CN103387935A - Microfluidic array chip for cell capture - Google Patents
Microfluidic array chip for cell capture Download PDFInfo
- Publication number
- CN103387935A CN103387935A CN2012101429049A CN201210142904A CN103387935A CN 103387935 A CN103387935 A CN 103387935A CN 2012101429049 A CN2012101429049 A CN 2012101429049A CN 201210142904 A CN201210142904 A CN 201210142904A CN 103387935 A CN103387935 A CN 103387935A
- Authority
- CN
- China
- Prior art keywords
- cells
- capture
- microfluidic
- different
- spacing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明涉及一种利用不同种类细胞直径差异,采用微流管道,并在管道内刻蚀不同间距、不同大小微柱体阵列的微阵列型结构芯片,该芯片结构由硅Si材料底片基片和钠钙玻璃上盖上下键合而组成。根据柱体微结构间距不同可分为两个系列:变间距和定间距;根据微结构大小不同又可分为多种类型:2-30μm不等。其特征在于,当含有不同种类细胞的液体流体流过芯片微结构时,在经过不同间距和直径的柱体微阵列时,不同种类(不同直径大小)的细胞会被不同的微柱体阵列结构捕获,滞留在管道内微结构不同的柱体阵列上,利用显微镜可观察分析捕获结果。本发明具有微体积、结构灵活可定制、无运动部件等特点,可广泛应用于血液多种癌细胞的捕获与分析等领域,利用不同种类的芯片对患者的血液内细胞种类和数量进行全面分析和测算判断。
The invention relates to a microarray structure chip utilizing the difference in diameter of different types of cells, adopting a microfluidic pipeline, and etching microcolumn arrays with different pitches and sizes in the pipeline. The chip structure is composed of a silicon Si material base plate and a The soda-lime glass upper cover is bonded up and down. According to the different spacing of the microstructure of the column, it can be divided into two series: variable spacing and fixed spacing; according to the size of the microstructure, it can be divided into various types: ranging from 2-30μm. It is characterized in that when the liquid fluid containing different types of cells flows through the microstructure of the chip, when passing through the microarrays of pillars with different pitches and diameters, the cells of different types (different diameters) will be covered by different micropillar array structures. Capture, stay on the cylinder arrays with different microstructures in the pipeline, and use a microscope to observe and analyze the capture results. The invention has the characteristics of micro volume, flexible and customizable structure, and no moving parts, etc., and can be widely used in the fields of capture and analysis of various cancer cells in blood, and uses different types of chips to comprehensively analyze the types and quantities of cells in the blood of patients and calculation judgment.
Description
技术领域 technical field
本发明属于流体内生物细胞检测领域,特别涉及一种利用微米级微流管内分布微柱体阵列结构的细胞捕获芯片设计。 The invention belongs to the field of biological cell detection in a fluid, in particular to a design of a cell capture chip utilizing a micro-column array structure distributed in a micron-scale micro-flow tube. the
背景技术 Background technique
微流控芯片最初起源于分析化学领域,是一种采用精细加工技术,在数平方厘米的基片上制作出微腔体和微管道网络结构及其它功能单元,以实现集微量样品制备、进样、反应、分离及检测于一体的快速、高效、低耗的微型分析实验装置。 The microfluidic chip originally originated in the field of analytical chemistry. It is a kind of micro-cavity, micro-pipeline network structure and other functional units made on a substrate of several square centimeters by using fine processing technology to realize the preparation and injection of micro-sample. , reaction, separation and detection in one of the rapid, efficient, low-cost micro-analysis experimental device. the
利用微流控芯片进行血液样本分析是近年来兴起的一个科学研究热点。例如,哈佛大学医学院生物医学工程教授梅米特·托纳(Mehmet Toner)领导一个研究小组于2011年设计出一种小型装置,可检测出血液样本中的癌细胞。这种微流体装置只有一枚硬币大小,可以检测到包括艾滋病病毒在内的多种病毒。微流体装置中核心结构是由碳纳米管做成的微型柱头,柱头直径为30微米,能够捕捉任何流经装置的癌细胞或其他细小物质。这种微流体装置有望检测到通过血液扩散的癌细胞。 The use of microfluidic chips for blood sample analysis is a scientific research hotspot that has emerged in recent years. For example, a team led by Mehmet Toner, a professor of biomedical engineering at Harvard Medical School, designed a small device in 2011 that could detect cancer cells in blood samples. The microfluidic device is the size of a coin and can detect a variety of viruses, including HIV. The core structure of the microfluidic device is a microcolumn made of carbon nanotubes with a diameter of 30 microns, which can capture any cancer cells or other small substances flowing through the device. This microfluidic device holds promise for detecting cancer cells that have spread through blood. the
国内该领域的研究尚处于起步阶段。本发明利用硅材料、钠钙玻璃材料制作一种廉价的细胞捕获微阵列芯片,用以捕捉血液中包括癌细胞在内的多种不同种类细胞,可广泛应用于各种涉及血液细胞组成分析的病情分析领域。 Domestic research in this field is still in its infancy. The invention utilizes silicon materials and soda-lime glass materials to make a cheap cell capture microarray chip to capture various types of cells in blood including cancer cells, and can be widely used in various processes involving the analysis of blood cell composition. The field of disease analysis. the
发明内容 Contents of the invention
本发明提出一种细胞捕获微流控阵列芯片结构,在管道内刻蚀不同间距、不同大小微柱体阵列的微阵列型结构,该芯片结构由硅材料底片基片和钠钙玻璃上盖键合而组成。利用不同种类细胞血液内不同种类的细胞直径差异,在流经不同柱体直径及间距的微阵列捕获区域之后会被分层截留与芯片的不同位置,分析不同位置截留的细胞数量从而准确地判断血液内各种细胞的含量,可广泛应用于血液多种癌细胞的捕获与分析、医院研究、制药临床试验、肿瘤诊断、个性化治疗等领域。 The present invention proposes a cell capture microfluidic array chip structure, which etches a microarray structure of micro-column arrays with different pitches and sizes in the pipeline. combined to form. Utilizing the difference in diameter of different types of cells in different types of blood cells, after flowing through the microarray capture area with different column diameters and spacings, they will be layered and trapped in different positions of the chip, and the number of cells trapped in different positions can be analyzed to accurately judge The content of various cells in blood can be widely used in the capture and analysis of various cancer cells in blood, hospital research, pharmaceutical clinical trials, tumor diagnosis, personalized treatment and other fields. the
为实现上述目的,本发明的技术方案是:一种细胞捕获微流控阵列芯片,根据柱体微结构间距不同可分为两个系列:变间距和定间距;根据微结构大小不同又可分为多种类型:2-30μm不等。其特征在于,用硅片制成一系列微型柱头,将抗体涂在其表面,当含有不同种类细胞的液体流体流过芯片微结构时,在经过不同间距和直径的柱体微阵列时,不同直径(种类)的细胞会被不同的微柱体阵列结构捕获,滞留在管道内微结构不同的柱体阵列上,利用显微镜观察分析捕获结果。 In order to achieve the above purpose, the technical solution of the present invention is: a cell capture microfluidic array chip, which can be divided into two series according to the different spacing of the column microstructure: variable spacing and fixed spacing; according to the size of the microstructure, it can be divided into two series: There are many types: ranging from 2-30μm. It is characterized in that a series of microcolumns are made of silicon wafers, and antibodies are coated on the surface. When the liquid fluid containing different types of cells flows through the microstructure of the chip, when passing through the microarrays of cylinders with different pitches and diameters, different Cells with different diameters (types) will be captured by different micro-pillar array structures, and stay on the micro-pillar arrays with different microstructures in the pipeline, and the capture results will be analyzed by microscope observation. the
本发明的特点及效果如下: Features and effects of the present invention are as follows:
1.本发明具有微体积、结构灵活可定制、无运动部件等特点。 1. The present invention has the characteristics of micro volume, flexible and customizable structure, and no moving parts. the
细胞捕获微流控阵列芯片尺寸约31mm×24mm×1.5mm,由一块普通硅片和一片普通钠钙玻璃载玻片键合而成,体积小,易于批量存储搬运。 The size of the cell capture microfluidic array chip is about 31mm×24mm×1.5mm. It is made of a common silicon chip and a common soda-lime glass slide. It is small in size and easy to store and transport in batches. the
芯片内微柱体阵列的排布可根据检测对象的不同灵活定制,如检测血液内所有种类细胞的含量比,可在微管道内顺血液流向依次排布不同柱体直径,不同柱间距的阵列;如检测单一尺寸的细胞,可在微管道内按一定尺寸排布合适间距的阵列,用于尽量完全将流经管道的目标细胞全部捕获而过滤其他尺寸的细胞。 The arrangement of micro-pillar arrays in the chip can be flexibly customized according to different detection objects. For example, to detect the content ratio of all types of cells in blood, arrays with different diameters and spacing between columns can be arranged in sequence along the direction of blood flow in the microchannel. ; If detecting cells of a single size, an array with a suitable spacing can be arranged in the microchannel according to a certain size, which is used to capture all the target cells flowing through the channel as much as possible and filter cells of other sizes. the
芯片内无运动部件,所有微柱体阵列都是通过刻蚀硅底座表面制作而成,与底座连成一体,一旦制作完成不易脱落;硅片与载玻片连接处通过强紫外光源固化键合,保证了管道的密封性。固化的芯片结构使得使用过程简单高效,操作简洁。 There are no moving parts in the chip, and all the micro-pillar arrays are made by etching the surface of the silicon base, which is integrated with the base, and it is not easy to fall off once the production is completed; the connection between the silicon chip and the glass slide is cured and bonded by a strong ultraviolet light source , to ensure the tightness of the pipeline. The solidified chip structure makes the use process simple and efficient, and the operation is simple. the
2.利用不同种类的芯片对血液内细胞种类和数量进行全面分析和测算判断。利用微柱体阵列捕获目标细胞,通过显微镜直接观测阵列捕获细胞的数量及不同种类细胞的比例,可有效的反映血液细胞组分。 2. Use different types of chips to conduct comprehensive analysis and calculation and judgment on the type and quantity of blood cells. The micropillar array is used to capture target cells, and the number of cells captured by the array and the ratio of different types of cells are directly observed through a microscope, which can effectively reflect the blood cell components. the
3.利用成熟的低成本消费电子制造技术,可以迅速实现高端医学产品大规模和低成本生产。本发明所涉及的制备材料主要包括硅片、钠钙玻璃、橡胶微细导管,主要涉及的制备方式是微加工技术中成熟的干 法、湿法刻蚀,强紫外键合等工艺,材料较为廉价,制造成本低。 3. Utilizing mature low-cost consumer electronics manufacturing technology, large-scale and low-cost production of high-end medical products can be rapidly realized. The preparation materials involved in the present invention mainly include silicon wafers, soda-lime glass, and rubber fine catheters. The preparation methods mainly involved are mature dry and wet etching in micro-processing technology, strong ultraviolet bonding and other processes, and the materials are relatively cheap. , low manufacturing cost. the
附图说明 Description of drawings
图1芯片键合后结构示意图,其中(1)是硅基片,(2)是钠钙玻璃材质上盖,(3)是细胞捕捉微柱体阵列,(4、5)是带捕捉柱阵列的微流管道,(6)是引流管出入口,(7)是引流橡胶管。 Fig. 1 Schematic diagram of chip bonding structure, in which (1) is a silicon substrate, (2) is a soda-lime glass upper cover, (3) is a cell capture micro-pillar array, (4, 5) is an array with capture columns (6) is the inlet and outlet of the drainage tube, and (7) is the drainage rubber tube. the
图2芯片硅基质底片(芯片硅基片(1))结构示意图,其中(3)是细胞捕捉微柱体阵列,(4)是4~60μm深基片上微流管道。 Fig. 2 Schematic diagram of the structure of the chip silicon matrix substrate (chip silicon substrate (1)), wherein (3) is a cell capture micropillar array, and (4) is a microfluidic channel on a 4-60 μm deep substrate. the
图3芯片钠钙玻璃基质上盖(芯片钠钙玻璃上盖(2))结构示意图,其中(5)是120μm深上盖微流管道,(6)是引流管出入口。 Fig. 3 Schematic diagram of the structure of the chip soda-lime glass matrix upper cover (chip soda-lime glass upper cover (2)), wherein (5) is a 120 μm deep upper cover microfluidic pipeline, and (6) is the inlet and outlet of the drainage tube. the
图4微柱体阵列(细胞捕捉微柱体阵列(4))排布形式示意图,其中(1)是硅材质微流管基片,(3)是一定间距均匀排布的微柱体阵列。 Figure 4 is a schematic diagram of the arrangement of the micropillar array (cell capture micropillar array (4)), wherein (1) is a silicon microfluidic tube substrate, and (3) is a micropillar array evenly arranged at a certain distance. the
具体实施方式Detailed ways
结合附图对本发明详细说明如下: The present invention is described in detail as follows in conjunction with accompanying drawing:
芯片整体结构如图1所示,包括硅材料微流管基片(1),玻璃材质上盖(2),一定间距均匀排布的细胞捕捉微柱体阵列(3),4~60μm深基片上微流管道(4),120μm深上盖微流管道(5),引流管出入口(6),引流橡胶管(7)。 The overall structure of the chip is shown in Figure 1, including a silicon microfluidic tube substrate (1), a glass upper cover (2), a cell capture micropillar array (3) evenly arranged at a certain distance, and a 4-60 μm deep substrate. On-chip microfluidic conduit (4), 120 μm deep upper cover microfluidic conduit (5), drainage tube inlet and outlet (6), drainage rubber tube (7). the
硅材料微流管基片(1)结构如图2所示,由硅圆片分割而成,其尺寸约为31mm×24mm×0.3mm。 The structure of the silicon material microfluidic tube substrate (1) is shown in Figure 2, which is divided into silicon wafers, and its size is about 31mm×24mm×0.3mm. the
钠钙玻璃材质上盖(2)结构如图3所示,由普通钠钙玻璃打磨而成,其尺寸约为31mm×24mm×1.2mm。 The structure of the upper cover (2) made of soda-lime glass is shown in Figure 3. It is made of ordinary soda-lime glass, and its size is about 31mm×24mm×1.2mm. the
一定间距均匀排布的细胞捕捉微柱体阵列(3)结构如图4所示,由硅片经干法刻蚀而成,细胞捕捉微柱体阵列(3)排布形式示意图给出了其基本结构特征。微柱体阵列整体呈菱形排布,每相邻两个柱体间距完全相同,根据捕捉目标细胞的大小差异可分为4种直径:2μm、4μm、6μm、10μm,其高度可分为3类:4μm~60μm。 The structure of cell capture micropillar arrays (3) evenly arranged at a certain interval is shown in Figure 4, which is formed by dry etching of silicon wafers. The schematic diagram of the arrangement of cell capture micropillar arrays (3) shows its structure. basic structural features. The micro-pillar array is arranged in a diamond shape as a whole, and the distance between every two adjacent cylinders is exactly the same. According to the size difference of the captured target cells, it can be divided into 4 kinds of diameters: 2μm, 4μm, 6μm, 10μm, and its height can be divided into 3 categories : 4 μm ~ 60 μm. the
4~60μm深基片上微流管道(4)结构见图2所示,成多μ型结构,由12条直线管道(含2条弯曲直线)和11条折角管道组成。其管道宽度均为1mm,其管道深度与一定间距均匀排布的细胞捕捉微柱体阵列(3)相匹配,可分为2个系列:变间距和定间距。定间距系列:定间距4~10μm,柱直径10μm,深度8~60μm;变间距系列:每两条相邻直线(含弯曲直线)管道内间距相同,第三条直线管道间距变化,12条直线管道间距为60μm~20μm,管道深度均为60μm,柱直径可分为4类:2~10μm。 The structure of the microfluidic pipeline (4) on a 4-60 μm deep substrate is shown in Figure 2. It is a multi-μ-shaped structure consisting of 12 straight pipelines (including 2 curved straight lines) and 11 angled pipelines. The width of the pipes is 1mm, and the depth of the pipes matches the array of cell-capturing micropillars (3) uniformly arranged at a certain interval, and can be divided into two series: variable interval and fixed interval. Fixed-pitch series: fixed-pitch 4-10 μm, column diameter 10 μm, depth 8-60 μm; variable-pitch series: every two adjacent straight lines (including curved straight lines) have the same internal spacing, the third straight line has a variable spacing, 12 straight lines The distance between the pipes is 60 μm to 20 μm, the depth of the pipes is 60 μm, and the column diameter can be divided into 4 categories: 2 to 10 μm. the
120μm深上盖微流管道(5)结构见图3所示,与4~60μm深基片上微流管道(4)形状宽度完全镜像一致,仅管道深度不同。 The structure of the microfluidic channel (5) on the 120 μm deep upper cover is shown in Figure 3, which is completely consistent with the shape and width of the microfluidic channel (4) on the 4-60 μm deep substrate, and only the depth of the channel is different. the
芯片具体使用方法如下: The specific usage of the chip is as follows:
定间距系列用于全面捕获特定种类直径的细胞,选用原则是与目标直径匹配,即间距10μm用以捕获直径10μm附近的细胞,例如嗜酸、碱性分叶核粒细胞(直径10~16μm)、中性分叶核粒细胞(直径10~14μm);间距4μm用以捕获直径4μm附近的细胞,例如正常人红细胞(直径7μm左右)、低色素小细胞性贫血和单纯小细胞性贫血细胞(直径6.2~6.7μm)。 The fixed spacing series is used to comprehensively capture cells of a specific type of diameter. The selection principle is to match the target diameter, that is, the spacing of 10 μm is used to capture cells near the diameter of 10 μm, such as eosinophilic and basic lobulated nuclei (10-16 μm in diameter) , Neutral segmented granulocytes (10-14 μm in diameter); 4 μm apart to capture cells around 4 μm in diameter, such as normal human erythrocytes (about 7 μm in diameter), hypochromic microcytic anemia and simple microcytic anemia cells ( 6.2-6.7 μm in diameter). the
变间距系列用于分析血液细胞组分,选用原则是根据实际捕获量需求而定的,例如只需要分析是否含有某些细胞则选用较大柱直径的芯片,需要分析细胞详细组分则选用小直径芯片。 The variable-pitch series is used to analyze blood cell components. The selection principle is based on the actual capture volume requirements. For example, if you only need to analyze whether certain cells are contained, choose a chip with a larger column diameter; if you need to analyze detailed cell components, choose a chip with a smaller column diameter. diameter chips. the
使用时,血液经引流管出入口(6)一端由定转速微泵低速送入微流管道(4、5)内,血液细胞经过直径相仿的微柱体阵列(3)时被柱体阵列(3)捕获留在阵列中间的缝隙内。当血液完全流过微管道(4、5)后使用显微镜观测微管道(4、5)内被捕获的细胞分布,来进行医学分析判断。 When in use, the blood is sent into the microfluidic pipelines (4, 5) at a low speed by a fixed-speed micropump at one end of the drainage tube inlet and outlet (6), and the blood cells are absorbed by the micropillar array (3) when passing through the micropillar array (3) with the same diameter The trap stays in the gap in the middle of the array. After the blood has completely flowed through the micro-channel (4, 5), the distribution of the captured cells in the micro-channel (4, 5) is observed with a microscope for medical analysis and judgment. the
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101429049A CN103387935A (en) | 2012-05-09 | 2012-05-09 | Microfluidic array chip for cell capture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101429049A CN103387935A (en) | 2012-05-09 | 2012-05-09 | Microfluidic array chip for cell capture |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103387935A true CN103387935A (en) | 2013-11-13 |
Family
ID=49532357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101429049A Pending CN103387935A (en) | 2012-05-09 | 2012-05-09 | Microfluidic array chip for cell capture |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103387935A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104267200A (en) * | 2014-09-17 | 2015-01-07 | 电子科技大学 | Cancer cell detecting micro-fluidic chip based on micro-sized grains on surface of runner and production method |
CN104293666A (en) * | 2014-09-11 | 2015-01-21 | 大连理工大学 | Micro-fluidic chip device for detecting interaction between two different unicells |
CN104513787A (en) * | 2015-01-07 | 2015-04-15 | 东北大学 | Integrated micro-fluidic chip and system for capture, culture and administration of single cells |
CN106434302A (en) * | 2016-09-18 | 2017-02-22 | 华中科技大学 | Portable non-power-source microfluidic cell separation chip |
CN107262171A (en) * | 2017-07-12 | 2017-10-20 | 华讯方舟科技有限公司 | A kind of blood separation and culture chip and blood separating mechanism |
CN107702973A (en) * | 2017-09-08 | 2018-02-16 | 深圳市太赫兹科技创新研究院有限公司 | A kind of whole blood blood plasma piece-rate system and method |
CN109746064A (en) * | 2019-01-28 | 2019-05-14 | 武汉纺织大学 | A gradient magnetic field microfluidic chip |
CN111257205A (en) * | 2018-11-30 | 2020-06-09 | 山东大学 | Cell distribution analysis method |
CN111257207A (en) * | 2018-11-30 | 2020-06-09 | 山东大学 | A cell distribution analysis device |
CN112275337A (en) * | 2020-10-29 | 2021-01-29 | 上海荧辉医疗器械有限公司 | Microfluidic chip and cell screening device and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101717718A (en) * | 2009-12-03 | 2010-06-02 | 西北工业大学 | Micro mesh sieve structure used for cell sorting and application method thereof |
CN102174369A (en) * | 2011-01-28 | 2011-09-07 | 南京大学 | Micro-slit-structure-based full PDMS (polydimethylsiloxane) micro-fluidic cell capturing chip and manufacturing method thereof |
CN102212459A (en) * | 2011-03-31 | 2011-10-12 | 西北工业大学 | Polydimethylsiloxane (PDMS)-based cell sorting structure |
CN102212458A (en) * | 2011-03-31 | 2011-10-12 | 西北工业大学 | Variable pitch microcolumn array-based cell sorting structure and manufacturing method thereof |
CN102360010A (en) * | 2011-08-05 | 2012-02-22 | 上海交通大学 | Integrated microfluidic chip for capture of cancer cells in whole blood |
-
2012
- 2012-05-09 CN CN2012101429049A patent/CN103387935A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101717718A (en) * | 2009-12-03 | 2010-06-02 | 西北工业大学 | Micro mesh sieve structure used for cell sorting and application method thereof |
CN102174369A (en) * | 2011-01-28 | 2011-09-07 | 南京大学 | Micro-slit-structure-based full PDMS (polydimethylsiloxane) micro-fluidic cell capturing chip and manufacturing method thereof |
CN102212459A (en) * | 2011-03-31 | 2011-10-12 | 西北工业大学 | Polydimethylsiloxane (PDMS)-based cell sorting structure |
CN102212458A (en) * | 2011-03-31 | 2011-10-12 | 西北工业大学 | Variable pitch microcolumn array-based cell sorting structure and manufacturing method thereof |
CN102360010A (en) * | 2011-08-05 | 2012-02-22 | 上海交通大学 | Integrated microfluidic chip for capture of cancer cells in whole blood |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104293666A (en) * | 2014-09-11 | 2015-01-21 | 大连理工大学 | Micro-fluidic chip device for detecting interaction between two different unicells |
CN104293666B (en) * | 2014-09-11 | 2016-06-22 | 大连理工大学 | The micro flow control chip device of the interphase interaction that two kinds of differences are unicellular |
CN104267200B (en) * | 2014-09-17 | 2016-05-04 | 电子科技大学 | Cancer cell based on water passage surface micron order lines detects micro-fluidic chip and preparation method |
CN104267200A (en) * | 2014-09-17 | 2015-01-07 | 电子科技大学 | Cancer cell detecting micro-fluidic chip based on micro-sized grains on surface of runner and production method |
CN104513787A (en) * | 2015-01-07 | 2015-04-15 | 东北大学 | Integrated micro-fluidic chip and system for capture, culture and administration of single cells |
CN104513787B (en) * | 2015-01-07 | 2016-08-24 | 东北大学 | For unicellular capture, the integrated microfluidic chip cultivating and be administered and system |
CN106434302A (en) * | 2016-09-18 | 2017-02-22 | 华中科技大学 | Portable non-power-source microfluidic cell separation chip |
CN106434302B (en) * | 2016-09-18 | 2018-03-13 | 华中科技大学 | A kind of micro-current controlled cell separating chips in Portable no-power source |
CN107262171B (en) * | 2017-07-12 | 2024-10-01 | 深圳市华讯方舟光电技术有限公司 | Blood separation pretreatment chip and blood separation device |
CN107262171A (en) * | 2017-07-12 | 2017-10-20 | 华讯方舟科技有限公司 | A kind of blood separation and culture chip and blood separating mechanism |
WO2019010788A1 (en) * | 2017-07-12 | 2019-01-17 | 华讯方舟科技有限公司 | Blood separation pretreatment chip and blood separation device |
CN107702973A (en) * | 2017-09-08 | 2018-02-16 | 深圳市太赫兹科技创新研究院有限公司 | A kind of whole blood blood plasma piece-rate system and method |
CN107702973B (en) * | 2017-09-08 | 2024-07-26 | 深圳市太赫兹科技创新研究院有限公司 | Whole blood plasma separation system and method |
CN111257205A (en) * | 2018-11-30 | 2020-06-09 | 山东大学 | Cell distribution analysis method |
CN111257207A (en) * | 2018-11-30 | 2020-06-09 | 山东大学 | A cell distribution analysis device |
CN109746064A (en) * | 2019-01-28 | 2019-05-14 | 武汉纺织大学 | A gradient magnetic field microfluidic chip |
CN112275337A (en) * | 2020-10-29 | 2021-01-29 | 上海荧辉医疗器械有限公司 | Microfluidic chip and cell screening device and method |
CN112275337B (en) * | 2020-10-29 | 2022-03-18 | 上海荧辉医疗器械有限公司 | Microfluidic chip and cell screening device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103387935A (en) | Microfluidic array chip for cell capture | |
US8895292B2 (en) | Microfluidic chip devices and their use | |
JP5920895B2 (en) | Method and device for isolating cells from heterogeneous solutions using microfluidic capture vortices | |
CN106513066B (en) | A kind of three-dimensional porous graphene micro-fluidic chip and its graphene adherence method | |
Wu et al. | Microfluidic technologies in cell isolation and analysis for biomedical applications | |
CN103226127B (en) | Multi-channel micro-fluidic chip and mass spectrum combined device | |
US9908117B2 (en) | Microfluidic separation device, separation method using the same and kit for separating circulating rare cells from blood using the same | |
WO2012016136A2 (en) | Microscale and nanoscale structures for manipulating particles | |
EP2440941A2 (en) | Sheath flow devices and methods | |
Ebrahimi et al. | Molecular separation by using active and passive microfluidic chip designs: a comprehensive review | |
CN103343090A (en) | An integrated multifunctional controllable cell manipulation and analysis microfluidic chip and its application | |
CN103191792B (en) | Microfluidic chip for microspheric multi-element biological detection | |
CN207366327U (en) | A kind of whole blood blood plasma piece-rate system | |
CN102350379A (en) | Micro fluid control whole blood preprocessing chip based on naturally-deposited filling column | |
CN101270333A (en) | A microfluidic cell chip | |
Cai et al. | An Integrated Inertial-Magnetophoresis Microfluidic Chip Online-Coupled with ICP-MS for Rapid Separation and Precise Detection of Circulating Tumor Cells | |
JP2010279908A (en) | Three-dimensional sheath flow forming structure and fine particle focusing method | |
Garshasbi et al. | A review on nano/microfluidic devices for cell isolation techniques: recent progress and advances | |
CN104267200B (en) | Cancer cell based on water passage surface micron order lines detects micro-fluidic chip and preparation method | |
CN114471753B (en) | A microfluidic chip for parallel detection in dark field | |
CN108949497B (en) | A specific single-cell site-specific capture chip for extremely small amounts of circulating tumor cells | |
CN1295347C (en) | Micro channel array type biological chip by utilizing photon particle coding and method of use thereof | |
CN109746060B (en) | Microdroplet generation chip | |
CN217499256U (en) | Single cell capture micro-fluidic chip | |
CN104388299B (en) | A kind of micro-fluidic chip for cell capture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20131113 |