CN103346219A - Growing method for duplex multi-quantum well luminescent layer structure and LED epitaxial structure - Google Patents
Growing method for duplex multi-quantum well luminescent layer structure and LED epitaxial structure Download PDFInfo
- Publication number
- CN103346219A CN103346219A CN2013102934834A CN201310293483A CN103346219A CN 103346219 A CN103346219 A CN 103346219A CN 2013102934834 A CN2013102934834 A CN 2013102934834A CN 201310293483 A CN201310293483 A CN 201310293483A CN 103346219 A CN103346219 A CN 103346219A
- Authority
- CN
- China
- Prior art keywords
- layer
- well
- doped
- temperature
- grow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Led Devices (AREA)
Abstract
本发明提供了一种复式多量子阱发光层结构的生长方法及相应的LED外延结构,所述外延结构的阱发光层包括6-8个单元层,每一单元层从下至上依次包括:第一阱层、第二阱层、第一磊层、第一阱层、第二阱层、第二磊层。本发明采用复式多量子阱改善了传统多量子阱由于阱磊层应力导致的波函数分离的情况,改善了传统多量子阱由于磊宽导致阱层空穴浓度过低的情况;提升了LED芯片的内部量子阱效率得到,宏观上提高中小尺寸LED芯片的亮度,提高大尺寸LED芯片的光效。
The present invention provides a method for growing a composite multi-quantum well light-emitting layer structure and a corresponding LED epitaxial structure. The well light-emitting layer of the epitaxial structure includes 6-8 unit layers, and each unit layer includes from bottom to top: A well layer, a second well layer, a first epitaxial layer, a first well layer, a second well layer, and a second epitaxial layer. The present invention adopts the compound multi-quantum well to improve the separation of the wave function of the traditional multi-quantum well due to the stress of the epitaxial layer, and improves the situation that the hole concentration of the well layer is too low due to the width of the epitaxial layer of the traditional multi-quantum well; the LED chip is improved. The internal quantum well efficiency is obtained, macroscopically improving the brightness of small and medium-sized LED chips, and improving the light efficiency of large-sized LED chips.
Description
技术领域 technical field
本发明涉及LED外延设计技术领域,特别地,涉及一种复式多量子阱发光层结构的生长方法及相应的LED外延结构。 The invention relates to the technical field of LED epitaxial design, in particular to a method for growing a compound multi-quantum well light-emitting layer structure and a corresponding LED epitaxial structure. the
背景技术 Background technique
在LED市场上,路灯照明多使用大尺寸大功率规格30mil*30mi芯片,背光光源多使用中小尺寸12mil*28mil规格芯片,产品质量高低均与芯片亮度相关。因此,各种尺寸芯片的亮度则成为封装客户的关注重点。 In the LED market, large-size and high-power 30mil*30mi chips are mostly used for street lighting, and small and medium-sized 12mil*28mil chips are mostly used for backlighting. The quality of the products is related to the brightness of the chip. Therefore, the brightness of chips of various sizes has become the focus of packaging customers. the
目前提高大尺寸光效和中小尺寸亮度目前有很多种外延生长方法,大部分结构创新在于P型层,例如: At present, there are many kinds of epitaxial growth methods to improve the light efficiency of large size and the brightness of small and medium size. Most of the structural innovations lie in the P-type layer, such as:
(1)P层增加PAlGaN/PInGaN、PAlGaN/PGaN、PAlGaN/GaN等超晶格的结构来提高电流的扩展能力达到提高亮度的目的; (1) The P layer adds PAlGaN/PInGaN, PAlGaN/PGaN, PAlGaN/GaN and other superlattice structures to improve the current expansion ability to improve the brightness;
(2)改变P层Mg的掺杂方式等提高Mg的电离率,提高空穴浓度达到提高光效和亮度的目的。 (2) Change the doping method of Mg in the P layer, etc. to increase the ionization rate of Mg, and increase the hole concentration to achieve the purpose of improving light efficiency and brightness. the
发明内容 Contents of the invention
本发明目的在于提供一种复式多量子阱发光层结构的生长方法及相应的LED外延结构,以解决目前LED芯片亮度不足的技术问题。 The purpose of the present invention is to provide a growth method of a complex multi-quantum well light-emitting layer structure and a corresponding LED epitaxial structure, so as to solve the technical problem of insufficient brightness of the current LED chip. the
为实现上述目的,本发明提供了一种复式多量子阱发光层结构的生长方法,包括以下几个步骤: In order to achieve the above object, the invention provides a method for growing a compound multi-quantum well light-emitting layer structure, comprising the following steps:
A、将温度控制在710-750℃,反应室压力控制在300-400mbar,通入In的流量为1500-1700sccm,生长掺杂In的2.7-3.5nm的InxGa(1-x)N阱层,x=0.20-0.22; A. Control the temperature at 710-750°C, control the pressure of the reaction chamber at 300-400mbar, and feed In at a flow rate of 1500-1700sccm, and grow In x Ga (1-x) N wells of 2.7-3.5nm doped with In layer, x=0.20-0.22;
B、保持温度和压力不变,通入In的流量为300-450sccm,生长掺杂In的0.5-1.0nm的InzGa(1-z)N阱层,z=0.04-0.08, B. Keep the temperature and pressure constant, the flow rate of In is 300-450sccm, grow In z Ga (1-z) N well layer of 0.5-1.0nm doped with In, z=0.04-0.08,
C、保持压力不变,升温至810-840℃,通入Al的流量为30-50sccm,通入In的流量为800-1000sccm,生长4-6nm的掺杂Al、In的Alx1Inx2Ga(1-x1-x2)N磊层,x1=0.04-0.05,x2=0.10-0.12; C. Keep the pressure constant, raise the temperature to 810-840°C, feed Al at a flow rate of 30-50 sccm, and feed In at a flow rate of 800-1000 sccm, and grow 4-6nm Al and In-doped Al x1 In x2 Ga (1-x1-x2) N epitaxy layer, x 1 =0.04-0.05, x 2 =0.10-0.12;
D、重复步骤A、B; D. Repeat steps A and B;
E、保持压力不变,升温至810-840℃生长10-12nm的GaN磊层; E. Keep the pressure constant, and raise the temperature to 810-840°C to grow a 10-12nm GaN epitaxial layer;
F、重复步骤A、B、C、D、E6-8次,直至阱发光层的总体厚度达到162-216nm。 F. Repeat steps A, B, C, D, and E 6-8 times until the overall thickness of the light-emitting layer of the well reaches 162-216 nm. the
优选的,所述步骤A之前包括步骤: Preferably, said step A includes steps before:
S1、1000-1100℃的氢气气氛下,反应室压力为150-200mbar,处理蓝宝石衬底4-5分钟; S1. Under a hydrogen atmosphere at 1000-1100°C, the reaction chamber pressure is 150-200mbar, and the sapphire substrate is processed for 4-5 minutes;
S2、降温至540-570℃,反应室压力控制在450-600mbar,在蓝宝石衬底上生长厚度为30-50nm的低温缓冲层GaN; S2. Lower the temperature to 540-570°C, control the pressure of the reaction chamber at 450-600mbar, and grow a low-temperature buffer layer GaN with a thickness of 30-50nm on the sapphire substrate;
S3、升高温度到950-1050℃,反应室压力控制在450-600mbar,持续生长2.5-3.0um的不掺杂GaN; S3. Increase the temperature to 950-1050°C, control the pressure of the reaction chamber at 450-600mbar, and continue to grow 2.5-3.0um undoped GaN;
S4、保持温度不变,反应室压力控制在200-400mbar,接着持续生长3.5-4.5μm掺杂Si的N型GaN,Si的掺杂浓度控制在8E+18-1E19atom/cm3。 S4. Keep the temperature constant, control the pressure of the reaction chamber at 200-400mbar, then continue to grow 3.5-4.5μm Si-doped N-type GaN, and control the Si doping concentration at 8E+18-1E19atom/cm 3 .
优选的,所述步骤F之后包括步骤: Preferably, steps are included after the step F:
D1、升高温度到900-950℃,反应室压力控制在150-300mbar,持续生长30-40nm掺Al、In的P型InyAl(1-y)GaN层,y=0.08-0.12; D1. Raise the temperature to 900-950°C, control the pressure of the reaction chamber at 150-300mbar, and continue to grow a 30-40nm P-type In y Al (1-y) GaN layer doped with Al and In, y=0.08-0.12;
D2、升高温度到1000-1100℃,反应室压力控制在200-600mbar,持续生长60-90nm掺Mg的P型GaN层,Mg的掺杂浓度控制在3E+18-4E18atom/cm3; D2. Raise the temperature to 1000-1100°C, control the pressure of the reaction chamber at 200-600mbar, and continue to grow a 60-90nm Mg-doped P-type GaN layer, and control the Mg doping concentration at 3E+18-4E18atom/cm 3 ;
D3、降温至650-700℃,保温20-30min后,炉内冷却。 D3. Cool down to 650-700°C, keep warm for 20-30 minutes, and cool in the furnace. the
本发明还公开了一种LED外延结构,所述LED外延结构的阱发光层包括6-8个单元层,每一单元层从下至上依次包括: The present invention also discloses an LED epitaxial structure, the light-emitting well layer of the LED epitaxial structure includes 6-8 unit layers, and each unit layer sequentially includes from bottom to top:
第一阱层,所述第一阱层为掺杂2.7-3.5nmIn的InxGa(1-x)N阱层,x=0.20-0.22; The first well layer, the first well layer is an In x Ga (1-x) N well layer doped with 2.7-3.5nmIn, x=0.20-0.22;
第二阱层,所述第二阱层为掺杂0.5-1.0nmIn的InzGa(1-z)N阱层,z=0.04-0.08; a second well layer, the second well layer is an In z Ga (1-z) N well layer doped with 0.5-1.0nmIn, z=0.04-0.08;
第一磊层,所述第一磊层为掺杂4-6nm的Al、In的Alx1Inx2Ga(1-x1-x2)N磊层,x1=0.04-0.05,x2=0.10-0.12; The first epitaxial layer, the first epitaxial layer is Al x1 In x2 Ga (1-x1-x2) N epitaxial layer doped with 4-6nm Al and In, x 1 =0.04-0.05, x 2 =0.10- 0.12;
第一阱层,所述第一阱层为掺杂2.7-3.5nmIn的InxGa(1-x)N阱层,x=0.20-0.22; The first well layer, the first well layer is an In x Ga (1-x) N well layer doped with 2.7-3.5nmIn, x=0.20-0.22;
第二阱层,所述第二阱层为掺杂0.5-1.0nmIn的InzGa(1-z)N阱层,z=0.04-0.08; a second well layer, the second well layer is an In z Ga (1-z) N well layer doped with 0.5-1.0nmIn, z=0.04-0.08;
第二磊层,所述第二磊层为10-12nm的GaN磊层。 The second epitaxial layer, the second epitaxial layer is a 10-12nm GaN epitaxial layer. the
优选的,所述单元层之下从下至上依次包括: Preferably, the unit layer includes from bottom to top:
低温缓冲GaN层,厚度为30-50nm; Low temperature buffer GaN layer with a thickness of 30-50nm;
不掺杂GaN层,厚度为2.5-3.0um; Undoped GaN layer with a thickness of 2.5-3.0um;
N型GaN层,厚度为3.5-4.5μm,掺杂Si,Si的掺杂浓度控制8E+18-1E19atom/cm3。 The N-type GaN layer has a thickness of 3.5-4.5 μm and is doped with Si, and the doping concentration of Si is controlled to be 8E+18-1E19atom/cm 3 .
优选的,所述单元层之上从下至上依次包括: Preferably, the unit layer includes from bottom to top:
P型AlGaN层,厚度为30-40nm的P型InyAl(1-y)GaN层,y=0.08-0.12; P-type AlGaN layer, P-type In y Al (1-y) GaN layer with a thickness of 30-40nm, y=0.08-0.12;
P型GaN层,厚度为60-90nm,掺杂Mg,Mg的掺杂浓度控制3E+18-4E18atom/cm3。 The P-type GaN layer has a thickness of 60-90nm and is doped with Mg, and the doping concentration of Mg is controlled to be 3E+18-4E18atom/cm 3 .
本发明具有以下有益效果: The present invention has the following beneficial effects:
1、增加单位面积内的出光效率:传统的多量子阱层和磊层的晶格不匹配以及磊层比较厚,导致存在着极化、压缩应力,微观上导致阱层电子和空穴的波函数分离,电子和空穴复合效率差,单位时间单位面积内产生的光子数较少;而本发明设置出的单元层结构,使得过渡层(多个复合阱层)调整InGaN和GaN的晶格匹配,使得阱层和磊层之间的应力变小,电子和空穴的波函数更加集中,增加电子和空穴的复合概率。 1. Increase the light extraction efficiency per unit area: The lattice mismatch between the traditional multi-quantum well layer and the epitaxial layer and the relatively thick epitaxial layer lead to the existence of polarization and compressive stress, which leads to the wave of electrons and holes in the well layer microscopically. Function separation, electron and hole recombination efficiency is poor, and the number of photons generated per unit time and unit area is small; and the unit layer structure set by the present invention makes the transition layer (multiple composite well layers) adjust the lattice of InGaN and GaN Matching makes the stress between the well layer and the epitaxial layer smaller, the wave functions of electrons and holes are more concentrated, and the recombination probability of electrons and holes is increased. the
2、增加阱层的空穴浓度:传统的多量子阱磊层的厚度约为10-12nm,由于势垒比较宽,由P层注入的空穴在传统的多量子阱传播受到限制;而本发明第一磊层为AlInGaN四元生长,通过调整Al和In的组分使得磊层的晶格接近阱层的晶格,减小了磊层对阱层应力的影响,第一磊层的厚度控制在4-6nm,比传统磊层厚度小,有利于P层注入空穴在复式量子阱的传播,增加第一阱层和第二阱层的空穴浓度。 2. Increase the hole concentration of the well layer: the thickness of the traditional multi-quantum well epitaxial layer is about 10-12nm. Due to the relatively wide potential barrier, the propagation of holes injected by the P layer in the traditional multi-quantum well is limited; Invented that the first epitaxial layer is AlInGaN quaternary growth. By adjusting the composition of Al and In, the lattice of the epitaxial layer is close to that of the well layer, which reduces the influence of the epitaxial layer on the stress of the well layer. The thickness of the first epitaxial layer It is controlled at 4-6nm, which is smaller than the thickness of the traditional epitaxial layer, which is conducive to the propagation of holes injected into the P layer in the compound quantum well, and increases the hole concentration of the first well layer and the second well layer. the
本发明复式多量子阱层改善了传统多量子阱由于阱磊层应力导致的波函数分离的情况,改善了传统多量子阱由于磊宽导致阱层空穴浓度过低的情况。通过以上的改善,LED芯片的内部量子阱效率得到提升,客观上提高中小尺寸的亮度,提高大尺寸的光效。 The compound multi-quantum well layer of the invention improves the separation of wave functions of traditional multi-quantum wells due to well epitaxy layer stress, and improves the situation of too low hole concentration in well layers of traditional multi-quantum wells due to epitaxial width. Through the above improvements, the internal quantum well efficiency of the LED chip is improved, objectively improving the brightness of small and medium sizes, and improving the light efficiency of large sizes. the
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。 In addition to the objects, features and advantages described above, the present invention has other objects, features and advantages. Hereinafter, the present invention will be described in further detail with reference to the drawings. the
附图说明 Description of drawings
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中: The accompanying drawings constituting a part of this application are used to provide further understanding of the present invention, and the schematic embodiments and descriptions of the present invention are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the attached picture:
图1是现有LED外延结构的结构示意图; Fig. 1 is a structural schematic diagram of an existing LED epitaxial structure;
图2是本发明优选实施例的LED外延结构的结构示意图; Fig. 2 is the structural representation of the LED epitaxy structure of preferred embodiment of the present invention;
图3是现有LED外延结构的能带结构示意图;图(a)为导带能级示意图;图(b)为价带能级示意图; Figure 3 is a schematic diagram of the energy band structure of the existing LED epitaxial structure; Figure (a) is a schematic diagram of the conduction band energy level; Figure (b) is a schematic diagram of the valence band energy level;
图4是本发明优选实施例的能带结构示意图;图(a)为导带能级示意图;图(b)为价带能级示意图; Figure 4 is a schematic diagram of the energy band structure of a preferred embodiment of the present invention; Figure (a) is a schematic diagram of the conduction band energy level; Figure (b) is a schematic diagram of the valence band energy level;
图5是样品1和样品2的光电性能数据点对比图;
Fig. 5 is a comparison chart of photoelectric performance data points of
图6是样品3和样品4的光电性能数据点对比图;
Fig. 6 is a comparison chart of photoelectric performance data points of
其中,1、P型GaN层;2、P型InAlGaN层,3-1、多量子磊层,3-2、多量子阱层,4、N型GaN,5、U型GaN;3-A、第一阱层,3-B、第二阱层,3-C、第一磊层,3-D、第二磊层;6、P型AlGaN层,7、低温缓冲GaN层,8、不掺杂GaN层。 Among them, 1. P-type GaN layer; 2. P-type InAlGaN layer, 3-1, multi-quantum epitaxial layer, 3-2, multi-quantum well layer, 4. N-type GaN, 5. U-type GaN; 3-A, First well layer, 3-B, second well layer, 3-C, first epitaxial layer, 3-D, second epitaxial layer; 6, P-type AlGaN layer, 7, low-temperature buffer GaN layer, 8, undoped Doped GaN layer. the
具体实施方式 Detailed ways
以下结合附图对本发明的实施例进行详细说明,但是本发明可以根据权利要求限定和覆盖的多种不同方式实施。 The embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but the present invention can be implemented in various ways defined and covered by the claims. the
以下分别说明采用以现有传统方法制备样品1的对比实施例一,和本发明生长方法制备样品2的实施例一,再将两种方法得到样品1和样品2进行性能检测比较。
The comparative example 1 of
对比实施例一、 Comparative example one,
1、在1000-1100℃的的氢气气氛下,反应室压力控制在150-200mbar,高温处理蓝宝石衬底4-5分钟; 1. Under the hydrogen atmosphere of 1000-1100℃, the pressure of the reaction chamber is controlled at 150-200mbar, and the sapphire substrate is treated at high temperature for 4-5 minutes;
2、降温至540-570℃下,反应室压力控制在450-600mbar,在蓝宝石衬底上生长厚度为30-50nm的低温缓冲层GaN; 2. Lower the temperature to 540-570°C, control the pressure of the reaction chamber at 450-600mbar, and grow a low-temperature buffer layer GaN with a thickness of 30-50nm on the sapphire substrate;
3、升高温度到950-1050℃下,反应室压力控制在450-600mbar,持续生长2.5-3.0um的不掺杂GaN; 3. Raise the temperature to 950-1050°C, control the pressure of the reaction chamber at 450-600mbar, and continue to grow 2.5-3.0um undoped GaN;
4、保持温度不变,反应室压力控制在200-400mbar,接着生长3.5-4.5μm持续掺杂硅的N型GaN; 4. Keep the temperature constant, control the pressure of the reaction chamber at 200-400mbar, and then grow 3.5-4.5μm N-type GaN continuously doped with silicon;
5、降温至710-840℃,反应室压力控制在300-400mbar,生长周期性生长多量子阱发光层,单周期生长方法:(1)降温至710-750℃生长掺杂In的2.7-3.5nm的InxGa(1-x)N(x=0.20-0.22)阱层,(2)升温至810-840℃生长10-12nm的GaN磊层,接着以(1)(2)为一个周期进行重复生长,重复生长周期数为13-15,总体厚度控制在165-233nm; 5. Cool down to 710-840°C, control the pressure of the reaction chamber at 300-400mbar, and grow the multi-quantum well light-emitting layer periodically. Single-cycle growth method: (1) Cool down to 710-750°C to grow In-doped 2.7-3.5 nm In x Ga (1-x) N (x=0.20-0.22) well layer, (2) raise the temperature to 810-840°C to grow a 10-12nm GaN epitaxial layer, and then take (1) (2) as a cycle Perform repeated growth, the number of repeated growth cycles is 13-15, and the overall thickness is controlled at 165-233nm;
6、再升高温度到900-950℃,反应室压力控制在150-300mbar,持续生长30-40nm掺铟、铝的P型InyAl(1-y)GaN层,y=0.08-0.12; 6. Then raise the temperature to 900-950°C, control the pressure of the reaction chamber at 150-300mbar, and continue to grow a 30-40nm P-type In y Al (1-y) GaN layer doped with indium and aluminum, y=0.08-0.12;
7、再升高温度到1000-1100℃,反应室压力控制在200-600mbar,持续生长60-90nm掺镁的P型GaN层; 7. Then raise the temperature to 1000-1100°C, control the pressure of the reaction chamber at 200-600mbar, and continue to grow a 60-90nm magnesium-doped P-type GaN layer;
8、最后降温至650-700℃,保温20-30min,然后炉内冷却,得到样品1。
8. Finally, lower the temperature to 650-700°C, keep it warm for 20-30 minutes, and then cool in the furnace to obtain
实施例一、 Embodiment one,
本发明运用AixtronCruisIIMOCVD来生长高亮度GaN基LED外延片。采用高纯H2或高纯N2或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为N源,三甲基镓(TMGa)及三乙基镓(TEGa)作为镓源,三甲基铟(TMIn)作为铟源,硅烷(SiH4)作为N型掺杂剂,三甲基铝(TMAl)作为铝源,二茂镁(CP2Mg)作为P型掺杂剂,衬底为(0001)面蓝宝石,反应室压力在150mbar到600mbar之间。 The invention uses AixtronCruisIIMOCVD to grow high-brightness GaN-based LED epitaxial wafers. Use high-purity H2 or high-purity N2 or the mixed gas of high-purity H2 and high-purity N2 as carrier gas, high-purity NH3 as N source, trimethylgallium (TMGa) and triethylgallium (TEGa) as Gallium source, trimethylindium (TMIn) as indium source, silane (SiH 4 ) as N-type dopant, trimethylaluminum (TMAl) as aluminum source, and dichloromagnesium (CP 2 Mg) as P-type dopant agent, the substrate is (0001) sapphire, and the reaction chamber pressure is between 150mbar and 600mbar.
1、在1000-1100℃的的氢气气氛下,反应室压力控制在150-200mbar,高温处理蓝宝石衬底4-5分钟; 1. Under the hydrogen atmosphere of 1000-1100℃, the pressure of the reaction chamber is controlled at 150-200mbar, and the sapphire substrate is treated at high temperature for 4-5 minutes;
2、降温至540-570℃下,反应室压力控制在450-600mbar,在蓝宝石衬底上生长厚度为30-50nm的低温缓冲层GaN; 2. Lower the temperature to 540-570°C, control the pressure of the reaction chamber at 450-600mbar, and grow a low-temperature buffer layer GaN with a thickness of 30-50nm on the sapphire substrate;
3、升高温度到950-1050℃下,反应室压力控制在450-600mbar,持续生长2.5-3.0um 的不掺杂GaN; 3. Raise the temperature to 950-1050°C, control the pressure of the reaction chamber at 450-600mbar, and continue to grow 2.5-3.0um undoped GaN;
4、保持温度不变,反应室压力控制在200-400mbar,接着生长3.5-4.5μm持续掺杂硅的N型GaN; 4. Keep the temperature constant, control the pressure of the reaction chamber at 200-400mbar, and then grow 3.5-4.5μm N-type GaN continuously doped with silicon;
5、降温至710-840℃,反应室压力控制在300-400mbar,生长周期性生长多量子阱发光层,单周期生长方法: 5. Lower the temperature to 710-840°C, control the pressure of the reaction chamber at 300-400mbar, and grow the multi-quantum well light-emitting layer periodically. The single-cycle growth method:
(1)降温至710-750℃,生长掺杂In的2.7-3.5nm的InxGa(1-x)N阱层,x=0.20-0.22; (1) Cool down to 710-750°C, grow In x Ga (1-x) N well layer of 2.7-3.5nm doped with In, x=0.20-0.22;
(2)保持温度和压力不变,通过改变铟的流量,生长掺杂In的0.5-1.0nm的InzGa(1-z)N阱层,z=0.04-0.08; (2) Keep the temperature and pressure constant, and grow In z Ga (1-z) N well layer of 0.5-1.0 nm doped with In by changing the flow rate of indium, z=0.04-0.08;
(3)保持压力不变,升温至810-840℃生长4-6nm的掺杂铝、铟的Alx1Inx2Ga(1-x1-x2)N磊层,x1=0.04-0.05,x2=0.10-0.12; (3) Keeping the pressure constant, raise the temperature to 810-840°C to grow 4-6nm Al x1 In x2 Ga (1-x1-x2) N epitaxy layer doped with aluminum and indium, x 1 =0.04-0.05, x 2 =0.10-0.12;
(4)保持压力不变,降温至710-750℃生长掺杂In的2.7-3.5nm的InxGa(1-x)N阱层,x=0.20-0.22; (4) Keep the pressure constant and lower the temperature to 710-750°C to grow an In x Ga (1-x) N well layer of 2.7-3.5nm doped with In, x=0.20-0.22;
(5)保持温度和压力不变,通过改变铟的流量,生长掺杂In的0.5-1.0nm的InzGa(1-z)N(z=0.04-0.08)阱层; (5) Keep the temperature and pressure constant, and grow In z Ga (1-z) N (z=0.04-0.08) well layer of 0.5-1.0 nm doped with In by changing the flow rate of indium;
(6)保持压力不变,升温至810-840℃生长10-12nm的GaN磊层; (6) Keep the pressure constant and raise the temperature to 810-840°C to grow a 10-12nm GaN epitaxial layer;
接着以(1)(2)(3)(4)(5)(6)为一个周期进行重复生长,重复生长周期数为6-8,总体厚度控制在162-216nm; Then repeat growth with (1) (2) (3) (4) (5) (6) as a cycle, the number of repeated growth cycles is 6-8, and the overall thickness is controlled at 162-216nm;
6、再升高温度到900-950℃,反应室压力控制在150-300mbar,持续生长30-40nm掺铟、铝的P型InyAl(1-y)GaN层,y=0.08-0.12; 6. Then raise the temperature to 900-950°C, control the pressure of the reaction chamber at 150-300mbar, and continue to grow a 30-40nm P-type In y Al (1-y) GaN layer doped with indium and aluminum, y=0.08-0.12;
7、再升高温度到1000-1100℃,反应室压力控制在200-600mbar,持续生长60-90nm掺镁的P型GaN层; 7. Then raise the temperature to 1000-1100°C, control the pressure of the reaction chamber at 200-600mbar, and continue to grow a 60-90nm magnesium-doped P-type GaN layer;
8、最后降温至650-700℃,保温20-30min,然后炉内冷却,得到样品2。 8. Finally, lower the temperature to 650-700°C, keep the temperature for 20-30 minutes, and then cool in the furnace to obtain sample 2. the
对比实施例一与实施例一的生长参数对比可见下表1。 The growth parameters of Comparative Example 1 and Example 1 can be seen in Table 1 below. the
表1对比实施例一与实施例一的生长参数对比 The growth parameter contrast of table 1 comparative embodiment one and embodiment one
说明:表1中的-代表无 Note: - in Table 1 means none
参见图1,传统方法制得的样品1中的多量子阱层3-1和多量子磊层3-2。参见图2,在本发明方法制得的样品2中变为由第一阱层3-A、第二阱层3-B、第一磊层3-C、第一阱层3-A、第二阱层3-B、第二磊层3-D交叠重合构成的复合多量子阱层。参见图3和图4,两者结构的不同使得样品产生相应的多个阱能级,增加空穴和电子的浓度,主要是减少电子的逃逸,增加空穴的浓度,提高复合效率;并且,多个阱能级使电子和空穴的波函数在K空间上各自的中心点更加靠近,增加电子和空穴的复合概率。
Referring to FIG. 1 , the multi-quantum well layer 3-1 and the multi-quantum epitaxial layer 3-2 in
从图3上可以看出,样品1的多量子阱层3-1和多量子磊层3-2在图(a)中分别对应A点和B点所指示的导带能级位置,在图(b)中分别对应A’点和B’点所指示的价带能级位置。
It can be seen from Figure 3 that the multi-quantum well layer 3-1 and the multi-quantum epitaxial layer 3-2 of
从图4上可以看出,样品2的第一阱层3-A、第二阱层3-B、第一磊层3-C、第一阱层3-A在图(a)中分别对应A点、B点、C点、D点所指示的导带能级位置,在图(b)中分别对应A’点、B’点、C’点、D’点所指示的价带能级位置。 It can be seen from Figure 4 that the first well layer 3-A, the second well layer 3-B, the first epitaxial layer 3-C, and the first well layer 3-A of sample 2 respectively correspond to The conduction band energy levels indicated by points A, B, C, and D correspond to the valence band energy levels indicated by points A', B', C', and D' in Figure (b). Location. the
然后,将制得的样品1和样品2在相同的前工艺条件下镀ITO层150-200nm,相同的条件下镀Cr/Pt/Au电极130-150nm,相同的条件下镀保护层SiO240-50nm,然后在相同的条件下将样品研磨切割成305μm*711μm(12mi*28mil)的芯片颗粒,然后样品1和样品2在相同位置各自挑选150颗晶粒,在相同的封装工艺下,封装成白光LED。然后采用积分球在驱动电流350mA条件下测试样品1和样品2的光电性能,得到的参数见图5。
Then, the
图5的纵坐标为光效(1m/w),横坐标为芯片颗粒分布个数。样品2对应的数值为上 方较粗的线条,样品1对应的数值为下方较细的线条。从图5数据得出样品2较样品1光效提升6-7%。本专利提供的生长方法提高了大尺寸芯片的光效。
The ordinate in Fig. 5 is the light efficiency (1m/w), and the abscissa is the distribution number of chip particles. The value corresponding to sample 2 is the upper thicker line, and the value corresponding to sample 1 is the lower thinner line. From the data in Figure 5, it can be concluded that the light efficiency of sample 2 is 6-7% higher than that of
对比实施例二、 Comparative example two,
实施步骤参见对比实施例一,得到样品3。
For the implementation steps, refer to Comparative Example 1 to obtain
实施例二、 Embodiment two,
实施步骤参见实施例一,得到样品4。
For the implementation steps, refer to Example 1 to obtain
对比实施例二与实施例二的生长参数对比可见下表2。 The comparison of growth parameters between Comparative Example 2 and Example 2 can be seen in Table 2 below. the
表2对比实施例二与实施例二的生长参数对比 Table 2 contrasts the growth parameters of embodiment two and embodiment two
然后,将样品3和样品4采取与样品1和样品2同样的处理方法后测试样品3和样品4的光电性能,得到的参数见图6。图6的纵坐标为亮度(Lm),横坐标为芯片颗粒分布个数。样品4对应的数值为上方较粗的线条,样品3对应的数值为下方较细的线条。从图6 数据得出样品4较样品3亮度提升8-9%。本专利提供的生长方法提高了大尺寸芯片的光效。
Then,
参见图2,本发明还公开了一种根据上述复式多量子阱发光层结构的生长方法制得的LED外延结构,所述LED外延结构的阱发光层包括6-8个单元层,每一单元层从下至上依次包括: Referring to Fig. 2, the present invention also discloses an LED epitaxial structure prepared according to the growth method of the above-mentioned compound multi-quantum well light-emitting layer structure, the well light-emitting layer of the LED epitaxial structure includes 6-8 unit layers, each unit Layers from bottom to top include:
第一阱层3-A,所述第一阱层3-A为掺杂2.7-3.5nmIn的InxGa(1-x)N阱层,x=0.20-0.22; The first well layer 3-A, the first well layer 3-A is an In x Ga (1-x) N well layer doped with 2.7-3.5nmIn, x=0.20-0.22;
第二阱层3-B,所述第二阱层3-B为掺杂0.5-1.0nmIn的InzGa(1-z)N阱层,z=0.04-0.08; The second well layer 3-B, the second well layer 3-B is an In z Ga (1-z) N well layer doped with 0.5-1.0nmInIn, z=0.04-0.08;
第一磊层3-C,所述第一磊层3-C为掺杂4-6nm的Al、In的Alx1Inx2Ga(1-x1-x2)N磊层,x1=0.04-0.05,x2=0.10-0.12; The first epitaxial layer 3-C, the first epitaxial layer 3-C is an Al x1 In x2 Ga (1-x1-x2) N epitaxial layer doped with 4-6nm Al and In, x 1 =0.04-0.05 , x 2 =0.10-0.12;
第一阱层3-A,所述第一阱层3-A为掺杂2.7-3.5nmIn的InxGa(1-x)N阱层,x=0.20-0.22; The first well layer 3-A, the first well layer 3-A is an In x Ga (1-x) N well layer doped with 2.7-3.5nmIn, x=0.20-0.22;
第二阱层3-B,所述第二阱层3-B为掺杂0.5-1.0nmIn的InzGa(1-z)N阱层,z=0.04-0.08; The second well layer 3-B, the second well layer 3-B is an In z Ga (1-z) N well layer doped with 0.5-1.0nmInIn, z=0.04-0.08;
第二磊层3-D,所述第二磊层3-D为10-12nm的GaN磊层。 The second epitaxial layer 3-D, the second epitaxial layer 3-D is a 10-12nm GaN epitaxial layer. the
另外,在上述单元层之下从下至上还可依次包括: In addition, below the above unit layer from bottom to top, it can also include:
低温缓冲GaN层7,厚度为30-50nm;该层是在基板上生长的成核层,为不掺杂GaN生长提供晶体生长所需要的成核岛,成核岛进一步生长成晶体;
Low-temperature
不掺杂GaN层8,厚度为2.5-3.0um;不掺杂GaN的生长是在成核层基础上,成核岛不断生长完整合并成为完整的晶体;
The
N型GaN层4,厚度为3.5-4.5μm,掺杂Si,Si的掺杂浓度控制8E+18-1E19atom/cm3。
The N-
在所述单元层之上从下至上还可依次包括: On the unit layer from bottom to top can also include:
P型AlGaN层6,厚度为30-40nm的P型InyAl(1-y)GaN层,y=0.08-0.12;
P-
P型GaN层1,厚度为60-90nm,掺杂Mg,Mg的掺杂浓度控制3E+18-4E18atom/cm3。
The P-
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention. the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310293483.4A CN103346219B (en) | 2013-07-12 | 2013-07-12 | The growing method of compound multiple quantum well light emitting Rotating fields and LED epitaxial structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310293483.4A CN103346219B (en) | 2013-07-12 | 2013-07-12 | The growing method of compound multiple quantum well light emitting Rotating fields and LED epitaxial structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103346219A true CN103346219A (en) | 2013-10-09 |
CN103346219B CN103346219B (en) | 2016-02-24 |
Family
ID=49281004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310293483.4A Expired - Fee Related CN103346219B (en) | 2013-07-12 | 2013-07-12 | The growing method of compound multiple quantum well light emitting Rotating fields and LED epitaxial structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103346219B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103952684A (en) * | 2014-04-23 | 2014-07-30 | 湘能华磊光电股份有限公司 | LED (light-emitting diode) epitaxial layer growth method and LED epitaxial layer |
CN104966767A (en) * | 2015-03-30 | 2015-10-07 | 华灿光电(苏州)有限公司 | Method for growing epitaxial wafer of GaN-based light emitting diode |
CN111312867A (en) * | 2020-02-21 | 2020-06-19 | 湘能华磊光电股份有限公司 | A kind of preparation method of single chip white light LED |
WO2020211346A1 (en) * | 2019-04-19 | 2020-10-22 | 开发晶照明(厦门)有限公司 | Light-emitting diode |
CN115050866A (en) * | 2022-08-16 | 2022-09-13 | 江苏第三代半导体研究院有限公司 | Polarization-controllable quantum dot Micro-LED homoepitaxial structure and preparation method thereof |
CN115377259A (en) * | 2022-10-26 | 2022-11-22 | 江西兆驰半导体有限公司 | Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1557042A (en) * | 2002-06-10 | 2004-12-22 | ������������ʽ���� | Multi-beam semiconductor laser, semiconductor light emitting device, and semiconductor device |
CN104409587A (en) * | 2014-10-22 | 2015-03-11 | 太原理工大学 | An InGaN-based blue-green light-emitting diode epitaxial structure and growth method |
-
2013
- 2013-07-12 CN CN201310293483.4A patent/CN103346219B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1557042A (en) * | 2002-06-10 | 2004-12-22 | ������������ʽ���� | Multi-beam semiconductor laser, semiconductor light emitting device, and semiconductor device |
CN104409587A (en) * | 2014-10-22 | 2015-03-11 | 太原理工大学 | An InGaN-based blue-green light-emitting diode epitaxial structure and growth method |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103952684A (en) * | 2014-04-23 | 2014-07-30 | 湘能华磊光电股份有限公司 | LED (light-emitting diode) epitaxial layer growth method and LED epitaxial layer |
CN104966767A (en) * | 2015-03-30 | 2015-10-07 | 华灿光电(苏州)有限公司 | Method for growing epitaxial wafer of GaN-based light emitting diode |
CN104966767B (en) * | 2015-03-30 | 2018-01-09 | 华灿光电(苏州)有限公司 | A kind of growing method of GaN base light emitting epitaxial wafer |
WO2020211346A1 (en) * | 2019-04-19 | 2020-10-22 | 开发晶照明(厦门)有限公司 | Light-emitting diode |
CN111312867A (en) * | 2020-02-21 | 2020-06-19 | 湘能华磊光电股份有限公司 | A kind of preparation method of single chip white light LED |
CN111312867B (en) * | 2020-02-21 | 2023-12-15 | 湘能华磊光电股份有限公司 | A kind of preparation method of single-chip white light LED |
CN115050866A (en) * | 2022-08-16 | 2022-09-13 | 江苏第三代半导体研究院有限公司 | Polarization-controllable quantum dot Micro-LED homoepitaxial structure and preparation method thereof |
CN115050866B (en) * | 2022-08-16 | 2022-11-08 | 江苏第三代半导体研究院有限公司 | Polarization-controllable quantum dot Micro-LED homoepitaxial structure and preparation method thereof |
CN115377259A (en) * | 2022-10-26 | 2022-11-22 | 江西兆驰半导体有限公司 | Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode |
CN115377259B (en) * | 2022-10-26 | 2023-01-31 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode |
Also Published As
Publication number | Publication date |
---|---|
CN103346219B (en) | 2016-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102368519B (en) | A kind of method improving semiconductor diode multiple quantum well light emitting efficiency | |
CN106057988B (en) | A kind of preparation method of the epitaxial wafer of GaN base light emitting | |
CN103474539B (en) | LED structure epitaxial growth method containing superlattice layer and structure thereof | |
CN104409587B (en) | A kind of InGaN base blue-green light LED epitaxial structure and growing method | |
CN104009136B (en) | Improve LED outer layer growth method and the LED epitaxial layer of luminous efficiency | |
CN103996769B (en) | LED epitaxial layer structures, growing method and the LED chip with the structure | |
CN103515495B (en) | A method for growing GaN-based light-emitting diode chips | |
TWI766403B (en) | A kind of micro-light emitting diode epitaxial structure and preparation method thereof | |
CN103346219B (en) | The growing method of compound multiple quantum well light emitting Rotating fields and LED epitaxial structure | |
CN106611808A (en) | Growth method of light-emitting diode epitaxial wafer | |
CN103915534B (en) | A kind of LED and forming method thereof | |
CN108550665A (en) | A kind of LED epitaxial structure growing method | |
CN106449915A (en) | Growth method of light-emitting diode epitaxial wafer | |
CN103560187A (en) | Epitaxial growth method of LED structure comprising superlattice barrier layer and structure | |
CN110629197B (en) | A kind of LED epitaxial structure growth method | |
CN106711295A (en) | Growth method of GaN-based light emitting diode epitaxial wafer | |
CN102044606A (en) | A kind of LED epitaxial wafer and its epitaxial growth method | |
CN103579428B (en) | A kind of LED and preparation method thereof | |
CN103337451B (en) | The growth method of electronic barrier layer of epitaxial structure and corresponding epitaxial structure thereof | |
CN105576090B (en) | The preparation method and LED epitaxial slice of LED epitaxial slice | |
CN108574026B (en) | A method for growing LED epitaxial electron blocking layer | |
CN103594570A (en) | Epitaxial growth method for LED structure containing superlattice barrier layer and structure body of LED structure | |
CN107134517B (en) | A kind of LED epitaxial growth methods | |
CN114497304A (en) | Semiconductor element | |
CN104966767B (en) | A kind of growing method of GaN base light emitting epitaxial wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160224 |
|
CF01 | Termination of patent right due to non-payment of annual fee |