[go: up one dir, main page]

CN103367128A - Method for forming ultra-steep inverted doped channel, semiconductor device and manufacturing method thereof - Google Patents

Method for forming ultra-steep inverted doped channel, semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
CN103367128A
CN103367128A CN2012100887567A CN201210088756A CN103367128A CN 103367128 A CN103367128 A CN 103367128A CN 2012100887567 A CN2012100887567 A CN 2012100887567A CN 201210088756 A CN201210088756 A CN 201210088756A CN 103367128 A CN103367128 A CN 103367128A
Authority
CN
China
Prior art keywords
ions
semiconductor substrate
semiconductor device
region
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100887567A
Other languages
Chinese (zh)
Inventor
徐秋霞
梁擎擎
吴昊
许高博
周华杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN2012100887567A priority Critical patent/CN103367128A/en
Publication of CN103367128A publication Critical patent/CN103367128A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本申请公开了一种形成超陡倒掺杂沟道的方法、包括超陡倒掺杂沟道的半导体器件及其制造方法。该方法包括:形成掩模,该掩模暴露对应于半导体器件的沟道区和源/漏延伸区的半导体衬底区域;采用掩模执行第一次离子注入,在半导体衬底中注入与半导体衬底的导电类型相同的第一离子;以及采用掩模执行第二次离子注入,在半导体衬底中注入与半导体衬底的导电类型相同的第二离子,其中第一次离子注入和第二次离子注入形成的注入区部分叠加形成超陡倒掺杂区。

Figure 201210088756

The application discloses a method for forming a super-steep retrograde doped channel, a semiconductor device including a super-steep retrograde doped channel and a manufacturing method thereof. The method includes: forming a mask exposing a semiconductor substrate region corresponding to a channel region and a source/drain extension region of a semiconductor device; performing a first ion implantation using the mask, implanting and semiconductor first ions of the same conductivity type of the substrate; and performing a second ion implantation using a mask to implant second ions of the same conductivity type as the semiconductor substrate into the semiconductor substrate, wherein the first ion implantation and the second ion implantation The implanted regions formed by secondary ion implantation are partially overlapped to form a super-steep retrograde doping region.

Figure 201210088756

Description

超陡倒掺杂沟道的形成方法、半导体器件及其制造方法Method for forming ultra-steep retrograde doped channel, semiconductor device and manufacturing method thereof

技术领域 technical field

本发明涉及半导体器件及其制造方法,更具体地,涉及超陡倒掺杂沟道的形成方法、包含超陡倒掺杂沟道的半导体器件及其制造方法。The present invention relates to a semiconductor device and a manufacturing method thereof, more specifically, to a method for forming an ultra-steep retrograde doped channel, a semiconductor device including a super-steep retrograde doped channel and a manufacturing method thereof.

背景技术 Background technique

集成电路技术的一个重要发展方向是金属氧化物半导体场效应晶体管(MOSFET)的尺寸按比例缩小,以提高集成度和降低制造成本。然而,众所周知的是随着MOSFET的尺寸减小会产生短沟道效应。随着MOSFET的尺寸按比例缩小,栅极的有效长度减小,使得实际上由栅极电压控制的耗尽层电荷的比例减少,从而阈值电压随沟道长度减小而下降。An important development direction of integrated circuit technology is to scale down the size of metal-oxide-semiconductor field-effect transistors (MOSFETs) to improve integration and reduce manufacturing costs. However, it is well known that short-channel effects occur as the size of MOSFETs decreases. As the size of the MOSFET is scaled down, the effective length of the gate is reduced, so that the proportion of depletion layer charge that is actually controlled by the gate voltage is reduced, so that the threshold voltage decreases as the channel length decreases.

在一方面,为了抑制短沟道效应,可以提高沟道的掺杂浓度以提高半导体器件的阈值电压。然而,如果沟道的掺杂浓度大于6×1018/cm3,则采用常规的沟道掺杂方法将会带来一系列严重问题,例如阈值电压过高、结电容明显增大、载流子有效迁移率μeff严重下降。结果,MOSFET的电路性能反而劣化,工作频率和驱动能力均减小。On the one hand, in order to suppress the short channel effect, the doping concentration of the channel can be increased to increase the threshold voltage of the semiconductor device. However, if the doping concentration of the channel is greater than 6×10 18 /cm 3 , the conventional channel doping method will bring a series of serious problems, such as too high threshold voltage, significantly increased junction capacitance, and current-carrying Sub-effective mobility μ eff seriously decreased. As a result, the circuit performance of the MOSFET deteriorates, and both the operating frequency and the driving capability are reduced.

在另一方面,在应用中可能需要减小半导体器件的阈值电压。例如,在20纳米及以下的半导体器件中,采用的电源电压已经减小到0.8V左右。相应地,半导体器件的阈值电压应当控制在±0.2V左右,以获得小的关态漏电流Ioff及逻辑噪容(noise tolerance)。为了减小阈值电压,可以减小沟道的掺杂浓度。然而,减小沟道的掺杂浓度又可能导致上述的短沟道效应。On the other hand, it may be desirable to reduce the threshold voltage of a semiconductor device in an application. For example, in semiconductor devices of 20 nanometers and below, the power supply voltage used has been reduced to about 0.8V. Correspondingly, the threshold voltage of the semiconductor device should be controlled at about ±0.2V to obtain a small off-state leakage current I off and logic noise tolerance. In order to reduce the threshold voltage, the doping concentration of the channel can be reduced. However, reducing the doping concentration of the channel may lead to the above-mentioned short channel effect.

在采用沟道掺杂调节阈值电压的方法中,一种改进的技术包括在沟道区下方形成超陡倒掺杂区,利用超陡倒掺杂方法在沟道区形成陡峭的掺杂浓度分布。超陡倒掺杂区的掺杂浓度高于沟道区。沟道区和超陡倒掺杂区一起形成了超陡倒掺杂沟道,其优点包括抑制短沟道效应、提高沟道区的载流子迁移率、减小寄生电容。从而可以在调节半导体器件的阈值电压的同时提高工作频率和驱动能力。In the method of adjusting the threshold voltage by channel doping, an improved technique includes forming a super-steep retrograde doping region under the channel region, and using the super-steep retrograde doping method to form a steep doping concentration distribution in the channel region . The doping concentration of the ultra-steep retrograde doping region is higher than that of the channel region. The channel region and the ultra-steep retrograde doping region together form a super-steep retrograde doped channel, and its advantages include suppressing the short channel effect, improving carrier mobility in the channel region, and reducing parasitic capacitance. Thus, the operating frequency and driving capability can be improved while adjusting the threshold voltage of the semiconductor device.

在形成超陡倒掺杂沟道时面临的困难是超陡倒掺杂区的掺杂物向外扩散,结果难以实现所需的陡峭的掺杂浓度分布。The difficulty in forming the ultra-steep retrograde doped channel is that the dopant in the super-steep retrograde doped region diffuses outwards, and as a result, it is difficult to achieve the required steep doping concentration distribution.

发明内容 Contents of the invention

本发明的目的是提供一种改进的超陡倒掺杂沟道的制造方法、包含超陡倒掺杂沟道的半导体器件及其制造方法。The object of the present invention is to provide an improved method for manufacturing an ultra-steep retrograde doped channel, a semiconductor device including a super-steep retrograde doped channel and a manufacturing method thereof.

根据本发明的一方面,提供一种形成超陡倒掺杂沟道的方法,包括:形成掩模,该掩模暴露对应于半导体器件的沟道区和源/漏延伸区的半导体衬底区域;采用掩模执行第一次离子注入,在半导体衬底中注入与半导体衬底的导电类型相同的第一离子;以及采用掩模执行第二次离子注入,在半导体衬底中注入与半导体衬底的导电类型相同的第二离子,其中第一次离子注入和第二次离子注入形成的注入区部分叠加形成超陡倒掺杂区。According to one aspect of the present invention, there is provided a method for forming an ultra-steep retrograde doped channel, comprising: forming a mask exposing a semiconductor substrate region corresponding to a channel region and a source/drain extension region of a semiconductor device ; using a mask to perform the first ion implantation, implanting first ions of the same conductivity type as the semiconductor substrate into the semiconductor substrate; and using a mask to perform the second ion implantation, implanting into the semiconductor substrate Second ions of the same conductivity type at the bottom, wherein the implanted regions formed by the first ion implantation and the second ion implantation are partially overlapped to form a super-steep retrograde doping region.

根据本发明的另一方面,提供一种制造半导体器件的方法,包括:在半导体衬底上形成隔离结构,以限定半导体器件的有源区域;按照上述的方法形成超陡倒掺杂沟道;在沟道区上方形成包括栅极电介质和栅极导体的栅极叠层,其中栅极电介质夹在栅极导体和沟道区之间;在栅极叠层两侧形成第一侧墙;采用栅极叠层及第一侧墙和隔离结构作为硬掩模,对半导体衬底进行预非晶化;采用栅极叠层及第一侧墙和隔离结构作为硬掩模,对半导体衬底进行延伸区注入;在第一侧墙上形成第二侧墙;采用栅极叠层及第一侧墙、第二侧墙和隔离结构作为硬掩模,对半导体衬底进行源/漏注入。According to another aspect of the present invention, there is provided a method for manufacturing a semiconductor device, comprising: forming an isolation structure on a semiconductor substrate to define an active region of the semiconductor device; forming an ultra-steep retrograde doped channel according to the above method; Forming a gate stack including a gate dielectric and a gate conductor over the channel region, wherein the gate dielectric is sandwiched between the gate conductor and the channel region; forming first spacers on both sides of the gate stack; using The gate stack, the first side wall and the isolation structure are used as a hard mask to pre-amorphize the semiconductor substrate; the gate stack, the first side wall and the isolation structure are used as a hard mask to pre-amorphize the semiconductor substrate Implanting the extension region; forming a second sidewall on the first sidewall; using the gate stack, the first sidewall, the second sidewall and the isolation structure as a hard mask, and performing source/drain implantation on the semiconductor substrate.

根据本发明的另一方面,提供一种半导体器件,包括:半导体衬底;在半导体衬底中形成的源/漏区以及源/漏延伸区;在半导体衬底中形成并且夹在源/漏延伸区之间的沟道区;在半导体衬底中形成并且位于沟道区和源/漏延伸区下方的超陡倒掺杂区;位于沟道区上方的栅极电介质;以及位于栅极电介质上方的栅极导体,其中,所述超陡倒掺杂区的掺杂离子包括与半导体衬底的导电类型相同的第一离子和第二离子,其中第二离子比第一离子的原子量更大。According to another aspect of the present invention, a semiconductor device is provided, including: a semiconductor substrate; a source/drain region and a source/drain extension region formed in the semiconductor substrate; a channel region between the extension regions; an ultra-steep retrograde doped region formed in the semiconductor substrate and located below the channel region and source/drain extension regions; a gate dielectric located above the channel region; and a gate dielectric located The upper gate conductor, wherein the doping ions in the super-steep retrograde doping region include first ions and second ions of the same conductivity type as the semiconductor substrate, wherein the second ions have a larger atomic weight than the first ions .

本发明利用两种离子的掺杂形成超陡倒掺杂区,其中重离子的扩散系数低,主要聚集在沟道区附近,形成了陡峭的掺杂浓度分布。沟道区表面附近的掺杂浓度可以足够低以获得合适的低阈值电压,同时获得高的载流子迁移率。在沟道区下方的超陡倒掺杂区极好地抑制严重的短沟道效应(SCE)和DIBL效应在接近沟道区的表面处发生。利用掩模还可以限定超陡倒掺杂区的横向延伸范围,以减小结电容,有利于速度的提高。The invention utilizes the doping of two kinds of ions to form a super-steep retrograde doping region, in which heavy ions have a low diffusion coefficient and are mainly gathered near the channel region to form a steep doping concentration distribution. The doping concentration near the surface of the channel region can be low enough to obtain a suitably low threshold voltage while obtaining high carrier mobility. The ultra-steep retrograde doping region below the channel region excellently suppresses severe short channel effects (SCE) and DIBL effects from occurring close to the surface of the channel region. The mask can also be used to limit the lateral extension of the super-steep retrograde doping region, so as to reduce the junction capacitance, which is beneficial to the improvement of the speed.

进一步地,本发明的半导体器件可以利用晕圈区进一步抑制严重的短沟道效应(SCE)和DIBL效应在体内的发生。Furthermore, the semiconductor device of the present invention can use the halo region to further suppress the occurrence of severe short channel effect (SCE) and DIBL effect in the body.

附图说明 Description of drawings

图1至8示出了根据本发明的实施例的制造包含超陡倒掺杂沟道的半导体器件的不同阶段的示意性截面图。1 to 8 show schematic cross-sectional views of different stages of manufacturing a semiconductor device including an ultra-steep retrograde channel according to an embodiment of the present invention.

图9示出了根据本发明的实施例形成的超陡倒掺杂沟道的掺杂浓度分布的模拟结果。FIG. 9 shows the simulation results of the doping concentration distribution of the ultra-steep retrograde doped channel formed according to the embodiment of the present invention.

图10示出了根据本发明实施例形成的半导体器件的亚阈值特性的模拟结果。FIG. 10 shows simulation results of sub-threshold characteristics of a semiconductor device formed according to an embodiment of the present invention.

具体实施方式 Detailed ways

以下将参照附图更详细地描述本发明。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. In the various figures, identical elements are indicated with similar reference numerals. For the sake of clarity, various parts in the drawings have not been drawn to scale.

为了简明起见,可以在一幅图中描述经过数个步骤后获得的半导体结构。For the sake of simplicity, the semiconductor structure obtained after several steps can be described in one figure.

应当理解,在描述器件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将器件翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。It should be understood that when describing the structure of a device, when a layer or a region is referred to as being "on" or "over" another layer or another region, it may mean being directly on another layer or another region, or Other layers or regions are also included between it and another layer or another region. And, if the device is turned over, the layer, one region, will be "below" or "beneath" the other layer, another region.

如果为了描述直接位于另一层、另一个区域上面的情形,本文将采用“直接在......上面”或“在......上面并与之邻接”的表述方式。If it is to describe the situation of being directly on another layer or another area, the expression "directly on" or "on and adjacent to" will be used herein.

在本申请中,术语“半导体结构”指在制造半导体器件的各个步骤中形成的整个半导体结构的统称,包括已经形成的所有层或区域。In the present application, the term "semiconductor structure" refers to a general designation of the entire semiconductor structure formed in various steps of manufacturing a semiconductor device, including all layers or regions that have been formed.

在下文中描述了本发明的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。In the following, many specific details of the present invention are described, such as device structures, materials, dimensions, processing techniques and techniques, for a clearer understanding of the present invention. However, the invention may be practiced without these specific details, as will be understood by those skilled in the art.

除非在下文中特别指出,半导体器件中的各个部分可以由本领域的技术人员公知的材料构成。半导体材料例如包括III-V族半导体,如GaAs、InP、GaN、SiC,以及IV族半导体,如Si、Ge。栅极导体层可以由能够导电的各种材料形成,例如金属层、掺杂多晶硅层、或包括金属层和掺杂多晶硅层的叠层栅导体或者是其他导电材料,例如为TaC、TiN、TaTbN、TaErN、TaYbN、TaSiN、HfSiN、MoSiN、RuTax、NiTax,MoNx、TiSiN、TiCN、TaAlC、TiAlN、TaN、PtSix、Ni3Si、Pt、Ru、Ir、Mo、HfRu、RuOx|和所述各种导电材料的组合。栅极介质层可以由SiO2或介电常数大于SiO2的材料构成,例如包括氧化物、氮化物、氧氮化物、硅酸盐、铝酸盐、钛酸盐,其中,氧化物例如包括SiO2、HfO2、ZrO2、Al2O3、TiO2、La2O3,氮化物例如包括Si3N4,硅酸盐例如包括HfSiOx,铝酸盐例如包括LaAlO3,钛酸盐例如包括SrTiO3,氧氮化物例如包括SiON。并且,栅极介质层不仅可以由本领域的技术人员公知的材料形成,也可以采用将来开发的用于栅极介质层的材料。Unless otherwise specified below, various parts in the semiconductor device may be composed of materials known to those skilled in the art. The semiconductor material includes, for example, Group III-V semiconductors, such as GaAs, InP, GaN, SiC, and Group IV semiconductors, such as Si and Ge. The gate conductor layer can be formed of various conductive materials, such as a metal layer, a doped polysilicon layer, or a stacked gate conductor including a metal layer and a doped polysilicon layer, or other conductive materials, such as TaC, TiN, TaTbN , TaErN, TaYbN, TaSiN, HfSiN, MoSiN, RuTax, NiTax, MoNx, TiSiN, TiCN, TaAlC, TiAlN, TaN, PtSix, Ni 3 Si, Pt, Ru, Ir, Mo, HfRu, RuOx| and the various combination of conductive materials. The gate dielectric layer can be made of SiO2 or a material with a dielectric constant greater than SiO2 , such as oxides, nitrides, oxynitrides, silicates, aluminates, titanates, where the oxides include SiO 2. HfO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , La 2 O 3 , nitrides such as Si 3 N 4 , silicates such as HfSiOx, aluminates such as LaAlO 3 , titanates such as SrTiO 3 , oxynitrides include, for example, SiON. Moreover, the gate dielectric layer can be formed not only from materials known to those skilled in the art, but also from materials developed in the future for the gate dielectric layer.

按照本发明的实施例,执行图1至8中所示的以下步骤以制造包含超陡倒掺杂沟道的半导体器件,在图中示出了不同阶段的半导体结构的截面图。According to an embodiment of the present invention, the following steps shown in FIGS. 1 to 8 are performed to fabricate a semiconductor device including an ultra-steep retrograde doped channel, in which cross-sectional views of semiconductor structures at different stages are shown.

如图1所示,通过已知的沉积工艺,如电子束蒸发(EBM)、化学气相沉积(CVD)、原子层沉积(ALD)、溅射等,在半导体衬底101上形成衬垫氧化物层102和衬垫氮化物层103。在一个实例中,通过热氧化形成衬垫氧化物层102,以及通过化学气相沉积形成衬垫氮化物层103。衬垫氧化物层102可以减轻衬底101和衬垫氮化物层103之间的应力,厚度例如为2-15纳米。衬底氮化物层103在随后的化学机械抛光(CMP)工艺中用作停止层,厚度例如为50-150纳米。然后,通过旋涂在衬底氮化物层103上形成光致抗蚀剂层201,并通过其中包括曝光和显影的光刻工艺将光致抗蚀剂层201形成图案。As shown in FIG. 1, a pad oxide is formed on a semiconductor substrate 101 by a known deposition process, such as electron beam evaporation (EBM), chemical vapor deposition (CVD), atomic layer deposition (ALD), sputtering, etc. layer 102 and pad nitride layer 103 . In one example, the pad oxide layer 102 is formed by thermal oxidation, and the pad nitride layer 103 is formed by chemical vapor deposition. The pad oxide layer 102 can relieve stress between the substrate 101 and the pad nitride layer 103 , and has a thickness of, for example, 2-15 nanometers. The substrate nitride layer 103 is used as a stop layer in a subsequent chemical mechanical polishing (CMP) process, and has a thickness of, for example, 50-150 nm. Then, a photoresist layer 201 is formed on the substrate nitride layer 103 by spin coating, and is patterned by a photolithography process including exposure and development.

然后,利用光致抗蚀剂层201作为掩模,通过干法蚀刻,如离子铣蚀刻、等离子蚀刻、反应离子蚀刻、激光烧蚀,或者通过其中使用蚀刻剂溶液的湿法蚀刻,从上至下依次去除衬垫氮化物层103和衬垫氧化物层102的暴露部分,以及半导体衬底101的一部分,在半导体衬底101中形成沟槽。控制蚀刻时间,使得蚀刻在半导体衬底101中的一定深度处停止。然后,通过在溶剂中溶解或灰化去除光致抗蚀剂层201。通过上述已知的沉积工艺,在半导体结构的整个表面上形成覆盖的氧化物层。然后,以衬垫氧化物层103作为停止层,对整个半导体结构进行化学机械平面化,获得平整的表面。该化学机械平面化去除了位于半导体衬底101中的沟槽外部的氧化物,使得留在沟槽内部的氧化物形成浅沟槽隔离(STI)104,如图2所示。Then, using the photoresist layer 201 as a mask, by dry etching such as ion milling etching, plasma etching, reactive ion etching, laser ablation, or by wet etching in which an etchant solution is used, from top to Next, the exposed portions of the pad nitride layer 103 and the pad oxide layer 102 , and a part of the semiconductor substrate 101 are sequentially removed to form a trench in the semiconductor substrate 101 . The etching time is controlled so that etching stops at a certain depth in the semiconductor substrate 101 . Then, the photoresist layer 201 is removed by dissolving in a solvent or ashing. By means of the known deposition processes described above, a covering oxide layer is formed over the entire surface of the semiconductor structure. Then, using the pad oxide layer 103 as a stop layer, the entire semiconductor structure is chemically mechanically planarized to obtain a flat surface. The chemical mechanical planarization removes the oxide outside the trenches in the semiconductor substrate 101 such that the oxide remaining inside the trenches forms shallow trench isolations (STIs) 104 , as shown in FIG. 2 .

然后,例如通过使用热磷酸(例如,160℃)的湿法蚀刻去除衬垫氮化物层103,以及通过使用氢氟酸缓冲液的湿法蚀刻去除衬垫氧化物层102。例如通过热氧化在半导体衬底101的表面上生长厚度约5纳米的氧化物保护层(screen layer)105,如图3所示。氧化物保护层105用于在随后的离子注入步骤中保护半导体衬底101的表面的晶体结构不受损伤。氧化物保护层105具有均匀的厚度,使得在随后的离子注入步骤中离子可以穿过氧化物保护层105到达半导体衬底101中相同的深度。Then, the pad nitride layer 103 is removed, for example, by wet etching using hot phosphoric acid (eg, 160° C.), and the pad oxide layer 102 is removed by wet etching using a hydrofluoric acid buffer. For example, an oxide protective layer (screen layer) 105 with a thickness of about 5 nanometers is grown on the surface of the semiconductor substrate 101 by thermal oxidation, as shown in FIG. 3 . The oxide protection layer 105 is used to protect the crystal structure of the surface of the semiconductor substrate 101 from being damaged in a subsequent ion implantation step. The oxide protection layer 105 has a uniform thickness so that ions can pass through the oxide protection layer 105 to reach the same depth in the semiconductor substrate 101 in a subsequent ion implantation step.

然后,通过旋涂在半导体结构的整个表面上形成光致抗蚀剂层202,并通过其中包括曝光和显影的光刻工艺将光致抗蚀剂层202形成图案。光致抗蚀剂层202包含至少暴露将要形成的半导体器件的沟道区和源/漏延伸区的窗口。采用光致抗蚀剂层202作为掩模,执行第一次离子注入。第一次离子注入经由光致抗蚀剂层202中的窗口向半导体衬底101中注入与半导体衬底101的导电类型相同的常规离子,如图4所示。对于NMOS器件,半导体衬底101的导电类型是P型,第一次离子注入使用P型常规离子,例如硼离子(11B),能量40-50KeV,剂量1-1.4E13cm-2。对于PMOS器件,半导体衬底101的导电类型是N型,第一次离子注入使用N型常规离子,例如磷离子(31P)注入,能量100-120KeV,剂量1-1.4E13cm-2Then, a photoresist layer 202 is formed on the entire surface of the semiconductor structure by spin coating, and is patterned by a photolithography process including exposure and development. The photoresist layer 202 includes windows exposing at least the channel region and source/drain extension regions of the semiconductor device to be formed. Using the photoresist layer 202 as a mask, the first ion implantation is performed. The first ion implantation implants conventional ions of the same conductivity type as the semiconductor substrate 101 into the semiconductor substrate 101 through the window in the photoresist layer 202 , as shown in FIG. 4 . For NMOS devices, the conductivity type of the semiconductor substrate 101 is P-type, and the first ion implantation uses P-type conventional ions, such as boron ions ( 11 B), with an energy of 40-50KeV and a dose of 1-1.4E13cm −2 . For PMOS devices, the conductivity type of the semiconductor substrate 101 is N-type, and the first ion implantation uses N-type conventional ions, such as phosphorus ion ( 31 P) implantation, with an energy of 100-120KeV and a dose of 1-1.4E13cm −2 .

第一次离子注入在半导体衬底101中将要形成的沟道区下方形成了第一注入区106。然后,仍然采用光至抗蚀剂层202作为掩模,执行第二次离子注入。第二次离子注入经由光致抗蚀剂层202中的窗口向半导体衬底101中注入与半导体衬底101的导电类型相同的重离子,如图5所示。对于NMOS器件,半导体衬底101的导电类型是P型,第二次离子注入使用P型重离子,例如铟离子(115In),能量170-210KeV,剂量1-1.4E13cm-2。对于PMOS器件,半导体衬底101的导电类型是N型,第二次离子注入使用N型重离子,例如锑离子(123Sb),能量170-210KeV,剂量1-1.4E13cm-2。在本申请中,重离子是指原子量大于常规掺杂离子的离子。The first ion implantation forms a first implantation region 106 under the channel region to be formed in the semiconductor substrate 101 . Then, still using photoresist layer 202 as a mask, a second ion implantation is performed. The second ion implantation implants heavy ions of the same conductivity type as the semiconductor substrate 101 into the semiconductor substrate 101 through the window in the photoresist layer 202 , as shown in FIG. 5 . For NMOS devices, the conductivity type of the semiconductor substrate 101 is P-type, and the second ion implantation uses P-type heavy ions, such as indium ions ( 115 In), with an energy of 170-210KeV and a dose of 1-1.4E13cm −2 . For PMOS devices, the conductivity type of the semiconductor substrate 101 is N-type, and the second ion implantation uses N-type heavy ions, such as antimony ions ( 123 Sb ), with an energy of 170-210KeV and a dose of 1-1.4E13cm −2 . In this application, heavy ions refer to ions having an atomic mass greater than that of conventional dopant ions.

在第二次离子注入之后,通过在溶剂中溶解或灰化去除光致抗蚀剂层202。After the second ion implantation, the photoresist layer 202 is removed by dissolving in a solvent or ashing.

第二次离子注入的能量比第一次离子注入的能量更大,使得两次离子注入的注入区部分叠加形成超陡倒掺杂区106,如图6所示。半导体衬底101位于超陡倒掺杂区107上方的一部分作为将要形成的半导体器件的沟道区(未示出)。The energy of the second ion implantation is greater than that of the first ion implantation, so that the implanted regions of the two ion implantations partially overlap to form a super-steep retrograde doping region 106 , as shown in FIG. 6 . A part of the semiconductor substrate 101 above the super-steep retrograde doping region 107 serves as a channel region (not shown) of a semiconductor device to be formed.

然后,通过使用氢氟酸缓冲液的湿法蚀刻去除氧化物保护层105,以暴露半导体衬底101的表面。通过上述已知的工艺,在半导体结构的整个表面上依次形成共形的电介质层以及覆盖的多晶硅层,对其进行图案化,从而形成包括栅极电介质108和栅极导体109的栅极叠层。接着,通过上述已知的工艺,在半导体结构的整个表面上沉积例如10-50纳米的氮化物层,然后通过各向异性蚀刻形成位于栅极叠层两侧的第一侧墙110,如图7所示。Then, the oxide protective layer 105 is removed by wet etching using a hydrofluoric acid buffer to expose the surface of the semiconductor substrate 101 . A conformal dielectric layer followed by an overlying polysilicon layer is sequentially formed and patterned over the entire surface of the semiconductor structure by known processes described above to form a gate stack comprising a gate dielectric 108 and a gate conductor 109 . Next, through the above-mentioned known process, a nitride layer of, for example, 10-50 nanometers is deposited on the entire surface of the semiconductor structure, and then the first sidewalls 110 located on both sides of the gate stack are formed by anisotropic etching, as shown in FIG. 7.

然后,采用栅极叠层及第一侧墙和浅沟槽隔离104作为硬掩模,对半导体衬底101的暴露部分进行预非晶化。在一个实例中,预非晶化包括向半导体衬底101中注入Ge离子,能量15-25KeV,剂量4-9E14。预非晶化在半导体衬底101中形成了非晶化区,有利于在随后的注入步骤中形成浅结。Then, the exposed portion of the semiconductor substrate 101 is pre-amorphized by using the gate stack, the first sidewall and the shallow trench isolation 104 as a hard mask. In one example, the pre-amorphization includes implanting Ge ions into the semiconductor substrate 101 with an energy of 15-25KeV and a dose of 4-9E14. The pre-amorphization forms an amorphization region in the semiconductor substrate 101, which is beneficial to forming a shallow junction in a subsequent implantation step.

进一步地,采用栅极叠层及第一侧墙110和浅沟槽隔离104作为硬掩模,对半导体衬底101进行延伸区注入,从而形成源/漏延伸区111。延伸区注入向半导体衬底101中注入与半导体衬底101的导电类型相反的离子。对于NMOS器件,延伸区注入使用N型掺杂剂,例如As离子,注入能量1-3KeV,剂量6-10E14。对于PMOS器件,延伸区注入使用P型掺杂剂,例如BF2离子,注入能量1-3KeV,剂量2-6E14。Further, using the gate stack, the first spacer 110 and the shallow trench isolation 104 as a hard mask, an extension region implantation is performed on the semiconductor substrate 101 to form a source/drain extension region 111 . The extension region implantation implants ions of a conductivity type opposite to that of the semiconductor substrate 101 into the semiconductor substrate 101 . For NMOS devices, N-type dopants, such as As ions, are used for implantation in the extension region, with an implantation energy of 1-3KeV and a dose of 6-10E14. For PMOS devices, the extension region is implanted with P-type dopants, such as BF2 ions, with an implantation energy of 1-3KeV and a dose of 2-6E14.

进一步地,采用栅极叠层及第一侧墙110和浅沟槽隔离104作为硬掩模,对半导体衬底101进行晕圈(halo)注入,从而形成源/漏晕圈112。在晕圈注入中,以倾角方式向半导体衬底101中注入与半导体衬底101的导电类型相同的离子。对于NMOS器件,晕圈注入使用P型掺杂剂,例如BF2离子,注入能量40-60KeV,剂量4-8E13,25-30度倾角。对于PMOS器件,晕圈注入使用N型掺杂剂,例如As离子,注入能量50-60KeV,剂量2-5E13,25-30度倾角。Further, by using the gate stack, the first spacer 110 and the shallow trench isolation 104 as a hard mask, a halo implantation is performed on the semiconductor substrate 101 to form a source/drain halo 112 . In the halo implantation, ions of the same conductivity type as the semiconductor substrate 101 are implanted into the semiconductor substrate 101 at an oblique angle. For NMOS devices, halo implantation uses P-type dopants, such as BF 2 ions, with implantation energy of 40-60KeV, dose of 4-8E13, and inclination angle of 25-30 degrees. For PMOS devices, the halo implant uses N-type dopants, such as As ions, with implantation energy of 50-60KeV, dose of 2-5E13, and inclination angle of 25-30 degrees.

由于晕圈注入以倾角方式进行,并且晕圈注入的深度大于延伸区注入的深度,因此晕圈112位于延伸区111下方,并且更加接近沟道的中心。Since the halo implantation is performed at an oblique angle, and the depth of the halo implantation is greater than that of the extension region, the halo 112 is located below the extension region 111 and is closer to the center of the channel.

进一步地,按照与第一侧墙110类似的方式,在第一侧墙110上形成第二侧墙113。采用栅极叠层及第一侧墙110、第二侧墙113和浅沟槽隔离104作为硬掩模,对半导体衬底101进行源/漏注入,从而形成源/漏区114。Further, in a manner similar to that of the first side wall 110 , a second side wall 113 is formed on the first side wall 110 . Using the gate stack, the first spacer 110 , the second spacer 113 and the shallow trench isolation 104 as a hard mask, source/drain implantation is performed on the semiconductor substrate 101 to form the source/drain region 114 .

然后,例如在约1000-1080℃的温度下执行3-5秒的尖峰退火(spikeanneal),以激活通过先前的注入步骤而注入的掺杂离子剂并消除注入导致的损伤。Then, for example, a spike anneal is performed at a temperature of about 1000-1080° C. for 3-5 seconds to activate the dopant ions implanted by the previous implantation step and eliminate the damage caused by the implantation.

按照上述步骤形成的半导体器件包括源/漏区114、源/漏延伸区111和源/漏晕圈112,如图8所示。然而,正如本领域的技术人员可以理解的那样,源/漏延伸区111和源/漏晕圈112是可选的。在替代的实施例中,半导体器件可以仅仅包括源/漏区114,因而在上述的步骤中可以省去第一侧墙的形成、预非晶化、延伸区注入和晕圈注入的步骤。在替代的实施例中,半导体器件可以仅仅包括源/漏区114和源/漏延伸区111。因而在上述的步骤中可以省去晕圈注入的步骤。The semiconductor device formed according to the above steps includes a source/drain region 114 , a source/drain extension region 111 and a source/drain halo 112 , as shown in FIG. 8 . However, source/drain extensions 111 and source/drain halos 112 are optional, as will be understood by those skilled in the art. In an alternative embodiment, the semiconductor device may only include the source/drain region 114, thus the steps of forming the first spacer, pre-amorphization, extension region implantation and halo implantation may be omitted in the above steps. In alternative embodiments, the semiconductor device may only include source/drain regions 114 and source/drain extension regions 111 . Therefore, the step of halo implantation can be omitted in the above steps.

在上述的实施例中示出了半导体器件包括浅沟槽隔离104,用于限定半导体器件的有源区。然而,在替代的实施例中,可以采用LOCOS隔离代替浅沟槽隔离。In the above embodiments, it is shown that the semiconductor device includes the shallow trench isolation 104 for defining the active region of the semiconductor device. However, in alternative embodiments, LOCOS isolation may be used instead of shallow trench isolation.

在上述的实施例中示出第一次离子注入中注入常规离子,在第二次离子注入中注入重离子,以形成超陡倒掺杂区106。然而,在替代的实施例中,可以在第一次离子注入中注入重离子,在第二次离子注入中注入常规离子。尽管该替代的实施例并非最优选的方式,但其仍然可以提供有利的陡峭的掺杂浓度分布。In the above embodiments, conventional ions are implanted in the first ion implantation, and heavy ions are implanted in the second ion implantation, so as to form the super-steep retrograde doped region 106 . However, in an alternative embodiment, heavy ions may be implanted in the first ion implantation and regular ions may be implanted in the second ion implantation. Although this alternative embodiment is not the most preferred, it still provides an advantageously steep doping concentration profile.

图9示出了根据本发明的实施例形成的超陡倒掺杂沟道的掺杂浓度分布的模拟结果。曲线c1表示在形成超陡倒掺杂区107之前,采用阱注入和高温推进形成的P型阱的掺杂浓度的分布,曲线c2表示在形成超陡倒掺杂区107之后的掺杂浓度分布,其中横坐标表示从半导体衬底101的主表面开始的深度,纵坐标表示掺杂浓度。FIG. 9 shows the simulation results of the doping concentration distribution of the ultra-steep retrograde doped channel formed according to the embodiment of the present invention. Curve c1 represents the doping concentration distribution of the P-type well formed by well implantation and high-temperature boost before forming the super-steep retrograde doping region 107, and curve c2 represents the doping concentration distribution after the super-steep retrograde doping region 107 is formed , where the abscissa represents the depth from the main surface of the semiconductor substrate 101 , and the ordinate represents the doping concentration.

阱注入可以在用于形成超陡倒掺杂区107的离子注入步骤之前或同时进行。The well implantation can be performed before or simultaneously with the ion implantation step for forming the super-steep retrograde doped region 107 .

如曲线c2所示,由于重离子的扩散系数低,超陡倒掺杂区107的浓度峰值出现在距离半导体衬底101的主表面大约64纳米的深度,从而实现了陡峭的掺杂浓度分布。As shown by the curve c2, due to the low diffusion coefficient of heavy ions, the concentration peak of the ultra-steep retrograde doping region 107 appears at a depth of about 64 nanometers from the main surface of the semiconductor substrate 101, thereby achieving a steep doping concentration distribution.

图10示出了根据本发明实施例形成的半导体器件的亚阈值特性的模拟结果。由于使用上述的超陡倒掺杂沟道,对于采用金属栅/高K介质的NMOS(栅长约20nm)和PMOS(栅长约15nm)器件,在不同的电压VD下均获得了合适的低阈值电压并且很好地控制了短沟道效应。FIG. 10 shows simulation results of sub-threshold characteristics of a semiconductor device formed according to an embodiment of the present invention. Due to the use of the above-mentioned ultra-steep retrograde doping channel, for NMOS (gate length about 20nm) and PMOS (gate length about 15nm) devices using metal gate/high-K dielectric, suitable values are obtained at different voltages V D Low threshold voltage and well controlled short channel effects.

以上描述只是为了示例说明和描述本发明,而非意图穷举和限制本发明。因此,本发明不局限于所描述的实施例。对于本领域的技术人员明显可知的变型或更改,均在本发明的保护范围之内。The above description is only for illustration and description of the present invention, not intended to be exhaustive and limitative of the present invention. Accordingly, the invention is not limited to the described embodiments. Variations or changes that are obvious to those skilled in the art are within the protection scope of the present invention.

Claims (16)

1.一种形成超陡倒掺杂沟道的方法,包括:1. A method for forming an ultra-steep retrograde doped channel, comprising: 形成掩模,该掩模暴露对应于半导体器件的沟道区和源/漏延伸区的半导体衬底区域;forming a mask exposing regions of the semiconductor substrate corresponding to channel regions and source/drain extension regions of the semiconductor device; 采用掩模执行第一次离子注入,在半导体衬底中注入与半导体衬底的导电类型相同的第一离子;以及performing a first ion implantation using a mask to implant first ions of the same conductivity type as the semiconductor substrate into the semiconductor substrate; and 采用掩模执行第二次离子注入,在半导体衬底中注入与半导体衬底的导电类型相同的第二离子,performing a second ion implantation using a mask, implanting second ions of the same conductivity type as the semiconductor substrate into the semiconductor substrate, 其中第一次离子注入和第二次离子注入形成的注入区部分叠加形成超陡倒掺杂区。The implanted regions formed by the first ion implantation and the second ion implantation are partially superimposed to form a super-steep retrograde doping region. 2.根据权利要求1所述的方法,其中第一离子的原子量小于第二离子的原子量。2. The method of claim 1, wherein the atomic mass of the first ion is less than the atomic mass of the second ion. 3.根据权利要求1所述的方法,其中第一离子的原子量大于第二离子的原子量。3. The method of claim 1, wherein the atomic mass of the first ion is greater than the atomic mass of the second ion. 4.根据权利要求1所述的方法,其中第一次离子注入的能量为30-60KeV,第二次离子注入的能量为160-210KeV。4. The method according to claim 1, wherein the energy of the first ion implantation is 30-60KeV, and the energy of the second ion implantation is 160-210KeV. 5.根据权利要求2所述的方法,其中所述半导体器件是NMOS器件,并且第一离子是硼离子,第二离子是铟离子。5. The method of claim 2, wherein the semiconductor device is an NMOS device, and the first ions are boron ions and the second ions are indium ions. 6.根据权利要求3所述的方法,其中所述半导体器件是NMOS器件,并且第一离子是铟离子,第二离子是硼离子。6. The method of claim 3, wherein the semiconductor device is an NMOS device, and the first ions are indium ions and the second ions are boron ions. 7.根据权利要求2所述的方法,其中所述半导体器件是PMOS器件,并且第一离子是磷离子,第二离子是锑离子。7. The method of claim 2, wherein the semiconductor device is a PMOS device, and the first ions are phosphorous ions and the second ions are antimony ions. 8.根据权利要求3所述的方法,其中所述半导体器件是PMOS器件,并且第一离子是锑离子,第二离子是磷离子。8. The method of claim 3, wherein the semiconductor device is a PMOS device, and the first ions are antimony ions and the second ions are phosphorus ions. 9.根据权利要求1所述的方法,其中在形成掩模之前,还包括在半衬底的表面上形成氧化物保护层。9. The method of claim 1, further comprising forming an oxide protection layer on the surface of the half substrate before forming the mask. 10.一种制造半导体器件的方法,包括:10. A method of manufacturing a semiconductor device, comprising: 在半导体衬底上形成隔离结构,以限定半导体器件的有源区域;forming an isolation structure on a semiconductor substrate to define an active region of a semiconductor device; 按照权利要求1至9中任一项所述的方法形成超陡倒掺杂沟道;forming an ultra-steep retrograde doped channel according to the method described in any one of claims 1 to 9; 在沟道区上方形成包括栅极电介质和栅极导体的栅极叠层,其中栅极电介质夹在栅极导体和沟道区之间;forming a gate stack comprising a gate dielectric and a gate conductor over the channel region, wherein the gate dielectric is sandwiched between the gate conductor and the channel region; 在栅极叠层两侧形成第一侧墙;forming first spacers on both sides of the gate stack; 采用栅极叠层及第一侧墙和隔离结构作为硬掩模,对半导体衬底进行预非晶化;Pre-amorphizing the semiconductor substrate by using the gate stack, the first sidewall and the isolation structure as a hard mask; 采用栅极叠层及第一侧墙和隔离结构作为硬掩模,对半导体衬底进行延伸区注入;Using the gate stack, the first sidewall and the isolation structure as a hard mask, performing extension region implantation on the semiconductor substrate; 在第一侧墙上形成第二侧墙;forming a second side wall on the first side wall; 采用栅极叠层及第一侧墙、第二侧墙和隔离结构作为硬掩模,对半导体衬底进行源/漏注入。Source/drain implantation is performed on the semiconductor substrate by using the gate stack, the first side wall, the second side wall and the isolation structure as a hard mask. 11.根据权利要求10所述的方法,在进行延伸区注入的步骤和形成第二侧墙的步骤之间,还包括采用栅极叠层及第一侧墙和隔离结构作为硬掩模,对半导体衬底以倾角方式进行晕圈注入。11. The method according to claim 10, between the step of implanting the extension region and the step of forming the second spacer, further comprising using the gate stack, the first spacer and the isolation structure as a hard mask, for The semiconductor substrate is halo-implanted in an oblique manner. 12.一种半导体器件,包括:12. A semiconductor device comprising: 半导体衬底;semiconductor substrate; 在半导体衬底中形成的源/漏区以及源/漏延伸区;source/drain regions and source/drain extension regions formed in the semiconductor substrate; 在半导体衬底中形成并且夹在源/漏延伸区之间的沟道区;a channel region formed in a semiconductor substrate and sandwiched between source/drain extension regions; 在半导体衬底中形成并且位于沟道区和源/漏延伸区下方的超陡倒掺杂区;an ultra-steep retrograde region formed in the semiconductor substrate and located below the channel region and source/drain extension regions; 位于沟道区上方的栅极电介质;以及a gate dielectric over the channel region; and 位于栅极电介质上方的栅极导体,a gate conductor over the gate dielectric, 其中,所述超陡倒掺杂区的掺杂离子包括与半导体衬底的导电类型相同的第一离子和第二离子,其中第二离子比第一离子的原子量更大。Wherein, the doping ions in the super-steep retrograde doping region include first ions and second ions of the same conductivity type as the semiconductor substrate, wherein the second ions have a larger atomic weight than the first ions. 13.根据权利要求12所述的半导体器件,其中超陡倒掺杂区在沟道区附近具有掺杂浓度的峰值。13. The semiconductor device according to claim 12, wherein the ultra-steep retrograde doping region has a peak value of doping concentration near the channel region. 14.根据权利要求12所述的半导体器件,其中所述半导体器件是NMOS器件,并且第一离子是硼离子,第二离子是铟离子。14. The semiconductor device according to claim 12, wherein the semiconductor device is an NMOS device, and the first ions are boron ions and the second ions are indium ions. 15.根据权利要求12所述的半导体器件,其中所述半导体器件是PMOS器件,并且第一离子是磷离子,第二离子是锑离子。15. The semiconductor device according to claim 12, wherein the semiconductor device is a PMOS device, and the first ions are phosphorous ions and the second ions are antimony ions. 16.根据权利要求12所述的半导体器件,还包括源/漏晕圈区。16. The semiconductor device of claim 12, further comprising a source/drain halo region.
CN2012100887567A 2012-03-29 2012-03-29 Method for forming ultra-steep inverted doped channel, semiconductor device and manufacturing method thereof Pending CN103367128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100887567A CN103367128A (en) 2012-03-29 2012-03-29 Method for forming ultra-steep inverted doped channel, semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100887567A CN103367128A (en) 2012-03-29 2012-03-29 Method for forming ultra-steep inverted doped channel, semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN103367128A true CN103367128A (en) 2013-10-23

Family

ID=49368226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100887567A Pending CN103367128A (en) 2012-03-29 2012-03-29 Method for forming ultra-steep inverted doped channel, semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN103367128A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514169A (en) * 2016-01-13 2016-04-20 西安电子科技大学 65nm technology-based super-steep reverse-doping radiation-proof MOS field-effect tube
CN116504612A (en) * 2023-02-09 2023-07-28 长鑫存储技术有限公司 Semiconductor structure and forming method thereof
CN118824953A (en) * 2024-09-20 2024-10-22 合肥晶合集成电路股份有限公司 Method for manufacturing a semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1360342A (en) * 2000-12-19 2002-07-24 中国科学院微电子中心 Method for realizing technological section structure of 70-nm device
CN1890798A (en) * 2003-10-02 2007-01-03 英特尔公司 Method and apparatus for improving stability of a 6T CMOS sram cell
CN101414647A (en) * 2007-10-17 2009-04-22 北京中科信电子装备有限公司 Diffusion method for high-efficiency solar battery local depth junction
US20100084732A1 (en) * 2008-10-06 2010-04-08 Hynix Semiconductor Inc. Semiconductor Device and Method of Manufacturing the Same
CN102194869A (en) * 2010-03-16 2011-09-21 北京大学 Ultra-steep reverse doped metal oxide semiconductor (MOS) device with improved anti-irradiation property
US20120252198A1 (en) * 2010-08-31 2012-10-04 Institute of Microelectronics Chinese Academy of Sciences Method for manufacturing semiconductor structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1360342A (en) * 2000-12-19 2002-07-24 中国科学院微电子中心 Method for realizing technological section structure of 70-nm device
CN1890798A (en) * 2003-10-02 2007-01-03 英特尔公司 Method and apparatus for improving stability of a 6T CMOS sram cell
CN101414647A (en) * 2007-10-17 2009-04-22 北京中科信电子装备有限公司 Diffusion method for high-efficiency solar battery local depth junction
US20100084732A1 (en) * 2008-10-06 2010-04-08 Hynix Semiconductor Inc. Semiconductor Device and Method of Manufacturing the Same
CN102194869A (en) * 2010-03-16 2011-09-21 北京大学 Ultra-steep reverse doped metal oxide semiconductor (MOS) device with improved anti-irradiation property
US20120252198A1 (en) * 2010-08-31 2012-10-04 Institute of Microelectronics Chinese Academy of Sciences Method for manufacturing semiconductor structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514169A (en) * 2016-01-13 2016-04-20 西安电子科技大学 65nm technology-based super-steep reverse-doping radiation-proof MOS field-effect tube
CN105514169B (en) * 2016-01-13 2018-08-10 西安电子科技大学 Super steep doping Flouride-resistani acid phesphatase metal-oxide-semiconductor field effect transistor based on 65nm techniques
CN116504612A (en) * 2023-02-09 2023-07-28 长鑫存储技术有限公司 Semiconductor structure and forming method thereof
CN116504612B (en) * 2023-02-09 2023-11-21 长鑫存储技术有限公司 Semiconductor structure and forming method thereof
CN118824953A (en) * 2024-09-20 2024-10-22 合肥晶合集成电路股份有限公司 Method for manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
CN103311247B (en) Semiconductor device and method for manufacturing the same
CN102034865B (en) Semiconductor device and method for manufacturing the same
CN102117750B (en) Mosfet structure and manufacturing method thereof
US10777660B2 (en) Semiconductor structure
US9018739B2 (en) Semiconductor device and method of fabricating the same
US8952453B2 (en) MOSFET formed on an SOI wafer with a back gate
CN107564816B (en) LDMOS transistor and forming method thereof
CN109148578B (en) Semiconductor structure and method of forming the same
US8809955B2 (en) Semiconductor structure and method for manufacturing the same
CN103377947B (en) Semiconductor structure and manufacturing method thereof
CN103050526B (en) MOSFET and manufacturing method thereof
US8598595B2 (en) Semiconductor device and method for manufacturing the same
WO2012006805A1 (en) Soi mos component with bts structure and fabricating method thereof
US9548317B2 (en) FDSOI semiconductor structure and method for manufacturing the same
WO2014071754A1 (en) Semiconductor structure and manufacturing method therefor
CN110364570A (en) Semiconductor device, method of forming the same, and semiconductor structure
CN102856201B (en) MOSFET and manufacturing method thereof
CN103367128A (en) Method for forming ultra-steep inverted doped channel, semiconductor device and manufacturing method thereof
CN112331649B (en) Semiconductor device and method for manufacturing the same
CN102956647B (en) Semiconductor device and method for manufacturing the same
CN109285780B (en) LDMOS transistor and forming method thereof
CN102842603B (en) Mosfet and manufacturing method thereof
CN102956703B (en) Semiconductor device and method for manufacturing the same
US10770555B2 (en) Semiconductor device and method for forming the same
CN102842617A (en) MOSFET and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20131023

RJ01 Rejection of invention patent application after publication