CN103391014B - power conversion device - Google Patents
power conversion device Download PDFInfo
- Publication number
- CN103391014B CN103391014B CN201210146566.6A CN201210146566A CN103391014B CN 103391014 B CN103391014 B CN 103391014B CN 201210146566 A CN201210146566 A CN 201210146566A CN 103391014 B CN103391014 B CN 103391014B
- Authority
- CN
- China
- Prior art keywords
- current
- voltage waveform
- input
- waveform
- conversion device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 59
- 238000001514 detection method Methods 0.000 claims abstract description 69
- 238000005070 sampling Methods 0.000 claims abstract description 52
- 238000012545 processing Methods 0.000 claims abstract description 45
- 230000001939 inductive effect Effects 0.000 claims description 14
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical group [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 14
- 238000012937 correction Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
Abstract
Description
技术领域 technical field
本揭示内容是有关于一种电源转换装置,且特别是有关于一种具有功率因数校正功能的电源转换装置。The present disclosure relates to a power conversion device, and more particularly to a power conversion device with a power factor correction function.
背景技术 Background technique
由于近年来的能源危机,各国除了发展新式能源外,对现有的用电产品要求也越来越严苛,尤其以功率因数及总谐波失真最为重视,在新的电力规范(如IEC61000-3-12规范)中对总电流谐波失真就有一定的要求,影响设计者在产品上的设计考量。Due to the energy crisis in recent years, in addition to the development of new energy sources, countries have increasingly stringent requirements on existing electrical products, especially power factor and total harmonic distortion. In new power standards (such as IEC61000- 3-12 specification) has certain requirements on the total current harmonic distortion, which affects the designer's design considerations in the product.
一般的用电设备往往都不是纯电阻性,但不论是电感性或电容性都将导致功率因数不佳,不佳的功率因数将导致输入电流增加,加重供电系统的负担,此外,输入电流的严重失真,包含了大量的谐波成分,都将对电网造成严重的污染。General electrical equipment is often not purely resistive, but whether it is inductive or capacitive, it will lead to poor power factor. Poor power factor will lead to an increase in input current and increase the burden on the power supply system. In addition, the input current Severe distortion, including a large number of harmonic components, will cause serious pollution to the power grid.
因此,若能提高用电设备的功率因数及降低谐波失真,对于供电系统的品质,将带来莫大的帮助。现有的功率因数改善电路可分为被动式与主动式两大类,被动式功率因数改善电路是使用被动元件(如电感、电容)去改善功因,虽然架构简单,却有体积庞大,功因修正效果有限等缺点。Therefore, if the power factor of the electrical equipment can be improved and the harmonic distortion can be reduced, it will bring great help to the quality of the power supply system. Existing power factor improvement circuits can be divided into two categories: passive and active. Passive power factor improvement circuits use passive components (such as inductors and capacitors) to improve the power factor. Although the structure is simple, it is bulky and the power factor correction The effect is limited and other shortcomings.
而主动式功率因数改善电路主要是利用外加的电路来达到功因修正的目的,相较于被动式,有体积小、重量轻且功率因数较高等优点,然而现有的主动式功率因数改善电路大多需要复杂的外加电路,且对应不同的谐波成分需要重新调校或设计。The active power factor improvement circuit mainly uses an external circuit to achieve the purpose of power factor correction. Compared with the passive type, it has the advantages of small size, light weight and high power factor. However, most of the existing active power factor improvement circuits Complicated external circuits are required, and readjustment or design is required for different harmonic components.
发明内容 Contents of the invention
为解决上述问题,本发明的目的在于提出一种电源转换装置的线路架构,以达到功率因数修正及改善输入电流谐波的功效,使其能符合电力规范标准。现有技术中将整流后的输入电压波形送入控制器产生电流基准命令,但此种方法将导致电流谐波降低效果不佳。为了改善此缺点,本发明将输入电压检测装置所得的输入电压波形,送入数码处理模块预先处理进行频率调整,以产生基准电压波形,目的最终使实际输入电流追随基准电压波形。藉此,产生主动式开关元件所需的开关信号,进而达到改善功因及降低电流谐波的目的。In order to solve the above problems, the purpose of the present invention is to provide a circuit structure of a power conversion device to achieve power factor correction and improve the efficacy of input current harmonics, so that it can meet the power standard. In the prior art, the rectified input voltage waveform is sent to the controller to generate the current reference command, but this method will lead to poor current harmonic reduction effect. In order to improve this shortcoming, the present invention sends the input voltage waveform obtained by the input voltage detection device to a digital processing module for pre-processing and frequency adjustment to generate a reference voltage waveform. The purpose is to finally make the actual input current follow the reference voltage waveform. In this way, the switching signal required by the active switching element is generated, thereby achieving the purpose of improving the power factor and reducing the current harmonic.
本揭示内容的一种方式是在提供一种电源转换装置用以耦接并驱动一电子性负载,电源转换装置包含一整流模块、一主动式开关元件、一输入电压检测模块、一输出电压检测模块、一电流检测模块以及一数码处理模块。整流模块与一交流电源输入耦接。主动式开关元件耦接于该整流模块与该电子性负载之间,且该主动式开关元件的两端并联至该电子性负载的两端。输入电压检测模块耦接于该整流模块与该主动式开关元件之间,用以取样一输入取样电压波形。输出电压检测模块耦接于该主动式开关元件与该电子性负载之间,用以取样一输出取样电压波形。电流检测模块耦接于该主动式开关元件,用以取样一实际输入电流波形。数码处理模块耦接至该输入电压检测模块、该输出电压检测模块以及该电流检测模块,该数码处理模块根据该输入取样电压波形与该输出取样电压波形产生一电流基准命令,该数码处理模块根据该电流基准命令与该实际输入电流波形动态切换该主动式开关元件。One mode of the present disclosure is to provide a power conversion device for coupling and driving an electronic load. The power conversion device includes a rectifier module, an active switching element, an input voltage detection module, and an output voltage detection module. module, a current detection module and a digital processing module. The rectification module is coupled with an AC power input. The active switching element is coupled between the rectification module and the electronic load, and the two ends of the active switching element are connected in parallel to the two ends of the electronic load. The input voltage detection module is coupled between the rectification module and the active switch element for sampling an input sampling voltage waveform. The output voltage detection module is coupled between the active switch element and the electronic load, and is used for sampling an output sampling voltage waveform. The current detection module is coupled to the active switch element for sampling an actual input current waveform. The digital processing module is coupled to the input voltage detection module, the output voltage detection module and the current detection module. The digital processing module generates a current reference command according to the input sampling voltage waveform and the output sampling voltage waveform. The digital processing module generates a current reference command according to the The current reference command and the actual input current waveform dynamically switch the active switching element.
根据本发明的一实施例中,主动式开关元件为一碳化硅开关(siliconcarbideswitch)。According to an embodiment of the invention, the active switching element is a silicon carbide switch.
根据本发明的一实施例中,数码处理模块包含一基准电压波形产生器、一输出电压反馈调节器以及一电流基准命令产生器。基准电压波形产生器与该输入电压检测模块耦接,用以处理该输入取样电压波形并产生一基准电压波形。输出电压反馈调节器与该输出电压检测模块耦接,用以根据该输出取样电压波形产生一控制信号。电流基准命令产生器分别与该基准电压波形产生器以及该输出电压反馈调节器耦接,该电流基准命令产生器根据该基准电压波形以及该控制信号产生该电流基准命令。According to an embodiment of the present invention, the digital processing module includes a reference voltage waveform generator, an output voltage feedback regulator and a current reference command generator. The reference voltage waveform generator is coupled with the input voltage detection module and is used for processing the input sampled voltage waveform and generating a reference voltage waveform. The output voltage feedback regulator is coupled with the output voltage detection module and used for generating a control signal according to the output sampled voltage waveform. The current reference command generator is respectively coupled to the reference voltage waveform generator and the output voltage feedback regulator, and the current reference command generator generates the current reference command according to the reference voltage waveform and the control signal.
根据本发明的一实施例中,基准电压波形产生器产生的基准电压波形决定该电流基准命令的一电流脉宽。According to an embodiment of the present invention, the reference voltage waveform generated by the reference voltage waveform generator determines a current pulse width of the current reference command.
根据本发明的一实施例中,输出电压反馈调节器产生的该控制信号决定该电流基准命令的一电流幅度。According to an embodiment of the present invention, the control signal generated by the output voltage feedback regulator determines a current magnitude of the current reference command.
根据本发明的一实施例中,基准电压波形产生器根据该输入取样电压波形产生一基准电压波形,该基准电压波形的频率低于该输入取样电压波形的频率。According to an embodiment of the present invention, the reference voltage waveform generator generates a reference voltage waveform according to the input sampling voltage waveform, and the frequency of the reference voltage waveform is lower than the frequency of the input sampling voltage waveform.
根据本发明的一实施例中,数码处理模块还包含一驱动模块、一电流反馈调节器以及一开关信号产生器。驱动模块耦接至该主动式开关元件的该控制端。电流反馈调节器与该电流检测模块以及该电流基准命令产生器耦接,该电流反馈调节器根据该电流检测模块取样的该实际输入电流波形调整该电流基准命令,进而产生一开关调变信号。开关信号产生器与该电流反馈调节器耦接,该开关信号产生器根据经该开关调变信号产生一开关信号至该驱动模块,藉此通过该驱动模块动态切换该主动式开关元件。According to an embodiment of the present invention, the digital processing module further includes a driving module, a current feedback regulator and a switching signal generator. The driving module is coupled to the control end of the active switching element. The current feedback regulator is coupled to the current detection module and the current reference command generator. The current feedback regulator adjusts the current reference command according to the actual input current waveform sampled by the current detection module, and then generates a switch modulation signal. The switch signal generator is coupled to the current feedback regulator, and the switch signal generator generates a switch signal to the drive module according to the switch modulation signal, so as to dynamically switch the active switch element through the drive module.
根据本发明的一实施例中,该电流反馈调节器持续调整该电流基准命令进而控制该主动式开关元件,直到该实际输入电流波形追随(或对准)该基准电压波形。According to an embodiment of the present invention, the current feedback regulator continuously adjusts the current reference command to control the active switching device until the actual input current waveform follows (or aligns with) the reference voltage waveform.
根据本发明的一实施例中,电源转换装置还包含一电容元件以及一电感元件,该电容元件与该电子性负载并联,该电感元件与该电子性负载串联。According to an embodiment of the present invention, the power conversion device further includes a capacitive element and an inductive element, the capacitive element is connected in parallel with the electronic load, and the inductive element is connected in series with the electronic load.
根据本发明的一实施例中,电源转换装置还包含一被动式开关元件,该被动式开关元件串联于该电感元件与该电子性负载之间。According to an embodiment of the present invention, the power conversion device further includes a passive switch element, and the passive switch element is connected in series between the inductance element and the electronic load.
根据本发明的一实施例中,电源转换装置还包含另一主动式开关元件,该另一主动式开关元件串联于该电感元件与该电子性负载之间。According to an embodiment of the present invention, the power conversion device further includes another active switching element, and the other active switching element is connected in series between the inductance element and the electronic load.
根据本发明的一实施例中,该交流电源输入为三相交流电源输入。According to an embodiment of the present invention, the AC power input is a three-phase AC power input.
本揭示内容的一方事是在提供一种电源转换装置,用以耦接并驱动一电子性负载,该电源转换装置包含整流模块、主动式开关元件、状态检测模块以及数码处理模块。整流模块与一交流电源输入耦接。主动式开关元件耦接于该整流模块与该电子性负载之间,且该主动式开关元件与该电子性负载并联。状态检测模块耦接于该整流模块与该电子性负载之间,用以检测该电源转换装置的状态并对应输出一输入取样电压波形、一输出取样电压波形以及一实际输入电流波形。数码处理模块接收该输入取样电压波形、该输出取样电压波形以及该实际输入电流波形。其中,该数码处理模块于利用该输入取样电压波形产生一基准电压波形后,产生一电流基准命令进而控制该主动式开关元件,直到该实际输入电流波形追随该基准电压波形。One aspect of the present disclosure is to provide a power conversion device for coupling and driving an electronic load. The power conversion device includes a rectification module, an active switching element, a state detection module and a digital processing module. The rectification module is coupled with an AC power input. The active switching element is coupled between the rectification module and the electronic load, and the active switching element is connected in parallel with the electronic load. The state detecting module is coupled between the rectifying module and the electronic load, and is used for detecting the state of the power conversion device and correspondingly outputting an input sampled voltage waveform, an output sampled voltage waveform and an actual input current waveform. The digital processing module receives the input sampled voltage waveform, the output sampled voltage waveform and the actual input current waveform. Wherein, after the digital processing module uses the input sampling voltage waveform to generate a reference voltage waveform, it generates a current reference command and then controls the active switching element until the actual input current waveform follows the reference voltage waveform.
附图说明 Description of drawings
为让本揭示内容的上述和其他目的、特征、优点与实施例能更明显易懂,所附图式的说明如下:In order to make the above and other objects, features, advantages and embodiments of the present disclosure more comprehensible, the accompanying drawings are described as follows:
图1为根据本发明的一实施例中一种电源转换装置的示意图;FIG. 1 is a schematic diagram of a power conversion device according to an embodiment of the present invention;
图2为图1中输入电压检测模块产生的输入取样电压波形的示意图;FIG. 2 is a schematic diagram of the input sampling voltage waveform generated by the input voltage detection module in FIG. 1;
图3为根据本发明的一实施例中数码处理模块的功能方块图;Fig. 3 is a functional block diagram of a digital processing module according to an embodiment of the present invention;
图4为图3中的基准电压波形产生器产生的基准电压波形的示意图;FIG. 4 is a schematic diagram of a reference voltage waveform generated by the reference voltage waveform generator in FIG. 3;
图5为本实施例中电流检测模块取样的实际输入电流的波形、电力信号的电压波形、电力信号的电流波形以及基准电压波形的对照示意图;5 is a schematic diagram of comparison of the waveform of the actual input current sampled by the current detection module, the voltage waveform of the power signal, the current waveform of the power signal, and the reference voltage waveform in this embodiment;
图6为根据本发明的另一实施例中一种电源转换装置的示意图;以及6 is a schematic diagram of a power conversion device according to another embodiment of the present invention; and
图7为图6的实施例中数码处理模块及其周边元件的功能方块图。FIG. 7 is a functional block diagram of the digital processing module and its peripheral components in the embodiment of FIG. 6 .
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
100,102:电源转换装置;100,102: power conversion device;
200:交流电源输入;200: AC power input;
202:驱动电子性负载;202: driving an electronic load;
110:整流模块;110: rectification module;
S1:主动式开关元件;S1: active switching element;
S2:开关元件;S2: switch element;
C1,C2:电容元件;C1, C2: capacitive elements;
L1:电感元件;L1: inductance element;
167:驱动模块;167: drive module;
130:输入电压检测模块;130: input voltage detection module;
140:输出电压检测模块;140: output voltage detection module;
150:电流检测模块;150: current detection module;
160:数码处理模块;160: digital processing module;
204:电力信号;204: power signal;
132:输入取样电压;132: input sampling voltage;
142:输出取样电压;142: output sampling voltage;
152:实际输入电流;152: actual input current;
162:基准电压波形产生器;162: reference voltage waveform generator;
164:输出电压反馈调节器;164: output voltage feedback regulator;
166:电流基准命令产生器;166: current reference command generator;
168:电流反馈调节器;168: current feedback regulator;
169:开关信号产生器;169: switch signal generator;
161:控制信号;161: control signal;
163:基准电压波形;163: reference voltage waveform;
165:电流基准命令;165: current reference command;
170:开关调变信号;170: switch modulation signal;
190:状态检测模块。190: a state detection module.
具体实施方式 detailed description
请参阅图1,其为根据本发明的一较佳实施例中一种电源转换装置100的示意图。电源转换装置100接收一交流电源输入200并用以驱动电子性负载202,其中,于本较佳实施例中,交流电源输入200为一三相交流电源输入。Please refer to FIG. 1 , which is a schematic diagram of a power conversion device 100 according to a preferred embodiment of the present invention. The power conversion device 100 receives an AC power input 200 to drive an electronic load 202, wherein, in this preferred embodiment, the AC power input 200 is a three-phase AC power input.
如图1所示,电源转换装置100包含整流模块110、主动式开关元件S1、输入电压检测模块130、输出电压检测模块140、电流检测模块150以及数码处理模块160。As shown in FIG. 1 , the power conversion device 100 includes a rectification module 110 , an active switching element S1 , an input voltage detection module 130 , an output voltage detection module 140 , a current detection module 150 and a digital processing module 160 .
整流模块110与交流电源输入200耦接。主动式开关元件S1耦接于整流模块110与电子性负载202之间,且主动式开关元件S1的两端并联至电子性负载202的两端。于此实施例中,主动式开关元件S1可进一步为碳化硅开关(siliconcarbideswitch),但本发明并不以此为限。The rectification module 110 is coupled to the AC power input 200 . The active switching element S1 is coupled between the rectification module 110 and the electronic load 202 , and both ends of the active switching element S1 are connected in parallel to both ends of the electronic load 202 . In this embodiment, the active switching element S1 may further be a silicon carbide switch, but the invention is not limited thereto.
数码信号处理器160耦接至主动式开关元件S1的控制端,用以控制主动式开关元件S1的导通状态,包括导通状态以及断路状态。于本较佳实施例中,电源转换装置100还包含电容元件C1以及电感元件L1,其中,电容元件C1与电子性负载202并联,电感元件L1与电子性负载202串联。其中,当数码信号处理器160将主动式开关元件S1切换至断路状态时,电容元件C1以及电感元件L1可形成传统的电感-电容滤波电路(LCfilter),具有固定的滤波系数。当数码信号处理器160将主动式开关元件S1切换至导通状态时,便可动态调整电感-电容滤波电路的操作特性,藉此达到功率因数(powerfactor)的校正功能。The digital signal processor 160 is coupled to the control terminal of the active switch element S1 for controlling the conduction state of the active switch element S1 , including the conduction state and the disconnection state. In this preferred embodiment, the power conversion device 100 further includes a capacitive element C1 and an inductive element L1 , wherein the capacitive element C1 is connected in parallel with the electronic load 202 , and the inductive element L1 is connected in series with the electronic load 202 . Wherein, when the digital signal processor 160 switches the active switching element S1 to the off state, the capacitive element C1 and the inductive element L1 can form a traditional inductance-capacitance filter circuit (LC filter) with a fixed filter coefficient. When the digital signal processor 160 switches the active switching element S1 to the conduction state, the operating characteristics of the inductor-capacitor filter circuit can be dynamically adjusted, thereby achieving a power factor correction function.
此外,实际应用中,电源转换装置100可还包含另一电容元件C2耦接在输入端,作为高频滤波之用。In addition, in practical applications, the power conversion device 100 may further include another capacitive element C2 coupled to the input terminal for high-frequency filtering.
交流电源输入200可提供三相输入的交流电力信号204至电源转换装置100。整流模块110可对交流电源输入200提供的电力信号204进行整流。The AC power input 200 can provide a three-phase input AC power signal 204 to the power conversion device 100 . The rectification module 110 can rectify the power signal 204 provided by the AC power input 200 .
输入电压检测模块130耦接于整流模块110与主动式开关元件S1之间,输入电压检测模块130对整流后的电力信号进行取样并产生输入取样电压132的波形。输出电压检测模块140耦接于主动式开关元件S1与电子性负载202之间,用以取样输出取样电压的波形。电流检测模块150耦接于主动式开关元件S1,用以取样实际输入电流152的波形。The input voltage detection module 130 is coupled between the rectification module 110 and the active switching element S1 , the input voltage detection module 130 samples the rectified power signal and generates a waveform of the input sampling voltage 132 . The output voltage detection module 140 is coupled between the active switch element S1 and the electronic load 202 for sampling the waveform of the output sampling voltage. The current detection module 150 is coupled to the active switch element S1 for sampling the waveform of the actual input current 152 .
请一并参阅图2,其为图1中输入电压检测模块130产生的输入取样电压132其波形的示意图。图2中为输入取样电压132的波形以及交流电源输入200提供的电力信号204的三相电压波形。Please also refer to FIG. 2 , which is a schematic diagram of the waveform of the input sampling voltage 132 generated by the input voltage detection module 130 in FIG. 1 . FIG. 2 shows the waveform of the input sample voltage 132 and the three-phase voltage waveform of the power signal 204 provided by the AC power input 200 .
如图2所示,交流电力信号经过整流模块110的整流之后,输入电压检测模块130取样产生的输入取样电压132的波形为一高频信号输入取样电压132的波形。本较佳实施例中将输入取样电压132的波形传送至数码处理模块160进行进一步处理,具体处理方式于下列段落详细说明。As shown in FIG. 2 , after the AC power signal is rectified by the rectification module 110 , the waveform of the input sampling voltage 132 generated by sampling by the input voltage detection module 130 is a waveform of a high frequency signal input sampling voltage 132 . In this preferred embodiment, the waveform of the input sampling voltage 132 is sent to the digital processing module 160 for further processing, and the specific processing methods are described in detail in the following paragraphs.
数码处理模块160耦接至输入电压检测模块130、输出电压检测模块140以及电流检测模块150。请一并参阅图3,其为根据本发明的一较佳实施例中数码处理模块160的功能方块图。The digital processing module 160 is coupled to the input voltage detection module 130 , the output voltage detection module 140 and the current detection module 150 . Please also refer to FIG. 3 , which is a functional block diagram of the digital processing module 160 according to a preferred embodiment of the present invention.
如图3所示,数码处理模块160包含基准电压波形产生器162、输出电压反馈调节器164、电流基准命令产生器166、电流反馈调节器168、开关信号产生器169以及驱动模块167。As shown in FIG. 3 , the digital processing module 160 includes a reference voltage waveform generator 162 , an output voltage feedback regulator 164 , a current reference command generator 166 , a current feedback regulator 168 , a switching signal generator 169 and a driving module 167 .
驱动模块167耦接至主动式开关元件S1的控制端,用以控制主动式开关元件S1的导通状态,包括导通状态以及断路状态,数码信号处理器160通过驱动模块167切换主动式开关元件S1。The driving module 167 is coupled to the control terminal of the active switching element S1 to control the conduction state of the active switching element S1, including the conducting state and the disconnecting state. The digital signal processor 160 switches the active switching element through the driving module 167 S1.
其中,基准电压波形产生器162与输入电压检测模块130耦接。输出电压反馈调节器164与输出电压检测模块140耦接,且上述基准电压波形产生器162、输出电压反馈调节器164、电流基准命令产生器166、电流反馈调节器168以及开关信号产生器169是由一处理器所包装涵盖,然此技术为本领域技术人员所了解的技术,故不在此追加详述其中具体电路逻辑。Wherein, the reference voltage waveform generator 162 is coupled to the input voltage detection module 130 . The output voltage feedback regulator 164 is coupled to the output voltage detection module 140, and the reference voltage waveform generator 162, the output voltage feedback regulator 164, the current reference command generator 166, the current feedback regulator 168 and the switch signal generator 169 are It is packaged and covered by a processor, but this technology is understood by those skilled in the art, so the specific circuit logic thereof will not be described in detail here.
基准电压波形产生器162根据输入电压检测模块130取样的输入取样电压132的波形进而产生基准电压波形163,请参阅图4,其为图3中的基准电压波形产生器162产生的基准电压波形163的示意图。基准电压波形产生器162产生的基准电压波形163的频率低于输入取样电压132的波形,如图4所示,基准电压波形163的频率可为输入取样电压132频率的二分之一倍,但本发明并不以此为限。The reference voltage waveform generator 162 generates a reference voltage waveform 163 according to the waveform of the input sampling voltage 132 sampled by the input voltage detection module 130, please refer to FIG. 4 , which is the reference voltage waveform 163 generated by the reference voltage waveform generator 162 in FIG. 3 schematic diagram. The frequency of the reference voltage waveform 163 produced by the reference voltage waveform generator 162 is lower than the waveform of the input sampling voltage 132. As shown in FIG. The present invention is not limited thereto.
一般而言,输入取样电压132的波形的频率通常大于电流波形的变化频率,基准电压波形产生器162产生的基准电压波形163的频率应较贴近输入的电力信号204其三相电压波形的变化频率,以利于后续的功率因数调整。Generally speaking, the frequency of the waveform of the input sampling voltage 132 is usually greater than the variation frequency of the current waveform, and the frequency of the reference voltage waveform 163 generated by the reference voltage waveform generator 162 should be closer to the variation frequency of the three-phase voltage waveform of the input power signal 204 , in order to facilitate subsequent power factor adjustment.
请一并参阅图5,其为本较佳实施例中电流检测模块150取样的实际输入电流152的波形、电力信号204的电压波形、电力信号204的电流波形以及基准电压波形163的对照示意图。Please also refer to FIG. 5 , which is a comparison diagram of the waveform of the actual input current 152 sampled by the current detection module 150 , the voltage waveform of the power signal 204 , the current waveform of the power signal 204 , and the reference voltage waveform 163 in this preferred embodiment.
电流基准命令产生器166分别与基准电压波形产生器162以及输出电压反馈调节器164耦接。其中,输出电压反馈调节器164与输出电压检测模块140耦接,用以根据输出取样电压142的波形产生控制信号161。The current reference command generator 166 is coupled to the reference voltage waveform generator 162 and the output voltage feedback regulator 164 respectively. Wherein, the output voltage feedback regulator 164 is coupled to the output voltage detection module 140 for generating the control signal 161 according to the waveform of the output sampling voltage 142 .
电流基准命令产生器166根据基准电压波形产生器162所输出的基准电压波形163以及输出电压反馈调节器164所输出的控制信号161两者的乘积以产生电流基准命令165。The current reference command generator 166 generates the current reference command 165 according to the product of the reference voltage waveform 163 output by the reference voltage waveform generator 162 and the control signal 161 output by the output voltage feedback regulator 164 .
其中,基准电压波形产生器162产生的基准电压波形163(如图4及图5所示)决定电流基准命令165的电流脉宽,此外,基准电压波形产生器162用以处理输入取样电压132的波形,并使输入取样电压132的波形的频率降低。输出电压反馈调节器164所输出的控制信号161决定电流基准命令165的电流幅度。电流基准命令165的用途在于使电源转换装置100的输入电流(可参考图5中的实际输入电流152的波形)追随(或对准)基准电压波形163。如此一来,便可使电源转换装置100的功率因数最佳化,达到最佳的电源转换效果。Wherein, the reference voltage waveform 163 generated by the reference voltage waveform generator 162 (as shown in FIG. 4 and FIG. 5 ) determines the current pulse width of the current reference command 165. In addition, the reference voltage waveform generator 162 is used to process the input sampling voltage 132 waveform, and reduce the frequency of the waveform of the input sampling voltage 132 . The control signal 161 output by the output voltage feedback regulator 164 determines the current magnitude of the current reference command 165 . The purpose of the current reference command 165 is to make the input current of the power conversion device 100 (refer to the waveform of the actual input current 152 in FIG. 5 ) track (or align) with the reference voltage waveform 163 . In this way, the power factor of the power conversion device 100 can be optimized to achieve the best power conversion effect.
此外,数码处理模块160中的电流反馈调节器168与电流检测模块150以及电流基准命令产生器166耦接,电流反馈调节器168根据电流检测模块150取样的实际输入电流152的波形调整电流基准命令165。In addition, the current feedback regulator 168 in the digital processing module 160 is coupled to the current detection module 150 and the current reference command generator 166. The current feedback regulator 168 adjusts the current reference command according to the waveform of the actual input current 152 sampled by the current detection module 150. 165.
于此实施例中,数码处理模块160中的电流反馈调节器168将电流基准命令165与实际输入电流152的波形进行处理产生开关调变信号170。In this embodiment, the current feedback regulator 168 in the digital processing module 160 processes the current reference command 165 and the waveform of the actual input current 152 to generate the switch modulation signal 170 .
开关信号产生器169与电流反馈调节器168耦接,开关信号产生器169根据开关调变信号170产生开关信号至驱动模块167,藉此通过驱动模块167动态调整该主动式开关元件S1。The switching signal generator 169 is coupled to the current feedback regulator 168 , and the switching signal generator 169 generates a switching signal to the driving module 167 according to the switching modulation signal 170 , so as to dynamically adjust the active switching element S1 through the driving module 167 .
电流反馈调节器168可持续对电流基准命令进行回馈调整,直到实际输入电流波形152追随基准电压波形163的频率。也就是,使电源转换装置100的功率因数最佳化,达到最佳的电源转换效果。The current feedback regulator 168 can continue to make feedback adjustments to the current reference command until the actual input current waveform 152 tracks the frequency of the reference voltage waveform 163 . That is, the power factor of the power conversion device 100 is optimized to achieve the best power conversion effect.
于本实施例中,采用高频切换的主动式开关元件S1,不需要采用大电感值的电感元件L1或大电容值的电容元件C1,可降低电感元件L1及电容元件C1的体积。此外,基准电压波形163(如图4所示)由数码处理模块160可程式化(programmable)产生,大大提高功率因数改善的可塑性。In this embodiment, the active switching element S1 with high frequency switching is adopted, and the inductance element L1 with large inductance or the capacitance element C1 with large capacitance is not required, so that the volume of the inductance element L1 and the capacitance element C1 can be reduced. In addition, the reference voltage waveform 163 (as shown in FIG. 4 ) is generated programmable by the digital processing module 160 , which greatly improves the plasticity of power factor improvement.
本实施例中电源转换装置100并不以包含单一个主动式开关元件S1为限,于此实施例中,电源转换装置100可进一步包含开关元件S2,其中开关元件S2串联于电感元件L1与电子性负载202之间。开关元件S2可为被动式开关元件,或亦可为主动式开关元件,于一较佳实施例中,开关元件S2系为一二极管。In this embodiment, the power conversion device 100 is not limited to include a single active switching element S1. In this embodiment, the power conversion device 100 may further include a switching element S2, wherein the switching element S2 is connected in series with the inductance element L1 and the electronic Sex load between 202. The switching element S2 can be a passive switching element, or can also be an active switching element. In a preferred embodiment, the switching element S2 is a diode.
此外,本案的电源转换装置100具有电路可变性,可选择传统电感-电容滤波器电路(将S1断路)或具功率因数改善电路(切换S1的导通状态),并具有升压功能,与现有技术比较,提高了电路使用的方便性。In addition, the power conversion device 100 of this case has circuit variability, and can choose a traditional inductance-capacitor filter circuit (disconnecting S1) or a power factor improvement circuit (switching the conduction state of S1), and has a boost function. There are technical comparisons, which improve the convenience of using the circuit.
此外,本发明的电源转换装置的内部电路元件并不以图1与图3所示的实施例为限,请参阅图6与图7,图6为根据本发明的另一实施例中一种电源转换装置102的示意图,图7为图6的实施例中数码处理模块160及其周边元件的功能方块图。In addition, the internal circuit elements of the power conversion device of the present invention are not limited to the embodiment shown in FIG. 1 and FIG. 3 , please refer to FIG. 6 and FIG. 7 , FIG. 6 is a A schematic diagram of the power conversion device 102 , FIG. 7 is a functional block diagram of the digital processing module 160 and its peripheral components in the embodiment of FIG. 6 .
如图6所示,于此实施例中,电源转换装置102包含整流模块110、主动式开关元件S1、状态检测模块190以及数码处理模块160。整流模块110与交流电源输入200耦接。主动式开关元件S1耦接于整流模块110与电子性负载202之间,且主动式开关元件S1与电子性负载202并联。As shown in FIG. 6 , in this embodiment, the power conversion device 102 includes a rectification module 110 , an active switching element S1 , a state detection module 190 and a digital processing module 160 . The rectification module 110 is coupled to the AC power input 200 . The active switching element S1 is coupled between the rectification module 110 and the electronic load 202 , and the active switching element S1 is connected in parallel with the electronic load 202 .
须特别说明的是,于此实施例中,状态检测模块190耦接于整流模块110与电子性负载202之间,状态检测模块190用以检测电源转换装置102的状态并对应输出一输入取样电压132的波形、输出取样电压142的波形以及实际输入电流152的波形,如图6与图7所示。It should be noted that in this embodiment, the state detection module 190 is coupled between the rectification module 110 and the electronic load 202, and the state detection module 190 is used to detect the state of the power conversion device 102 and output an input sampling voltage accordingly The waveform of 132 , the waveform of the output sampling voltage 142 and the waveform of the actual input current 152 are shown in FIG. 6 and FIG. 7 .
数码处理模块160接收输入取样电压132的波形、输出取样电压142的波形以及实际输入电流152的波形。The digital processing module 160 receives the waveform of the input sampling voltage 132 , the waveform of the output sampling voltage 142 and the waveform of the actual input current 152 .
如图7所示,数码处理模块160包含基准电压波形产生器162、输出电压反馈调节器164、电流基准命令产生器166、电流反馈调节器168、开关信号产生器169以及驱动模块167。其中,基准电压波形产生器162、输出电压反馈调节器164以及电流反馈调节器168分别与状态检测模块190耦接。As shown in FIG. 7 , the digital processing module 160 includes a reference voltage waveform generator 162 , an output voltage feedback regulator 164 , a current reference command generator 166 , a current feedback regulator 168 , a switching signal generator 169 and a driving module 167 . Wherein, the reference voltage waveform generator 162 , the output voltage feedback regulator 164 and the current feedback regulator 168 are respectively coupled to the state detection module 190 .
基准电压波形产生器162由状态检测模块190接收输入取样电压132的波形。输出电压反馈调节器164由状态检测模块190接收输出取样电压142的波形。电流反馈调节器168由状态检测模块190接收实际输入电流152的波形。The reference voltage waveform generator 162 receives the waveform of the input sampling voltage 132 from the state detection module 190 . The output voltage feedback regulator 164 receives the waveform of the output sampling voltage 142 from the state detection module 190 . The current feedback regulator 168 receives the waveform of the actual input current 152 from the state detection module 190 .
其中,数码处理模块160于利用输入取样电压132的波形产生基准电压波形163(可一并参阅先前实施例的图4与图5)后,产生电流基准命令165(可一并参阅先前实施例的图5)进而控制主动式开关元件S1,直到实际输入电流152的波形追随基准电压波形163。Wherein, the digital processing module 160 generates a current reference command 165 after using the waveform of the input sampling voltage 132 to generate a reference voltage waveform 163 (refer to FIG. 4 and FIG. 5 of the previous embodiment together) (refer to FIG. 5 of the previous embodiment together). FIG. 5 ) and then control the active switching element S1 until the waveform of the actual input current 152 follows the reference voltage waveform 163 .
此外,此实施例的电源转换装置102以及数码处理模块160其内部各元件的作动原理及信号处理内容,大致与先前实施例中的电源转换装置100相似,请参阅先前实施例及图1至图5相对应内容,在此不另赘述。In addition, the operating principle and signal processing content of the power conversion device 102 and the digital processing module 160 in this embodiment are roughly similar to the power conversion device 100 in the previous embodiment. Please refer to the previous embodiment and FIGS. The content corresponding to FIG. 5 will not be repeated here.
综上所述,本揭示文件提出一种电源转换装置的线路架构,以达到功率因数修正及改善输入电流谐波的功效,使其能符合电力规范标准。本发明将输入电压检测装置所得的输入电压波形,送入数码处理模块预先处理进行频率调整,将输入电压波形的变化频率调整至与电流变化频率一致。藉此,产生主动式开关元件所需的开关信号,进而达到改善功因及降低电流谐波的目的。To sum up, this disclosed document proposes a circuit structure of a power conversion device to achieve power factor correction and improve the effect of input current harmonics, so that it can meet the power standard. In the invention, the input voltage waveform obtained by the input voltage detection device is sent to a digital processing module for pre-processing for frequency adjustment, and the change frequency of the input voltage waveform is adjusted to be consistent with the current change frequency. In this way, the switching signal required by the active switching element is generated, thereby achieving the purpose of improving the power factor and reducing the current harmonic.
虽然本揭示内容已以实施方式揭示如上,然其并非用以限定本揭示内容,任何本领域技术人员,在不脱离本揭示内容的精神和范围内,当可作各种的更动与润饰,因此本揭示内容的保护范围当视所附的申请权利要求范围所界定者为准。Although the present disclosure has been disclosed above in terms of implementation, it is not intended to limit the present disclosure. Any person skilled in the art may make various modifications and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure should be defined by the appended application claims.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210146566.6A CN103391014B (en) | 2012-05-11 | 2012-05-11 | power conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210146566.6A CN103391014B (en) | 2012-05-11 | 2012-05-11 | power conversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103391014A CN103391014A (en) | 2013-11-13 |
CN103391014B true CN103391014B (en) | 2016-03-30 |
Family
ID=49535198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210146566.6A Active CN103391014B (en) | 2012-05-11 | 2012-05-11 | power conversion device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103391014B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109152143B (en) * | 2015-01-16 | 2020-06-19 | 矽力杰半导体技术(杭州)有限公司 | LED driver and LED lighting device |
CN107820347A (en) * | 2017-11-30 | 2018-03-20 | 欧普照明股份有限公司 | A kind of driving power and lighting device |
CN111225476A (en) * | 2020-03-11 | 2020-06-02 | 深圳市明微电子股份有限公司 | LED drive control circuit and lamp |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5146398A (en) * | 1991-08-20 | 1992-09-08 | Led Corporation N.V. | Power factor correction device provided with a frequency and amplitude modulated boost converter |
CN1233104A (en) * | 1999-05-05 | 1999-10-27 | 浙江大学 | single-switch three-phase power factor correction method and circuit |
CN101202513A (en) * | 2007-10-31 | 2008-06-18 | 葛铮 | On-line separate AC/DC power supply with PFC circuit |
CN101268603A (en) * | 2005-09-22 | 2008-09-17 | 雅迪信科技有限公司 | Digital power factor correction controller and AC to DC power supply including the same |
CN101702587A (en) * | 2009-11-16 | 2010-05-05 | 无锡睿阳微电子科技有限公司 | Control circuit capable of increasing power factor and revising load response |
CN102356537A (en) * | 2009-03-18 | 2012-02-15 | 株式会社村田制作所 | Pfc converter |
-
2012
- 2012-05-11 CN CN201210146566.6A patent/CN103391014B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5146398A (en) * | 1991-08-20 | 1992-09-08 | Led Corporation N.V. | Power factor correction device provided with a frequency and amplitude modulated boost converter |
CN1233104A (en) * | 1999-05-05 | 1999-10-27 | 浙江大学 | single-switch three-phase power factor correction method and circuit |
CN101268603A (en) * | 2005-09-22 | 2008-09-17 | 雅迪信科技有限公司 | Digital power factor correction controller and AC to DC power supply including the same |
CN101202513A (en) * | 2007-10-31 | 2008-06-18 | 葛铮 | On-line separate AC/DC power supply with PFC circuit |
CN102356537A (en) * | 2009-03-18 | 2012-02-15 | 株式会社村田制作所 | Pfc converter |
CN101702587A (en) * | 2009-11-16 | 2010-05-05 | 无锡睿阳微电子科技有限公司 | Control circuit capable of increasing power factor and revising load response |
Also Published As
Publication number | Publication date |
---|---|
CN103391014A (en) | 2013-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103155714A (en) | Led driving chip and circuit with power compensation | |
US20170170745A1 (en) | Power factor correction conversion device and control method thereof | |
CN101227780A (en) | LED lamp bank driving power supply device | |
CN105826996B (en) | A kind of control method of wireless charging system for electric automobile and wireless charging | |
CN106533152B (en) | A kind of device and method improving Boost three-level converter PF | |
CN103346708B (en) | Method for integrating grading variable frequency heavy-load soft starting and harmonic filtering of motor | |
CN103391014B (en) | power conversion device | |
TWI478472B (en) | Power converter apparatus | |
CN204720990U (en) | Reactive power compensation active filter device | |
CN207926186U (en) | A kind of active filter | |
CN102611296B (en) | Switch switching-off triggering circuit and power factor correction circuit | |
CN206223830U (en) | A kind of novel energy-conserving feedback type electronic load based on frequency converter | |
CN205583803U (en) | A wireless charging system for electric vehicles | |
CN211046756U (en) | PFC circuit | |
CN104467388B (en) | Power supply based on the conduction type harmonics restraint of PFC | |
TW201403287A (en) | A control method and apparatus for reducing total current harmonic distortion and output current by primary-side control of power factor corrector in LED power driver | |
CN202818090U (en) | Bridgeless power factor corrector with single inductance element | |
CN207251479U (en) | A kind of self-powered circuit of synchronous rectification and its Switching Power Supply | |
CN207340201U (en) | An Energy Saving Control System for Heating Devices | |
CN206575337U (en) | The chip power supply circuit converted based on civil power | |
CN205544919U (en) | PFC circuit output voltage filter | |
CN217721026U (en) | PFC (power factor correction) following circuit | |
CN218570087U (en) | Power factor correction circuit and switching power supply and power equipment comprising same | |
CN203299743U (en) | Computer power supply | |
CN204835962U (en) | Voltage doubler rectifier circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |