CN103389471B - A kind of based on the cycle life of lithium ion battery indirect predictions method of GPR with indeterminacy section - Google Patents
A kind of based on the cycle life of lithium ion battery indirect predictions method of GPR with indeterminacy section Download PDFInfo
- Publication number
- CN103389471B CN103389471B CN201310317281.9A CN201310317281A CN103389471B CN 103389471 B CN103389471 B CN 103389471B CN 201310317281 A CN201310317281 A CN 201310317281A CN 103389471 B CN103389471 B CN 103389471B
- Authority
- CN
- China
- Prior art keywords
- battery
- gpr
- pressure drop
- capacity
- discharge time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 81
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 34
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 238000012549 training Methods 0.000 claims abstract description 62
- 238000006731 degradation reaction Methods 0.000 claims abstract description 41
- 230000015556 catabolic process Effects 0.000 claims abstract description 40
- 238000007599 discharging Methods 0.000 claims description 19
- 238000007600 charging Methods 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 claims description 4
- 238000002790 cross-validation Methods 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000007850 degeneration Effects 0.000 claims 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052744 lithium Inorganic materials 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 10
- 238000012795 verification Methods 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 238000010835 comparative analysis Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 235000000332 black box Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 238000001566 impedance spectroscopy Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000005184 irreversible process Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种基于GPR带有不确定区间的锂离子电池循环寿命间接预测方法,本发明涉及一种电池寿命预测方法。本发明解决了现有方法无法实现锂电池循环寿命预测的问题,本发明采用ESN算法,进行退化建模,采用高斯过程回归的建模方法,建立基于GPR的等压降放电时间预测模型进行基于ESN的退化模型训练与基于GPR的等压降放电时间预测模型训练,获得等压降放电时间预测模型,进行基于GPR的等压降放电时间预测模型,获得等压降放电时间的预测值;进行基于ESN的退化模型,获得下N1个放电周期的电池的放电容量;电池的剩余容量值与电池容量的失效阈值行比较,完成电池循环寿命的间接预测。本发明适用于电池寿命预测。
An indirect prediction method for cycle life of a lithium-ion battery based on GPR with an uncertain interval, and the invention relates to a method for predicting battery life. The present invention solves the problem that the existing method cannot realize lithium battery cycle life prediction. The present invention adopts the ESN algorithm to carry out degradation modeling, adopts the Gaussian process regression modeling method, and establishes a GPR-based equal pressure drop discharge time prediction model based on ESN degradation model training and GPR-based equal pressure drop discharge time prediction model training, obtain the equal pressure drop discharge time prediction model, carry out the GPR-based equal pressure drop discharge time prediction model, and obtain the predicted value of the equal pressure drop discharge time; Based on the degradation model of ESN, the discharge capacity of the battery in the next N 1 discharge cycles is obtained; the remaining capacity value of the battery is compared with the failure threshold of the battery capacity, and the indirect prediction of the battery cycle life is completed. The invention is suitable for battery life prediction.
Description
技术领域 technical field
本发明涉及一种电池寿命预测方法。 The invention relates to a battery life prediction method.
背景技术 Background technique
锂离子电池虽然是一种能量存储和转换设备,但它并不是可以无限使用的,即它的循环使用寿命是有限的,这是因为电池的性能会随着电池的使用而逐渐下降。 Although a lithium-ion battery is an energy storage and conversion device, it is not infinitely usable, that is, its cycle life is limited, because the performance of the battery will gradually decline as the battery is used.
锂离子电池是一种可充电电池,它主要依靠锂离子在正极和负极之间移动来工作,整个电池的化学动力来自于它两个电极化学势的差异。蓄电池充电时将电能转换为化学能存储在电池中,放电时则将化学能转换为电能供负载使用。由于两种能量转换的可逆性,似乎充放电的循环过程是无限的,其实不然,这是因为充放电的循环过程中,电池内部会发生一些不可逆的过程,导致内部阻抗、输出电流等的变化,引起电池容量的衰减,从而影响了电池的循环使用寿命。 Lithium-ion battery is a rechargeable battery that mainly relies on the movement of lithium ions between the positive and negative electrodes. The chemical power of the entire battery comes from the difference in the chemical potential of its two electrodes. When the battery is charging, it converts electrical energy into chemical energy and stores it in the battery, and when discharging, it converts chemical energy into electrical energy for the load to use. Due to the reversibility of the two kinds of energy conversion, it seems that the cycle process of charge and discharge is infinite, but it is not. This is because some irreversible processes will occur inside the battery during the cycle process of charge and discharge, resulting in changes in internal impedance, output current, etc. , causing the attenuation of battery capacity, thus affecting the cycle life of the battery.
锂离子电池在循环充放电过程中,电池内部会发生一些不可逆的化学反应过程,导致电极上“嵌入/脱出”的Li+的损失,从而使电池内部阻抗提高,直接表现为电池开路电压的下降。 During the cycle charge and discharge process of lithium-ion batteries, some irreversible chemical reaction processes will occur inside the battery, resulting in the loss of "embedded/extracted" Li+ on the electrodes, thereby increasing the internal impedance of the battery, which is directly manifested as a drop in the open circuit voltage of the battery.
利用电阻阻抗谱法测得电池内阻阻抗包括电荷转移电阻RCT、Warburg阻抗RW和电解质电阻RE,其中Warburg阻抗RW对电池退化过程的影响微不足道,故可忽略。NASA的PCoE研究中心经过分析大量的实验数据发现,电池容量与内部阻抗之间具有高度的线性相关性,电池容量随着电池的老化过程将会逐渐退化,即每次充放电循环后的电池容量会逐渐下降,从而达不到额定容量,因此可以利用电池容量的退化作为电池循环使用寿命的主要表征,但是由于锂电池寿命的预测具有的历史数据少、模型难建立、不确定性的缺点,而无法实现锂电池循环寿命预测。 The internal resistance of the battery measured by resistance impedance spectroscopy includes charge transfer resistance RCT, Warburg resistance RW and electrolyte resistance RE, among which the impact of Warburg resistance RW on the battery degradation process is negligible, so it can be ignored. NASA's PCoE Research Center has analyzed a large amount of experimental data and found that there is a high linear correlation between battery capacity and internal impedance, and the battery capacity will gradually degrade as the battery ages, that is, the battery capacity after each charge and discharge cycle Therefore, the degradation of battery capacity can be used as the main indicator of battery cycle life. However, due to the shortcomings of less historical data, difficult model establishment, and uncertainty in the prediction of lithium battery life, However, it is impossible to predict the cycle life of lithium batteries.
发明内容 Contents of the invention
本发明为了解决现有方法无法实现锂电池循环寿命预测的问题,提出了一种基于GPR带有不确定区间的锂离子电池循环寿命间接预测方法。 In order to solve the problem that the existing method cannot realize the cycle life prediction of the lithium battery, the present invention proposes an indirect prediction method for the cycle life of the lithium ion battery based on GPR with an uncertain interval.
本发明所述一种基于GPR带有不确定区间的锂离子电池循环寿命间接预测方法,该方法的具体步骤为: A kind of lithium-ion battery cycle life indirect prediction method based on GPR with uncertain interval described in the present invention, the concrete steps of this method are:
步骤一、采集待测电池的充放电周期次数x、每个充放电周期的放电电压及电池容量和每个充放电周期放出的电量z, Step 1. Collect the number of charge and discharge cycles x of the battery to be tested, the discharge voltage and battery capacity of each charge and discharge cycle, and the amount of electricity z released in each charge and discharge cycle.
步骤二、根据采集待测电池的充放电周期次数x和每个充放电周期的放电电压及电池容量计算出对应的等压降放电时间差,获得等压降放电时间序列y; Step 2. Calculate the corresponding equal pressure drop discharge time difference according to the number x of charge and discharge cycles of the collected battery to be tested and the discharge voltage and battery capacity of each charge and discharge cycle, and obtain the equal pressure drop discharge time series y;
步骤三、采用ESN算法,利用等压降放电时间序列y和每次充放电后的电池的剩余容量数据z进行退化建模,获得基于ESN的退化模型; Step 3: Use the ESN algorithm to perform degradation modeling using the equal pressure drop discharge time series y and the remaining capacity data z of the battery after each charge and discharge, and obtain a degradation model based on ESN;
步骤四、采用高斯过程回归的建模方法,利用充放电周期次数x及电池充放电周期对应的等压降放电时间序列y建立基于GPR的等压降放电时间预测模型; Step 4, using the Gaussian process regression modeling method, using the number of charge and discharge cycles x and the equal pressure drop discharge time series y corresponding to the battery charge and discharge cycle to establish a GPR-based equal pressure drop discharge time prediction model;
步骤五、将等压降放电时间序列数据y和每个放电周期放出的电量z的数据集作为训练集进行基于ESN的退化模型训练,将电池的充放电周期次数x和等压降放电时间序列y的数据集作为训练数据进行基于GPR的等压降放电时间预测模型训练,获得等压降放电时间预测模型,其中N为正整数; Step 5, the data set of the equal pressure drop discharge time series data y and the electric quantity z released in each discharge cycle As a training set for ESN-based degradation model training, the data set of the number of battery charge and discharge cycles x and the equal pressure drop discharge time series y As the training data, the GPR-based equal pressure drop discharge time prediction model training is carried out to obtain the equal pressure drop discharge time prediction model, wherein N is a positive integer;
步骤六、将下N1个充放电周期次数集输入基于GPR的等压降放电时间预测模型,获得等压降放电时间的预测值 Step 6. Set the next N 1 charge and discharge cycle times Input the GPR-based equal pressure drop discharge time prediction model to obtain the predicted value of equal pressure drop discharge time
步骤七、将获得等压降放电时间的预测值代入基于ESN的退化模型,获得下N1个放电周期的电池的放电容量 Step 7. The predicted value of the equal pressure drop discharge time will be obtained Substitute into the degradation model based on ESN to obtain the discharge capacity of the battery for the next N 1 discharge cycles
步骤八、将电池的初始容量减去下N1个充放电周期的电池的放电容量后的电池的剩余容量值与电池容量的失效阈值进行比较,判断电池的剩余容量值是否等于电池容量的失效阈值,是则将充放电周期N作为电池的剩余寿命,完成基于GPR带有不确定区间的锂离子电池循环寿命的间接预测,否则执行步骤九; Step 8. Subtract the initial capacity of the battery from the discharge capacity of the battery for the next N 1 charge and discharge cycles The remaining capacity value of the battery is compared with the failure threshold of the battery capacity to determine whether the remaining capacity of the battery is equal to the failure threshold of the battery capacity. The indirect prediction of the lithium-ion battery cycle life in the interval, otherwise perform step nine;
步骤九、将电池的剩余容量值与电池容量的失效阈值进行比较,如果电池的剩余容量值大于电池容量的失效阈值,则令N=N+N1,返回执行步骤五,如果电池的剩余容量值小于电池容量的失效阈值,则令N=N-N2,返回执行步骤五,其中N2为小于N1的正整数。 Step 9. Compare the remaining capacity of the battery with the failure threshold of the battery capacity. If the remaining capacity of the battery is greater than the failure threshold of the battery capacity, set N=N+N 1 and return to step 5. If the remaining capacity of the battery If the value is less than the failure threshold of the battery capacity, set N=NN 2 and return to step 5, where N 2 is a positive integer smaller than N 1 .
本发明采用ESN算法与高斯过程回归的建模方法结合,采用GPR算法建立等压降放电时间序列预测模型来预测未来时刻的等压降放电时间序列,最后将预测得到的等压降放电时间序列输入到锂离子电池的退化模型,从而实现对下N1个时刻的电池容量的预测,进而实现对锂离子电池循环寿命间接预测。 The present invention combines the ESN algorithm with the Gaussian process regression modeling method, adopts the GPR algorithm to establish the equal pressure drop discharge time series prediction model to predict the equal pressure drop discharge time series in the future, and finally uses the predicted equal pressure drop discharge time series Input to the degradation model of the lithium-ion battery, so as to realize the prediction of the battery capacity at the next N 1 time, and then realize the indirect prediction of the cycle life of the lithium-ion battery.
附图说明 Description of drawings
图1基于ESN的NASA锂离子电池的退化建模验证曲线图,图中,曲线1为估计值曲线,曲线2为真实值曲线; Fig. 1 is the degradation modeling verification curve of NASA lithium-ion battery based on ESN. In the figure, curve 1 is the estimated value curve, and curve 2 is the real value curve;
图2为建模得到的锂离子电池容量估算值与测得容量真实值之间的误差曲线图; Fig. 2 is the error curve graph between the estimated value of lithium-ion battery capacity obtained by modeling and the actual value of measured capacity;
图3为采用30%数据进行模型训练的预测效果图,图中3为80%失效阈值时真实的剩余使用寿命,4为置信区间,5为80%失效阈值时的预测均值,6为80%失效阈值,7为置信区间,8为70%失效阈值时的预测均值,9为70%失效阈值,10为80%失效阈值时的真实的剩余使用寿命; Figure 3 is the prediction effect diagram of model training using 30% data. In the figure, 3 is the real remaining service life at the failure threshold of 80%, 4 is the confidence interval, 5 is the predicted mean value at the failure threshold of 80%, and 6 is 80%. Failure threshold, 7 is the confidence interval, 8 is the predicted mean value at the 70% failure threshold, 9 is the 70% failure threshold, and 10 is the real remaining service life at the 80% failure threshold;
图4为采用50%数据进行模型训练的预测效果图; Fig. 4 is a prediction effect diagram of model training using 50% data;
图5采用70%数据进行模型训练的预测效果图。 Figure 5 is the prediction effect diagram of model training with 70% data.
具体实施方式 Detailed ways
具体实施方式一、本实施方式所述一种基于GPR带有不确定区间的锂离子电池循环寿命间接预测方法,该方法的具体步骤为: Specific Embodiments 1. A method for indirect prediction of cycle life of a lithium-ion battery based on GPR with an uncertain interval described in this embodiment, the specific steps of the method are:
步骤一、采集待测电池的充放电周期次数x、每个充放电周期的放电电压及电池容量和每个充放电周期放出的电量z, Step 1. Collect the number of charge and discharge cycles x of the battery to be tested, the discharge voltage and battery capacity of each charge and discharge cycle, and the amount of electricity z released in each charge and discharge cycle.
步骤二、根据采集待测电池的充放电周期次数x和每个充放电周期的放电电压及电池容量计算出对应的等压降放电时间差,获得等压降放电时间序列y; Step 2. Calculate the corresponding equal pressure drop discharge time difference according to the number x of charge and discharge cycles of the collected battery to be tested and the discharge voltage and battery capacity of each charge and discharge cycle, and obtain the equal pressure drop discharge time series y;
步骤三、采用ESN算法,利用等压降放电时间序列y和每次充放电后的电池的剩余容量数据z进行退化建模,获得基于ESN的退化模型; Step 3: Use the ESN algorithm to perform degradation modeling using the equal pressure drop discharge time series y and the remaining capacity data z of the battery after each charge and discharge, and obtain a degradation model based on ESN;
步骤四、采用高斯过程回归的建模方法,利用充放电周期次数x及电池充放电周期对应的等压降放电时间序列y建立基于GPR的等压降放电时间预测模型; Step 4, using the Gaussian process regression modeling method, using the number of charge and discharge cycles x and the equal pressure drop discharge time series y corresponding to the battery charge and discharge cycle to establish a GPR-based equal pressure drop discharge time prediction model;
步骤五、将等压降放电时间序列数据y和每个放电周期放出的电量z的数据集作为训练集进行基于ESN的退化模型训练,将电池的充放电周期次数x和等压降放电时间序列y的数据集作为训练数据进行基于GPR的等压降放电时间预测模型训练,获得等压降放电时间预测模型,其中N为正整数; Step 5, the data set of the equal pressure drop discharge time series data y and the electric quantity z released in each discharge cycle As a training set for ESN-based degradation model training, the data set of the number of battery charge and discharge cycles x and the equal pressure drop discharge time series y As the training data, the GPR-based equal pressure drop discharge time prediction model training is carried out to obtain the equal pressure drop discharge time prediction model, wherein N is a positive integer;
步骤六、将下N1个充放电周期次数集输入基于GPR的等压降放电时间预测模型,获得等压降放电时间的预测值 Step 6. Set the next N 1 charge and discharge cycle times Input the GPR-based equal pressure drop discharge time prediction model to obtain the predicted value of equal pressure drop discharge time
步骤七、将获得等压降放电时间的预测值代入基于ESN的退化模型,获得下N1个放电周期的电池的放电容量 Step 7. The predicted value of the equal pressure drop discharge time will be obtained Substitute into the degradation model based on ESN to obtain the discharge capacity of the battery for the next N 1 discharge cycles
步骤八、将电池的初始容量减去下N1个充放电周期的电池的放电容量后的电池的剩余容量值与电池容量的失效阈值进行比较,判断电池的剩余容量值是否等于电池容量的失效阈值,是则将充放电周期N1作为电池的剩余寿命,完成基于GPR带有不确定区间的锂离子电池循环寿命的间接预测,否则执行步骤九; Step 8. Subtract the initial capacity of the battery from the discharge capacity of the battery for the next N 1 charge and discharge cycles The final remaining capacity value of the battery is compared with the failure threshold of the battery capacity to determine whether the remaining capacity of the battery is equal to the failure threshold of the battery capacity. Determine the indirect prediction of the lithium-ion battery cycle life of the interval, otherwise perform step nine;
步骤九、将电池的剩余容量值与电池容量的失效阈值进行比较,如果电池的剩余容量值大于电池容量的失效阈值,则令N=N+N1,返回执行步骤五,如果电池的剩余容量值小于电池容量的失效阈值,则令N=N-N2,返回执行步骤五,其中N2为小于N1的正整数。 Step 9. Compare the remaining capacity of the battery with the failure threshold of the battery capacity. If the remaining capacity of the battery is greater than the failure threshold of the battery capacity, set N=N+N 1 and return to step 5. If the remaining capacity of the battery If the value is less than the failure threshold of the battery capacity, set N=NN 2 and return to step 5, where N 2 is a positive integer smaller than N 1 .
本实施方式采用GPR算法建立等压降放电时间序列预测模型来预测未来时刻的等压降放电时间序列,最后将预测得到的等压降放电时间序列输入到锂离子电池的退化模型,从而实现对未来时刻容量的预测,。 In this embodiment, the GPR algorithm is used to establish an equal pressure drop discharge time series prediction model to predict the equal pressure drop discharge time series in the future, and finally the predicted equal pressure drop discharge time series is input into the degradation model of the lithium-ion battery, so as to achieve Forecast of capacity in the future moment,.
具体实施方式二、本实施方式是对具体实施方式一所述的一种基于GPR带有不确定区间的锂离子电池循环寿命间接预测方法的进一步说明,步骤三所述采用ESN算法,利用等压降放电时间序列y和电池的剩余容量数据z进行退化建模的方法为: Specific embodiment 2. This embodiment is a further description of the indirect prediction method for lithium-ion battery cycle life based on GPR with an uncertain interval described in specific embodiment 1. In step 3, the ESN algorithm is used, and the equal pressure is used. The method of degrading the discharge time series y and the remaining capacity data z of the battery is as follows:
步骤三一、采用交叉验证的方法,利用获取储备池规模N、谱半径sr、输入单元尺度和输入单元位移,并获得ESN的输出权值; Step 31. Using the method of cross-validation, obtain the output weight of the ESN by obtaining the reserve pool size N, the spectral radius sr, the input unit scale and the input unit displacement;
步骤三二、使用带有单调约束的二次规划方程训练ESN的输出权值,使电池容量估计值与真实值y(n)之间的误差平方和最小,完成退化建模。 Step 32. Use the quadratic programming equation with monotonic constraints to train the output weight of the ESN so that the battery capacity estimate The sum of squares of the error with the true value y(n) is the smallest, and the degradation modeling is completed.
ESN是一种黑箱方法,其建模结果不以具体表达式形式给出。其建模过程包括两部分:一是ESN训练过程,即将部分输入数据:等压降放电时间序列x(n)、输出数据:电池容量y(n)作为训练集,进行ESN训练,从而得到基于ESN的退化模型。在ESN模型中,共有4个参数影响建模性能,分别是储备池规模N、谱半径sr、输入单元尺度(InputScaling,IS)和输入单元位移(InputShift,IF)。训练过程就是采用交叉验证的方法获取上述4个参数的最优值,并使用带有单调约束的二次规划方程训练ESN的输出权值,从而使得电池容量估计值与真实值y(n)之间的误差平方和最小。二是模型验证过程,即将剩余的输入数据带入退化模型,计算得到电池容量估计值,并将该估计值与真实数据进行对比分析,从而验证退化模型的准确性。 ESN is a black-box method, and its modeling results are not given in the form of specific expressions. Its modeling process includes two parts: one is the ESN training process, that is, part of the input data: constant pressure drop discharge time series x(n), output data: battery capacity y(n) is used as the training set, and ESN training is carried out, so as to obtain the Degradation model of ESN. In the ESN model, there are four parameters that affect the modeling performance, namely the reserve pool size N, the spectral radius sr, the input unit scale (InputScaling, IS) and the input unit displacement (InputShift, IF). The training process is to use the cross-validation method to obtain the optimal value of the above four parameters, and use the quadratic programming equation with monotone constraints to train the output weight of the ESN, so that the battery capacity estimate The sum of squares of the error with the true value y(n) is the smallest. The second is the model verification process, which is to bring the remaining input data into the degradation model, calculate the estimated value of battery capacity, and compare and analyze the estimated value with the real data to verify the accuracy of the degradation model.
综上所述,基于ESN的电池退化建模过程就是根据训练数据确定ESN的4个参数最优值的过程,即储备池规模N、谱半径sr、输入单元尺度(InputScaling,IS)和输入单元位移(InputShift,IF)。这四个参数一旦确定,退化模型也就确定了,只是其具体的表达式无法给出。 To sum up, the battery degradation modeling process based on ESN is the process of determining the optimal value of the four parameters of ESN according to the training data, namely the reserve pool size N, spectral radius sr, input unit scale (InputScaling, IS) and input unit Shift(InputShift, IF). Once these four parameters are determined, the degradation model is also determined, but its specific expression cannot be given.
本实施方式所述的模型误差:使用均方根误差(RootMeanSquaredError,RMSE)作为逼近性能的评价指标,如公式: The model error described in this embodiment: use root mean square error (RootMeanSquaredError, RMSE) as the evaluation index of approximation performance, such as the formula:
式中,n为训练数据或者测试数据的长度,为ESN的输出值,即电池剩余容量预测值,y(i)为第i个电池剩余容量真实值 In the formula, n is the length of training data or test data, is the output value of the ESN, that is, the predicted value of the remaining capacity of the battery, and y(i) is the real value of the remaining capacity of the ith battery
整体拟合效果:采用R2评价函数的整体拟合效果,当模型的拟合效果非常差的时候,模型输出值与真实值的误差的平方和会大于模型输出值和真实值的均值的误差平方和,即R2可能会出现负值;如公式,式中,为的均值。 Overall fitting effect : using the overall fitting effect of the R2 evaluation function, when the fitting effect of the model is very poor, the sum of the squares of the error between the model output value and the true value will be greater than the error between the model output value and the mean value of the true value The sum of squares, that is, R 2 may have a negative value; such as the formula, in the formula, for mean value.
退化建模结果: Degradation modeling results:
按照上述的建模过程得到的退化模型参数及训练过程退化模型评价结果表1所示。 Table 1 shows the parameters of the degradation model obtained according to the above modeling process and the evaluation results of the degradation model during the training process.
表1退化模型结果及模型评价指标 Table 1 Degradation model results and model evaluation indicators
退化模型验证: Degradation model validation:
如上表所示得到了基于ESN的锂离子电池退化模型的4个参数,从得到了锂离子电池的退化模型,并通过计算得到训练过程模型的评价指标。对退化建模的准确性进行验证,将等压降放电时间序列带入电池退化模型,通过模型估算电池的容量值,并将该估算值与真实值进行对比分析,从而验证模型的准确性,其验证如图1所示。 As shown in the above table, the four parameters of the ESN-based lithium-ion battery degradation model are obtained, and the degradation model of the lithium-ion battery is obtained, and the evaluation index of the training process model is obtained by calculation. To verify the accuracy of the degradation modeling, the equal voltage drop discharge time series Bring in the battery degradation model, estimate the capacity value of the battery through the model, and compare and analyze the estimated value with the real value to verify the accuracy of the model. The verification is shown in Figure 1.
图1中曲线1为基于ESN退化模型计算得到的锂离子电池容量估算值曲线,点线2表示的为电池容量的真实值曲线。图2为建模得到的锂离子电池容量估算值与测得容量真实值之间的误差曲线图。 Curve 1 in Figure 1 is the estimated value curve of the lithium-ion battery capacity calculated based on the ESN degradation model, and the dotted line 2 represents the actual value curve of the battery capacity. Fig. 2 is a curve diagram of the error between the estimated value of the lithium-ion battery capacity obtained by modeling and the actual value of the measured capacity.
计算容量估算值与真实值之间的均方根误差和R2结果如表2所示。 The root mean square error and R2 results between the calculated capacity estimate and the true value are shown in Table 2 .
表2基于ESN的退化模型验证评价指标 Table 2 Evaluation index of degradation model verification based on ESN
综上所述,本发明所提出的采用等压降放电时间序列可以表征电池的容量,并通过ESN算法的实现了电池的退化建模,图1验证了电池退化模型的准确性,从图2可知模型误差在-0.04~0.12之间。从表2给出的均方根误差和模型的整体拟合效果也可表明本文提出的退化状态建模方法的有效性。 To sum up, the discharge time series with equal pressure drop proposed by the present invention can characterize the capacity of the battery, and realize the degradation modeling of the battery through the ESN algorithm. Figure 1 verifies the accuracy of the battery degradation model. From Figure 2 It can be seen that the model error is between -0.04 and 0.12. The root mean square error and the overall fitting effect of the model given in Table 2 can also show the validity of the degradation state modeling method proposed in this paper.
具体实施方式三、本实施方式是对具体实施方式一所述的一种基于GPR带有不确定区间的锂离子电池循环寿命间接预测方法的进一步说明,步骤四所述的采用高斯过程回归的建模方法,利用充放电周期次数x及电池充放电周期对应的等压降放电时间y序列,获得基于GPR的等压降放电时间预测模型的方法为: Specific Embodiment 3. This embodiment is a further explanation of the indirect prediction method for lithium-ion battery cycle life based on GPR with an uncertainty interval described in Specific Embodiment 1. The model method, using the number of charge and discharge cycles x and the battery charge and discharge cycle corresponding to the equal pressure drop discharge time y sequence, the method to obtain the prediction model of equal pressure drop discharge time based on GPR is as follows:
步骤四一、提取待测电池的充放电周期次数x、每个充放电周期的放电电压及电池容量的部分数据集进行预测模型训练,其中N为正整数; Step 41. Extract the number of charge and discharge cycles x of the battery to be tested, the discharge voltage of each charge and discharge cycle, and a partial data set of battery capacity Carry out prediction model training, where N is a positive integer;
步骤四二、将训练数据输入GPR模型,进行GPR预测模型训练,得到GPR预测模型; Step 42, input the training data into the GPR model, carry out the GPR prediction model training, and obtain the GPR prediction model;
步骤四三、根据得到GPR预测模型,将未来时刻的充放电周期输入预测模型,得到下N个时刻的容量预测值及方差,获得基于GPR的等压降放电时间预测模型。 Step 43: According to the obtained GPR prediction model, the charging and discharging cycle at the future moment Input the prediction model to get the capacity prediction value at the next N time And the variance, get the discharge time prediction model based on GPR equal pressure drop.
等压降放电时间序列预测是利用已知的充放电周期次数及充放电周期对应的等压降放电时间序列数据进行预测模型训练,得到一个最优的预测模型,然后用该模型外推未来若干周期的等压降放电时间。因为数据在采集过程中不可避免的会引入噪声,使得数据具有不确定性,充分考虑这一点,本发明采用高斯过程回归(GPR)算法进行数据测试和预测实验。高斯过程回归模型(GPR)是一种灵活的,具有不确定性表达的非参数模型,而且,GPR能够通过适当的高斯过程的核函数的组合来对任一系统的行为进行建模,最终实现基于贝叶斯预测框架的预测,在这个过程中可以灵活方便的结合先验知识。高斯过程的预测结果在输出预测结果的同时,还可以给出预测的方差,即确定了预测置信区间,增加了预测的准确性。现在,它已经成为电池状态预测和健康管理算法中非常重要的一部分。 Equal pressure drop discharge time series prediction is to use the known number of charge and discharge cycles and the equal pressure drop discharge time series data corresponding to the charge and discharge cycle to carry out prediction model training to obtain an optimal prediction model, and then use this model to extrapolate the future The constant voltage drop discharge time of the cycle. Because noise will inevitably be introduced in the data collection process, making the data uncertain, fully considering this point, the present invention uses Gaussian process regression (GPR) algorithm for data testing and prediction experiments. The Gaussian Process Regression Model (GPR) is a flexible, non-parametric model with uncertainty expression, and GPR can model the behavior of any system through the combination of appropriate Gaussian process kernel functions, and finally realize Forecasting based on the Bayesian forecasting framework, prior knowledge can be combined flexibly and conveniently in this process. The prediction result of the Gaussian process can also give the variance of the prediction while outputting the prediction result, that is, the prediction confidence interval is determined, which increases the accuracy of the prediction. Now, it has become a very important part of battery state prediction and health management algorithms.
GPR模型的输入数据为充放电周期次数,输入数据等压降放电时间。GPR预测模型有两个关键步骤,一是模型训练,二是模型预测,下面分别介绍。 The input data of the GPR model is the number of charge and discharge cycles, and the input data is the discharge time of the voltage drop. The GPR prediction model has two key steps, one is model training, and the other is model prediction, which will be introduced separately below.
GPR模型训练 GPR model training
高斯过程建模的思想就是不需要给出y=f(x)中f(x)的参数化或非参数化形式,直接在函数空间中将f(x)的取值看作是随机变量,将f(x)的先验概率分布p(f(x))看作是高斯分布。若给定数据集并定义输入数据矩阵X∈Rd×N,输出数据向量y∈RN×1。在给定数据集D的有限数据集合中,f(x1),...,f(xn)可构成随机变量的一个集合(每一个集合都看作一个随机变量),且具有联合高斯分布,它们形成的随机过程就称之为高斯过程。即 The idea of Gaussian process modeling is that there is no need to give the parametric or non-parametric form of f(x) in y=f(x), and the value of f(x) is directly regarded as a random variable in the function space. Think of the prior probability distribution p(f(x)) of f(x) as a Gaussian distribution. Given a data set And define the input data matrix X∈R d×N , and the output data vector y∈R N×1 . In the finite data set of a given data set D, f(x 1 ),...,f(x n ) can constitute a set of random variables (each set is regarded as a random variable), and have a joint Gaussian distribution, the random process they form is called a Gaussian process. Right now
f(x)~GP(m(x),k(xi,xj))(3) f(x)~GP(m(x),k(x i ,x j ))(3)
其中,m(x)=E[f(x)],k(xi,xj)=E[(f(xi)-m(xi)(f(xj)-m(xj))],符号E表示数学期望。m(x)为均值函数,k(xi,xj)为协方差函数。 Among them, m(x)=E[f(x)], k(x i , x j )=E[(f(x i )-m(x i )(f(x j )-m(x j ) )], the symbol E represents the mathematical expectation. m(x) is the mean function, and k( xi , x j ) is the covariance function.
将高斯过程应用于一般的回归建模问题,可考虑含噪声的观测目标值y,即 Applying the Gaussian process to the general regression modeling problem, the observed target value y containing noise can be considered, that is,
y=f(x)+ε(4) y=f(x)+ε(4)
其中ε为附加的与f(x)不相关的独立的高斯白噪声,即服从均值为零、方差为的正态分布,可记作对于(4)式,由于噪声ε为独立于f(x)的高斯白噪声,若f(x)为高斯过程,则y同样服从高斯分布,其有限观测值联合分布的集合可形成一个高斯过程,即 Where ε is an additional independent Gaussian white noise uncorrelated with f(x), that is, the mean is zero and the variance is The normal distribution of , can be written as For formula (4), since the noise ε is Gaussian white noise independent of f(x), if f(x) is a Gaussian process, then y also obeys a Gaussian distribution, and the joint distribution of its finite observations can form a Gaussian process ,Right now
其中,m(x)为均值函数,δij是狄拉克函数,i=j时,函数δij=1;i与j分别为第i个和第j个输入变量。 Among them, m(x) is the mean value function, δ ij is the Dirac function, when i=j, the function δ ij =1; i and j are the i-th and j-th input variables respectively.
y=f(x)+ε,是用于预测的函数表达式,与一般的回归问题不同,f(x)是不能够用参数或者非参数的形式表示出来的,而已知的就是f(x)是一个高斯过程,其中的各个变量f(x1),...,f(xn)服从联合高斯分布,所以得到的预测模型就是将每一个训练点带入得到矩阵所以预测模型写成矩阵的形式如下: y=f(x)+ε is a function expression used for prediction. Unlike general regression problems, f(x) cannot be expressed in the form of parameters or non-parameters, and the known is f(x ) is a Gaussian process, in which each variable f(x 1 ),...,f(x n ) obeys the joint Gaussian distribution, so the obtained prediction model is to bring each training point into the obtained matrix So the predictive model is written in the form of a matrix as follows:
6式中I表示N×N的单位矩阵,C(X,X)表示N×N的协方差矩阵,K(X,X)表示N×N的核矩阵,称为Gram矩阵,其元素kij=k(x(i),x(j))。 In formula 6, I represents the unit matrix of N×N, C(X,X) represents the covariance matrix of N×N, K(X,X) represents the kernel matrix of N×N, which is called the Gram matrix, and its element k ij =k(x(i),x(j)).
这里(6)式可以理解为y与x之间的关系(相当于一元线性回归中的y=ax+b)。其中m(x)与都含有未知的参数,统称为超参数,如m(x)=a+bx,
GPR模型预测 GPR model prediction
高斯过程先验分布所定义的泛函空间中,在贝叶斯框架下可计算后验分布的函数预测输出值。在进行预测时,对于N*个输入数据(充放电周期)的集合由输入构成输入数据矩阵X*∈Rd×N*,相应预测输出是具有均值和方差的高斯分布,即 In the functional space defined by the prior distribution of the Gaussian process, the function prediction output value of the posterior distribution can be calculated under the Bayesian framework. When making predictions, for a collection of N * input data (charge and discharge cycles) The input data matrix X * ∈ R d×N* is composed of the input, and the corresponding predicted output has the mean and variance The Gaussian distribution of
从式7可知,GPR模型在给出输出预测值的同时还能给出模型预测的置信水平或不确定性,其中为测试数据与训练数据的协方差函数矩阵,为训练数据的协方差函数矩阵,y为训练数据的目标向量,k*=k(x*,x*)为测试数据的协方差函数。 It can be seen from Equation 7 that the GPR model can also give the confidence level or uncertainty of the model prediction while giving the output prediction value, where is the covariance function matrix of test data and training data, is the covariance function matrix of the training data, y is the target vector of the training data, and k * =k(x * ,x * ) is the covariance function of the test data.
具体实施方式四、本实施方式是对具体实施方式三所述的一种基于GPR带有不确定区间的锂离子电池循环寿命间接预测方法的进一步说明,步骤四三中所述的方差所覆盖的区域为95%的置信区间。 Specific Embodiment 4. This embodiment is a further description of the indirect prediction method of lithium-ion battery cycle life based on GPR with an uncertainty interval described in Specific Embodiment 3. The variance covered in step 43 Areas are 95% confidence intervals.
验证及分析 Verification and Analysis
IPC10(cycle2)电池验证与分析 IPC10 (cycle2) battery verification and analysis
分别采用全部数据的30%、50%和70%进行预测模型训练,剩余数据作为验证集与预测值进行对比分析。由于,ICIP10电池只进行了每500周期的容量测试,所以本实施方式只进行相应时刻的对比分析; 30%, 50% and 70% of the total data were used for prediction model training, and the remaining data was used as a verification set for comparative analysis with the predicted value. Since the ICIP10 battery only performs a capacity test every 500 cycles, this embodiment only conducts a comparative analysis at the corresponding time;
实验过程如下所示: The experimental process is as follows:
数据集:采集IIPC10(cycle2)电池数据和对应的充放电周期数,构建数据集x为充放电周期,y为等压降放电时间,z为电池容量; Data set: Collect IIPC10 (cycle2) battery data and the corresponding number of charge and discharge cycles to build a data set x is the charge and discharge cycle, y is the equal pressure drop discharge time, and z is the battery capacity;
模型训练:将作为训练集进行基于ESN的退化模型训练,然后将作为训练数据进行基于GPR的等压降放电时间预测模型训练,得到等压降放电时间预测模型。 Model training: will As a training set for ESN-based degradation model training, and then As the training data, the GPR-based equal pressure drop discharge time prediction model is trained to obtain the equal pressure drop discharge time prediction model.
预测:将下N*个时刻的充电电周期数据集输入等压降放电时间预测模型进行等压降放电时间的预测值然后将该预测值代入电池退化模型得到电池容量预测值 Prediction: the next N * time charging cycle data set Input the equal pressure drop discharge time prediction model to predict the equal pressure drop discharge time Then substitute the predicted value into the battery degradation model to get the predicted value of battery capacity
模型分析:将容量预测值与实际值进行对比分析; Model analysis: predicting capacity with actual value conduct comparative analysis;
实验结果: Experimental results:
为了验证本文提出方法的有效性和适应性,分别采用全部数据30%、50%和70%的数据作为训练数据进行建模,结果为各循环周期所对应的容量预测值、置信区间、预测误差。 In order to verify the effectiveness and adaptability of the method proposed in this paper, 30%, 50% and 70% of all data are used as training data for modeling, and the results are the capacity prediction value, confidence interval and prediction error corresponding to each cycle .
实验结果如表3-5所示。 The experimental results are shown in Table 3-5.
表330%训练数据的电池容量预测 Table 330% battery capacity prediction of training data
表450%训练数据的电池容量预测 Table 450% battery capacity prediction for training data
表570%训练数据的电池容量预测 Table 5. Battery capacity prediction for 70% training data
从表3-5可知,本发明提出的一种基于GPR带有不确定区间的锂离子电池循环寿命间接预测方法实现了对电池容量的预测,在预测的同时还给出了预测结果的置信区间,并通过不同训练集验证了该方法的适应性。 As can be seen from Table 3-5, the indirect prediction method of lithium-ion battery cycle life based on GPR with uncertainty interval proposed by the present invention realizes the prediction of battery capacity, and also provides the confidence interval of the prediction result while predicting , and verified the adaptability of the method through different training sets.
具体实施方式五、本实施方式是对具体实施方式一所述的一种基于GPR带有不确定区间的锂离子电池循环寿命间接预测方法的进一步说明,步骤八中电池容量的失效阈值为电池的初始容量的70%或80%。 Specific Embodiment 5. This embodiment is a further explanation of the indirect prediction method for lithium-ion battery cycle life based on GPR with an uncertain interval described in Embodiment 1. The failure threshold of battery capacity in step 8 is the battery capacity 70% or 80% of initial capacity.
电池的RUL预测方法与容量预测方法一致,只是输出的结果不同。分别采用初始容量的70%和80%作为失效阈值。预测模型建模时分别采用全部数据的30%、50%和70%进行建模,给出电池的RUL预测值,置信区间、误差。采用30%数据进行模型训练的预测效果如图3所示,采用50%数据进行模型训练的预测效果如图4所示。采用70%数据进行模型训练的预测效果如图5所示,由于80%的失效阈值已经包含在训练数据中了,所以只能进行70%失效预测的RUL预测。三种训练数据长度的RUL预测结果如表6所示。 The battery RUL prediction method is consistent with the capacity prediction method, but the output results are different. 70% and 80% of the initial capacity were used as failure thresholds, respectively. When modeling the prediction model, 30%, 50% and 70% of all the data are used for modeling, and the RUL prediction value, confidence interval and error of the battery are given. The prediction effect of model training with 30% data is shown in Figure 3, and the prediction effect of model training with 50% data is shown in Figure 4. The prediction effect of using 70% data for model training is shown in Figure 5. Since 80% of the failure thresholds have been included in the training data, only 70% of the failure predictions can be made for RUL prediction. The RUL prediction results of three training data lengths are shown in Table 6.
表6三种训练数据长度的RUL预测结果 Table 6 RUL prediction results of three training data lengths
NASA电池验证与分析 NASA battery verification and analysis
采用NASA提供的BatteryDataSet实验数据的18号电池进行实验验证。 Experimental verification is carried out using the 18th battery of the BatteryDataSet experimental data provided by NASA.
该数据集来源于NASAPCoE研究中心搭建的锂离子电池测试床,电池充电、放电和阻抗测量实验,在室温25℃下运行: The data set comes from the lithium-ion battery test bed built by the NASA CoE Research Center, battery charging, discharging and impedance measurement experiments, run at room temperature 25 ℃:
在恒定电流为1.5A的模式下进行充电,直到电池电压达到4.2V; Charge at a constant current of 1.5A until the battery voltage reaches 4.2V;
在恒定电流为2A的模式下进行放电,直到电池电压下降到2.5V; Discharge in the mode of constant current 2A until the battery voltage drops to 2.5V;
通过EIS测量电池阻抗,频率扫描的范围从0.1Hz到5kHz。 The battery impedance is measured by EIS, and the frequency sweep ranges from 0.1Hz to 5kHz.
18号电池数据集共132个容量数据,为了验证本发明提出的预测方法的有效性,分别采用全部容量数据的30%、50%和70%三种长度的训练集进行预测模型的训练,剩余数据用于模型的验证与对比分析。 The No. 18 battery data set has a total of 132 capacity data. In order to verify the effectiveness of the prediction method proposed by the present invention, the training sets of three lengths of 30%, 50% and 70% of the total capacity data are used to train the prediction model, and the remaining The data are used for model validation and comparative analysis.
一、电池容量预测 1. Battery capacity prediction
采用本发明所述方法对电池容量进行预测,预测结果如表7-表9所示。 The battery capacity is predicted by the method of the present invention, and the prediction results are shown in Table 7-Table 9.
表730%训练数据的容量预测结果 Table 7. Capacity prediction results of 30% training data
表850%训练数据的容量预测结果 Table 850% capacity prediction results of training data
表970%训练数据的容量预测结果 Table 970% capacity prediction results of training data
二、电池剩余寿命预测 2. Prediction of remaining battery life
NANSA电池的剩余寿命的预测方法为分别采用初始容量的70%和80%作为失效阈值,预测模型建模时分别采用全部数据的30%、50%和70%进行建模,给出电池的RUL预测值,置信区间、误差。三种训练数据长度的RUL预测结果如表10所示。 The prediction method of the remaining life of NANSA battery is to use 70% and 80% of the initial capacity as the failure threshold respectively, and use 30%, 50% and 70% of the total data to model the prediction model, and give the RUL of the battery Predicted value, confidence interval, error. The RUL prediction results of three training data lengths are shown in Table 10.
表10三种训练数据长度的RUL预测结果 Table 10 RUL prediction results of three training data lengths
本发明所述方法解决了在线应用的锂离子电池无法实现容量预测和剩余寿命预测问题;该方法不仅能够给出预测结果的点估计值,还给出了预测结果的置信区间,使预测结果更合理,对用户的指导意义更大。 The method of the present invention solves the problem that the capacity prediction and remaining life prediction of the lithium-ion battery in online application cannot be realized; the method can not only provide the point estimated value of the prediction result, but also provide the confidence interval of the prediction result, so that the prediction result is more accurate Reasonable, the guiding significance for users is greater.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310317281.9A CN103389471B (en) | 2013-07-25 | 2013-07-25 | A kind of based on the cycle life of lithium ion battery indirect predictions method of GPR with indeterminacy section |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310317281.9A CN103389471B (en) | 2013-07-25 | 2013-07-25 | A kind of based on the cycle life of lithium ion battery indirect predictions method of GPR with indeterminacy section |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103389471A CN103389471A (en) | 2013-11-13 |
CN103389471B true CN103389471B (en) | 2015-12-09 |
Family
ID=49533798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310317281.9A Active CN103389471B (en) | 2013-07-25 | 2013-07-25 | A kind of based on the cycle life of lithium ion battery indirect predictions method of GPR with indeterminacy section |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103389471B (en) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103954915B (en) * | 2014-05-16 | 2017-02-01 | 哈尔滨工业大学 | Lithium ion battery remaining life indirect prediction method based on probability integration |
CN106405427A (en) * | 2016-08-29 | 2017-02-15 | 哈尔滨理工大学 | Lithium battery state of health prediction method based on neural network and Maternard kernel function GPR |
CN106125004A (en) * | 2016-08-29 | 2016-11-16 | 哈尔滨理工大学 | Lithium battery health status Forecasting Methodology based on neutral net kernel function GPR |
CN106339755B (en) * | 2016-08-29 | 2018-09-21 | 深圳市计量质量检测研究院 | Lithium battery health status prediction technique based on neural network Yu period kernel function GPR |
CN106777786A (en) * | 2017-01-12 | 2017-05-31 | 常州工学院 | A kind of lithium ion battery SOC estimation method |
CN107015158B (en) * | 2017-04-01 | 2019-05-24 | 湖南银杏数据科技有限公司 | Lithium battery remaining life on-line quick detection method based on constant-current discharge segment |
CN108037463B (en) * | 2017-12-15 | 2020-01-21 | 太原理工大学 | Lithium ion battery life prediction method |
CN107942261B (en) * | 2017-12-29 | 2021-04-02 | 上海电气集团股份有限公司 | Method and system for estimating state of charge of battery |
CN108680861B (en) * | 2018-03-05 | 2021-01-01 | 北京航空航天大学 | Method and device for constructing lithium battery residual cycle life prediction model |
KR102291133B1 (en) * | 2018-03-07 | 2021-08-20 | 주식회사 엘지화학 | Apparatus and method for predict battery life |
CN109101735A (en) * | 2018-08-16 | 2018-12-28 | 天津大学 | A kind of cmos circuit performance degradation prediction technique based on RNN |
CN109271670A (en) * | 2018-08-16 | 2019-01-25 | 天津大学 | CMOS low-noise amplifier performance degradation prediction technique based on BPNN |
CN109284543B (en) * | 2018-09-04 | 2023-05-23 | 河北工业大学 | IGBT Remaining Lifetime Prediction Method Based on Optimal Scale Gaussian Process Model |
CN109298351B (en) * | 2018-09-30 | 2021-07-27 | 清华大学深圳研究生院 | New energy vehicle-mounted battery residual life estimation method based on model learning |
CN109031153B (en) * | 2018-10-16 | 2020-01-24 | 北京交通大学 | An online estimation method for the state of health of lithium-ion batteries |
JP2020137156A (en) * | 2019-02-13 | 2020-08-31 | トヨタ自動車株式会社 | Vehicles, information terminals and vehicle control methods |
CN109782192A (en) * | 2019-03-08 | 2019-05-21 | 安徽理工大学 | Prediction method of remaining life of lithium-ion battery under different discharge rates |
CN110161425B (en) * | 2019-05-20 | 2020-05-19 | 华中科技大学 | A Prediction Method of Remaining Service Life Based on Degradation Stages of Lithium Batteries |
CN110222431B (en) * | 2019-06-11 | 2022-04-12 | 哈尔滨工业大学 | Remaining life prediction method of lithium-ion battery based on fusion of gated recurrent unit neural network and Kalman filter model |
CN112084459B (en) * | 2019-06-12 | 2024-12-03 | 电计贸易(上海)有限公司 | Method, device, electronic terminal, and storage medium for predicting battery charge and discharge cycle life |
CN111143973B (en) * | 2019-12-05 | 2021-01-26 | 云南电网有限责任公司玉溪供电局 | Valve-regulated lead-acid storage battery degradation trend prediction method based on Gauss process regression |
CN111460380B (en) * | 2020-03-30 | 2022-03-18 | 上海交通大学 | A method and system for multi-condition driving range prediction based on Gaussian process regression |
WO2021208079A1 (en) * | 2020-04-17 | 2021-10-21 | 中国科学院深圳先进技术研究院 | Method and apparatus for obtaining power battery life data, computer device, and medium |
CN111832221B (en) * | 2020-06-23 | 2023-09-26 | 华中科技大学无锡研究院 | Lithium battery life prediction method based on feature screening |
CN112098848B (en) * | 2020-09-14 | 2023-04-11 | 北京大学深圳研究生院 | Battery discharge capacity prediction method and system and readable storage medium |
CN112255559B (en) * | 2020-10-12 | 2023-05-09 | 启东沃太新能源有限公司 | Lithium battery energy storage power station residual life prediction method based on multiple linear regression |
CN112798967B (en) * | 2020-12-04 | 2022-03-15 | 电子科技大学 | Long-term and short-term prediction methods for solid oxide fuel cells |
CN113820608B (en) * | 2021-08-20 | 2022-08-05 | 北京邮电大学 | Prediction method and electronic device for remaining capacity of echelon battery |
CN113900033B (en) * | 2021-09-23 | 2022-07-08 | 浙江大学 | Lithium battery online service life prediction method based on charging data spatial distribution characteristics |
CN114167284B (en) * | 2021-11-02 | 2023-12-22 | 江苏博强新能源科技股份有限公司 | Lithium battery RUL prediction method and equipment based on BMS big data and integrated learning |
CN114545275A (en) * | 2022-01-27 | 2022-05-27 | 湖州学院 | An indirect prediction method for the remaining service life of lithium-ion batteries |
CN114781262B (en) * | 2022-04-21 | 2024-10-29 | 哈尔滨工业大学 | Long-life lithium ion battery early life prediction method and system based on degradation sequence time sequence correlation modeling |
CN115994441B (en) * | 2022-10-27 | 2025-03-14 | 重庆大学 | Big data cloud platform online battery life prediction method based on mechanism information |
CN117761558A (en) * | 2023-12-06 | 2024-03-26 | 重庆理工大学 | Lithium battery health state estimation method and device based on multi-learning machine fusion |
CN117374437B (en) * | 2023-12-07 | 2024-03-19 | 天津国能津能滨海热电有限公司 | Storage battery life management system, method, device, storage medium and equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1813199A (en) * | 2003-06-25 | 2006-08-02 | 罗伯特.博世有限公司 | Method for predicting the residual service life of an electric energy accumulator |
CN102262211A (en) * | 2011-04-20 | 2011-11-30 | 哈尔滨工业大学 | Analog circuit failure diagnosis method based on dynamic classification of echo state network |
CN102798823A (en) * | 2012-06-15 | 2012-11-28 | 哈尔滨工业大学 | Gaussian process regression-based method for predicting state of health (SOH) of lithium batteries |
CN103033761A (en) * | 2012-12-17 | 2013-04-10 | 哈尔滨工业大学 | Lithium ion battery residual life forecasting method of dynamic gray related vector machine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4821962B2 (en) * | 2005-06-30 | 2011-11-24 | トヨタ自動車株式会社 | Fuel cell system |
-
2013
- 2013-07-25 CN CN201310317281.9A patent/CN103389471B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1813199A (en) * | 2003-06-25 | 2006-08-02 | 罗伯特.博世有限公司 | Method for predicting the residual service life of an electric energy accumulator |
CN102262211A (en) * | 2011-04-20 | 2011-11-30 | 哈尔滨工业大学 | Analog circuit failure diagnosis method based on dynamic classification of echo state network |
CN102798823A (en) * | 2012-06-15 | 2012-11-28 | 哈尔滨工业大学 | Gaussian process regression-based method for predicting state of health (SOH) of lithium batteries |
CN103033761A (en) * | 2012-12-17 | 2013-04-10 | 哈尔滨工业大学 | Lithium ion battery residual life forecasting method of dynamic gray related vector machine |
Non-Patent Citations (2)
Title |
---|
A Modified Echo State Network based Remaining Useful Life Estimation Approach;Yu Peng等;《Prognostics and Health Management Conference》;20120621;第1-7页 * |
Data-driven Prognostics for Lithium-ion Battery Based on Gaussian Process Regression;Datong Liu等;《Prognostics and System Health Management Conference》;20120525;第1-5页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103389471A (en) | 2013-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103389471B (en) | A kind of based on the cycle life of lithium ion battery indirect predictions method of GPR with indeterminacy section | |
Wang et al. | Lithium battery state-of-health estimation via differential thermal voltammetry with Gaussian process regression | |
Park et al. | LSTM-based battery remaining useful life prediction with multi-channel charging profiles | |
Shi et al. | Battery health management using physics-informed machine learning: Online degradation modeling and remaining useful life prediction | |
CN113030744B (en) | Battery health condition prediction method, system and medium based on health factor extraction | |
Zhao et al. | State of health estimation for lithium-ion batteries based on hybrid attention and deep learning | |
CN103336248B (en) | Based on the cycle life of lithium ion battery Forecasting Methodology of cell degradation state model | |
CN103399276B (en) | A kind of capacity of lithium ion battery is estimated and cycles left life-span prediction method | |
CN103954913B (en) | Electric automobile power battery life-span prediction method | |
CN103336913B (en) | A kind of method being suitable for space lithium ion battery status monitoring and cut-off voltage prediction | |
CN102798823A (en) | Gaussian process regression-based method for predicting state of health (SOH) of lithium batteries | |
CN103926536A (en) | Method for predicting residual service life of lithium ion battery on basis of DST and BMC technologies | |
Liu et al. | An improved method of state of health prediction for lithium batteries considering different temperature | |
CN105445671A (en) | Lithium ion battery service life prediction method based on traceless particle filtering | |
CN113917334B (en) | Battery health state estimation method based on evolution LSTM self-encoder | |
CN113805064A (en) | A method for predicting the state of health of lithium-ion battery packs based on deep learning | |
TW200809242A (en) | System and method for determining both an estimated battery state vector and an estimated battery parameter vector | |
Che et al. | Battery health prognostic with sensor-free differential temperature voltammetry reconstruction and capacity estimation based on multi-domain adaptation | |
Garg et al. | Evaluation of batteries residual energy for battery pack recycling: Proposition of stack stress-coupled-AI approach | |
CN114384435A (en) | WSA-LSTM algorithm-based self-adaptive prediction method for residual service life of new energy automobile power battery | |
Dai Nguyen et al. | Equivalent circuit simulated deep network architecture and transfer learning for remaining useful life prediction of lithium-ion batteries | |
CN103983833B (en) | Battery open circuit voltage Forecasting Methodology based on GM (1,1) gray model | |
Wang et al. | An efficient state-of-health estimation method for lithium-ion batteries based on feature-importance ranking strategy and PSO-GRNN algorithm | |
CN113009368A (en) | MFF-based multi-core GPR algorithm-based lithium battery residual life prediction method | |
Chang et al. | Application of radial basis function neural network, to estimate the state of health for LFP battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |