CN103353847A - Simulation device for electrical equipment discharge detection based on virtual realization and realization method thereof - Google Patents
Simulation device for electrical equipment discharge detection based on virtual realization and realization method thereof Download PDFInfo
- Publication number
- CN103353847A CN103353847A CN2013102155036A CN201310215503A CN103353847A CN 103353847 A CN103353847 A CN 103353847A CN 2013102155036 A CN2013102155036 A CN 2013102155036A CN 201310215503 A CN201310215503 A CN 201310215503A CN 103353847 A CN103353847 A CN 103353847A
- Authority
- CN
- China
- Prior art keywords
- virtual
- partial discharge
- detection
- unit
- simulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing Relating To Insulation (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种电气设备仿真装置及其实现方法,尤其涉及一种基于虚拟现实技术的电气设备放电检测仿真装置及其实现方法,属于电力系统仿真技术领域。The invention relates to an electrical equipment simulation device and its implementation method, in particular to a virtual reality technology-based electrical equipment discharge detection simulation device and its implementation method, belonging to the technical field of power system simulation.
背景技术Background technique
开关柜是供电系统、大型变电站中使用最为广泛的设备之一。由于其内部绝缘结构复杂、电场和热场不均匀分布以及常年不间断带电工作等原因,事故率相当高,直接影响着整个供电系统的供电可靠性。因此,在供电系统、大型变电站开展开关柜的局部放电监测是极其重要的。开关柜在经过一定时间的运行后,由于器件老化、损坏等原因,其运行中的一些参数会发生变化,从而存在故障隐患。对开关柜的在线检测已经成为运行检修人员最繁重的日常工作之一。通过对开关柜的局部放电进行检测仿真,可以实现对其运行工况的监测,从而对开关柜进行故障预测,避免事故的发生。Switchgear is one of the most widely used equipment in power supply systems and large substations. Due to its complex internal insulation structure, uneven distribution of electric and thermal fields, and uninterrupted live work all year round, the accident rate is quite high, which directly affects the power supply reliability of the entire power supply system. Therefore, it is extremely important to carry out partial discharge monitoring of switch cabinets in power supply systems and large substations. After a certain period of operation of the switchgear, due to the aging and damage of the components, some parameters in the operation will change, so there are potential failures. On-line detection of switchgear has become one of the most arduous daily tasks for operation and maintenance personnel. Through the detection and simulation of the partial discharge of the switchgear, the monitoring of its operating conditions can be realized, so as to predict the failure of the switchgear and avoid the occurrence of accidents.
目前,常用的开关柜局部放电检测仿真技术,一般是基于物理设备而建立的仿真环境。这些技术虽然能实现逼真的仿真效果,但由于配备各种物理设备需要极大的成本,而且物理设备仿真中存在需要带电、在高电压条件下进行测试的问题,干扰大、安全性差、效率低,使得其难以成为普遍性的仿真技术,无法满足当前不断发展的电网业务需求。At present, the commonly used partial discharge detection simulation technology of switchgear is generally based on the simulation environment established by physical equipment. Although these technologies can achieve realistic simulation effects, due to the huge cost required to equip various physical equipment, and the physical equipment simulation needs to be electrified and tested under high voltage conditions, the interference is large, the safety is poor, and the efficiency is low. , making it difficult to become a universal simulation technology, unable to meet the needs of the current continuous development of power grid business.
以高度的沉浸感和良好的交互性为特征的虚拟现实技术,能够实现逼真的人工模拟环境,有效模拟人在自然环境中各种感知系统的行为,在仿真培训、虚拟实验等领域得到了广泛应用。在申请号为201210258835.8、201210258700.1的中国发明专利申请中分别公开了一种开关柜局部放电检测方法。这两者都采用虚拟现实技术实现开关柜设备的三维仿真,同时实现了PDM03局部放电测试仪的仿真功能和适用于该仪器的局部放电故障模型。但是,这些技术方案所提供的仿真方法、测试步骤和局部放电故障模型只适用于利用PDM03进行局部放电检测的仿真装置,不具备普遍适用性。The virtual reality technology characterized by a high degree of immersion and good interactivity can realize a realistic artificial simulation environment and effectively simulate the behavior of various human perception systems in the natural environment. It has been widely used in simulation training, virtual experiments and other fields. application. In the Chinese invention patent applications with application numbers 201210258835.8 and 201210258700.1, a partial discharge detection method of a switchgear is disclosed respectively. Both of them use virtual reality technology to realize the three-dimensional simulation of switchgear equipment, and at the same time realize the simulation function of the PDM03 partial discharge tester and the partial discharge fault model suitable for the instrument. However, the simulation methods, test steps and partial discharge fault models provided by these technical solutions are only applicable to the simulation device using PDM03 for partial discharge detection, and do not have universal applicability.
发明内容Contents of the invention
针对现有技术所存在的不足,本发明所要解决的技术问题在于提供一种基于虚拟现实的电气设备放电检测仿真装置及其实现方法。Aiming at the deficiencies in the prior art, the technical problem to be solved by the present invention is to provide a virtual reality-based electrical equipment discharge detection simulation device and its implementation method.
为实现上述的发明目的,本发明采用下述的技术方案:For realizing above-mentioned purpose of the invention, the present invention adopts following technical scheme:
一方面,本发明提供一种基于虚拟现实的电气设备放电检测仿真装置,包括On the one hand, the present invention provides a virtual reality-based electrical equipment discharge detection simulation device, including
虚拟检测场景单元、虚拟局部放电检测单元、局部放电故障仿真单元、虚拟检测过程控制单元;其中,Virtual detection scene unit, virtual partial discharge detection unit, partial discharge fault simulation unit, virtual detection process control unit; among them,
所述虚拟检测场景单元模拟物理检测环境;The virtual detection scene unit simulates a physical detection environment;
所述虚拟局部放电检测单元读取所述局部放电故障仿真单元中的故障模型,按虚拟检测过程控制单元的操作序列表虚拟测试所述虚拟检测场景单元并进行显示。The virtual partial discharge detection unit reads the fault model in the partial discharge fault simulation unit, virtual tests the virtual detection scene unit according to the operation sequence list of the virtual detection process control unit, and displays it.
其中较优地,所述虚拟检测场景单元包括虚拟金属门/窗和虚拟局部放电开关柜。Preferably, the virtual detection scene unit includes a virtual metal door/window and a virtual partial discharge switchgear.
其中较优地,所述虚拟局部放电检测单元是虚拟UltraTEV Plus+检测仪器。Wherein preferably, the virtual partial discharge detection unit is a virtual UltraTEV Plus+ detection instrument.
另一方面,本发明还提供一种基于上述电气设备放电检测仿真装置的仿真实现方法,包括如下步骤:On the other hand, the present invention also provides a simulation implementation method based on the above electrical equipment discharge detection simulation device, including the following steps:
建立虚拟电气设备、虚拟局部放电检测仪器以及局部放电故障模型;Establish virtual electrical equipment, virtual partial discharge detection instruments and partial discharge fault models;
读入虚拟电气设备、虚拟局部放电检测仪器及局部放电故障模型的参数,生成针对电气设备局部放电的虚拟检测场景单元,产生电气设备局部放电故障的模拟测量示值;Read in the parameters of virtual electrical equipment, virtual partial discharge detection instruments and partial discharge fault models, generate virtual detection scene units for partial discharge of electrical equipment, and generate simulated measurement indications for partial discharge faults of electrical equipment;
在虚拟场景中进行局部放电在线检测,获得仿真检测数据并显示检测值,分析测试结果。On-line detection of partial discharge is carried out in the virtual scene, the simulation detection data is obtained and the detection value is displayed, and the test results are analyzed.
其中较优地,所述局部放电故障模型是按照背景值、设备运行状态、典型测量示值建立的。Wherein preferably, the partial discharge fault model is established according to the background value, equipment operating status, and typical measurement indications.
其中较优地,所述模拟测量示值包括:局部放电超声波测量示值和局部放电超声波测量示值;Wherein preferably, the analog measurement display value includes: a partial discharge ultrasonic measurement display value and a partial discharge ultrasonic measurement display value;
所述模拟测量示值通过下式进行计算:The analog measurement indication is calculated by the following formula:
局部放电超声波测量示值=A+(B-A)×RAND();Partial discharge ultrasonic measurement indication value = A + (B - A) × RAND ();
局部放电超声波测量示值=C+(D-C)×RAND();Partial discharge ultrasonic measurement indication value = C + (D-C) × RAND ();
其中,[A,B]是电气设备当前运行状态下,局部放电对地电压测量示值的取值范围,[C,D]是电气设备当前运行状态下,局部放电超声波测量示值的取值范围。Among them, [A, B] is the value range of partial discharge to ground voltage measurement indication value under the current operating state of electrical equipment, [C, D] is the value range of partial discharge ultrasonic measurement indication value under the current operating state of electrical equipment scope.
其中较优地,所述在虚拟场景中进行局部放电在线检测,获得仿真检测数据的步骤进一步包括:Preferably, the step of performing online detection of partial discharge in a virtual scene and obtaining simulation detection data further includes:
读入虚拟局部放电开关柜局部放电检测的操作序列,建立操作序列列表;Read in the operation sequence of partial discharge detection in the virtual partial discharge switchgear, and create a list of operation sequences;
虚拟检测场景单元接收用户操作事件,虚拟检测过程控制单元根据操作序列判断当前操作事件是否可执行;The virtual detection scene unit receives user operation events, and the virtual detection process control unit judges whether the current operation event is executable according to the operation sequence;
如果操作事件与操作序列的当前操作事件不一致,则丢弃操作事件;If the operation event is inconsistent with the current operation event of the operation sequence, the operation event is discarded;
如果操作事件与操作序列的当前操作事件相同,则按照操作事件的具体操作对象处理用户操作事件并且当前操作事件累加一步。If the operation event is the same as the current operation event of the operation sequence, the user operation event is processed according to the specific operation object of the operation event and the current operation event is accumulated by one step.
其中较优地,所述按照操作事件的具体操作对象处理用户操作事件的步骤进一步包括:Preferably, the step of processing the user operation event according to the specific operation object of the operation event further includes:
如果操作事件的操作对象是选择虚拟电气设备,则操作事件返回给虚拟检测场景单元处理,由虚拟检测场景单元将操作事件选中的虚拟电气设备设置为选中状态;If the operation object of the operation event is to select a virtual electrical device, the operation event is returned to the virtual detection scene unit for processing, and the virtual detection scene unit sets the virtual electrical device selected by the operation event to the selected state;
如果操作事件的操作对象是虚拟局部放电检测仪器的按键,则操作事件传递给虚拟局部放电检测单元处理。If the operation object of the operation event is a button of the virtual partial discharge detection instrument, the operation event is passed to the virtual partial discharge detection unit for processing.
本发明所提供的电气设备放电检测仿真装置及其实现方法,采用虚拟现实技术实现了高度逼真的虚拟工作环境,极大地提高了虚拟检测过程的真实感。本发明能够根据不同的培训需要,建立不同的虚拟检测场景,不断丰富仿真培训的内容。The electrical equipment discharge detection simulation device and its implementation method provided by the present invention use virtual reality technology to realize a highly realistic virtual working environment and greatly improve the sense of reality in the virtual detection process. The present invention can establish different virtual detection scenarios according to different training needs, and continuously enrich the content of simulation training.
附图说明Description of drawings
图1是电气设备放电检测仿真装置的整体结构示意图;Figure 1 is a schematic diagram of the overall structure of an electrical equipment discharge detection simulation device;
图2是电气设备放电检测仿真装置的虚拟场景图;Fig. 2 is a virtual scene diagram of an electrical equipment discharge detection simulation device;
图3是本发明的一个实施例中,虚拟局部放电开关柜的模型示意图;Fig. 3 is a schematic diagram of a model of a virtual partial discharge switchgear in one embodiment of the present invention;
图4是本发明的一个实施例中,虚拟UltraTEV Plus+检测仪器的模型示意图;Fig. 4 is a schematic diagram of the model of the virtual UltraTEV Plus+ detection instrument in one embodiment of the present invention;
图5是虚拟UltraTEV Plus+检测仪器的辅助设备模型图;Figure 5 is a model diagram of the auxiliary equipment of the virtual UltraTEV Plus+ detection instrument;
图6是电气设备放电检测仿真实现方法的流程示意图;Fig. 6 is a schematic flow chart of a method for realizing the simulation of electrical equipment discharge detection;
图7是虚拟UltraTEV Plus+检测仪器的操作流程示意图。Figure 7 is a schematic diagram of the operation flow of the virtual UltraTEV Plus+ detection instrument.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,本发明提供一种基于虚拟现实的电气设备放电检测仿真装置,该电气设备放电检测仿真装置包括:虚拟检测场景单元、虚拟局部放电检测单元、局部放电故障仿真单元、虚拟检测过程控制单元;虚拟检测场景单元模拟物理检测环境;虚拟局部放电检测单元读取局部放电故障仿真单元中的故障模型,按虚拟检测过程控制单元的操作序列表虚拟测试虚拟检测场景单元并进行显示检测结果。下面以电气设备为开关柜为例,对本电气设备放电检测仿真装置展开详细的说明。As shown in Figure 1, the present invention provides a virtual reality-based electrical equipment discharge detection simulation device, the electrical equipment discharge detection simulation device includes: a virtual detection scene unit, a virtual partial discharge detection unit, a partial discharge fault simulation unit, a virtual detection The process control unit; the virtual detection scene unit simulates the physical detection environment; the virtual partial discharge detection unit reads the fault model in the partial discharge fault simulation unit, virtual tests the virtual detection scene unit according to the operation sequence list of the virtual detection process control unit and performs display detection result. In the following, taking the electrical equipment as a switch cabinet as an example, the electrical equipment discharge detection simulation device will be described in detail.
在本发明中,虚拟检测场景单元是根据培训需要建立的三维图形的虚拟检测环境,模拟开关柜局部放电检测的工作场景。如图2所示,该虚拟检测场景单元包括虚拟高压设备室,该虚拟高压设备室设置有虚拟金属门、虚拟金属窗、虚拟局部放电开关柜等。多个虚拟局部放电开关柜按照电气特性排列在虚拟高压设备室中,构成仿真装置的虚拟检测场景单元。其中虚拟局部放电开关柜的布局和数目可以根据具体的培训需要灵活设置,建立不同的虚拟检测场景,不断丰富培训内容。In the present invention, the virtual detection scene unit is a virtual detection environment of three-dimensional graphics established according to training needs, simulating the working scene of partial discharge detection of switch cabinets. As shown in FIG. 2 , the virtual detection scene unit includes a virtual high-voltage equipment room, and the virtual high-voltage equipment room is provided with virtual metal doors, virtual metal windows, virtual partial discharge switch cabinets, and the like. Multiple virtual partial discharge switchgears are arranged in the virtual high-voltage equipment room according to the electrical characteristics, constituting the virtual detection scene unit of the simulation device. Among them, the layout and number of virtual partial discharge switch cabinets can be flexibly set according to specific training needs, and different virtual detection scenarios can be established to continuously enrich the training content.
虚拟检测场景单元优选从3DMax软件中导入。在本发明的一个实施例中,虚拟高压设备室是一个用三维图形显示的长方形房间,包括四面虚拟墙、四个虚拟金属窗户和一扇虚拟金属门。其中虚拟金属窗户和虚拟金属门分别命名为win1、win2、win3、win4、door1,虚拟金属窗户和虚拟金属门可以接受操作事件。如图3所示,虚拟局部放电开关柜以三维图形方式呈现,优选每4个虚拟局部放电开关柜一组。虚拟高压设备室中优选摆放4组虚拟局部放电开关柜,构成仿真装置的被检测设备。虚拟局部放电开关柜按排列序号命名,分别为:开关柜1、开关柜2、开关柜3、开关柜4、开关柜5、开关柜6、开关柜7、开关柜8、开关柜9、开关柜10、开关柜11、开关柜12、开关柜13、开关柜14、开关柜15、开关柜16。虚拟局部放电开关柜可以接受操作事件。The virtual detection scene unit is preferably imported from 3DMax software. In one embodiment of the present invention, the virtual high-voltage equipment room is a rectangular room displayed with three-dimensional graphics, including four virtual walls, four virtual metal windows and a virtual metal door. The virtual metal windows and virtual metal doors are respectively named win1, win2, win3, win4, and door1, and the virtual metal windows and virtual metal doors can receive operation events. As shown in FIG. 3 , the virtual partial discharge switchgear is presented in a three-dimensional graphic manner, preferably every group of four virtual partial discharge switchgears. Four groups of virtual partial discharge switch cabinets are preferably placed in the virtual high-voltage equipment room to form the tested equipment of the simulation device. The virtual partial discharge switchgear is named according to the serial number, which are: switchgear 1, switchgear 2, switchgear 3, switchgear 4, switchgear 5, switchgear 6, switchgear 7, switchgear 8, switchgear 9, switchgear Cabinet 10, switch cabinet 11, switch cabinet 12, switch cabinet 13, switch cabinet 14, switch cabinet 15, switch cabinet 16. Virtual PD switchgear can accept operational events.
UltraTEV Plus+是开关柜局部放电在线检测使用最广的仪器。如图4所示,虚拟局部放电检测单元优选以UltraTEV Plus+为原型进行仿真的虚拟UltraTEV Plus+检测仪器、虚拟UltraTEV Plus+检测仪器及虚拟辅助设备等。虚拟UltraTEV Plus+检测仪器包括仪器本体、按键、显示屏等部件。虚拟UltraTEV Plus+检测仪器本体部件是一个三维图形,命名为UltraTEVPlus本体。虚拟UltraTEV Plus+检测仪器有电源、上、下、左、右、确认(OK)六个可操作的按钮,分别命名为:电源键、上键、下键、左键、右键、确认键。电源键、上键、下键、左键、右键、确认键,通过鼠标能够操作这些按钮,并模拟仪器的功能,进行工作模式、显示模式的切换。仪器本体部件可以接受操作事件。虚拟检测仪器的显示屏是一个矩形贴图部件,能够根据显示模式显示测试结果,命名为:液晶屏。如图5所示,虚拟UltraTEVPlus+检测仪器的接线端子可以隔音耳机、橡胶聚焦探头、听诊器(接触式)等辅助设备连接。虚拟UltraTEV Plus+检测仪器及虚拟辅助设备按照电气特性排列在虚拟高压设备室,构成仿真装置的虚拟检测设备。UltraTEV Plus+ is the most widely used instrument for on-line detection of partial discharge in switchgear. As shown in Figure 4, the virtual partial discharge detection unit is preferably a virtual UltraTEV Plus+ detection instrument, a virtual UltraTEV Plus+ detection instrument, and virtual auxiliary equipment that are simulated using UltraTEV Plus+ as a prototype. The virtual UltraTEV Plus+ detection instrument includes the instrument body, buttons, display and other components. The body part of the virtual UltraTEV Plus+ testing instrument is a three-dimensional figure named UltraTEV Plus body. The virtual UltraTEV Plus+ detection instrument has six operable buttons: power, up, down, left, right, and OK, named respectively: power button, up button, down button, left button, right button, and confirmation button. Power button, up button, down button, left button, right button, confirmation button, these buttons can be operated through the mouse, and simulate the function of the instrument to switch the working mode and display mode. Instrument body parts can receive operational events. The display screen of the virtual testing instrument is a rectangular map component that can display test results according to the display mode, named: LCD screen. As shown in Figure 5, the connection terminals of the virtual UltraTEVPlus+ testing instrument can be connected to auxiliary equipment such as sound-proof earphones, rubber focusing probes, and stethoscopes (contact type). The virtual UltraTEV Plus+ testing instruments and virtual auxiliary equipment are arranged in the virtual high-voltage equipment room according to the electrical characteristics, constituting the virtual testing equipment of the simulation device.
局部放电故障仿真单元读入虚拟UltraTEV Plus+检测仪器的典型测试数据(也称典型测量示值,例如故障模型超声波测量示值、故障模型对地电压测量示值),建立背景值、设备运行状态、典型测量示值之间的对应关系,建立局部放电故障模型。开关柜局部放电故障模型模拟开关柜不同运行状态下UltraTEV Plus+检测仪器的测试示值(例如开关柜局部放电模型能够模拟开关柜局部放电时设备对地电压及超声波的异常情况),虚拟局部放电检测单元在局部放电故障模型中进行开关柜局部放电在线虚拟检测工作。The partial discharge fault simulation unit reads in the typical test data of the virtual UltraTEV Plus+ testing instrument (also known as typical measurement indications, such as fault model ultrasonic measurement indications, fault model ground voltage measurement indications), and establishes background values, equipment operating status, Correspondence between typical measurement indications, and establish a partial discharge fault model. The partial discharge fault model of the switchgear simulates the test indications of UltraTEV Plus+ testing instruments under different operating conditions of the switchgear (for example, the partial discharge model of the switchgear can simulate the abnormal conditions of the equipment’s ground voltage and ultrasonic waves during the partial discharge of the switchgear), virtual partial discharge detection The unit performs on-line virtual detection of switchgear partial discharge in the partial discharge fault model.
虚拟检测过程控制单元从参数文件中读入虚拟局部放电开关柜局部放电检测的操作序列,建立操作序列列表。检测操作类型、三维虚拟设备部件名称等操作事件由虚拟检测场景单元传递到虚拟检测过程控制单元。虚拟局部放电检测单元读取局部放电故障仿真单元中的故障模型,按虚拟检测过程控制单元的操作序列表虚拟检测虚拟检测场景单元并进行显示。The virtual detection process control unit reads in the operation sequence of the partial discharge detection of the virtual partial discharge switchgear from the parameter file, and establishes an operation sequence list. Operational events such as detection operation type and three-dimensional virtual equipment component names are transmitted from the virtual detection scene unit to the virtual detection process control unit. The virtual partial discharge detection unit reads the fault model in the partial discharge fault simulation unit, virtually detects and displays the virtual detection scene unit according to the operation sequence list of the virtual detection process control unit.
为了进一步体现本发明所述的电气设备放电检测仿真装置的先进性,本发明还提供一种基于上述电气设备放电检测仿真装置的仿真实现方法,包括如下步骤:建立虚拟电气设备、虚拟局部放电检测仪器及局部放电故障模型;读入虚拟电气设备、虚拟局部放电检测仪器及局部放电故障模型的参数,生成针对电气设备局部放电的虚拟检测场景单元,产生开关柜局部放电故障的模拟测量示值;在虚拟场景中进行局部放电在线检测获得仿真检测数据并显示检测值,分析测试结果。In order to further reflect the advanced nature of the electrical equipment discharge detection simulation device described in the present invention, the present invention also provides a simulation implementation method based on the above electrical equipment discharge detection simulation device, including the following steps: establishing virtual electrical equipment, virtual partial discharge detection Instrument and partial discharge fault model; read in the parameters of virtual electrical equipment, virtual partial discharge detection instrument and partial discharge fault model, generate a virtual detection scene unit for partial discharge of electrical equipment, and generate simulated measurement indications for partial discharge faults of switchgear; Perform partial discharge online detection in the virtual scene to obtain simulation detection data and display the detection value, and analyze the test results.
首先,介绍建立虚拟电气设备、虚拟局部放电检测仪器及局部放电故障模型的具体步骤:First, the specific steps of establishing virtual electrical equipment, virtual partial discharge detection instrument and partial discharge fault model are introduced:
1)建立虚拟电气设备1) Create a virtual electrical device
下面,以建立虚拟局部放电开关柜为优选例,对建立虚拟电气设备的方法详细说明。Next, taking the establishment of virtual partial discharge switchgear as a preferred example, the method for establishing virtual electrical equipment will be described in detail.
一般情况下,建立虚拟高压设备室是基于物理电气设备,通过虚拟金属门/窗、金属封闭式虚拟局部放电开关柜建立虚拟高压设备室模拟真实的实验场地。在虚拟高压设备室中设置一组包括虚拟局部放电开关柜,其中,虚拟局部放电开关柜的局部放电点与所述局部放电模型的局部放电点相对应。设置虚拟局部放电开关柜包括如下步骤:首先,采用虚拟现实技术,建立一个虚拟高压设备室。在本发明中,对电气设备建模可以选用现有的成熟商用建模工具,例如三维建模软件3DSMax等。具体地,如图2所示,采用3DMax商业软件,模拟高压设备室的各种物理设备,建立一个虚拟高压设备室。然后,在该虚拟高压设备室上,采用虚拟现实技术设置一组虚拟局部放电开关柜;如图3所示,采用3DMax商业软件按照实际局部放电开关柜的长、宽、高的比例关系建立虚拟局部放电开关柜。该虚拟局部放电开关柜表面采用贴图方式实现。如图2所示,多个虚拟局部放电开关柜按照电气特性排列在虚拟高压设备室,构成仿真装置的虚拟检测电气设备。再次,在该虚拟局部放电开关柜上设置局部放电点。具体地,在虚拟局部放电开关柜内部选择一个点作为局部放电点,形成该局部放电点与局部放电模型测试示值之间的对应关系。In general, the establishment of a virtual high-voltage equipment room is based on physical electrical equipment, and a virtual high-voltage equipment room is established to simulate a real experimental site through virtual metal doors/windows and metal-enclosed virtual partial discharge switchgear. A set of virtual partial discharge switch cabinets is set in the virtual high voltage equipment room, wherein the partial discharge points of the virtual partial discharge switch cabinets correspond to the partial discharge points of the partial discharge model. Setting up a virtual partial discharge switchgear includes the following steps: First, a virtual high-voltage equipment room is established using virtual reality technology. In the present invention, existing mature commercial modeling tools, such as 3D modeling software 3DSMax, etc. can be selected for electrical equipment modeling. Specifically, as shown in Figure 2, 3DMax commercial software is used to simulate various physical equipment in the high-voltage equipment room to establish a virtual high-voltage equipment room. Then, in the virtual high-voltage equipment room, a group of virtual partial discharge switchgears is set up using virtual reality technology; as shown in Figure 3, 3DMax commercial software is used to establish a virtual partial discharge Partial discharge switchgear. The surface of the virtual partial discharge switchgear is realized by mapping. As shown in Figure 2, multiple virtual partial discharge switchgears are arranged in the virtual high-voltage equipment room according to the electrical characteristics, constituting the virtual detection electrical equipment of the simulation device. Again, set partial discharge points on the virtual partial discharge switchgear. Specifically, a point is selected inside the virtual partial discharge switchgear as a partial discharge point, and the corresponding relationship between the partial discharge point and the partial discharge model test value is formed.
应当可以理解,检测虚拟高压设备室中的虚拟金属门和虚拟金属窗也可以按照上述方法建立相应的虚拟金属门和虚拟金属窗,在此就不再赘述了。It should be understood that the detection of virtual metal doors and virtual metal windows in the virtual high-voltage equipment room can also establish corresponding virtual metal doors and virtual metal windows according to the above method, which will not be repeated here.
2)建立虚拟局部放电检测仪器2) Establish a virtual partial discharge detection instrument
在变电站中对电气设备进行局部放电检测时,最为广泛的是检测虚拟高压设备室中的金属封闭式虚拟局部放电开关柜。而对这些电气设备局部放电检测的局部放电检测仪器优选多功能手持式局部放电检测仪(UltraTEV Plus+)。When performing partial discharge detection on electrical equipment in substations, the most widely used method is to detect metal-enclosed virtual partial discharge switchgear in virtual high-voltage equipment rooms. The partial discharge detection instrument for partial discharge detection of these electrical equipment is preferably a multifunctional handheld partial discharge detector (UltraTEV Plus+).
在本发明中,根据开关柜局部放电检测定位实验中使用的检测仪器(例如多功能手持式局部放电检测仪)的性能参数建立检测仪器的仪器模型。在本发明的一个实施例中,采用虚拟现实技术,以开关柜局部放电检测定位中使用的检测仪器为原型,在计算机上虚拟出其外部结构,并设置其各个部件的位置,以及具有与实际检测仪器相同的功能。下面以基于物理电气设备多功能手持式局部放电检测仪建立虚拟UltraTEV Plus+检测仪器模拟真实的实验仪器为优选例,对建立虚拟局部放电检测仪器的方法展开详细的说明:In the present invention, the instrument model of the detection instrument is established according to the performance parameters of the detection instrument (such as a multifunctional handheld partial discharge detector) used in the partial discharge detection and positioning experiment of the switchgear. In one embodiment of the present invention, using virtual reality technology, using the detection instrument used in the detection and positioning of switchgear partial discharge as a prototype, its external structure is virtualized on the computer, and the positions of its various components are set, as well as the actual The detection instrument has the same function. The following is a preferred example of establishing a virtual UltraTEV Plus+ testing instrument to simulate a real experimental instrument based on a multifunctional handheld partial discharge detector based on physical electrical equipment, and will give a detailed description of the method of establishing a virtual partial discharge testing instrument:
以UltraTEV Plus+检测仪器为原型虚拟UltraTEV Plus+检测仪器。根据UltraTEV Plus+检测仪器的外形结构虚拟UltraTEV Plus+检测仪器外壳;在该UltraTEV Plus+检测仪器外壳上虚拟UltraTEVPlus+检测仪器的仿真部件;该仿真部件包括三维按钮、接线端子、三维显示屏;另外,还可以包括连接头隔音耳机、橡胶聚焦探头、听诊器(接触式)等其它辅助设备。Take the UltraTEV Plus+ testing instrument as a prototype to virtual UltraTEV Plus + testing instrument. According to the shape and structure of UltraTEV Plus + testing instrument, the shell of UltraTEV Plus + testing instrument is virtualized; the simulation parts of UltraTEV Plus + testing instrument are virtualized on the shell of UltraTEV Plus + testing instrument; the simulation parts include three-dimensional buttons, terminals, and three-dimensional display screen; in addition, it can also include Connecting headphone, rubber focusing probe, stethoscope (contact type) and other auxiliary equipment.
具体地,用3DMax商业软件按照UltraTEV Plus+检测仪器的长、宽、高的比例关系建立虚拟UltraTEV Plus+检测仪器,采用贴图方式实现仪器的外壳。如图4所示,调入3DMax商业软件制作的仪器外壳,按照下列方式定义仪器上控件的作用范围和功能:(1)在仪器外壳正上面的显示屏的位置,叠加一个液晶屏模型,模拟检测仪器显示屏的功能。(2)在仪器外壳正上面的按钮的位置,叠加上、下、左、右、确认、电源按钮共六个按钮模型,并按照功能定义它们的属性,分别模拟检测仪器中上、下、左、右、确认、电源按钮的功能。(3)在仪器外壳正面的耳机插孔、探头插孔、指示灯位置叠加相应的插孔和指示灯模型,并按照功能定义它们的属性,分别模拟检测仪器中插孔和指示灯的功能。Specifically, 3DMax commercial software is used to establish a virtual UltraTEV Plus + testing instrument according to the proportional relationship between the length, width, and height of the UltraTEV Plus + testing instrument, and the shell of the instrument is realized by using textures. As shown in Figure 4, import the instrument shell made by 3DMax commercial software, and define the scope and functions of the controls on the instrument in the following ways: (1) Superimpose a LCD screen model at the position of the display screen directly above the instrument shell to simulate Test the functionality of the instrument display. (2) At the position of the button directly above the instrument shell, superimpose six button models of up, down, left, right, confirmation, and power buttons, and define their attributes according to their functions, respectively simulating the up, down, and left buttons in the testing instrument. , Right, Confirm, Power button functions. (3) Overlay the corresponding jack and indicator models at the positions of the headphone jack, probe jack and indicator light on the front of the instrument shell, define their attributes according to their functions, and simulate the functions of the jacks and indicator lights in the testing instrument respectively.
如图5所示,应当可以理解,虚拟UltraTEV Plus+检测仪器的隔音耳机、橡胶聚焦探头、听诊器(接触式)等其它辅助设备也可以按照上述方法建立相应的虚拟三维模型,在此就不赘述了。As shown in Figure 5, it should be understood that other auxiliary equipment such as sound-proof earphones, rubber focusing probes, stethoscopes (contact type) and other auxiliary equipment of the virtual UltraTEV Plus+ testing instrument can also establish corresponding virtual 3D models according to the above method, so I won’t go into details here .
3)建立局部放电故障模型3) Establish a partial discharge fault model
局部放电故障模型用于模拟开关柜局部放电时对地电压及超声波的异常情况。该局部放电故障模型依附于虚拟电气设备,产生于虚拟局部放电开关柜的三维立体空间中,故障虚拟局部放电开关柜由预先定义的初始化文件确定,故障位置随机生成,有正常、异常、不确定三种运行状态。局部放电故障模型不但能够定性地模拟不同运行状态下超声波测量法测得的放电幅值、脉冲数及放电烈度等示值,而且能够定性地模拟不同运行状态下虚拟局部放电开关柜外壳的对地电压值的示值。The partial discharge fault model is used to simulate the abnormal conditions of the ground voltage and ultrasonic waves during the partial discharge of the switchgear. The partial discharge fault model is attached to the virtual electrical equipment and is generated in the three-dimensional space of the virtual partial discharge switchgear. The faulty virtual partial discharge switchgear is determined by a predefined initialization file, and the fault location is randomly generated, including normal, abnormal, and uncertain Three operating states. The partial discharge fault model can not only qualitatively simulate the display values such as the discharge amplitude, pulse number and discharge intensity measured by the ultrasonic measurement method under different operating conditions, but also qualitatively simulate the earth-to-ground fault of the virtual partial discharge switchgear enclosure under different operating conditions. Indication of voltage value.
根据虚拟局部放电开关柜局部放电检测定位检测的典型数据,建立背景值、设备运行状态、典型测量示值之间的对应关系,构成局部放电故障模型。在本发明的一个实施例中,针对于虚拟局部放电开关柜局部放电产生的超声波及对地电压,建立虚拟局部放电开关柜的局部放电故障模型。According to the typical data of partial discharge detection and location detection of virtual partial discharge switchgear, the corresponding relationship among background value, equipment operation status and typical measurement indication value is established to form a partial discharge fault model. In one embodiment of the present invention, a partial discharge fault model of the virtual partial discharge switchgear is established for the ultrasonic waves generated by the partial discharge of the virtual partial discharge switchgear and the ground voltage.
表1是虚拟局部放电开关柜的局部放电检测定位实验中,UltraTEV Plus+检测仪器超声波测量获得的典型测试数据,描述了典型虚拟局部放电开关柜运行状态、背景值与UltraTEV Plus+检测仪器测得的超声波示值之间的关系。将超声波检测的故障模型按照表1进行计算机仿真定性模拟,获得作为虚拟局部放电开关柜局部放电模型的超声波检测故障模型。Table 1 is the typical test data obtained by UltraTEV Plus + testing instrument ultrasonic measurement in the partial discharge detection and positioning experiment of the virtual partial discharge switchgear, which describes the operating status, background value and ultrasonic waves measured by the UltraTEV Plus + testing instrument of the typical virtual partial discharge switchgear. relationship between values. The fault model of ultrasonic detection is qualitatively simulated by computer simulation according to Table 1, and the fault model of ultrasonic detection as the partial discharge model of virtual partial discharge switchgear is obtained.
表1故障模型中超声波测量示值的取值范围Table 1 The value range of the ultrasonic measurement indication value in the fault model
表2是虚拟局部放电开关柜的局部放电检测定位实验中,UltraTEV Plus+检测仪器地电压测量获得的典型测试数据,描述了典型虚拟局部放电开关柜运行状态、背景值与UltraTEV Plus+检测仪器测得的开关柜外壳对地电压的示值之间的关系。将对地电压检测的故障模型按照表2进行定性模拟获得作为虚拟局部放电开关柜局部放电模型的电压测量故障模型。Table 2 is the typical test data obtained from the ground voltage measurement of the UltraTEV Plus + detection instrument in the partial discharge detection and positioning experiment of the virtual partial discharge switchgear. The relationship between the indications of the switchgear enclosure and the ground voltage. The fault model of ground voltage detection is qualitatively simulated according to Table 2 to obtain the voltage measurement fault model as the partial discharge model of the virtual partial discharge switchgear.
表2故障模型中对地电压测量示值的取值范围Table 2 The value range of the indication value of the ground voltage measurement in the fault model
本电气设备放电检测仿真装置在启动时,随机在虚拟局部放电开关柜中选择一个虚拟局部放电开关柜设置为异常或不确定状态,其余虚拟局部放电开关柜为正常状态,故障模型程序根据虚拟局部放电开关柜的状态,按照表1、表2给定的范围,在对应的取值范围内为各个虚拟局部放电开关柜生成模拟数据。测试时,虚拟检测仪器通过虚拟局部放电开关柜的名称查找模拟数据进行显示。故障模型根据故障类型,在表1、表2的对于范围内产生一个局部放电数据,当进行局部放电检测时,把虚拟检测仪器的探头移到被测试设备的表面或缝隙处,按下ok按钮,则虚拟检测仪器读取该被测试设备的故障模型产生的局部放电数据,并显示在虚拟检测仪器的屏幕上。When the electrical equipment discharge detection simulation device is started, a virtual partial discharge switchgear is randomly selected in the virtual partial discharge switchgear and set to an abnormal or uncertain state, and the rest of the virtual partial discharge switchgear is in a normal state. The fault model program is based on the virtual partial discharge switchgear The state of the discharge switchgear, according to the range given in Table 1 and Table 2, generates simulated data for each virtual partial discharge switchgear within the corresponding value range. During the test, the virtual detection instrument looks up the simulated data through the name of the virtual partial discharge switchgear for display. According to the fault type, the fault model generates a partial discharge data within the scope of Table 1 and Table 2. When performing partial discharge detection, move the probe of the virtual detection instrument to the surface or gap of the device under test, and press the ok button , the virtual testing instrument reads the partial discharge data generated by the fault model of the tested equipment and displays it on the screen of the virtual testing instrument.
其次,介绍读入虚拟电气设备、虚拟局部放电检测仪器及局部放电故障模型的参数,生成针对电气设备局部放电的虚拟检测场景单元的步骤,产生开关柜局部放电故障的模拟测量示值。下面以虚拟电气设备是虚拟局部放电开关柜、虚拟局部放电检测仪器是UltraTEV Plus+虚拟检测仪器为例分别进行说明:Secondly, it introduces the steps of reading in the parameters of virtual electrical equipment, virtual partial discharge detection instrument and partial discharge fault model, generating a virtual detection scene unit for partial discharge of electrical equipment, and generating simulated measurement indications for partial discharge faults of switchgear. The following is an example where the virtual electrical equipment is a virtual partial discharge switchgear and the virtual partial discharge detection instrument is UltraTEV Plus + virtual detection instrument:
1)读入虚拟UltraTEV Plus+检测仪器及虚拟辅助设备的参数。本步骤中,读入预先建立的虚拟UltraTEV Plus+检测仪器、按钮、显示屏等部件的定义参数、实验虚拟辅助设备等数据,准备在虚拟检测场景单元中进行显示和操作。1) Read in the parameters of the virtual UltraTEV Plus+ testing instrument and virtual auxiliary equipment. In this step, read in the pre-established virtual UltraTEV Plus+ testing instrument, button, display and other components definition parameters, experimental virtual auxiliary equipment and other data, and prepare for display and operation in the virtual testing scene unit.
2)读入虚拟局部放电开关柜的参数。2) Read in the parameters of the virtual partial discharge switchgear.
本步骤中,读入预先定义的虚拟局部放电开关柜的参数,根据位置、显示比例、名称等参数,生成全部的虚拟局部放电开关柜。In this step, the parameters of the pre-defined virtual partial discharge switchgear are read in, and all virtual partial discharge switchgears are generated according to parameters such as position, display scale, and name.
3)读入故障模型参数。3) Read in the fault model parameters.
本步骤中,读入预先定义局部放电模型及其配置参数,在指定的虚拟局部放电开关柜中生成故障点。故障模型在配置文件中定义,可以根据测试对象的不同进行修改。In this step, the predefined partial discharge model and its configuration parameters are read in, and fault points are generated in the specified virtual partial discharge switchgear. The fault model is defined in the configuration file, which can be modified according to the different test objects.
读入的故障模型参数包括超声波检测故障模型参数和对地电压检测故障模型参数,超声波检测故障模型按照表1格式读入,对地电压检测故障模型按照表2格式读入。The fault model parameters read include ultrasonic detection fault model parameters and ground voltage detection fault model parameters. The ultrasonic detection fault model is read in the format of Table 1, and the ground voltage detection fault model is read in the format of Table 2.
4)生成虚拟局部放电开关柜局部放电在线检测虚拟场景,产生开关柜局部放电故障的模拟测量示值。4) Generate a virtual scene for online detection of partial discharge in virtual partial discharge switchgear, and generate simulated measurement indications for partial discharge faults in switchgear.
虚拟检测场景单元是一个三维图形的虚拟环境,虚拟局部放电开关柜局部放电在线检测虚拟场景由一个虚拟高压设备室、四排虚拟局部放电开关柜、虚拟UltraTEV Plus+检测仪器及辅助设备等组成,其中所有的设备都以三维图形方式呈现,生成虚拟局部放电开关柜局部放电在线检测虚拟场景时,仿真装置根据配置参数在某个虚拟局部放电开关柜中随机生成一个局部放电点,虚拟局部放电开关柜的局部放电点与所述局部放电模型的局部放电点相对应,虚拟UltraTEV Plus+检测仪器可以在其中进行虚拟局部放电开关柜局部放电在线虚拟检测工作。The virtual detection scene unit is a three-dimensional graphic virtual environment. The virtual partial discharge switchgear partial discharge online detection virtual scene consists of a virtual high-voltage equipment room, four rows of virtual partial discharge switchgear, virtual UltraTEV Plus+ detection instruments and auxiliary equipment, etc., among which All the devices are presented in three-dimensional graphics to generate a virtual partial discharge switchgear PD online detection virtual scene, the simulation device randomly generates a partial discharge point in a virtual partial discharge switchgear according to the configuration parameters, and the virtual partial discharge switchgear The partial discharge point of the partial discharge point corresponds to the partial discharge point of the partial discharge model, and the virtual UltraTEV Plus+ detection instrument can perform online virtual detection of the partial discharge of the virtual partial discharge switchgear.
产生开关柜局部放电故障的模拟测量示值的方法,主要包括以下步骤:The method for generating the analog measurement indication value of the partial discharge fault of the switchgear mainly includes the following steps:
(1)产生虚拟检测场景单元的背景值。虚拟检测场景单元的背景值是用计算机随机函数产生的一个随机数,虚拟检测场景单元的背景值的取值范围在[0,20]之间。(1) Generate the background value of the virtual detection scene unit. The background value of the virtual detection scene unit is a random number generated by a computer random function, and the value range of the background value of the virtual detection scene unit is between [0, 20].
(2)用计算机随机函数为虚拟局部放电开关柜随机产生一个虚拟局部放电开关柜运行状态数据。虚拟局部放电开关柜运行状态有三种状态,即:0、1、2分别表示正常状态、不确定状态、异常状态。(2) Use the computer random function to randomly generate a virtual partial discharge switchgear operating state data for the virtual partial discharge switchgear. There are three operating states of the virtual partial discharge switchgear, namely: 0, 1, and 2 represent normal state, uncertain state, and abnormal state, respectively.
(3)计算典型测量示值的取值范围。读取虚拟检测场景单元的背景值和虚拟局部放电开关柜运行状态,以虚拟检测场景单元背景值和虚拟局部放电开关柜运行状态为索引,搜索局部放电故障模型,确定局部放电对地电压测量示值的取值范围[A,B]和局部放电超声波测量示值的取值范围[C,D]。(3) Calculate the value range of typical measurement indications. Read the background value of the virtual detection scene unit and the operating state of the virtual partial discharge switchgear, use the background value of the virtual detection scene unit and the operating state of the virtual partial discharge switchgear as the index, search for the partial discharge fault model, and determine the partial discharge to ground voltage measurement display The value range [A, B] of the value and the value range [C, D] of the partial discharge ultrasonic measurement indication.
(4)计算虚拟典型测量示值。根据局部放电对地电压测量示值的取值范围[A,B]和局部放电超声波测量示值的取值范围[C,D],用计算机随机函数随机产生一个在[A,B]范围内的数值和一个在[C,D]范围内的数值,即为该虚拟局部放电开关柜的局部放电对地电压测量示值和局部放电超声波测量示值。计算公式说明如下:(4) Calculate the virtual typical measurement indication. According to the value range [A, B] of partial discharge to ground voltage measurement indication and the value range [C, D] of partial discharge ultrasonic measurement indication value, use the computer random function to randomly generate a value within the range of [A, B] and a value in the range of [C, D], that is, the partial discharge-to-ground voltage measurement indication value and partial discharge ultrasonic measurement indication value of the virtual partial discharge switchgear. The calculation formula is explained as follows:
局部放电超声波测量示值=A+(B-A)×RAND();Partial discharge ultrasonic measurement indication value = A + (B - A) × RAND ();
局部放电超声波测量示值=C+(D-C)×RAND()。Partial discharge ultrasonic measurement indication = C + (D-C) × RAND ().
(5)重复步骤(4),直至生成虚拟检测场景单元中所有虚拟局部放电开关柜的测量示值。(5) Repeat step (4) until the measurement indications of all virtual partial discharge switchgears in the virtual detection scene unit are generated.
最后,介绍在虚拟场景中进行局部放电在线检测,获得仿真检测数据并显示检测值,分析测试结果的具体步骤。:Finally, it introduces the specific steps of performing on-line detection of partial discharge in the virtual scene, obtaining simulation detection data and displaying the detection value, and analyzing the test results. :
1)读入虚拟局部放电开关柜局部放电检测的操作序列,建立操作序列列表。1) Read in the operation sequence of partial discharge detection in the virtual partial discharge switchgear, and create a list of operation sequences.
启动电气设备放电检测仿真装置后,从参数文件中读入虚拟局部放电开关柜局部放电检测的操作序列,建立操作序列列表。操作序列列表包括虚拟局部放电开关柜局部放电对地电压检测操作序列列表和虚拟局部放电开关柜局部放电超声波检测操作序列列表。After the electrical equipment discharge detection simulation device is started, the operation sequence of the partial discharge detection of the virtual partial discharge switchgear is read from the parameter file, and the operation sequence list is established. The operation sequence list includes a virtual partial discharge switchgear partial discharge ground voltage detection operation sequence list and a virtual partial discharge switchgear partial discharge ultrasonic detection operation sequence list.
虚拟局部放电开关柜局部放电对地电压检测操作序列列表,包括以下操作序列:The operation sequence list of partial discharge voltage detection for virtual partial discharge switchgear includes the following operation sequence:
虚拟UltraTEV Plus+检测仪器开机Start the virtual UltraTEV Plus+ detection instrument
进入‘选择’模式Enter 'select' mode
进入‘电压测试’模式Enter the 'Voltage Test' mode
选择虚拟金属门、虚拟金属窗户测试虚拟检测场景单元的背景值Select the virtual metal door, virtual metal window to test the background value of the virtual detection scene unit
被测试的虚拟局部放电开关柜个数16Number of tested virtual partial discharge switchgears 16
选择虚拟局部放电开关柜测试虚拟局部放电开关柜的局部放电对地电压Select the virtual partial discharge switchgear to test the partial discharge voltage to ground of the virtual partial discharge switchgear
显示典型测量示值并选择处理方法Display of typical measurement indications and selection of processing methods
结束测试end test
显示测量次数及处理正确率。Display the number of measurements and processing accuracy.
虚拟局部放电开关柜的局部放电超声波检测操作序列列表,包括以下操作序列:The partial discharge ultrasonic detection operation sequence list of the virtual partial discharge switchgear, including the following operation sequence:
虚拟UltraTEV Plus+检测仪器开机Start the virtual UltraTEV Plus+ detection instrument
进入‘选择’模式Enter 'select' mode
进入‘超声波测试’模式Enter the 'ultrasonic test' mode
选择虚拟金属门或虚拟金属窗户测试虚拟检测场景单元的背景值Select the virtual metal door or virtual metal window to test the background value of the virtual detection scene unit
被测试的虚拟局部放电开关柜个数16Number of tested virtual partial discharge switchgears 16
选择虚拟局部放电开关柜测试虚拟局部放电开关柜的局部放电超声波Select virtual partial discharge switchgear to test partial discharge ultrasound of virtual partial discharge switchgear
显示典型测量示值并选择处理方法Display of typical measurement indications and selection of processing methods
结束测试end test
显示测量次数及处理正确率。Display the number of measurements and processing accuracy.
2)虚拟检测场景单元接收用户操作事件,虚拟检测过程控制单元根据操作序列判断当前操作事件是否可执行。2) The virtual detection scene unit receives user operation events, and the virtual detection process control unit judges whether the current operation event is executable according to the operation sequence.
将操作事件从虚拟检测场景单元传递到虚拟检测过程控制单元,操作事件包括操作类型、三维虚拟设备部件名称等信息。虚拟检测过程控制单元将操作事件与操作序列进行比较,如果操作事件与操作序列的当前操作事件不一致,则丢弃操作事件。如果操作事件与操作序列的当前操作事件相同,则按照操作事件的具体操作对象处理用户操作事件并且当前操作事件累加一步。The operation event is transmitted from the virtual detection scene unit to the virtual detection process control unit, and the operation event includes information such as operation type and name of three-dimensional virtual equipment components. The virtual detection process control unit compares the operation event with the operation sequence, and discards the operation event if the operation event is inconsistent with the current operation event of the operation sequence. If the operation event is the same as the current operation event of the operation sequence, the user operation event is processed according to the specific operation object of the operation event and the current operation event is accumulated by one step.
按照操作事件的具体操作对象处理用户操作事件的步骤具体如下:如果操作事件的操作对象是虚拟门、窗户、虚拟局部放电开关柜,则操作事件返回给虚拟检测场景单元处理,由虚拟检测场景单元将操作事件中的设备设置为选中状态。如果操作事件的操作对象是虚拟UltraTEVPlus+检测仪器的按键,则操作事件传递给虚拟UltraTEV Plus+检测仪器处理。The steps for processing user operation events according to the specific operation objects of the operation events are as follows: if the operation objects of the operation events are virtual doors, windows, and virtual partial discharge switch cabinets, the operation events are returned to the virtual detection scene unit for processing, and the virtual detection scene unit Sets the device in the action event to the selected state. If the operation object of the operation event is the button of the virtual UltraTEV Plus + detection instrument, the operation event is passed to the virtual UltraTEV Plus + detection instrument for processing.
如图7所示,本电气设备放电检测仿真装置通过虚拟UltraTEV Plus+检测仪器对虚拟电气设备进行仿真检测的过程如下:(1)用鼠标选中虚拟检测仪器,然后点击电源按钮打开检测仪器的电源。按下‘电源键’,如果检测仪器处于关机状态,则检测仪器进入开机状态,测试模式显示为电压测试模式。如果检测仪器处于开机状态,则检测仪器进入关机状态液晶屏无任何显示,测试模式设置为非工作状态。(2)检测开始前,首先检测并记录环境背景的干扰示值,即:用鼠标点击虚拟检测场景单元中的虚拟金属金属门/窗等设备,记录背景干扰的示值。(3)液晶屏显示为电压测试模式时,按下‘上键’或‘下键’,测试模式进入选择模式,液晶屏显示‘电压测试模式’和‘超声波测试模式’两行字,且选中‘电压测试模式’行。用鼠标点击虚拟检测场景单元中的虚拟局部放电开关柜,场景自动漫游到被选中的虚拟局部放电开关柜之前,同时,检测仪器显示当前检测到的示值。(4)液晶屏显示为超声波测试模式时,按下‘上键’或‘下键’,测试模式进入选择模式,液晶屏显示‘电压测试模式’和‘超声波测试模式’两行字,且选中‘超声波测试模式’行。在超声波检测模式下,虚拟局部放电开关柜柜的间隙处显示为红色,提示只能在间隙处进行检测。用鼠标点击虚拟局部放电开关柜的间隙位置,场景自动漫游到被选中的虚拟局部放电开关柜之前,同时,检测仪器显示当前检测到的示值。(5)测试模式在选择模式时,按下‘上键’或‘下键’,如果当前选中的是‘电压测试模式’行,则‘超声波测试模式’行被选中;如果当前选中的是‘超声波测试模式’行,则‘电压测试模式’行被选中。(7)测试模式在选择模式时,按下“确认键”,如果当前选中的是‘电压测试模式’行,则测试模式进入‘电压测试模式’;如果当前选中的是‘超声波测试模式’行,则测试模式进入‘超声波测试模式’。(6)测试模式在电压测试模式时,按下“确认键”,则获取对地电压测量示值并在液晶屏显示。(7)测试模式在超声波测试模式时,按下“确认键”,则获取对超声波测量示值并在液晶屏显示。(8)显示当前检测到的示值后,弹出一个测试结果评估界面,提示检测员对电气设备的状态进行评估。As shown in Figure 7, the process of the electrical equipment discharge detection simulation device using the virtual UltraTEV Plus+ testing instrument to simulate and test the virtual electrical equipment is as follows: (1) Select the virtual testing instrument with the mouse, and then click the power button to turn on the power of the testing instrument. Press the 'power button', if the detection instrument is in the off state, the detection instrument will enter the power on state, and the test mode will be displayed as the voltage test mode. If the detection instrument is in the power-on state, the detection instrument enters the shutdown state without any display on the LCD screen, and the test mode is set to the non-working state. (2) Before the detection starts, first detect and record the indication value of the interference of the environmental background, that is, use the mouse to click on the virtual metal door/window and other equipment in the virtual detection scene unit, and record the indication value of the background interference. (3) When the LCD screen displays the voltage test mode, press the 'up key' or 'down key', the test mode enters the selection mode, and the LCD screen displays two lines of 'voltage test mode' and 'ultrasonic test mode', and select 'Voltage Test Mode' line. Click the virtual partial discharge switchgear in the virtual detection scene unit with the mouse, and the scene will automatically roam to the front of the selected virtual partial discharge switchgear, and at the same time, the detection instrument will display the currently detected indication value. (4) When the LCD screen displays the ultrasonic test mode, press the 'up key' or 'down key', the test mode enters the selection mode, and the LCD screen displays two lines of 'voltage test mode' and 'ultrasonic test mode', and select 'Ultrasonic Test Mode' line. In the ultrasonic detection mode, the gap of the virtual partial discharge switchgear cabinet is displayed in red, indicating that only the gap can be detected. Click the gap position of the virtual partial discharge switchgear with the mouse, and the scene will automatically roam to the front of the selected virtual partial discharge switchgear, and at the same time, the detection instrument will display the currently detected indication value. (5) Test mode When selecting a mode, press the 'Up key' or 'Down key', if the line 'Voltage test mode' is currently selected, then the line 'Ultrasonic test mode' is selected; if the line currently selected is ' Ultrasonic Test Mode' row, the 'Voltage Test Mode' row is selected. (7) Test mode When selecting a mode, press the "Enter key", if the current selection is the "voltage test mode" line, the test mode will enter the "voltage test mode"; if the current selection is the "ultrasonic test mode" line , the test mode enters into 'ultrasonic test mode'. (6) Test mode In the voltage test mode, press the "confirmation key" to obtain the measured value of the ground voltage and display it on the LCD screen. (7) Test mode When in the ultrasonic test mode, press the "confirmation key" to obtain the indicated value of the ultrasonic measurement and display it on the LCD screen. (8) After displaying the currently detected indication value, a test result evaluation interface pops up, prompting the inspector to evaluate the status of the electrical equipment.
综上所述,本发明采用虚拟现实技术开发了高度逼真的虚拟工作环境,极大地提高了虚拟检测过程的真实感。利用本发明,可以实现全数字化的虚拟设备和虚拟仪表,能够根据不同的培训需要,建立不同的虚拟检测场景,不断丰富培训内容。In summary, the present invention adopts virtual reality technology to develop a highly realistic virtual working environment, which greatly improves the realism of the virtual detection process. Utilizing the present invention, fully digital virtual equipment and virtual instruments can be realized, and different virtual detection scenarios can be established according to different training needs, so as to continuously enrich training content.
上面对本发明所提供的基于虚拟现实的电气设备放电检测仿真装置及其实现方法进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。The virtual reality-based electrical equipment discharge detection simulation device and its implementation method provided by the present invention have been described in detail above. For those skilled in the art, any obvious changes made to it without departing from the essence of the present invention will constitute an infringement of the patent right of the present invention and will bear corresponding legal responsibilities.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102155036A CN103353847A (en) | 2012-12-24 | 2013-05-31 | Simulation device for electrical equipment discharge detection based on virtual realization and realization method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210563579 | 2012-12-24 | ||
CN201210563579.3 | 2012-12-24 | ||
CN2013102155036A CN103353847A (en) | 2012-12-24 | 2013-05-31 | Simulation device for electrical equipment discharge detection based on virtual realization and realization method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103353847A true CN103353847A (en) | 2013-10-16 |
Family
ID=49310221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102155036A Pending CN103353847A (en) | 2012-12-24 | 2013-05-31 | Simulation device for electrical equipment discharge detection based on virtual realization and realization method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103353847A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103969562A (en) * | 2014-05-29 | 2014-08-06 | 广州供电局有限公司 | Simulated partial discharge detection device for switch cabinet |
CN104751714A (en) * | 2014-11-18 | 2015-07-01 | 国网电力科学研究院武汉南瑞有限责任公司 | Three-dimensional simulation training system for partial discharge troubles of coil equipment |
WO2024021375A1 (en) * | 2022-07-26 | 2024-02-01 | 云南电网有限责任公司临沧供电局 | Switch cabinet aging online monitoring method and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7043393B2 (en) * | 2001-08-15 | 2006-05-09 | National Instruments Corporation | System and method for online specification of measurement hardware |
CN102508124A (en) * | 2011-10-18 | 2012-06-20 | 广西电网公司电力科学研究院 | Detection method of partial discharge of electrical equipment and device thereof |
CN102749564A (en) * | 2012-07-24 | 2012-10-24 | 广州供电局有限公司 | Detection simulation method for local discharge of switch cabinet |
CN102759692A (en) * | 2012-07-24 | 2012-10-31 | 广州供电局有限公司 | Simulation method for detecting local discharge of switch cabinet based on virtual reality technology |
-
2013
- 2013-05-31 CN CN2013102155036A patent/CN103353847A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7043393B2 (en) * | 2001-08-15 | 2006-05-09 | National Instruments Corporation | System and method for online specification of measurement hardware |
CN102508124A (en) * | 2011-10-18 | 2012-06-20 | 广西电网公司电力科学研究院 | Detection method of partial discharge of electrical equipment and device thereof |
CN102749564A (en) * | 2012-07-24 | 2012-10-24 | 广州供电局有限公司 | Detection simulation method for local discharge of switch cabinet |
CN102759692A (en) * | 2012-07-24 | 2012-10-31 | 广州供电局有限公司 | Simulation method for detecting local discharge of switch cabinet based on virtual reality technology |
Non-Patent Citations (1)
Title |
---|
洛洁艺: "基于暂态地电压和超声波测试的10kV开关柜绝缘状态评估技术的研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》, 15 June 2011 (2011-06-15) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103969562A (en) * | 2014-05-29 | 2014-08-06 | 广州供电局有限公司 | Simulated partial discharge detection device for switch cabinet |
CN104751714A (en) * | 2014-11-18 | 2015-07-01 | 国网电力科学研究院武汉南瑞有限责任公司 | Three-dimensional simulation training system for partial discharge troubles of coil equipment |
CN104751714B (en) * | 2014-11-18 | 2016-04-06 | 国网电力科学研究院武汉南瑞有限责任公司 | Coil kind equipment partial discharges fault three-dimensional simulation training system |
WO2024021375A1 (en) * | 2022-07-26 | 2024-02-01 | 云南电网有限责任公司临沧供电局 | Switch cabinet aging online monitoring method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102054377B (en) | Remote simulation training system for electrical tests of transformer | |
CN103617754B (en) | Power cable fault simulation test analogue system | |
CN102568270B (en) | Method for performing pre-control treatment on dangerous point of transformer substation by utilizing three-dimensional simulation technique | |
CN102798802B (en) | Cable fault locating visual simulation experimental method | |
CN106775746A (en) | A kind of intelligent substation three-dimensional artificial training soft ware system and its platform building method | |
CN103344883B (en) | Simulation testing device and the method for cable fault simulation is realized by wireless network | |
CN118330505B (en) | Line leakage current monitoring and leakage protection method based on wireless communication | |
CN101980417B (en) | Digital substation testing simulation method | |
CN105044450A (en) | Metering error analysis device and method | |
CN109307816A (en) | Power equipment testing method based on hybrid electromagnetic interference simulation in substation | |
CN102156272A (en) | Electric energy metering verification method, device and system | |
CN107909901A (en) | Power supply station's Training Room marketing training cabinet and its application process | |
CN103353847A (en) | Simulation device for electrical equipment discharge detection based on virtual realization and realization method thereof | |
CN117031223A (en) | Diagnostic method for partial discharge defect of switch cabinet | |
CN105717360A (en) | Low-voltage single-phase harmonic impedance measuring method and device | |
CN102778664B (en) | Method for carrying out visualized simulation verification on discharge counter for zinc oxide arresters | |
CN104483592A (en) | Cable fault test training system based on actually-measured cable fault wave shape and method thereof | |
CN114856830A (en) | Intelligent Measurement and Inspection System in Ignition System Simulation Work Test Platform | |
CN103500521B (en) | The stake resistance visual simulation test method of electrical equipment | |
CN211741378U (en) | Analog signal generating device for measuring channel | |
CN113848410A (en) | Detection method and device of control and protection device | |
CN204129150U (en) | A kind of on-line measuring device of power equipment | |
CN107546738A (en) | Transformer station secondary system analogue system and method based on SCD file | |
CN203535206U (en) | GIS partial discharging simulation system | |
CN206573660U (en) | A kind of switch cubicle energizing test platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20131016 |
|
RJ01 | Rejection of invention patent application after publication |