A (en) | Novel 1.54 mu m waveband rare earth ion activated gadolinium gallium garnet laser crystal | |
CN102337591B (en) | Ytterbium-doped potassium triyttrium borate laser crystal, and growing method and application thereof | |
CN104018225B (en) | Neodymium-doped A3BGa3Si2O14 series crystals and its preparation method and application | |
CN103103610A (en) | Neodymium-doped yttrium fluoride gadolinium lithium crystal and growing method of same | |
CN101717998A (en) | Neodymium-doped yttrium-lutetium silicate laser crystal and preparation method thereof | |
CN101407939A (en) | Halide laser crystal doped with Bi and preparing method thereof | |
CN105970293B (en) | It is a kind of using four gadolinium molydbate barium as the laser material and its preparation method and application of host doped Rare earth element ytterbium neodymium | |
CN105821478A (en) | Thulium and holmium codoping gallium acid barium and lanthanum laser crystal, manufacturing method and application of crystal | |
CN105887200A (en) | Thulium-holmium-codoped strontium lanthanum gallate laser crystal, preparation method and application of crystal | |
CN101717997A (en) | Neodymium-doped silicic acid lutecium gadolinium laser crystal and preparation method thereof | |
CN100447308C (en) | Preparation method and application of doped calcium tantalum gallium garnet crystal | |
CN101709507A (en) | Neodymium-doped silicic acid yttrium gadolinium laser crystal and preparation method thereof | |
CN106012020A (en) | Tm/Yb-codoped up-conversion laser material taking molybdate as matrix and preparation method | |
CN101092745A (en) | Laser crystal ErBa3B9O18 of borate, preparation method, and usage | |
CN111509553B (en) | Ytterbium-doped rare earth tantalate femtosecond laser crystal and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160420 Termination date: 20200819 |