[go: up one dir, main page]

CN103352047B - Trichinella Spiralis larva ES antigen gene vaccine and preparation method - Google Patents

Trichinella Spiralis larva ES antigen gene vaccine and preparation method Download PDF

Info

Publication number
CN103352047B
CN103352047B CN201310040669.9A CN201310040669A CN103352047B CN 103352047 B CN103352047 B CN 103352047B CN 201310040669 A CN201310040669 A CN 201310040669A CN 103352047 B CN103352047 B CN 103352047B
Authority
CN
China
Prior art keywords
pvax
trichinella spiralis
antigen
pvaxi
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310040669.9A
Other languages
Chinese (zh)
Other versions
CN103352047A (en
Inventor
杨桂连
王春凤
杨文涛
刘高升
赵葛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Agricultural University
Original Assignee
Jilin Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Agricultural University filed Critical Jilin Agricultural University
Priority to CN201310040669.9A priority Critical patent/CN103352047B/en
Publication of CN103352047A publication Critical patent/CN103352047A/en
Application granted granted Critical
Publication of CN103352047B publication Critical patent/CN103352047B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a Trichinella Spiralis larva ES antigen gene vaccine and a preparation method thereof. Trichinella Spiralis larva 43ku and 45ku ES protein genes are respectively inserted to a pVAXI eukaryotic expression vector to obtain recombinant plasmids, and the recombinant plasmids are mixed according to a ratio of 1:1 to prepare a combined recombined DNA vaccine for preventing Trichinella Spiralis infection and improving the worm reduction rate of bodies. After the injection immunization of hindlimb muscles of mice for three weeks, 2000 worms are killed, the worm reduction rate can reach 76.65%, and the quantity of eggs at the tongue tissues of the mice is obviously reduced.

Description

旋毛虫肌幼虫ES抗原基因疫苗及其制备方法Trichinella spiralis muscle larva ES antigen gene vaccine and preparation method thereof

技术领域 technical field

本发明属于生物技术领域,旋毛虫肌幼虫ES抗原基因疫苗及其制备方法。 The invention belongs to the field of biological technology, and relates to a trichinella spiralis muscle larva ES antigen gene vaccine and a preparation method thereof.

背景技术 Background technique

旋毛虫寄生于人以及多种脊椎动物体内,是引起旋毛虫病的人兽共患寄生虫病。旋毛虫可寄生于人及150多种动物体内,感染的主要原因是由于机体摄入生的或者不熟的带有旋毛虫肌幼虫包囊的肉制品而导致,若不及时诊断和治疗,可致患者死亡。据估计,目前全世界大约有1100万感染者,我国1975年后,在吉林、辽宁、黑龙江、河南、湖北等省市区也有本病暴发的报告。本病不仅严重危害人类健康,还可对养猪业及肉类出口造成巨大的经济损失,国际兽医局1998年报道了1万头生猪感染,我国26个省市区均有猪旋毛虫病的流行,在我国广大农村地区的集贸市场上常有私自屠宰后未经旋毛虫检疫的猪肉或猪肉制品出售,给人类健康和动物健康养殖带来了极大的潜在威胁。然而,目前并无有效的旋毛虫疫苗。 Trichinella spiralis parasitizes humans and various vertebrates, and is a zoonotic parasitic disease that causes trichinellosis. Trichinella can parasitize humans and more than 150 kinds of animals. The main cause of infection is the intake of raw or undercooked meat products with cysts of Trichinella muscle larvae. resulting in the death of the patient. It is estimated that there are approximately 11 million infected people in the world at present. After 1975 in my country, there were also reports of outbreaks of this disease in Jilin, Liaoning, Heilongjiang, Henan, Hubei and other provinces and municipalities. The disease not only seriously endangers human health, but also causes huge economic losses to the pig industry and meat export. The International Veterinary Bureau reported that 10,000 live pigs were infected in 1998. There are pig trichinellosis in 26 provinces and municipalities in my country. It is prevalent. In the market trade markets in the vast rural areas of our country, pork or pork products that have not been quarantined by Trichinella spiralis are often sold without permission after slaughtering, which has brought great potential threats to human health and animal health. However, there is currently no effective vaccine against Trichinella spiralis.

旋毛虫的发育阶段为成虫期、新生幼虫期和肌幼虫期三个阶段,虫体抗原成分多样,主要为表面抗原、虫体抗原、排泄-分泌抗原(ES抗原)、杆细胞颗粒相关抗原。研究表明旋毛虫ES抗原在三个时期均可以产生,是旋毛虫代谢分泌的直接暴露于宿主的免疫系统中,是宿主抗旋毛虫感染的最主要的保护性抗原,也是当前研究最为主要的旋毛虫抗原。 The developmental stages of Trichinella spiralis include adult stage, newborn larvae stage and muscle larvae stage. The body antigens are diverse, mainly including surface antigens, body antigens, excretion-secretion antigens (ES antigens), and rod cell granule-associated antigens. Studies have shown that Trichinella spiralis ES antigen can be produced in three stages, which is directly exposed to the host's immune system and is the most important protective antigen for hosts against Trichinella spiralis infection, and is also the most important spiralis in current research. caterpillar antigen.

旋毛虫ES抗原是其天然孔分泌或者是排泄的抗原物质,不同时期的虫体都能产生此抗原物质,主要的分泌部位是虫体食道管附近的杆状细胞分泌。ES抗原是有多种蛋白成分组成,Despommier等用SDS-PAGE发现旋毛虫ES抗原中有28种抗原成分,用IEF法可发现37种抗原成分,其中糖蛋白为22种;国内学者朱兴全等也通过实验研究分析证实旋毛虫肌幼虫ES抗原的组成分非常复杂。研究发现,43ku和45ku ES 抗原能够诱导机体产生主要的保护性抗体。 Trichinella spiralis ES antigen is the antigen substance secreted or excreted by its natural pores, which can be produced by the parasites of different stages, and the main secretion site is the rod-shaped cells near the esophageal tube of the parasite. ES antigens are composed of various protein components. Despommier et al. used SDS-PAGE to find that there were 28 antigenic components in the ES antigen of Trichinella spiralis. Using IEF method, 37 kinds of antigenic components could be found, including 22 kinds of glycoproteins; domestic scholars such as Zhu Xingquan also The composition of the ES antigen of Trichinella spiralis muscle larvae is very complex. Studies have found that 43ku and 45ku ES antigens can induce the body to produce major protective antibodies.

旋毛虫43ku抗原是ES抗原的主要蛋白组分,在旋毛虫属内具有高度的保守性。研究表明43ku ES抗原与宿主的营养、细胞形成、排虫反应及保护性免疫应答有关,而且43ku ES 抗原糖蛋白已被作为免疫诊断和研制疫苗的良好候选抗原。 Trichinella spiralis 43ku antigen is the main protein component of ES antigen, which is highly conserved in Trichinella spiralis. Studies have shown that 43ku ES antigen is related to host nutrition, cell formation, excretion response and protective immune response, and 43ku ES antigen glycoprotein has been used as a good candidate antigen for immunodiagnosis and vaccine development.

旋毛虫45 ku 抗原是一种分泌性糖蛋白, 也是旋毛虫肌幼虫ES 产物的主要抗原成分之一。Arasu等首先克隆了 45 ku抗原基因,其重组蛋白可以被旋毛虫感染小鼠血清识别。旋毛虫45 ku抗原推测是丝氨酸蛋白酶一个多基因家族,编码肌幼虫的一种蛋白,但却去除了酶的活行中心。研究还发现该抗原不仅具有良好的免疫原性,而且对于旋毛虫攻击感染具有较强的免疫保护性。最新研究表明,此基因在旋毛虫肌幼虫和成虫中都有表达,旋毛虫45 ku抗原包括肽表位和糖表位,不仅具有可形成包囊旋毛虫种所共有的抗原表位,而且具有旋毛虫种特异的抗原表位能够被单抗识别,王中全等人应用RT-PCR方法对旋毛虫45 ku抗原基因进行克隆与表达,在所扩增的890个碱基中有与美国学者报道的基因序列同源性达99.6%,这表明45ku抗原蛋白基因存在高度的保守性,是DNA疫苗研制的良好的候选基因。 The 45 ku antigen of Trichinella spiralis is a secreted glycoprotein, and it is also one of the main antigenic components of ES products of Trichinella spiralis muscle larvae. Arasu et al. first cloned the 45 ku antigen gene, and its recombinant protein could be recognized by the serum of Trichinella-infected mice. Trichinella spiralis 45 ku antigen is presumed to be a multigene family of serine proteases, encoding a protein of muscle larvae, but the active center of the enzyme is removed. The study also found that the antigen not only has good immunogenicity, but also has strong immune protection against Trichinella spiralis infection. The latest research shows that this gene is expressed in Trichinella spiralis muscle larvae and adults, and the 45 ku antigen of Trichinella spiralis includes peptide epitopes and sugar epitopes. The species-specific epitope of Trichinella spiralis can be recognized by monoclonal antibody. Wang Zhongquan et al. used RT-PCR method to clone and express the 45 ku antigen gene of Trichinella spiralis. Among the amplified 890 bases, there are genes reported by American scholars. The sequence homology reached 99.6%, which indicated that the 45ku antigenic protein gene was highly conserved, and it was a good candidate gene for DNA vaccine development.

DNA疫苗是指将编码某种抗原的重组真核表达载体直接注射到动物体内,使外源基因在活体内表达,产生的抗原激活机体的免疫系统,从而诱导特异性的体液免疫和细胞免疫应答。该疫苗既具有减毒疫苗的优点,同时又无逆转的危险,因此越来越受到人们的重视,被看作是继传统疫苗及基因工程亚单位疫苗之后的第三代疫苗。 DNA vaccine refers to the direct injection of a recombinant eukaryotic expression vector encoding a certain antigen into the animal body, so that the foreign gene is expressed in vivo, and the generated antigen activates the immune system of the body, thereby inducing specific humoral immunity and cellular immune response . The vaccine not only has the advantages of attenuated vaccines, but also has no risk of reversal, so it has attracted more and more attention, and is regarded as the third generation of vaccines after traditional vaccines and genetically engineered subunit vaccines.

发明内容 Contents of the invention

本发明的目的是提供一种有效预防旋毛虫感染、提高减虫率的联合重组DNA疫苗及其制备方法。 The object of the present invention is to provide a combined recombinant DNA vaccine which effectively prevents Trichinella spiralis infection and improves the worm reduction rate and its preparation method.

旋毛虫肌幼虫重组43ku ES抗原基因的真核表达载体pVAXⅠ-43ku,它是在真核表达载体pVAXⅠ中插入了43ku基因,所述的43ku其碱基序列如序列表SEQID No.1所示; The eukaryotic expression vector pVAXI -43ku of the recombinant 43ku ES antigen gene of Trichinella spiralis muscle larvae, which is inserted into the eukaryotic expression vector pVAXI with the 43ku gene, the base sequence of the 43ku is shown in the sequence table SEQID No.1;

旋毛虫肌幼虫重组45ku ES抗原基因的真核表达载体pVAXⅠ-45ku,它是在真核表达载体pVAXⅠ中插入了45ku基因,所述的45ku其碱基序列如序列表SEQID No.2所示; The eukaryotic expression vector pVAXⅠ -45ku of the recombinant 45ku ES antigen gene of Trichinella spiralis muscle larvae, which is inserted into the eukaryotic expression vector pVAXⅠ with the 45ku gene, the base sequence of the 45ku is shown in the sequence table SEQID No.2;

旋毛虫肌幼虫ES抗原基因疫苗,它包括:由重组质粒pVAXⅠ-43ku和pVAXⅠ-45kuTrichinella spiralis muscle larvae ES antigen gene vaccine, which includes: recombinant plasmids pVAXI- 43ku and pVAXI- 45ku ;

它们的重量比为1∶1; Their weight ratio is 1:1;

所述的pVAXⅠ-43ku和pVAXⅠ-45ku的浓度均为1μg/μL。 The concentrations of both pVAXI- 43ku and pVAXI- 45ku were 1 μg/μL.

旋毛虫肌幼虫ES抗原基因疫苗制备方法,包括: Trichinella spiralis muscle larvae ES antigen gene vaccine preparation method, comprising:

(1)制备旋毛虫肌幼虫总RNA,反转录为cDNA,并以cDNA为模板,用引物: (1) Prepare the total RNA of Trichinella spiralis muscle larvae, reverse transcribe it into cDNA, and use the cDNA as a template with primers:

43ku -P1:5’-CGCGGTACCATGCGAATATACATTTTTCTTAG-3’ 43ku-P1:5'-CGCGGTACCATGCGAATATACATTTTTCTTAG-3'

43ku -P2:5’-CGAGGATCCTTAGCTGTATGGGCAA-3’ 43ku-P2: 5'-CGAGGATCCTTAGCTGTATGGGCAA-3'

45ku -P1:5’-CGCGGTACCATGAAACTCTTGCTTTTAACA-3’ 45ku-P1: 5'-CGCGGTACCATGAAACTCTTGCTTTTAACA-3'

45ku -P2:5’-GCGGATCCTTAGCCTTGCTTAGAGAG-3’ 45ku-P2: 5'-GCGGATCCTTAGCCTTGCTTAGAGAG-3'

PCR方法分别扩增43ku、45ku ES抗原基因,43ku、45ku基因其碱基序列如序列表SEQID No.1、2所示; The PCR method amplifies the 43ku and 45ku ES antigen genes respectively, and the base sequences of the 43ku and 45ku genes are shown in the sequence table SEQID No.1 and 2;

(2)将43ku、45ku基因分别插入pVAXⅠ真核表达载体中,构建重组真核表达载体pVAXⅠ-43ku和pVAXⅠ-43ku(2) Insert the 43ku and 45ku genes into pVAXI eukaryotic expression vectors respectively to construct recombinant eukaryotic expression vectors pVAXI- 43ku and pVAXI- 43ku ;

(3)将两种重组真核表达载体分别转入E.coli DH5α中,接种于LB液体培养基,37℃,150-180 r/min摇床培养。 (3) The two recombinant eukaryotic expression vectors were transformed into E.coli DH5α respectively, inoculated in LB liquid medium, and cultured on a shaker at 37°C and 150-180 r/min.

(4)从上述培养的E.coli DH5α中大量制备pVAXⅠ-43ku和pVAXⅠ-45ku,并调整二者浓度后混合。 (4) Prepare a large amount of pVAXI- 43ku and pVAXI- 45ku from the above-mentioned cultured E.coli DH5α, adjust the concentration of the two, and mix them.

本发明提供了旋毛虫肌幼虫ES抗原基因疫苗及其制备方法,利用旋毛虫43ku、45ku ES蛋白的抗原性,制备可用于预防旋毛虫感染、提高机体减虫率的联合重组DNA疫苗,经小鼠后肢肌肉注射免疫三周后,攻虫2000条,减虫率可达76.65%,小鼠舌部组织虫卵数明显减少。 The invention provides a Trichinella spiralis muscle larva ES antigen gene vaccine and a preparation method thereof. The antigenicity of the Trichinella spiralis 43ku and 45ku ES proteins is used to prepare a combined recombinant DNA vaccine that can be used to prevent Trichinella spiralis infection and improve the rate of body reduction. After three weeks of immunization by intramuscular injection of the hind limbs of mice, 2000 worms were challenged, and the worm reduction rate could reach 76.65%, and the number of worm eggs in the mouse tongue tissue was significantly reduced.

本发明的优点在于:(1)选取的43ku、45ku ES蛋白是旋毛虫各时期都有的保护性抗原蛋白,利于机体清除不同时期的虫体;(2)疫苗类型属于DNA疫苗,结构简单,提纯工艺简便,生产成本较低,适于大批量生产;(3)DNA疫苗分子稳定,可制成DNA疫苗冻干苗,使用时在盐溶液中可恢复原有活性,便于运输和保存;(4)DNA疫苗安全,消除传统疫苗容易逆转、反毒的危险。 The advantages of the present invention are: (1) The selected 43ku and 45ku ES proteins are protective antigenic proteins in Trichinella spiralis in each stage, which is beneficial for the body to remove the worms in different stages; (2) The vaccine type belongs to DNA vaccine with simple structure, The purification process is simple, the production cost is low, and it is suitable for mass production; (3) DNA vaccine molecules are stable, and DNA vaccines can be made into freeze-dried vaccines, and the original activity can be restored in saline solution when used, which is convenient for transportation and storage; ( 4) DNA vaccines are safe, eliminating the danger of easy reversal and anti-virus of traditional vaccines.

附图说明 Description of drawings

图1.43ku和45ku抗原基因的PCR扩增;其中,A: 43ku抗原基因PCR扩增;B: 45ku抗原基因PCR扩增 Figure 1. PCR amplification of 43ku and 45ku antigen genes; among them, A: 43ku antigen gene PCR amplification; B: 45ku antigen gene PCR amplification

图2. pMD18T-43ku和pMD18T-45ku酶切鉴定;其中,A: pMD18T-43ku酶切鉴定;2-B: pMD18T-45ku酶切鉴定; Figure 2. Identification of pMD18T- 43ku and pMD18T- 45ku enzyme digestion; Among them, A: identification of pMD18T- 43ku enzyme digestion; 2-B: identification of pMD18T- 45ku enzyme digestion;

图3.真核表达质粒载体pVAXⅠ的制备; Fig. 3. Preparation of eukaryotic expression plasmid vector pVAXⅠ;

图4.重组表达载体pVAXⅠ-43ku和pVAXⅠ-45ku的酶切鉴定;其中,A: pVAXⅠ-43ku酶切鉴定;B:pVAXⅠ-45ku酶切鉴定; Figure 4. Enzyme digestion and identification of recombinant expression vectors pVAXⅠ- 43ku and pVAXⅠ- 45ku ; among them, A: pVAXⅠ- 43ku restriction enzyme digestion; B: pVAXⅠ- 45ku restriction digestion;

图5. pVAXⅠ-43ku和pVAXⅠ-45ku转染MA104细胞的间接免疫荧光检测;其中,A: pVAXⅠ-43ku转染;B: pVAXⅠ-45ku转染;C: pVAXⅠ转染(对照);D pVAXⅠ-43ku免疫小鼠攻虫; Figure 5. Indirect immunofluorescence detection of MA104 cells transfected with pVAXⅠ- 43ku and pVAXⅠ- 45ku ; Among them, A: pVAXⅠ- 43ku transfected; B: pVAXⅠ- 45ku transfected; C: pVAXⅠ-transfected (control); D pVAXⅠ- 43ku immunized mice to challenge the worms;

图6.小鼠舌部组织病理学检测结果;其中,A: 正常小鼠未攻虫;B PBS灌胃小鼠攻虫;C pVAXⅠ免疫小鼠攻虫;E: pVAXⅠ-45ku免疫小鼠攻虫;F 联合免疫小鼠攻虫。 Figure 6. The results of histopathological examination of mouse tongue; where, A: Normal mice were not challenged with worms; B PBS-administered mice were challenged with worms; C pVAXⅠ-immunized mice were challenged with worms; E: pVAXⅠ- 45ku immunized mice were challenged worms; F co-immunized mice challenged worms.

具体实施方式:Detailed ways:

实施例1 旋毛虫肌幼虫43ku和45ku抗原基因的获得Example 1 Acquisition of 43ku and 45ku antigen genes of Trichinella spiralis muscle larvae

(1)引物设计与合成 (1) Primer design and synthesis

根据GenBank登录的旋毛虫肌幼虫43ku和45ku ES抗原的基因序列,采用Primers 5.0设计引物,并在目的基因的上、下游引物分别设计KpnⅠ和BamHⅠ酶切位点,引物序列由上海生工生物工程有限公司合成。引物序列如下 According to the gene sequences of 43ku and 45ku ES antigens of Trichinella spiralis muscle larva registered in GenBank, Primers 5.0 was used to design primers, and Kpn Ⅰ and BamH Ⅰ restriction sites were designed on the upstream and downstream primers of the target gene, respectively. The primer sequences were provided by Shanghai Sangong Technology Co., Ltd. Synthesized by Bioengineering Ltd. The primer sequence is as follows

43ku上游引物(43-P1):5’-CGCGGTACCATGCGAATATACATTTTTCTTAG-3’ 43ku upstream primer (43-P1): 5'-CGC GGTACC ATGCGAATATACATTTTTCTTAG-3'

43ku下游引物(43-P2):5’-CGAGGATCCTTAGCTGTATGGGCAA-3’ 43ku downstream primer (43-P2): 5'-CGA GGATCC TTAGCTGTATGGGCAA-3'

45ku上游引物(45-P1):5’-CGCGGTACCATGAAACTCTTGCTTTTAACA-3’ 45ku upstream primer (45-P1): 5'-CGC GGTACC ATGAAACTCTTGCTTTTAACA-3'

45ku下游引物(45-P2):5’-GCGGATCCTTAGCCTTGCTTAGAGAG-3’ 45ku downstream primer (45-P2): 5'-GC GGATCC TTAGCCTTGCTTAGAGAG-3'

(2)43ku和45ku抗原基因的PCR扩增 (2) PCR amplification of 43ku and 45ku antigen genes

采用常规Trizol法制备旋毛虫肌幼虫(总RNA,反转录为cDNA,并以cDNA为模板,采用上述引物分别对43ku和45ku抗原基因进行PCR扩增。旋毛虫为国际标准株,T.spiralis (strain ISS 534),由本实验室保存。 Trichinella spiralis muscle larvae were prepared by the conventional Trizol method (total RNA, reverse-transcribed into cDNA, and cDNA was used as a template, and the 43ku and 45ku antigen genes were respectively amplified by PCR using the above primers. Trichinella spiralis is an international standard strain, T.spiralis (strain ISS 534), kept by our laboratory.

PCR运行条件:94℃预变性5min;94℃变性1min,57℃退火1min,72℃延伸1min,共35个循环;72℃总延伸10min。反应结束后,取3μl产物进行0.8%琼脂糖凝胶电泳鉴定,结果显示成功扩增出43ku和45ku抗原基因,如图1所示。 PCR operating conditions: pre-denaturation at 94°C for 5 min; denaturation at 94°C for 1 min, annealing at 57°C for 1 min, extension at 72°C for 1 min, a total of 35 cycles; total extension at 72°C for 10 min. After the reaction, 3 μl of the product was taken for identification by 0.8% agarose gel electrophoresis, and the results showed that the 43ku and 45ku antigen genes were successfully amplified, as shown in FIG. 1 .

(3)43ku和45ku抗原基因与pMD18T的连接、转化 (3) Connection and transformation of 43ku and 45ku antigen genes with pMD18T

采用Axygen公司DNA凝胶回收试剂盒,按照说明书操作,对扩增目的基因进行回收,回收片段与克隆载体pMD18T进行连接。 The DNA gel recovery kit from Axygen Company was used to recover the amplified target gene according to the instructions, and the recovered fragments were ligated with the cloning vector pMD18T.

连接条件:16℃连接过夜。 Ligation conditions: overnight at 16°C.

采用常规CaCl2法将连接产物转化E.coli DH5α感受态细胞,并筛选重组阳性克隆子。 The ligation product was transformed into E.coli DH5α competent cells by conventional CaCl 2 method, and recombinant positive clones were screened.

(4)pMD18T-43ku和pMD18T-45ku的鉴定及序列分析 (4) Identification and sequence analysis of pMD18T- 43ku and pMD18T- 45ku

按质粒小提试剂盒说明书操作提取筛选疑似阳性克隆子质粒。采用KpnⅠ和BamHⅠ限制性内切酶对所提取的质粒载体进行酶切鉴定,酶切体系如下: Extract and screen suspected positive clone plasmids according to the instructions of the plasmid mini-extraction kit. The extracted plasmid vectors were digested and identified with Kpn Ⅰ and BamH Ⅰ restriction endonucleases. The restriction enzyme digestion system is as follows:

反应条件:37℃水浴2 h。结束后,经0.8%琼脂糖凝胶电泳检测表明,成功获得了重组表达载体pMD18T-43ku和pMD18T-45ku,如图2所示。 Reaction conditions: 37°C water bath for 2 h. After the end, the 0.8% agarose gel electrophoresis test showed that the recombinant expression vectors pMD18T- 43ku and pMD18T- 45ku were successfully obtained, as shown in Figure 2.

将重组质粒pMD18T-43ku和pMD18T-45ku送往北京华大基因科技股份有限公司进行测序,测序结果经Blast比对分析表明,所扩增的43ku ES抗原基因与GenBank登录的序列相似性达100%,45ku ES抗原基因为97%。 The recombinant plasmids pMD18T- 43ku and pMD18T- 45ku were sent to Beijing Huada Gene Technology Co., Ltd. for sequencing. Blast analysis of the sequencing results showed that the sequence similarity between the amplified 43ku ES antigen gene and the GenBank entry was 100%. , 45ku ES antigen gene was 97%.

实施例2真核重组表达载体pVAXⅠ-43ku和pVAXⅠ-45ku的制备Example 2 Preparation of eukaryotic recombinant expression vectors pVAXI- 43ku and pVAXI- 45ku

真核表达载体pVAXⅠ购自美国Invitrogen公司,按质粒小提试剂盒说明书操作制备pVAXⅠ,如图3所示。 The eukaryotic expression vector pVAXI was purchased from Invitrogen, USA, and pVAXI was prepared according to the instructions of the plasmid mini-extraction kit, as shown in Figure 3.

(1)目的基因的回收、连接和转化 (1) Recovery, ligation and transformation of the target gene

采用KpnⅠ和限制性内切酶分别对pMD8T-43ku、pVAXⅠ-45ku和pVAXⅠ进行双酶切,以获得43ku、45ku ES抗原基因和pVAXⅠ大片段;双酶切体系如下: Use Kpn Ⅰ and restriction endonuclease to perform double digestion on pMD8T- 43ku , pVAXⅠ-45ku and pVAXⅠ, respectively, to obtain 43ku, 45ku ES antigen gene and pVAXⅠ large fragment; the double digestion system is as follows:

   

反应条件:37℃水浴3 h。结束后,按DNA凝胶回收试剂盒说明书操作,对目的基因片段进行回收。 Reaction conditions: 37°C water bath for 3 h. After the end, follow the instructions of the DNA gel recovery kit to recover the target gene fragment.

43ku、45ku ES抗原基因分别与pVAXⅠ载体大片段进行连接。连接体系如下: The 43ku and 45ku ES antigen genes were respectively connected to the large fragment of the pVAXⅠ vector. The connection system is as follows:

反应条件:21℃连接4 h,4℃过夜;次日常规CaCl2法转化E.coli DH5α感受态,并筛选重组阳性克隆子。 Reaction conditions: connect at 21°C for 4 h, and overnight at 4°C; the next day, conventional CaCl 2 method was used to transform E.coli DH5α competent, and screen for recombinant positive clones.

(2)重组表达载体pVAXⅠ-43ku和pVAXⅠ-45ku的酶切鉴定 (2) Enzyme digestion identification of recombinant expression vectors pVAXⅠ- 43ku and pVAXⅠ- 45ku

采用KpnⅠ和BamHⅠ限制性内切酶对所提取的质粒载体进行酶切鉴定,酶切体系如下: The extracted plasmid vectors were digested and identified with Kpn Ⅰ and BamH Ⅰ restriction endonucleases. The restriction enzyme digestion system is as follows:

反应条件:37℃水浴2 h。结束后,经0.8%琼脂糖凝胶电泳检测表明,成功构建了重组表达载体pVAXⅠ-43ku和pVAXⅠ-45ku,如图4所示。将鉴定正确的重组E.coli DH5α接种于LB液体培养基,37℃,150-180 r/min摇床培养,采用质粒大提试剂盒,大量制备重组真核表达载体。 Reaction conditions: 37°C water bath for 2 h. After the end, the 0.8% agarose gel electrophoresis test showed that the recombinant expression vectors pVAXI- 43ku and pVAXI- 45ku were successfully constructed, as shown in Figure 4. The correctly identified recombinant E.coli DH5α was inoculated in LB liquid medium, cultured on a shaker at 37°C, 150-180 r/min, and a large number of recombinant eukaryotic expression vectors were prepared using a plasmid extraction kit.

实施例3 pVAXⅠ-43ku和pVAXⅠ-45ku转染MA104细胞及表达产物鉴定Example 3 Transfection of pVAXⅠ- 43ku and pVAXⅠ- 45ku into MA104 cells and identification of expressed products

按照LipofectamineTM2000使用说明书操作,将pVAXⅠ-43ku、pVAXⅠ-45ku分别转染MA-104细胞,并用pVAXⅠ作空白对照。 According to the instructions of Lipofectamine TM 2000, pVAXI- 43ku and pVAXI- 45ku were transfected into MA-104 cells respectively, and pVAXI was used as blank control.

待转染后的MA-104细胞长满盖玻片取出,晾干后用PBS(pH7.2)清洗1次,用10%丙酮固定10-15 min,PBS(pH7.2)清洗3次,吸干边缘水分后,分别加入鼠源43ku 和45ku ES抗原单抗,置37℃温箱作用2 h,取出盖玻片用PBS(pH7.2)清洗3次,加入FITC标记的山羊抗鼠IgG抗体,置37℃温箱作用2 h,取出盖玻片用PBS(pH7.2)清洗3次,吸干边缘水分后用伊文斯兰染色,荧光显微镜下观察,重组表达载体转染后的MA-104细胞可见绿色荧光,结果表明,构建的重组表达载体pVAXⅠ-43ku、pVAXⅠ-45ku能够在哺乳动物细胞中获得表达,如图5所示。 After the transfection, the MA-104 cells were covered with coverslips and taken out, dried and washed once with PBS (pH7.2), fixed with 10% acetone for 10-15 min, washed three times with PBS (pH7.2), After blotted the edge moisture, add mouse-derived 43ku and 45ku ES antigen monoclonal antibodies respectively, place in a 37°C incubator for 2 hours, take out the cover slip and wash it with PBS (pH7.2) for 3 times, add FITC-labeled goat anti-mouse IgG Antibody, placed in a 37°C incubator for 2 hours, took out the cover slip and washed it with PBS (pH7.2) for 3 times, blotted the edge of the water and stained it with Evans blue, observed under a fluorescent microscope, MA after transfection of the recombinant expression vector -104 cells showed green fluorescence, and the results showed that the constructed recombinant expression vectors pVAXI- 43ku and pVAXI- 45ku could be expressed in mammalian cells, as shown in Figure 5.

实施例4 pVAXⅠ-43ku和pVAXⅠ-45ku联合免疫及效果检测Example 4 Combined immunization with pVAXⅠ- 43ku and pVAXⅠ- 45ku and its effect detection

(1)免疫程序 (1) Immunization program

将15只4-5周龄BALB/C小鼠随机分为5组,每组5只,实验小鼠分组及处理见表1。 Fifteen BALB/C mice aged 4-5 weeks were randomly divided into 5 groups with 5 mice in each group. The groups and treatments of the experimental mice are shown in Table 1.

表1 实验小鼠分组及处理 Table 1 Grouping and treatment of experimental mice

B、C、D三组的接种物浓度是1μg/μL,E组是1μg/μL的pVAXⅠ-43ku和1μg/μL的pVAXⅠ-45ku的等体积混合物。 The inoculum concentration of groups B, C and D was 1 μg/μL, and group E was an equal-volume mixture of 1 μg/μL pVAXⅠ- 43ku and 1 μg/μL pVAXⅠ- 45ku .

免疫途径为小鼠后肢肌肉注射,1次/周,连续三周,最后一次注射的次日行攻虫处理,剂量为2000条/只,采用一次灌胃方式。 The way of immunization was intramuscular injection of the hind limbs of the mice, once a week, for three consecutive weeks, and the next day after the last injection, the worms were challenged, with a dose of 2000 mice/mouse, and the way of oral gavage was adopted once.

(2)免疫效果检测 (2) Detection of immune effect

攻虫四周后,宰杀小鼠,取全部肌肉,常规方法检测减虫率;计算公式: Four weeks after attacking the worms, the mice were slaughtered, all the muscles were taken, and the rate of worm reduction was detected by conventional methods; the calculation formula was:

减虫率=对照组肌幼虫数—重组质粒组肌幼虫数/对照组肌幼虫数×100%。 The reduction rate = the number of muscle larvae in the control group - the number of muscle larvae in the recombinant plasmid group/the number of muscle larvae in the control group × 100%.

结果表明,pVAXⅠ-43ku和pVAXⅠ-45ku联合DNA疫苗免疫后,减虫率可达76.65%,如表2所示。 The results showed that after immunization with pVAXⅠ- 43ku and pVAXⅠ- 45ku combined with DNA vaccine, the worm reduction rate could reach 76.65%, as shown in Table 2.

表2.各组虫体数量及减虫率 Table 2. The number of worms and the rate of worm reduction in each group

   

取舌部组织行HE染色,进行组织病理学检测,结果表明,E组小鼠舌部组织虫卵数明显少于其余4组,如图6所示。 The tongue tissue was taken for HE staining and histopathological detection. The results showed that the number of worm eggs in the tongue tissue of group E mice was significantly less than that of the other 4 groups, as shown in Figure 6.

110> 吉林农业大学 110> Jilin Agricultural University

  the

<120>旋毛虫肌幼虫ES抗原基因疫苗及其制备方法 <120> Trichinella spiralis muscle larva ES antigen gene vaccine and preparation method thereof

 <140>2013100406699 <140>2013100406699

<160>  2   <160> 2

  the

<210>  1 <210> 1

<211>  1035 <211> 1035

<212>  cDNA <212> cDNA

<213>  T.spiralis (strain ISS 534) <213> T.spiralis (strain ISS 534)

  the

<400>  1 <400> 1

  the

atgcgaatat acatttttct tagtgctttc tgggtcatct tgcacaactg tttgcaaatt   60 atgcgaatat atttttct tagtgctttc tgggtcatct tgcacaactg tttgcaaatt 60

catgcagcta actgtacatg cagaactgct acagatgata cagaatggtt tttacttttt  120 catgcagcta actgtacatg cagaactgct acagatgata cagaatggtt tttacttttt 120

aaacctgtag gtctattaaa ggctaagata atttctccag ctaatgctgg ttgggcaaat  180 aaacctgtag gtctattaaa ggctaagata atttctccag ctaatgctgg ttgggcaaat 180

gatggagcaa atatgaacac cgattccggc cacgctttgg ttcaaacgct tgctgaatgg  240 gatggagcaa atatgaacac cgattccggc cacgctttgg ttcaaacgct tgctgaatgg 240

atggggccaa tacttgatga catgacagct cttggctata gcaacacgcc tccaaaatct  300 atggggccaa tacttgatga catgacagct cttggctata gcaacacgcc tccaaaatct 300

acgattacat ctcagactac ttcatctaaa ggtattttaa tgtttggaaa tgaaactacg  360 acgattacat ctcagactac ttcatctaaa ggtattttaa tgtttggaaa tgaaactacg 360

gatggatttt ggttactgca cacttttgaa cgagcatttc caaacagcgt tgcctggtca  420 gatggatttt ggttatactgca cacttttgaa cgagcatttc caaacagcgt tgcctggtca 420

tggccctcaa agtttacttc agaaggtcac atggctcttt gtttaagcat atctgaagat  480 tggccctcaa agtttacttc agaaggtcac atggctcttt gtttaagcat atctgaagat 480

aatgtgccac taatagttcc tgcacttcaa tatcaggaag tagtaattta ttttggtcaa  540 aatgtgccac taatagttcc tgcacttcaa tatcaggaag tagtaattta ttttggtcaa 540

gtctcatcag aaaaggcaac ggaatttgct gatttaacat cattgattga tgggagcctg  600 gtctcatcag aaaaggcaac ggaatttgct gatttaacat cattgattga tgggagcctg 600

ccaacaataa caccaccact ctggaaccag caaactatta caaccctaaa ttctgcactc  660 ccaacaataa caccaccact ctggaaccag caaactatta caaccctaaa ttctgcactc 660

tcaacagttg tatattccaa aacatcttca tcccgattag aaatgtatgg tagcttcctc  720 tcaacagttg tatattccaa aacatcttca tcccgattag aaatgtatgg tagcttcctc 720

gctaaagtta tggtagtcaa tatgcgcatc tgggctgtaa cagataatac actccaaaca  780 gctaaagtta tggtagtcaa tatgcgcatc tgggctgtaa cagataatac actccaaaca 780

acatgtggtg ggaaaattgg tttcgtcaaa gttgtcaaaa gcccagtaac cattgatggc  840 acatgtggtg ggaaaattgg tttcgtcaaa gttgtcaaaa gcccagtaac cattgatggc 840

acccaaaatg atagaagcaa agacaaatct caatgggcag ttatagatga caaacctgtg  900 acccaaaatg atagaagcaa agacaaatct caatgggcag ttatagatga caaacctgtg 900

ttctgcttta caacaaatgg ttactctact aaacagagaa cagtagctgg aagtgctaca  960 ttctgcttta caacaaatgg ttactctact aaacagagaa cagtagctgg aagtgctaca 960

tgcattactc aacaagtagt cagcaatttg tttgctactt ctgctgcaaa ttttattcct 1020 tgcattactc aacaagtagt cagcaatttg tttgctactt ctgctgcaaa tttattcct 1020

tgcccataca gctaa                                                  1035 tgcccataca gctaa 1035

  the

  the

<210>  2 <210> 2

<211>  858 <211> 858

<212>  cDNA <212> cDNA

<213>  T.spiralis (strain ISS 534) <213> T.spiralis (strain ISS 534)

  the

<400>  2 <400> 2

  the

atgaaactct tgcttttaac attcctttac tttgtcgatg cagtaagttc agaatgtggg   60 atgaaactct tgcttttaac attcctttaac tttgtcgatg cagtaagttc agaatgtggg 60

gaaaatgcaa ctgagactct tgcattagta tacaaaccgg tgcagcaagg ttcaaaacgt  120 gaaaatgcaa ctgagactct tgcattagta tacaaaccgg tgcagcaagg ttcaaaacgt 120

gtacttggca ttgcatgtca gggtacaatt gtgccaggaa aacataaaaa tcacactgat  180 gtacttggca ttgcatgtca gggtacaatt gtgccaggaa aacataaaaa tcacactgat 180

actgttttgg tatcgtcgta ctgcattatt gaagatcctc cggaaggtta tgttgtcagt  240 actgttttgg tatcgtcgta ctgcattatt gaagatcctc cggaaggtta tgttgtcagt 240

gtcggttctt ctgatcctca tggagatctt caatcaagtg cacaacaatt cagggcccaa  300 gtcggttctt ctgatcctca tggagatctt caatcaagtg cacaacaatt cagggcccaa 300

cgtattctaa attttccatt tgagcaacat ccagttggaa ttttgaaaac tccacaacca  360 cgtattctaa attttccatt tgagcaacat ccagttggaa ttttgaaaac tccacaacca 360

atcatgtaca gtgatacagt tcaacctatg tgcatagcaa gcgttccttt accagatgaa  420 atcatgtaca gtgatacagt tcaacctatg tgcatagcaa gcgttccttt accagatgaa 420

catgcatgca taatgggagt tgtaacaaag ggaggtttaa tgacattgcg tcatgtgcaa  480 catgcatgca taatgggagt tgtaacaaag ggaggtttaa tgacattgcg tcatgtgcaa 480

atgttatatg aaagtgattg tgaaccactt gcggaaggtt tgagttcata tttgtgtgca  540 atgttatatg aaagtgattg tgaaccactt gcggaaggtt tgagttcata tttgtgtgca 540

aaagtgaagg aaattgatgc agaagtaggt gaaactcttg gtctagatcc atcaatggat  600 aaagtgaagg aaattgatgc agaagtaggt gaaactcttg gtctagatcc atcaatggat 600

atatatccat tttctgctcc acttgatttt gatatcaatg gtgtaaaagc tggaagtttg  660 atatatccat tttctgctcc acttgatttt gatatcaatg gtgtaaaagc tggaagtttg 660

gaaaatccac tattctgtct taccaatgag catccaacat ggtcagttta cggatttgca  720 gaaaatccac tattctgtct taccaatgag catccaacat ggtcagttta cggatttgca 720

ttaaatgcat ataatgtaac agatccagaa agtcctattt tgttttctga tgtatcaagt  780 ttaaatgcat ataatgtaac agatccagaa agtcctattt tgttttctga tgtatcaagt 780

gatctgacag ccataaagga acacagtgac atcagttatc aacaatgggt acaacgtatg  840 gatctgacag ccataaagga acacagtgac atcagttatc aacaatgggt acaacgtatg 840

ctctctaagc aaggctaa                                                858 ctctctaagc aaggctaa 858

  the

Claims (2)

1. Encoding ES Antigen from Trichinella spiralis Muscle Larvae gene vaccine, it comprises: recombinant plasmid pVAX I- 43kuwith pVAX I- 45ku, pVAX I- 43kuwith pVAX I- 45kuit is the gene inserted in carrier for expression of eukaryon pVAX I respectively as shown in sequence table SEQ ID No.1 and 2; Recombinant plasmid pVAX I- 43kuwith pVAX I- 45kuweight ratio be 1: 1; Concentration is 1 μ g/ μ L.
2. Encoding ES Antigen from Trichinella spiralis Muscle Larvae gene vaccine preparation method, comprising:
(1) prepare cultivation of larvae of Trichinella spiralis from muscle total serum IgE, reverse transcription is cDNA, and is template with cDNA, with primer:
43ku -P1:5’-CGCGGTACCATGCGAATATACATTTTTCTTAG-3’
43ku -P2:5’-CGAGGATCCTTAGCTGTATGGGCAA-3’
45ku -P1:5’-CGCGGTACCATGAAACTCTTGCTTTTAACA-3’
45ku -P2:5’-GCGGATCCTTAGCCTTGCTTAGAGAG-3’
PCR method increases 43ku, 45ku ES antigen gene respectively, and its base sequence of 43ku, 45ku gene is as shown in sequence table SEQ ID No.1,2;
(2) will 43ku, 45kugene inserts in pVAX I carrier for expression of eukaryon respectively, build recombinant eukaryon expression vector pVAX I- 43kuwith pVAX I- 43ku;
(3) two kinds of recombinant eukaryon expression vectors are proceeded to respectively e.coliin DH5 α, be inoculated in LB liquid nutrient medium, 37 DEG C, 150-180 r/min shaking table is cultivated;
(4) from above-mentioned cultivation e.colia large amount of preparation pVAX I in DH5 α- 43kuwith pVAX I- 45ku, and after both adjusting, concentration is 1 μ g/ μ L, by weight 1: 1 mixing.
CN201310040669.9A 2013-02-03 2013-02-03 Trichinella Spiralis larva ES antigen gene vaccine and preparation method Active CN103352047B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310040669.9A CN103352047B (en) 2013-02-03 2013-02-03 Trichinella Spiralis larva ES antigen gene vaccine and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310040669.9A CN103352047B (en) 2013-02-03 2013-02-03 Trichinella Spiralis larva ES antigen gene vaccine and preparation method

Publications (2)

Publication Number Publication Date
CN103352047A CN103352047A (en) 2013-10-16
CN103352047B true CN103352047B (en) 2015-01-21

Family

ID=49308458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310040669.9A Active CN103352047B (en) 2013-02-03 2013-02-03 Trichinella Spiralis larva ES antigen gene vaccine and preparation method

Country Status (1)

Country Link
CN (1) CN103352047B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107551265A (en) * 2017-08-11 2018-01-09 中山大学 A kind of vaccine for pigs trichina disease and its preparation method and application
CN110954704A (en) * 2019-12-30 2020-04-03 北京维德维康生物技术有限公司 Trichina antibody detection test strip based on Ts31 gene and application thereof
CN114163525B (en) * 2020-09-11 2023-11-10 吉林大学 Yolk antibodies against Trichinella spiralis excretory secretion antigen and preparation methods and uses
CN118059220B (en) * 2024-04-19 2024-08-30 吉林大学 Yeast beta-glucan particle vaccine of trichina larva and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1081621A (en) * 1992-07-25 1994-02-09 杭州商学院 The preparation method of vaccine for pigs trichina disease
FR2897063B1 (en) * 2006-02-07 2011-04-01 Agronomique Inst Nat Rech POLYPEPTIDES RECOGNIZED BY ANTI-TRICHINELLA ANTIBODIES AND THEIR APPLICATIONS

Also Published As

Publication number Publication date
CN103352047A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
Zhao et al. Preliminary study of an oral vaccine against infectious hematopoietic necrosis virus using improved yeast surface display technology
CN113666990B (en) A T cell vaccine immunogen inducing broad-spectrum anti-coronavirus and its application
Gao et al. Plasmid pcDNA3. 1-s11 constructed based on the S11 segment of grass carp reovirus as DNA vaccine provides immune protection
CN112439056B (en) Self-assembly ferritin-based nano antigen particle, O-type foot-and-mouth disease vaccine prepared from same and application
CN103352047B (en) Trichinella Spiralis larva ES antigen gene vaccine and preparation method
CN104628871B (en) Preparation of a recombinant bursal disease protein engineering vaccine
CN103184225B (en) Taenia multiceps antigen gene and recombinant protein and application thereof
CN113855795B (en) Avian hepatitis E virus ORF2 subunit vaccine
CN113940993B (en) Perch rhabdovirus G2-2M subunit vaccine and preparation method thereof
CN102796200A (en) Hybrid peptide bursin adjuvant and preparation method and application thereof
CN112442131B (en) Self-assembled ferritin nanoantigen particles and infectious bursal disease vaccine and application prepared therefrom
CN117285652A (en) Fusion protein comprising varicella zoster virus gE, preparation method and application thereof
CN117003885B (en) Development and application of H5N8 avian influenza broad-spectrum vaccine
KR20130058706A (en) Parapoxvirus expressing the vp60 major capsid protein of the rabbit haemorrhagic disease virus
CN105085625A (en) Genetically engineered vaccine against both Enterovirus 71 and Coxsackie virus A16
CN105801704B (en) Construction method and application of recombinant vaccine with anti-cervical cancer cell activity
CN112279925B (en) A fusion protein and a canine Toxoplasma gondii subunit vaccine and vaccine composition thereof
CN103131719B (en) Taenia multiceps enolase TmENO recombinant protein with immunizing protection
Mahardika et al. The effects of crude recombinant viral protein vaccines against grouper sleepy disease iridovirus (GSDIV) on humpback grouper (Cromileptes altivelis)
CN114369170B (en) Glioblastoma therapeutic fusion protein based on targeting pleiotropic growth factor, vaccine and preparation method and use thereof
JP6179903B2 (en) DNA vaccine against nodular disease of marine fish
CN113943355B (en) Weever rhabdovirus G2-2M recombinant protein and application thereof
CN100398156C (en) Immunomodulatory DNA Vaccine for Preventing Chicken Coccidiosis
CN110144002A (en) Mammalian cell-adapted strain of influenza A virus and its preparation and application
CN1092812A (en) Vaccine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant