CN103380541A - A meander line antenna - Google Patents
A meander line antenna Download PDFInfo
- Publication number
- CN103380541A CN103380541A CN2011800679375A CN201180067937A CN103380541A CN 103380541 A CN103380541 A CN 103380541A CN 2011800679375 A CN2011800679375 A CN 2011800679375A CN 201180067937 A CN201180067937 A CN 201180067937A CN 103380541 A CN103380541 A CN 103380541A
- Authority
- CN
- China
- Prior art keywords
- line portion
- meander
- dielectric substrate
- printed
- meander line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
Landscapes
- Waveguide Aerials (AREA)
Abstract
本发明公开了一种弯折线天线,包括:印制在介质基板的第一面上的第一弯折线部分(11);印制在所述介质基板的第二面上的第二弯折线部分(12);其中,所述第一弯折线部分(11)为一段弯折的金属带,并且所述第一弯折线部分(11)和所述第二弯折线部分(12)关于介质基板呈镜像对称关系;印制在所述介质基板的第一面上的微带馈线(13),与所述第一弯折线部分(11)的底部相连接,其中,所述微带馈线(13)与所述第一弯折线部分(11)的连接点为馈电点;以及所述馈电点处的至少一个短路探针(14),用于连接所述第一弯折线部分(11)和所述第二弯折线部分(12)。本发明提供的双层弯折线天线,可以有效降低弯折线天线的品质因数,并增加弯折线天线的阻抗带宽。
The invention discloses a meander line antenna, comprising: a first meander line part (11) printed on a first surface of a dielectric substrate; a second meander line part printed on a second surface of the medium substrate (12); wherein, the first bending line portion (11) is a bent metal strip, and the first bending line portion (11) and the second bending line portion (12) have a shape with respect to the dielectric substrate mirror image symmetry; the microstrip feeder (13) printed on the first surface of the dielectric substrate is connected to the bottom of the first bend line part (11), wherein the microstrip feeder (13) The connection point with the first bend line portion (11) is a feed point; and at least one short-circuit probe (14) at the feed point is used to connect the first bend line portion (11) and The second bend line portion (12). The double-layer meander-line antenna provided by the present invention can effectively reduce the quality factor of the meander-line antenna and increase the impedance bandwidth of the meander-line antenna.
Description
技术领域technical field
本发明涉及天线技术领域,特别涉及一种弯折线天线(MLA,Meander Line Antenna)。The invention relates to the technical field of antennas, in particular to a meander line antenna (MLA, Meander Line Antenna).
背景技术Background technique
目前,现代的无线通信系统对天线的小型化有着越来越高的需求。尤其是在需要同时满足全向辐射、宽带工作以及相对较高的增益要求的应用场景下,这种对天线小型化的需求会对天线工程师们的工作提出挑战。At present, modern wireless communication systems have higher and higher demands on the miniaturization of antennas. Especially in the application scenarios that need to meet omnidirectional radiation, broadband operation and relatively high gain requirements at the same time, this demand for antenna miniaturization will challenge the work of antenna engineers.
MLA是一种通过来回弯折单极子天线(Monopole)构造而成的小型天线,其结构如图1所示。图1中的W代表弯折线部分的宽度,N代表弯折线部分弯折的次数,S代表弯折线之间的间距。MLA能够提供全向辐射,并且辐射效率高,交叉极化小。但是,这种传统的MLA的阻抗带宽比较窄,并且其输入阻抗与其弯折线的粗细(或宽度)以及间距相关,输入阻抗很容易呈现出较强的感抗和较大的输入阻抗实部,这给天线的阻抗匹配带来困难。MLA is a small antenna constructed by bending a monopole antenna (Monopole) back and forth, and its structure is shown in Figure 1. W in FIG. 1 represents the width of the bending line, N represents the number of times the bending line is bent, and S represents the distance between the bending lines. MLA can provide omnidirectional radiation with high radiation efficiency and low cross polarization. However, the impedance bandwidth of this traditional MLA is relatively narrow, and its input impedance is related to the thickness (or width) and spacing of its bent line, and the input impedance easily presents a strong inductive reactance and a large real part of the input impedance. This brings difficulty in impedance matching of the antenna.
发明内容Contents of the invention
为了解决上述问题,本发明的实施例提供了一种具有较宽的阻抗带宽的MLA。In order to solve the above problems, embodiments of the present invention provide an MLA with a wider impedance bandwidth.
根据本发明一个实施例所提供的一种弯折线天线包括:A meander line antenna provided according to an embodiment of the present invention includes:
印制在介质基板的第一面上的第一弯折线部分11;a first
印制在所述介质基板的第二面上的第二弯折线部分12;其中,所述第一弯折线部分11为弯折的金属带,并且所述第一弯折线部分11和所述第二弯折线部分12关于所述介质基板呈镜像对称关系;A second
印制在所述介质基板的第一面上的微带馈线13,与所述第一弯折线部分11的底部相连接,其中,所述微带馈线13与所述第一弯折线部分11的连接点为馈电点;以及The
所述馈电点处的至少一个短路探针14,用于连接所述第一弯折线部分11和所述第二弯折线部分12。At least one short-
上述弯折线天线进一步包括:地层15,印制在第二弯折线部分12的下方。The above meander line antenna further includes: a
上述弯折线天线进一步包括:位于所述地层15之上且在所述第二弯折线部分12底部两侧旁边的套筒。The above-mentioned meander line antenna further includes: sleeves located above the
本发明的另一个实施例所提供的具有较宽阻抗带宽且能较好匹配50欧姆馈线的弯折线天线包括:The meander line antenna provided by another embodiment of the present invention has a wider impedance bandwidth and can better match a 50-ohm feeder, including:
印制在介质基板的第一面上的第一弯折线部分11;a first
印制在所述介质基板的第二面上的第二弯折线部分12;其中,所述第一弯折线部分11为弯折的金属带,并且所述第一弯折线部分11和所述第二弯折线部分12关于所述介质基板呈镜像对称关系;A second
印制在所述介质基板的第一面上的第一容性带21,其第一端与所述第一弯折线部分11的底部相连;A first
印制在所述介质基板的第二面上的第二容性带22,其第一端与所述第二弯折线部分12的底部相连;A second
印制在所述介质基板的第一面上的微带馈线23,与所述第一容性带21的第二端相连接,其中,所述微带馈线23与所述第一容性带21的连接点为馈电点;以及The
所述馈电点处的至少一个短路探针24,用于连接所述第一容性带21和所述第二容性带22。At least one short-
上述第一容性带21和所述第二容性带22均为矩形。Both the first
第一弯折线部分11和第二弯折线部分12均为锥形或梯形。Both the first
上述弯折线天线进一步包括:地层16,印制在第二容性带22的下方。The above-mentioned meander line antenna further includes: a
上述弯折线天线进一步包括:位于所述地层16之上且在所述第二容性带22底部两侧旁边的套筒17。The above-mentioned meander line antenna further includes: a
上述短路探针24用于在所述馈电点处通过金属探针连接所述第一容性带21和所述第二容性带22。The above-mentioned short-
上述短路探针24用于在所述馈电点处连接所述第一容性带21的第二端和所述第二容性带22的第二端。The above-mentioned short-
本发明实施例所提供的改进的弯折线天线采用了双层的弯折线部分,使得弯折线天线在馈电点处输入阻抗的电抗部分减半而电阻部分保持不变,从而可以有效降低弯折线天线的品质因数,进而增加弯折线天线的阻抗带宽。The improved meander line antenna provided by the embodiment of the present invention adopts a double-layer meander line part, so that the reactance part of the input impedance of the meander line antenna at the feeding point is halved while the resistance part remains unchanged, so that the meander line antenna can be effectively reduced. The quality factor of the antenna increases the impedance bandwidth of the meander line antenna.
附图说明Description of drawings
图1为传统MLA的结构示意图;Fig. 1 is the structural representation of traditional MLA;
图2a为本发明实施例1所述的MLA的结构示意图;Figure 2a is a schematic structural view of the MLA described in Example 1 of the present invention;
图2b为本发明实施例1所述的MLA的结构示意图;Figure 2b is a schematic structural diagram of the MLA described in Example 1 of the present invention;
图3a为本发明实施例2所述的MLA的结构示意图;Figure 3a is a schematic structural diagram of the MLA described in Example 2 of the present invention;
图3b为本发明实施例2所述的MLA的结构示意图;Figure 3b is a schematic structural diagram of the MLA described in Example 2 of the present invention;
图4a显示了一种MLA将第一弯折线部分设置成为锥形时的结构示意图;Figure 4a shows a schematic view of the structure of an MLA when the first bending line part is set into a tapered shape;
图4b显示了一种MLA将第二弯折线部分设置成为锥形时的结构;以及Figure 4b shows an MLA structure when the second bend line portion is tapered; and
图5显示了在介质基板的两个面上均具有锥形弯折线部分与在介质基板的一个面上具有锥形弯折线部分的MLA的电压驻波比(VSWR)随频率变化的曲线。FIG. 5 shows voltage standing wave ratio (VSWR) versus frequency for an MLA with tapered bend line portions on both sides of the dielectric substrate and with a tapered bend line portion on one face of the dielectric substrate.
具体实施方式Detailed ways
为了解决传统MLA存在的问题,本发明对传统MLA进行了改进。下面将结合附图详细描述根据本发明的具体的实施例。In order to solve the problems existing in the traditional MLA, the present invention improves the traditional MLA. Specific embodiments according to the present invention will be described in detail below with reference to the accompanying drawings.
实施例1Example 1
为了解决传统MLA阻抗带宽较窄的问题,本发明的实施例提供了一种改进的MLA,该MLA具有双层的弯折线部分,其以平面形式分别印制于介质基板(Dielectric Substrate)的两个面上。图2a、2b显示了本实施例所述MLA的结构,其中,图2a显示了介质基板的第一面;图2b显示了介质基板的第二面。如图2a和2b所示,本实施例所述的MLA主要包括以下部件:In order to solve the problem of narrow impedance bandwidth of traditional MLA, an embodiment of the present invention provides an improved MLA, which has a double-layer bending line part, which is printed on two sides of a dielectric substrate (Dielectric Substrate) in a planar form. face. Figures 2a and 2b show the structure of the MLA in this embodiment, wherein Figure 2a shows the first side of the dielectric substrate; Figure 2b shows the second side of the dielectric substrate. As shown in Figures 2a and 2b, the MLA described in this embodiment mainly includes the following components:
印制在介质基板的第一面上的第一弯折线部分(Meandering Section)11;A first bending line part (Meandering Section) 11 printed on the first side of the dielectric substrate;
印制在介质基板的第二面上的第二弯折线部分12;其中,第一弯折线部分11为弯折的金属带,并且所述第一弯折线部分11和所述第二弯折线部分12关于介质基板呈镜像对称关系;The second
印制在介质基板的第一面上的微带馈线(Microstrip Feedline)13,与所述第一弯折线部分11的底部相连接,其中,微带馈线13与第一弯折线部分11的连接点为馈电点;以及A microstrip feedline (Microstrip Feedline) 13 printed on the first surface of the dielectric substrate is connected to the bottom of the first
馈电点处的至少一个短路探针(Shorting Pin)14,用于连接第一弯折线部分11和第二弯折线部分12。At least one shorting pin (Shorting Pin) 14 at the feed point is used to connect the first
在本实施例中,所述至少一个短路探针14可以通过至少一个金属探针(Metal Pin)连接第一弯折线部分11和第二弯折线部分12。In this embodiment, the at least one short-
上述MLA还可以进一步包括:地层15,印制在介质基板的第二面上第二弯折线部分12的下方。The above MLA may further include: a
如上所述,本发明本实施例提供了一种改进的MLA,其采用了印制在介质基板两个面上的双层弯折线部分。从该双层结构可以看出,馈电点处(也即短路探针的位置)的电流被分为两部分,每一部分的电流分别进入介质基板一个面上的弯折线部分。由于所述两个弯折线部分谐振于同一频率,因此从等效电路的观点来看,介质基板的每一面上的弯折线部分可等效为一个谐振回路,它们通过一个或多个短路探针相并联,因而使得主要由弯折线部分所产生的电感和自电容近乎减半,而来自于所述双层的弯折线部分之间的互电容增加,同时导体损耗加倍(在低频时导体损耗可忽略)而介质损耗不变。也就是说,在馈电点处的输入阻抗的电抗部分近乎减半而电阻部分(对应损耗)几乎不变,这使得MLA的品质因数降低,进一步增加MLA的阻抗带宽。As described above, the present embodiment of the present invention provides an improved MLA using double-layered bend line portions printed on both sides of a dielectric substrate. It can be seen from the double-layer structure that the current at the feeding point (that is, the position of the short-circuit probe) is divided into two parts, and the current of each part enters the bending line part on one surface of the dielectric substrate. Since the two meander line parts resonate at the same frequency, from the viewpoint of equivalent circuits, the meander line parts on each side of the dielectric substrate can be equivalent to a resonant circuit, and they pass through one or more short-circuit probes , so that the inductance and self-capacitance mainly generated by the meander line part are nearly halved, while the mutual capacitance between the meander line parts from the double layer is increased, and the conductor loss is doubled at the same time (the conductor loss can be reduced at low frequencies. negligible) while the dielectric loss remains unchanged. That is, the reactive part of the input impedance at the feed point is nearly halved while the resistive part (corresponding to losses) is almost unchanged, which reduces the quality factor of the MLA and further increases the impedance bandwidth of the MLA.
需要说明的是,在采用上述双层结构的基础之上,为了进一步增加MLA的阻抗带宽,还可以进一步采用如下三种方法之一或其任意组合:It should be noted that, on the basis of the above-mentioned double-layer structure, in order to further increase the impedance bandwidth of the MLA, one of the following three methods or any combination thereof can be further adopted:
方法1)将上述第一弯折线部分11和第二弯折线部分12设置成为顶部宽底部窄的锥形或梯形;Method 1) Setting the above-mentioned first
方法2)增加上述第一弯折线部分11和第二弯折线部分12的宽度;Method 2) increasing the width of the first
方法3)在上述第二弯折线部分12底部的两侧的旁边、地层15之上增加套筒(Sleeve)。其中,该套筒印制在介质基板的第二面上。Method 3) A sleeve (Sleeve) is added beside the two sides of the bottom of the second
实施例2Example 2
为了进一步解决传统MLA阻抗匹配困难的问题,本实施例提供了另一种改进的MLA。该MLA与图2a、2b所示的MLA相比,分别在介质基板的每个面上增加了一个容性金属带。图3a、3b显示了本实施例所述MLA的结构,其中,图3a显示了介质基板的第一面;图3b显示了介质基板的第二面。如图3a和3b所示,本实施例所述的MLA主要包括以下部件:In order to further solve the problem of difficult impedance matching of traditional MLA, this embodiment provides another improved MLA. Compared with the MLA shown in Figs. 2a and 2b, this MLA adds a capacitive metal strip on each side of the dielectric substrate. Figures 3a and 3b show the structure of the MLA in this embodiment, wherein Figure 3a shows the first surface of the dielectric substrate; Figure 3b shows the second surface of the dielectric substrate. As shown in Figures 3a and 3b, the MLA described in this embodiment mainly includes the following components:
印制在介质基板的第一面上的第一弯折线部分11;a first
印制在介质基板的第二面上的第二弯折线部分12;其中,第一弯折线部分11为弯折的金属带,并且所述第一弯折线部分11和所述第二弯折线部分12关于介质基板呈镜像对称关系;The second
印制在介质基板的第一面上的第一容性带21,其第一端与第一弯折线部分11的底部相连;A
印制在介质基板的第二面上的第二容性带22,其第一端与第二弯折线部分12的底部相连;A
印制在所述介质基板的第一面上的微带馈线23,与第一容性带21的第二端相连接,其中,微带馈线13与第一容性带21的连接点为馈电点;以及The
所述馈电点处的至少一个短路探针24,用于连接第一容性带21和第二容性带22。At least one short-
在本实施例中,所述至少一个短路探针24可以通过至少一个金属探针连接第一容性带21的第二端和第二容性带22的第二端。In this embodiment, the at least one short-
其中,上述第一容性带21和第二容性带22均为矩形。Wherein, the above-mentioned
另外,上述MLA还可以进一步包括:地层16,印制在介质基板的第二面上第二容性带22的下方。In addition, the above MLA may further include: a
如前所述,本实施例所述的MLA由于采用了双层的弯折线部分,因此可以大幅增加MLA的阻抗带宽。As mentioned above, the MLA described in this embodiment can greatly increase the impedance bandwidth of the MLA due to the use of double-layer bent line parts.
由于传统的MLA是一个自谐振结构,其等效的电感和电容部分可以通过改变弯折线部分的特征来改变。为了实现阻抗匹配,MLA的等效电感应能抵消等效电容,这通常需要小的弯折线之间的间隔以及高的加工精度。在本实施例中,通过在介质基板的每个面上分别增加容性金属带,可以使MLA的等效电容显著增加,容性金属带的电容值可通过调节容性带的尺寸进行调节,以有效抵消MLA的电感。在本实施例中,不需要外部的阻抗匹配网络或调谐短截线(Tuning Stub)就可以实现MLA与50欧姆馈线的阻抗匹配,从而解决了传统MLA阻抗匹配困难的问题。Since the traditional MLA is a self-resonant structure, its equivalent inductance and capacitance parts can be changed by changing the characteristics of the bent line part. In order to achieve impedance matching, the equivalent inductance of the MLA can cancel the equivalent capacitance, which usually requires small spacing between the bending lines and high processing accuracy. In this embodiment, by adding capacitive metal strips on each surface of the dielectric substrate, the equivalent capacitance of the MLA can be significantly increased, and the capacitance value of the capacitive metal strips can be adjusted by adjusting the size of the capacitive strips. To effectively offset the inductance of the MLA. In this embodiment, the impedance matching between the MLA and the 50 ohm feeder can be realized without an external impedance matching network or a tuning stub (Tuning Stub), thereby solving the problem of difficult impedance matching of the traditional MLA.
本实施例所述的MLA具有较宽的阻抗带宽且能较好匹配50欧姆馈线。The MLA described in this embodiment has a wider impedance bandwidth and can better match a 50 ohm feeder.
如前所述,为了进一步增加MLA的阻抗带宽,在采用上述双层结构的基础之上,还可以进一步采用如下三种方法之一或其任意组合:As mentioned above, in order to further increase the impedance bandwidth of the MLA, on the basis of the above-mentioned double-layer structure, one of the following three methods or any combination thereof can be further used:
方法1)将上述第一弯折线部分11和第二弯折线部分12设置成为顶部宽底部窄的锥形或梯形;Method 1) Setting the above-mentioned first
方法2)增加上述第一弯折线部分11和第二弯折线部分12的宽度;Method 2) increasing the width of the first
方法3)在上述容性带22底部两侧旁边、地层16之上增加套筒17。其中,该套筒印制在介质基板的第二面上。Method 3) Add
图4a、4b显示了一种MLA将第一弯折线部分11和第二弯折线部分12设置成为锥形时的结构示意图,其中,图4a显示了介质基板的第一面,图4b显示了介质基板的第二面。图4b中还显示了套筒17。Figures 4a and 4b show a schematic view of the structure of an MLA when the first
为了更好的说明本实施例所提供MLA的性能,分别测量了在介质基板的两个面上均具有锥形弯折线部分的MLA与在介质基板的一个面上具有锥形弯折线部分的MLA,得到这两种MLA的电压驻波比(VSWR,Voltage Standing Wave Ratio)随频率变化的曲线,如图5所示。其中,带圆点的曲线代表在介质基板的一个面上具有锥形弯折线部分的MLA的VSWR随频率变化的曲线;带正方形的曲线代表在介质基板的两个面上均具有锥形弯折线部分的MLA的VSWR随频率变化的曲线。从图5可以看出,MLA的分数带宽由8%展宽至12%,这就证实了通过这种双层结构可以有效的提高MLA的阻抗带宽。另外,值得指出的是,这两种MLA呈现出大致相同的天线增益(1.8dB)、相同的3D辐射方向图和相同的交叉极化电平。这也就说明了,这种MLA能够实现全向辐射,同时具有较高的天线增益,较低的交叉极化以及较宽的阻抗带宽。In order to better illustrate the performance of the MLA provided by this embodiment, the MLA with tapered bend line portions on both surfaces of the dielectric substrate and the MLA with tapered bend line portions on one surface of the dielectric substrate were measured respectively. , to obtain the voltage standing wave ratio (VSWR, Voltage Standing Wave Ratio) of the two MLAs as a function of frequency, as shown in Figure 5. Among them, the curve with dots represents the VSWR curve of MLA with a tapered bend line on one side of the dielectric substrate as a function of frequency; the curve with squares represents the tapered bend line on both sides of the dielectric substrate Part of the VSWR curve of the MLA as a function of frequency. It can be seen from Fig. 5 that the fractional bandwidth of MLA is widened from 8% to 12%, which confirms that the impedance bandwidth of MLA can be effectively improved through this double-layer structure. Also, it is worth pointing out that the two MLAs exhibit roughly the same antenna gain (1.8dB), the same 3D radiation pattern, and the same cross-polarization levels. This also shows that this kind of MLA can realize omnidirectional radiation, and has high antenna gain, low cross polarization and wide impedance bandwidth at the same time.
Claims (11)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/071110 WO2012109801A1 (en) | 2011-02-18 | 2011-02-18 | A meander line antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103380541A true CN103380541A (en) | 2013-10-30 |
Family
ID=46671931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011800679375A Pending CN103380541A (en) | 2011-02-18 | 2011-02-18 | A meander line antenna |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103380541A (en) |
WO (1) | WO2012109801A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118589192A (en) * | 2024-05-24 | 2024-09-03 | 北京航天驭星科技有限公司 | Antenna and sonde |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112018512A (en) * | 2020-08-14 | 2020-12-01 | 中北大学 | A small planar medical directional microwave resonant antenna |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6094179A (en) * | 1997-11-04 | 2000-07-25 | Nokia Mobile Phones Limited | Antenna |
CN1442930A (en) * | 2002-03-04 | 2003-09-17 | 日本特殊陶业株式会社 | Medium antenna of high frequency radio communication equipment |
EP1441414A1 (en) * | 2003-01-23 | 2004-07-28 | Alps Electric Co., Ltd. | Dual band antenna with reduced size and height |
CN1527436A (en) * | 2003-03-03 | 2004-09-08 | 正文科技股份有限公司 | dual frequency antenna |
CN2671143Y (en) * | 2002-05-28 | 2005-01-12 | 日本特殊陶业株式会社 | Antenna and radio frequency module |
CN2694512Y (en) * | 2004-03-29 | 2005-04-20 | 连展科技(深圳)有限公司 | Flat collapsible dipole antenna |
US20060097930A1 (en) * | 2004-10-07 | 2006-05-11 | Rosenberg Johan A E | Highly-integrated headset |
TW200807812A (en) * | 2006-07-20 | 2008-02-01 | Wistron Neweb Corp | Flat miniaturized antenna of a wireless communication device |
EP1892796A1 (en) * | 2006-08-24 | 2008-02-27 | M/A-Com, Inc. | Multi section meander antenna |
CN101989681A (en) * | 2009-08-06 | 2011-03-23 | 立积电子股份有限公司 | Multi-band microstrip meander antenna |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001217632A (en) * | 2000-01-31 | 2001-08-10 | Matsushita Electric Ind Co Ltd | Antenna and electronic equipment |
-
2011
- 2011-02-18 CN CN2011800679375A patent/CN103380541A/en active Pending
- 2011-02-18 WO PCT/CN2011/071110 patent/WO2012109801A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6094179A (en) * | 1997-11-04 | 2000-07-25 | Nokia Mobile Phones Limited | Antenna |
CN1442930A (en) * | 2002-03-04 | 2003-09-17 | 日本特殊陶业株式会社 | Medium antenna of high frequency radio communication equipment |
CN2671143Y (en) * | 2002-05-28 | 2005-01-12 | 日本特殊陶业株式会社 | Antenna and radio frequency module |
EP1441414A1 (en) * | 2003-01-23 | 2004-07-28 | Alps Electric Co., Ltd. | Dual band antenna with reduced size and height |
CN1527436A (en) * | 2003-03-03 | 2004-09-08 | 正文科技股份有限公司 | dual frequency antenna |
CN2694512Y (en) * | 2004-03-29 | 2005-04-20 | 连展科技(深圳)有限公司 | Flat collapsible dipole antenna |
US20060097930A1 (en) * | 2004-10-07 | 2006-05-11 | Rosenberg Johan A E | Highly-integrated headset |
TW200807812A (en) * | 2006-07-20 | 2008-02-01 | Wistron Neweb Corp | Flat miniaturized antenna of a wireless communication device |
EP1892796A1 (en) * | 2006-08-24 | 2008-02-27 | M/A-Com, Inc. | Multi section meander antenna |
CN101989681A (en) * | 2009-08-06 | 2011-03-23 | 立积电子股份有限公司 | Multi-band microstrip meander antenna |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118589192A (en) * | 2024-05-24 | 2024-09-03 | 北京航天驭星科技有限公司 | Antenna and sonde |
Also Published As
Publication number | Publication date |
---|---|
WO2012109801A1 (en) | 2012-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110676575B (en) | A miniaturized high-gain dual-band WIFI antenna | |
TWI419405B (en) | Mobile communication device and its antenna | |
CN103151607B (en) | For the broadband dual-antenna system based on decoupling line structure of mobile terminal | |
WO2012088837A1 (en) | Array antenna of mobile terminal and implementing method thereof | |
JP6528496B2 (en) | Antenna device | |
CN105244614A (en) | Broadband capacitive feed miniature microstrip paster antenna | |
JP2007504768A (en) | Electromagnetically coupled and fed small broadband monopole antenna | |
CN104009292A (en) | Miniaturized broadband microstrip antenna | |
CN103337697B (en) | Seven-band planar terminal antenna | |
CN101719593B (en) | Broadband multi-frequency omni-directional array antenna | |
TW201436369A (en) | Multiband hybrid antenna | |
JP2019507984A (en) | Energy harvesting circuit board | |
CN105449348A (en) | Electromagnetic dipole antenna | |
CN102130379A (en) | Miniature microstrip antenna | |
TW201941493A (en) | Antenna structure | |
CN103346393B (en) | A kind of multi-frequency plane printed antenna containing protrusion floor being applied to mobile terminal | |
CN109309279B (en) | Antenna structure | |
CN111786100A (en) | Antenna radiation unit and communication equipment | |
CN108091992A (en) | Miniaturized Microstrip Antennas | |
CN207116688U (en) | Dual frequency high gain omnidirectional antenna | |
JP5309227B2 (en) | Multiband and wideband antenna using metamaterial and communication apparatus including the same | |
US9768505B2 (en) | MIMO antenna with no phase change | |
CN103943948B (en) | Foldable PCB Board Helical Antenna for In-Ear Wireless Headphones | |
WO2017107057A1 (en) | Mobile terminal | |
TWI524595B (en) | Antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20131030 |