CN103364801A - A method for multiplying positioning precision in a satellite navigation positioning system - Google Patents
A method for multiplying positioning precision in a satellite navigation positioning system Download PDFInfo
- Publication number
- CN103364801A CN103364801A CN2012100908648A CN201210090864A CN103364801A CN 103364801 A CN103364801 A CN 103364801A CN 2012100908648 A CN2012100908648 A CN 2012100908648A CN 201210090864 A CN201210090864 A CN 201210090864A CN 103364801 A CN103364801 A CN 103364801A
- Authority
- CN
- China
- Prior art keywords
- user terminal
- navigation
- navsat
- satellite
- delta
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000005259 measurement Methods 0.000 claims abstract description 35
- 238000012937 correction Methods 0.000 claims description 23
- 239000011159 matrix material Substances 0.000 claims description 11
- 239000005433 ionosphere Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 3
- 101100387911 Caenorhabditis elegans dop-2 gene Proteins 0.000 claims description 2
- 101100387915 Caenorhabditis elegans dop-4 gene Proteins 0.000 claims description 2
- 101150097115 dop-3 gene Proteins 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims description 2
- 230000004048 modification Effects 0.000 claims description 2
- 239000003623 enhancer Substances 0.000 claims 4
- 239000005436 troposphere Substances 0.000 claims 4
- 239000012895 dilution Substances 0.000 claims 3
- 238000010790 dilution Methods 0.000 claims 3
- 238000013016 damping Methods 0.000 claims 2
- 230000002708 enhancing effect Effects 0.000 claims 2
- 239000000243 solution Substances 0.000 claims 2
- 238000011156 evaluation Methods 0.000 claims 1
- 230000004807 localization Effects 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 2
- 238000004891 communication Methods 0.000 description 5
- 230000008054 signal transmission Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
Images
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明公开了一种卫星导航定位系统中倍增定位精度的方法,该方法中,卫星导航定位系统中每颗导航卫星通过多个载波频点下行伪随机噪声码、导航电文和广域增强信息,用户终端通过多个载波频点同时单独测量并改正导航卫星的轨道误差、电离层时延,对流层时延和多路径误差,实现在多个载波频点上导航卫星到用户终端的伪距测量。利用多个载波频点的伪距观测方程,通过迭代计算,可以解算出用户终端位置的准确坐标。本发明能够很好的提高用户终端的定位精度,显著改善卫星导航定位系统的导航定位性能。
The invention discloses a method for doubling positioning accuracy in a satellite navigation and positioning system. In the method, each navigation satellite in the satellite navigation and positioning system downlinks pseudo-random noise codes, navigation messages and wide-area enhanced information through multiple carrier frequency points, The user terminal independently measures and corrects the orbit error, ionospheric delay, tropospheric delay and multipath error of the navigation satellite through multiple carrier frequency points at the same time, and realizes the pseudo-range measurement from the navigation satellite to the user terminal on multiple carrier frequency points. Using the pseudo-range observation equations of multiple carrier frequency points, through iterative calculation, the exact coordinates of the user terminal position can be solved. The invention can well improve the positioning accuracy of the user terminal, and significantly improve the navigation and positioning performance of the satellite navigation and positioning system.
Description
技术领域 technical field
本发明涉及卫星导航定位技术,尤其是一种卫星导航定位系统中倍增定位精度的方法,适用于一颗导航卫星可同时下行多个载波频点,并调制伪随机噪声码和导航电文的多频卫星导航系统。The invention relates to satellite navigation and positioning technology, in particular to a method for doubling the positioning accuracy in a satellite navigation and positioning system, which is applicable to a navigation satellite that can simultaneously downlink multiple carrier frequency points and modulate pseudo-random noise codes and multi-frequency navigation messages. satellite navigation system.
背景技术 Background technique
在卫星导航定位系统中,用户终端的定位精度主要由系统星座的空间布局和等效伪距测量误差决定。通常情况下,卫星导航定位系统的定位误差可用下式来描述:In the satellite navigation and positioning system, the positioning accuracy of the user terminal is mainly determined by the spatial layout of the system constellation and the equivalent pseudo-range measurement error. Usually, the positioning error of the satellite navigation and positioning system can be described by the following formula:
σi=DOPi·σUERE (1)σ i = DOP i · σ UERE (1)
其中,σi为用户终端的定位误差,i=1、2、3、4、5分别对应平面、高程、位置、钟差和总的定位误差;DOPi为系统星座的几何精度衰减因子,DOP1、DOP2、DOP3、DOP4和DOP5分别对应HDOP、VDOP、PDOP、TDOP和GDOP(平面、高程、位置、钟差和总的几何精度衰减因子);σUERE为等效伪距测量误差。式(1)要求导航卫星的伪距测量误差满足以下条件:①相互独立;②等分布;③服从零均值的高斯分布。Among them, σ i is the positioning error of the user terminal, and i=1, 2, 3, 4, 5 respectively correspond to the plane, elevation, position, clock error and total positioning error; DOP i is the geometrical precision attenuation factor of the system constellation, DOP 1. DOP 2 , DOP 3 , DOP 4 and DOP 5 respectively correspond to HDOP, VDOP, PDOP, TDOP and GDOP (plane, elevation, position, clock error and total geometric attenuation factor of precision); σ UERE is equivalent pseudorange measurement error. Equation (1) requires that the pseudo-range measurement errors of navigation satellites meet the following conditions: ① independent of each other; ② equidistributed; ③ subject to Gaussian distribution with zero mean.
在全球卫星导航定位系统中,很多导航卫星可以在多个载波频点上调制伪随机噪声码和导航电文。2002年,中国科学院艾国祥院士领衔发明了基于通信卫星的卫星导航定位系统(专利号:ZL 200410046064.1,发明名称:转发器卫星通信导航定位系统,发明人:艾国祥、施浒立、吴海涛,2009年7月29日获得授权)。该项发明把通信卫星上的多个通信频点作为导航使用,开启了全频通信发展成为全频导航的一个新开端。同时观测一颗导航卫星的伪距和多普勒频移,可以把用户终端约束到一个圆锥的底面圆周上,需要两颗以上(含两颗)导航卫星的伪距测量值和多普勒频移测量值就可以实现用户终端的导航定位(申请号:201110164385.1,发明名称:卫星导航中结合多普勒测速的定位方法,发明人:马利华、艾国祥、季海福)。如果每颗导航卫星同时下行多个导航载波,可以有效降低该导航卫星的等效伪距测量误差,提高用户终端的导航定位精度(申请号:201110228917.3,发明名称:卫星导航中多载波的定位方法,发明人:马利华、艾国祥、季海福)。In the global satellite navigation and positioning system, many navigation satellites can modulate pseudo-random noise codes and navigation messages on multiple carrier frequency points. In 2002, Academician Ai Guoxiang of the Chinese Academy of Sciences led the invention of a satellite navigation and positioning system based on communication satellites (patent number: ZL 200410046064.1, invention name: transponder satellite communication navigation and positioning system, inventors: Ai Guoxiang, Shi Huli, Wu Haitao , authorized on July 29, 2009). This invention uses multiple communication frequency points on communication satellites as navigation, opening a new beginning for the development of full-frequency communication into full-frequency navigation. Observing the pseudorange and Doppler frequency shift of a navigation satellite at the same time can constrain the user terminal to the bottom circumference of a cone, which requires pseudorange measurements and Doppler frequency shifts of more than two (including two) navigation satellites. The navigation and positioning of the user terminal can be realized by shifting the measured value (application number: 201110164385.1, invention name: positioning method combined with Doppler speed measurement in satellite navigation, inventors: Ma Lihua, Ai Guoxiang, Ji Haifu). If each navigation satellite downlinks multiple navigation carriers at the same time, the equivalent pseudo-range measurement error of the navigation satellite can be effectively reduced, and the navigation and positioning accuracy of the user terminal can be improved (application number: 201110228917.3, title of invention: multi-carrier positioning method in satellite navigation , Inventors: Ma Lihua, Ai Guoxiang, Ji Haifu).
一般情况下,同一颗导航卫星的多个载波频点的伪距测量值和卫星星历存在相关部分,此时用户终端的定位精度不能用式(1)估算;同时,在现有的全球卫星导航定位系统中,每颗导航卫星可同时下行的载波频点数量并不相同,不能简单套用发明:卫星导航中多载波的定位方法(专利申请号:201110228917.3)中降低伪距测量误差的方法。本发明的卫星导航定位系统中倍增定位精度的方法,从物理层面对利用多个载波频点倍增用户终端的定位精度做了全新的科学阐述,可以用来指导在多频点卫星导航定位系统中利用载波频点资源来倍增用户终端的定位精度。In general, the pseudo-range measurement values of multiple carrier frequency points of the same navigation satellite and the satellite ephemeris have related parts, at this time the positioning accuracy of the user terminal cannot be estimated by formula (1); at the same time, in the existing global satellite In the navigation and positioning system, the number of carrier frequency points that each navigation satellite can downlink at the same time is not the same, and the invention cannot be simply applied: the method of reducing pseudo-range measurement error in the multi-carrier positioning method in satellite navigation (patent application number: 201110228917.3). The method for doubling the positioning accuracy in the satellite navigation and positioning system of the present invention makes a new scientific exposition on the use of multiple carrier frequency points to multiply the positioning accuracy of the user terminal from the physical level, and can be used to guide the multi-frequency point satellite navigation and positioning system The carrier frequency resource is used to double the positioning accuracy of the user terminal.
发明内容 Contents of the invention
本发明的目的是提供一种卫星导航定位系统中倍增用户终端的定位精度的方法,利用卫星导航定位系统中导航卫星多个载波频点可同时工作,用户终端通过多个载波频点同时单独测量并改正导航卫星的轨道误差和钟差、电离层时延,对流层时延、多路径误差,实现在多个载波频点上导航卫星到用户终端的伪距测量,最终确定用户终端位置的准确坐标。The purpose of the present invention is to provide a method for doubling the positioning accuracy of a user terminal in a satellite navigation and positioning system. Multiple carrier frequency points of navigation satellites in the satellite navigation and positioning system can be used to work simultaneously, and the user terminal can measure independently through multiple carrier frequency points at the same time. And correct the orbit error and clock error of the navigation satellite, the ionospheric delay, the tropospheric delay, and the multipath error, realize the pseudo-range measurement from the navigation satellite to the user terminal at multiple carrier frequency points, and finally determine the exact coordinates of the user terminal position .
本发明提出了一种卫星导航定位系统中倍增定位精度的方法,其包含两个方面的物理含义:一方面:卫星导航定位系统中每颗导航卫星都下行N个载波频点的导航信号,这时导航信号的测量噪声减少为单载波频点测量噪声的利用N个载波频点分别测量并改正后的导航卫星轨道误差和钟差是不相关的;利用多个载波频点改正电离层时延和对流层时延,其残差也相应的减少为利用N个载波频点分别改正用户终端的多路径误差。最后,经过多个载波频点改正后的伪距测量中的残差互不相关。因此,对于每颗导航卫星,利用N个载波频点分别测量和改正后的伪距测量值,都具有随机特性,满足式(1)的使用条件。在使用多个载波频点的情况下,式(1)可改写为:The present invention proposes a method for doubling positioning accuracy in a satellite navigation and positioning system, which includes two aspects of physical meaning: on the one hand: each navigation satellite in the satellite navigation and positioning system downlinks navigation signals of N carrier frequency points, which The measurement noise of the time-based navigation signal is reduced to that of the single-carrier frequency point measurement noise The orbit error and clock error of the navigation satellite measured and corrected by N carrier frequency points are irrelevant; the ionospheric delay and tropospheric delay are corrected by using multiple carrier frequency points, and the residual error is correspondingly reduced as The multipath errors of the user terminal are respectively corrected by using N carrier frequency points. Finally, the residuals in pseudorange measurements corrected by multiple carrier frequencies are not correlated with each other. Therefore, for each navigation satellite, the measured and corrected pseudo-range measurements using N carrier frequency points have random characteristics and satisfy the conditions of use in formula (1). In the case of using multiple carrier frequency points, formula (1) can be rewritten as:
σi=DOPi·PAFP·σUERE (2)σ i = DOP i PAFP σ UERE (2)
其中,PAFP为同一颗导航卫星使用多个载波频点对定位精度的增强因子,称为物理精度增强因子,PAFP的数值取决于每颗导航卫星下行的载波频点数以及导航卫星相对于用户终端的几何结构。为了直观起见,假设每颗导航卫星下行的载波频点数都为N,此时,另一方面:在测量同一颗导航卫星的伪距的同时,可以测量导航卫星上多个载波频点上的多普勒频移,即给出相应的伪距变化率信息,在建立观测方程组求解用户终端的位置时,多普勒频移测量与伪距测量具有等效性。因此,如果同时在多个载波频点上测量伪距与多普勒频移,PAFP数值在理论上还能进一步减小 Among them, PAFP is the enhancement factor of positioning accuracy by using multiple carrier frequency points for the same navigation satellite, which is called the physical accuracy enhancement factor. geometry structure. For the sake of intuition, it is assumed that the number of carrier frequency points downlinked by each navigation satellite is N. At this time, On the other hand: while measuring the pseudorange of the same navigation satellite, the Doppler frequency shift at multiple carrier frequency points on the navigation satellite can be measured, that is, the corresponding pseudorange change rate information is given, and the observation equations can be established Doppler frequency shift measurements are equivalent to pseudorange measurements when solving the position of the user terminal. Therefore, if the pseudorange and Doppler frequency shift are measured on multiple carrier frequency points at the same time, the PAFP value can be further reduced theoretically.
DOP是空间的几何参数,而对一颗导航卫星在多个载波频点上测量的伪距与多普勒频移都是物理参数,因此,本发明提出单独的因子PAFP来评价多个载波频点测量引起的定位精度的增强。不难看出,PAFP是一种物理精度增强因子,与几何参数DOP彼此独立,两者对用户终端定位精度的影响互不相关。DOP is a geometric parameter of space, and the pseudorange and Doppler frequency shift measured on multiple carrier frequency points of a navigation satellite are all physical parameters. Therefore, the present invention proposes a separate factor PAFP to evaluate multiple carrier frequency points. Enhancement of positioning accuracy due to point measurement. It is not difficult to see that PAFP is a physical precision enhancement factor, which is independent of the geometric parameter DOP, and the influence of the two on the positioning accuracy of the user terminal is independent of each other.
为了达到上述目的,本发明提出一种卫星导航定位系统中倍增定位精度的方法,适用于用户终端的高精度单点定位,其特征在于,该方法包括以下步骤:In order to achieve the above object, the present invention proposes a method for doubling positioning accuracy in a satellite navigation and positioning system, which is suitable for high-precision single-point positioning of user terminals, and is characterized in that the method includes the following steps:
步骤1,将卫星导航定位系统内部的M颗导航卫星中的每一颗导航卫星要向待定位的用户终端发送的用于导航定位的导航信号调制到多个载波频点上,其中,M≥4,所述导航信号包括伪随机噪声码、导航电文和广域增强信息;Step 1: Modulate the navigation signals used for navigation and positioning that each of the M navigation satellites in the satellite navigation and positioning system will send to the user terminal to be positioned to a plurality of carrier frequency points, where M≥ 4. The navigation signal includes pseudo-random noise code, navigation message and wide-area enhancement information;
步骤2,以多个载波频点将所述伪随机噪声码和导航电文向下发送;
步骤3,用户终端通过多个载波频点接收所有导航卫星下发的所述伪随机噪声码和导航电文;Step 3, the user terminal receives the pseudo-random noise code and the navigation message issued by all navigation satellites through multiple carrier frequency points;
步骤4,用户终端根据接收到的所述导航电文得到导航卫星的时钟改正参数;根据接收到的所述导航电文中的导航卫星星历,得到导航卫星的轨道位置;根据接收到的所述导航信号改正导航卫星的轨道误差;用户终端根据伪随机噪声码得到每一个载波频点上每一导航卫星到用户终端的测量伪距,根据接收到的所述导航信号改正测量伪距中的电离层时延、对流层时延和多路径误差;Step 4, the user terminal obtains the clock correction parameters of the navigation satellite according to the received navigation message; obtains the orbital position of the navigation satellite according to the navigation satellite ephemeris in the received navigation message; The signal corrects the orbit error of the navigation satellite; the user terminal obtains the measurement pseudo-range from each navigation satellite to the user terminal on each carrier frequency point according to the pseudo-random noise code, and corrects the ionosphere in the measurement pseudo-range according to the received navigation signal Delay, tropospheric delay and multipath errors;
步骤5,用户终端根据改正了电离层时延、对流层时延和多路径误差的测量伪距,以及改正后的卫星轨道位置对用户终端的位置坐标进行迭代解算,最终得到用户终端位置的准确坐标;Step 5, the user terminal iteratively calculates the position coordinates of the user terminal according to the measured pseudo-range with corrected ionospheric delay, tropospheric delay and multipath error, and the corrected satellite orbit position, and finally obtains the accurate position of the user terminal coordinate;
步骤6,使用物理精度增强因子对用户终端的定位精度进行评价。Step 6, using the physical precision enhancement factor to evaluate the positioning accuracy of the user terminal.
本发明的方法能够很好的提高用户终端的定位精度,能够显著改善系统的导航定位性能。The method of the invention can well improve the positioning accuracy of the user terminal, and can significantly improve the navigation and positioning performance of the system.
附图说明 Description of drawings
图1是本发明卫星导航定位系统中倍增定位精度的方法流程图。Fig. 1 is a flowchart of a method for doubling positioning accuracy in the satellite navigation and positioning system of the present invention.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
图1是本发明卫星导航定位系统中倍增定位精度的方法流程图。如图1所示,本发明所提出的一种卫星导航定位系统中倍增定位精度的方法具体包括以下步骤:Fig. 1 is a flowchart of a method for doubling positioning accuracy in the satellite navigation and positioning system of the present invention. As shown in Figure 1, the method for doubling positioning accuracy in a kind of satellite navigation and positioning system proposed by the present invention specifically includes the following steps:
步骤1,将卫星导航定位系统内部的M(M≥4)颗导航卫星中的每一颗导航卫星要向待定位的用户终端发送的用于导航定位的导航信号调制到多个载波频点上,所述导航信号包括伪随机噪声码、导航电文和广域增强信息;Step 1, each of the M (M≥4) navigation satellites in the satellite navigation and positioning system will transmit the navigation signal for navigation and positioning to the user terminal to be positioned to multiple carrier frequency points , the navigation signal includes a pseudo-random noise code, navigation text and wide-area enhancement information;
所述伪随机噪声码单独对应于每一颗导航卫星,伪随机噪声码可用于标识导航卫星,利用伪随机噪声码的自相关和互相关特性来实现导航信号传输的时间差测量,该时间差乘以电波传输速度即为导航卫星到用户终端的伪距;所述导航电文包含有系统时间、导航卫星的时钟改正参数、电离层延迟模型参数、导航卫星星历及卫星健康状况;所述广域增强信息包含导航卫星轨道的改正数据和完好性信息。The pseudo-random noise code corresponds to each navigation satellite separately, the pseudo-random noise code can be used to identify the navigation satellite, and the time difference measurement of the navigation signal transmission is realized by utilizing the autocorrelation and cross-correlation characteristics of the pseudo-random noise code, and the time difference is multiplied by The radio wave transmission speed is the pseudo-range from the navigation satellite to the user terminal; the navigation message includes system time, clock correction parameters of the navigation satellite, ionospheric delay model parameters, navigation satellite ephemeris and satellite health status; the wide-area enhancement The information contains correction data and integrity information of the navigation satellite orbit.
所述卫星导航定位系统内部的M(M≥4)颗导航卫星都同时下行多个载波频点,并在这多个载波频点上调制伪随机噪声码和导航电文,不同的导航卫星所使用的载波频点的数量有可能不同。The M (M≥4) navigation satellites in the satellite navigation and positioning system all downlink multiple carrier frequency points at the same time, and modulate pseudo-random noise codes and navigation messages on these multiple carrier frequency points. Different navigation satellites use The number of carrier frequency points may be different.
本发明中的用户终端,可以为固定终端或移动终端,所述固定终端,为固定卫星接收设备;所述移动终端为车载、船载或手持接收设备。The user terminal in the present invention may be a fixed terminal or a mobile terminal. The fixed terminal is a fixed satellite receiving device; the mobile terminal is a vehicle-mounted, ship-borne or handheld receiving device.
步骤2,以多个载波频点将所述伪随机噪声码和导航电文向下发送;
步骤3,用户终端通过多个载波频点接收所有导航卫星下发的所述伪随机噪声码和导航电文;Step 3, the user terminal receives the pseudo-random noise code and the navigation message issued by all navigation satellites through multiple carrier frequency points;
步骤4,用户终端根据接收到的所述导航电文得到导航卫星的时钟改正参数;根据接收到的所述导航电文中的导航卫星星历,得到导航卫星的轨道位置;根据接收到的所述导航信号改正导航卫星的轨道误差;用户终端根据伪随机噪声码得到每一个载波频点上每一导航卫星到用户终端的测量伪距,根据接收到的所述导航信号改正测量伪距中的电离层时延、对流层时延和多路径误差;Step 4, the user terminal obtains the clock correction parameters of the navigation satellite according to the received navigation message; obtains the orbital position of the navigation satellite according to the navigation satellite ephemeris in the received navigation message; The signal corrects the orbit error of the navigation satellite; the user terminal obtains the measurement pseudo-range from each navigation satellite to the user terminal on each carrier frequency point according to the pseudo-random noise code, and corrects the ionosphere in the measurement pseudo-range according to the received navigation signal Delay, tropospheric delay and multipath errors;
具体地:specifically:
用户终端根据接收到的所述广域增强信息中的卫星轨道改正数据改正导航卫星的轨道误差;The user terminal corrects the orbit error of the navigation satellite according to the satellite orbit correction data in the received wide-area enhancement information;
用户终端根据伪随机噪声码得到每一个载波频点上每一导航卫星到用户终端的测量伪距进一步为:According to the pseudo-random noise code, the user terminal obtains the measured pseudo-range from each navigation satellite to the user terminal on each carrier frequency point as follows:
在测量时刻tk,用户终端测量得到在第i(i=1,2,…,Nj)个频点的导航卫星Sj到用户终端的测量伪距该测量伪距同时满足以下伪距观测方程:At the measurement time t k , the user terminal measures the pseudorange from the navigation satellite S j to the user terminal at the ith (i=1, 2, ..., N j ) frequency point The measured pseudorange satisfies the following pseudorange observation equation at the same time:
式中,为测量伪距;(Xk,Yk,Zk)为待定位的用户终端在tk的准确坐标(待求量);(Xj,Yj,Zj)为导航卫星Sj在发射导航信号时的位置坐标;bk为用户终端钟差的等效距离(待求量);δtj为导航卫星的时钟改正参数,可从导航卫星发送的导航电文中获得;c为真空光速,为改正前的电离层时延,为改正前的对流层时延,为随机误差。In the formula, is to measure the pseudo-range; (X k , Y k , Z k ) is the exact coordinates of the user terminal to be positioned at t k (required quantity); (X j , Y j , Z j ) is the launch time of the navigation satellite S j The position coordinates of the navigation signal; b k is the equivalent distance of the clock difference of the user terminal (to be sought); δt j is the clock correction parameter of the navigation satellite, which can be obtained from the navigation message sent by the navigation satellite; c is the speed of light in vacuum, is the ionospheric delay before correction, is the tropospheric delay before correction, is a random error.
用户终端根据电离层延迟模型以及接收到的所述导航电文中的电离层延迟模型参数来改正测量伪距中的电离层时延;用户终端采集当地的气象参数,并根据导航卫星的轨道位置,利用对流层延迟模型改正测量伪距中的对流层时延;根据当地的环境状况,利用多路径改正模型来改正测量伪距中的多路径误差。The user terminal corrects the ionospheric delay in the pseudorange measurement according to the ionospheric delay model and the received ionospheric delay model parameters in the navigation message; the user terminal collects local meteorological parameters, and according to the orbital position of the navigation satellite, The tropospheric time delay in the measured pseudorange is corrected by using the tropospheric delay model; according to the local environmental conditions, the multipath correction model is used to correct the multipath error in the measured pseudorange.
步骤5,用户终端根据改正了电离层时延、对流层时延和多路径误差的测量伪距,以及改正后的卫星轨道位置对用户终端的位置坐标进行迭代解算,最终得到用户终端位置的准确坐标;Step 5, the user terminal iteratively calculates the position coordinates of the user terminal according to the measured pseudo-range with corrected ionospheric delay, tropospheric delay and multipath error, and the corrected satellite orbit position, and finally obtains the accurate position of the user terminal coordinate;
所述步骤5进一步包括以下步骤:Said step 5 further comprises the following steps:
步骤5.1,在对用户终端进行定位解算时,首先设定一个用户终端位置坐标的初始值,即用户终端的概略位置坐标(Xk 0,Yk 0,Zk 0);Step 5.1, when calculating the positioning of the user terminal, first set an initial value of the user terminal position coordinates, that is, the approximate position coordinates of the user terminal (X k 0 , Y k 0 , Z k 0 );
步骤5.2,然后对式(3)所示的伪距观测方程进行1阶Taylor级数展开,得到含有用户终端位置坐标修正步长的、所述伪距观测方程的线性化形式:Step 5.2, then carry out first-order Taylor series expansion to the pseudo-range observation equation shown in formula (3), obtain the linearized form of the pseudo-range observation equation containing the user terminal position coordinate correction step size:
式中,(δXk,δY,δZk)为用户终端位置坐标的修正步长,为用户终端的概略位置坐标到导航卫星Sj的方向余弦:In the formula, (δX k , δY, δZ k ) is the correction step size of the user terminal position coordinates, is the direction cosine from the approximate position coordinates of the user terminal to the navigation satellite S j :
Rk j为用户终端的概略位置坐标到导航卫星Sj的距离:R k j is the distance from the approximate position coordinates of the user terminal to the navigation satellite S j :
Rk j=[(Xj-Xk 0)2+(Yj-Yk 0)2+(Zj-Zk 0)2]1/2 (6)R k j =[(X j -X k 0 ) 2 +(Y j -Y k 0 ) 2 +(Z j -Z k 0 ) 2 ] 1/2 (6)
根据导航信号发射时刻的导航卫星的位置坐标和时钟改正值,利用用户终端的概略位置坐标通过式(5)和(6)计算得到用户终端的概略位置坐标到导航卫星Sj的方向余弦和用户终端的概略位置坐标到导航卫星Sj的几何距离Rk j。According to the position coordinates and clock correction value of the navigation satellite at the time of the navigation signal transmission, the approximate position coordinates of the user terminal are used to calculate the direction cosine from the approximate position coordinates of the user terminal to the navigation satellite S j through formulas (5) and (6) and the geometric distance R k j from the approximate position coordinates of the user terminal to the navigation satellite S j .
步骤5.3,求解所述步骤5.2得到的线性化伪距观测方程,得到用户终端位置坐标的修正步长;Step 5.3, solving the linearized pseudorange observation equation obtained in step 5.2 to obtain the correction step size of the user terminal position coordinates;
所述步骤5.3进一步包括以下步骤:Said step 5.3 further comprises the following steps:
步骤5.3.1,将所述线性化伪距观测方程(4)中的已知项用表示,有:Step 5.3.1, using the known items in the linearized pseudorange observation equation (4) Indicates that there are:
式中,为所述线性化伪距观测方程的常数项:In the formula, is the constant term of the linearized pseudorange observation equation:
步骤5.3.2,将式(7)写成矩阵形式:Step 5.3.2, write formula (7) in matrix form:
V=AX-L (9)V=AX-L (9)
式中,X为待定参数矢量:In the formula, X is the undetermined parameter vector:
X=[δXk δYk δZk bk]T (10)X=[δX k δY k δZ k b k ] T (10)
A为待定参数的系数矩阵:A is the coefficient matrix of undetermined parameters:
其中,每一导航卫星Sj在矩阵A中对应一个Nj行4列的子矩阵。Wherein, each navigation satellite S j corresponds to a sub-matrix of N j rows and 4 columns in matrix A.
L为常数项矢量:L is a vector of constant entries:
V为随机误差矢量:V is the random error vector:
步骤5.3.3,利用最小二乘法求解式(9),可以得到待定参数矢量X:Step 5.3.3, using the least square method to solve formula (9), the undetermined parameter vector X can be obtained:
X=(ATA)-1ATL (14)X=(A T A) -1 A T L (14)
步骤5.4,使用所述步骤5.3得到的用户终端位置坐标的修正步长对用户终端的概略位置坐标进行修正;Step 5.4, using the correction step size of the user terminal position coordinates obtained in step 5.3 to correct the approximate position coordinates of the user terminal;
将式(14)计算出来的待定参数矢量X带入下式,对用户终端的概略位置坐标进行修正:Put the undetermined parameter vector X calculated by formula (14) into the following formula to correct the approximate position coordinates of the user terminal:
步骤5.5,将修正后的用户终端的位置坐标作为用户终端的概略位置坐标重复步骤5.2-步骤5.4进行迭代计算,直到满足迭代结束条件,此时得到的用户终端的位置坐标即为用户终端位置的准确坐标。Step 5.5, using the corrected position coordinates of the user terminal as the approximate position coordinates of the user terminal to repeat steps 5.2 to 5.4 for iterative calculation until the iteration end condition is satisfied, the position coordinates of the user terminal obtained at this time are the user terminal position exact coordinates.
根据实际应用的需要,所述迭代结束条件可以为次数要求(比如最多迭代次数为5次)或者精度要求(比如前后两次迭代每个坐标值的差值小于某一固定值,比如0.5米)。According to the needs of practical applications, the iteration end condition can be a number requirement (for example, the maximum number of iterations is 5) or an accuracy requirement (for example, the difference between each coordinate value of the two iterations before and after is less than a certain fixed value, such as 0.5 meters) .
步骤6,使用物理精度增强因子对用户终端的定位精度进行评价。Step 6, using the physical precision enhancement factor to evaluate the positioning accuracy of the user terminal.
在该步骤中,首先引入几何精度衰减矩阵Q:In this step, the geometric precision attenuation matrix Q is introduced first:
进一步,得到:Further, get:
DOPi为多频点卫星导航定位星座的几何精度衰减因子,i=1、2、3、4、5分别对应平面(HDOP)、高程(VDOP)、位置(PDOP)、钟差(TDOP)和总的几何精度衰减因子(GDOP)。DOP i is the geometric precision attenuation factor of the multi-frequency point satellite navigation and positioning constellation, and i=1, 2, 3, 4, 5 correspond to the plane (HDOP), elevation (VDOP), position (PDOP), clock difference (TDOP) and The overall Geometric Decay of Precision (GDOP).
每颗导航卫星采用单载波频点时,即式(11)中的Nj=1(j=1,2,…,M),根据式(16)和(17)得到的几何精度衰减因子记为DOP0,则物理精度增强因子PAFP可定义为:When each navigation satellite adopts a single carrier frequency point, that is, N j = 1 (j=1, 2, ..., M) in formula (11), the geometric precision attenuation factor obtained according to formula (16) and (17) is recorded as is DOP 0 , then the physical precision enhancement factor PAFP can be defined as:
利用物理精度增强因子PAFP,用户终端的定位误差可描述为:Using the physical precision enhancement factor PAFP, the positioning error of the user terminal can be described as:
σi=DOPi·PAFP·σUERE (19)σ i = DOP i PAFP σ UERE (19)
其中,σi为用户终端的定位误差,σUERE为等效伪距测量误差。Among them, σ i is the positioning error of the user terminal, and σ UERE is the equivalent pseudorange measurement error.
除了上述基于多个载波频点的伪距测量的定位方法,所述物理精度增强因子PAFP还可用于对于基于多个载波频点的多普勒频移测量的定位方法的评价。总起来说,本发明是一种倍增定位精度的物理方法。In addition to the above-mentioned positioning method based on pseudorange measurement of multiple carrier frequency points, the physical precision enhancement factor PAFP can also be used to evaluate a positioning method based on Doppler frequency shift measurement of multiple carrier frequency points. In general, the present invention is a physical method of doubling positioning accuracy.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210090864.8A CN103364801B (en) | 2012-03-30 | 2012-03-30 | A method for multiplying positioning precision in a satellite navigation positioning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210090864.8A CN103364801B (en) | 2012-03-30 | 2012-03-30 | A method for multiplying positioning precision in a satellite navigation positioning system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103364801A true CN103364801A (en) | 2013-10-23 |
CN103364801B CN103364801B (en) | 2015-06-17 |
Family
ID=49366570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210090864.8A Expired - Fee Related CN103364801B (en) | 2012-03-30 | 2012-03-30 | A method for multiplying positioning precision in a satellite navigation positioning system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103364801B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104330805A (en) * | 2014-10-24 | 2015-02-04 | 北京航空航天大学 | Random error detection method in satellite navigation augmentation system |
CN104330805B (en) * | 2014-10-24 | 2017-01-04 | 北京航空航天大学 | Random error detection method in satellite navigation reinforcing system |
CN107632313A (en) * | 2017-09-13 | 2018-01-26 | 航天恒星科技有限公司 | Satellite navigation signals and SBAS text emulation modes based on correlation |
CN108594275A (en) * | 2018-04-26 | 2018-09-28 | 桂林电子科技大学 | A kind of Big Dipper+GPS dual-mode one-point positioning method |
CN108873023A (en) * | 2017-05-15 | 2018-11-23 | 上海华测导航技术股份有限公司 | A kind of processing method for the observed quantity improving positioning accuracy |
CN110471090A (en) * | 2019-07-03 | 2019-11-19 | 中国人民解放军63686部队 | A kind of defended based on the boat-carrying resolved certainly leads equipment navigation message data correctness checking system |
CN110824517A (en) * | 2019-11-22 | 2020-02-21 | 首都师范大学 | A method of measuring code pseudo-range GPS absolute positioning |
CN112415546A (en) * | 2020-10-18 | 2021-02-26 | 深圳福厚技术有限公司 | Navigation method for improving three-dimensional space navigation precision |
CN113259884A (en) * | 2021-05-19 | 2021-08-13 | 桂林电子科技大学 | Indoor positioning base station layout optimization method based on multi-parameter fusion |
CN115407367A (en) * | 2022-08-17 | 2022-11-29 | 南京信息工程大学 | Method for estimating navigation positioning precision attenuation factor of mixed constellation satellite |
CN119199932A (en) * | 2024-11-29 | 2024-12-27 | 银河航天(北京)网络技术有限公司 | Method, device and storage medium for accurately determining position information of a moving object |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101403790A (en) * | 2008-11-13 | 2009-04-08 | 浙江师范大学 | Accurate one-point positioning method for single-frequency GPS receiver |
CN102204396A (en) * | 2008-09-10 | 2011-09-28 | 科姆拉布斯公司 | Wide area positioning system |
-
2012
- 2012-03-30 CN CN201210090864.8A patent/CN103364801B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102204396A (en) * | 2008-09-10 | 2011-09-28 | 科姆拉布斯公司 | Wide area positioning system |
CN101403790A (en) * | 2008-11-13 | 2009-04-08 | 浙江师范大学 | Accurate one-point positioning method for single-frequency GPS receiver |
Non-Patent Citations (1)
Title |
---|
康四林 等: "GPS定位中的误差分析", 《天文研究与技术》, vol. 7, no. 3, 31 July 2010 (2010-07-31), pages 222 - 230 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104330805B (en) * | 2014-10-24 | 2017-01-04 | 北京航空航天大学 | Random error detection method in satellite navigation reinforcing system |
CN104330805A (en) * | 2014-10-24 | 2015-02-04 | 北京航空航天大学 | Random error detection method in satellite navigation augmentation system |
CN108873023A (en) * | 2017-05-15 | 2018-11-23 | 上海华测导航技术股份有限公司 | A kind of processing method for the observed quantity improving positioning accuracy |
CN108873023B (en) * | 2017-05-15 | 2022-01-11 | 上海华测导航技术股份有限公司 | Processing method for improving observed quantity of positioning precision |
CN107632313A (en) * | 2017-09-13 | 2018-01-26 | 航天恒星科技有限公司 | Satellite navigation signals and SBAS text emulation modes based on correlation |
CN108594275A (en) * | 2018-04-26 | 2018-09-28 | 桂林电子科技大学 | A kind of Big Dipper+GPS dual-mode one-point positioning method |
CN110471090B (en) * | 2019-07-03 | 2021-06-11 | 中国人民解放军63686部队 | Ship-borne satellite navigation message data correctness checking system based on self-resolving |
CN110471090A (en) * | 2019-07-03 | 2019-11-19 | 中国人民解放军63686部队 | A kind of defended based on the boat-carrying resolved certainly leads equipment navigation message data correctness checking system |
CN110824517A (en) * | 2019-11-22 | 2020-02-21 | 首都师范大学 | A method of measuring code pseudo-range GPS absolute positioning |
CN112415546A (en) * | 2020-10-18 | 2021-02-26 | 深圳福厚技术有限公司 | Navigation method for improving three-dimensional space navigation precision |
CN113259884A (en) * | 2021-05-19 | 2021-08-13 | 桂林电子科技大学 | Indoor positioning base station layout optimization method based on multi-parameter fusion |
CN115407367A (en) * | 2022-08-17 | 2022-11-29 | 南京信息工程大学 | Method for estimating navigation positioning precision attenuation factor of mixed constellation satellite |
CN115407367B (en) * | 2022-08-17 | 2023-04-07 | 南京信息工程大学 | Method for estimating navigation positioning precision attenuation factor of mixed constellation satellite |
CN119199932A (en) * | 2024-11-29 | 2024-12-27 | 银河航天(北京)网络技术有限公司 | Method, device and storage medium for accurately determining position information of a moving object |
Also Published As
Publication number | Publication date |
---|---|
CN103364801B (en) | 2015-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103364801B (en) | A method for multiplying positioning precision in a satellite navigation positioning system | |
CN101403790B (en) | Accurate one-point positioning method for single-frequency GPS receiver | |
CN101600970B (en) | Method and apparatus for combining measurements and determining clock offsets | |
US8525727B2 (en) | Position and velocity uncertainty metrics in GNSS receivers | |
CN105044747B (en) | Time synchronization device and method based on multi-satellite common view and filtering | |
CN102253399B (en) | A Velocity Measurement Method Using Doppler Differential Compensation Using Carrier Phase Center Value | |
CN102016628B (en) | Position estimation enhancement for a global navigation satellite system receiver | |
US9158002B2 (en) | Satellite subset selection | |
CN105182384A (en) | Dual-mode real-time pseudo-range differential positioning system and pseudo-range correction data generation method | |
JP2010528320A (en) | Reduction of distance-dependent error in real-time kinematic (RTK) positioning | |
CN104714244A (en) | Multi-system dynamic PPP resolving method based on robust self-adaption Kalman smoothing | |
CN101692163A (en) | Method and system for remotely calibrating frequency standards | |
CN103235321A (en) | GPS (global positioning system) pseudo-range positioning precision timing method | |
CN101303406B (en) | Method for abstracting GPS track | |
CN103529482B (en) | A kind of high accuracy is determined the method for carrier dynamic acceleration | |
CN102608633A (en) | Satellite locating pseudorange difference method | |
CN110986962A (en) | Low-orbit satellite full-arc segment orbit determination method based on high-orbit communication satellite | |
CN103336290A (en) | A method and a system for measuring baselines between adjacent formation satellites | |
KR101067416B1 (en) | Relative positioning method and relative positioning system using satellite | |
CN105510942A (en) | Kalman filtering-based GPS single-point positioning system | |
CN103399332B (en) | A kind of iHCO of utilization telstar realizes the method for worldwide navigation location | |
CN103399334B (en) | Method for improving positioning precision of satellite navigation system on basis of ultra-precise code | |
US9086479B2 (en) | Convergence zone | |
CN105738931A (en) | GPS point positioning system based on Kalman filtering | |
KR102031838B1 (en) | Method and apparatus for processing differential information of global navigation satellite system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150617 |
|
CF01 | Termination of patent right due to non-payment of annual fee |