CN103343326B - Nanocrystalline ultrahard composite coating and preparation method thereof - Google Patents
Nanocrystalline ultrahard composite coating and preparation method thereof Download PDFInfo
- Publication number
- CN103343326B CN103343326B CN201310284198.6A CN201310284198A CN103343326B CN 103343326 B CN103343326 B CN 103343326B CN 201310284198 A CN201310284198 A CN 201310284198A CN 103343326 B CN103343326 B CN 103343326B
- Authority
- CN
- China
- Prior art keywords
- layer
- coating
- nanocrystalline
- composite coating
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 93
- 239000011248 coating agent Substances 0.000 title claims abstract description 89
- 239000002131 composite material Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 24
- 230000001050 lubricating effect Effects 0.000 claims abstract description 18
- 230000007704 transition Effects 0.000 claims abstract description 16
- 230000008021 deposition Effects 0.000 claims abstract description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 51
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 31
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 31
- 229910052757 nitrogen Inorganic materials 0.000 claims description 25
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 17
- 229910000831 Steel Inorganic materials 0.000 claims description 9
- 239000010959 steel Substances 0.000 claims description 9
- 229910039444 MoC Inorganic materials 0.000 claims description 8
- 229910052723 transition metal Inorganic materials 0.000 claims description 8
- 238000007740 vapor deposition Methods 0.000 claims description 8
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 claims description 7
- 239000002159 nanocrystal Substances 0.000 claims description 7
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 claims description 7
- 229910000677 High-carbon steel Inorganic materials 0.000 claims description 5
- 229910000997 High-speed steel Inorganic materials 0.000 claims description 5
- 239000010962 carbon steel Substances 0.000 claims description 5
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- 150000003624 transition metals Chemical group 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 8
- 238000000151 deposition Methods 0.000 abstract description 7
- 238000010891 electric arc Methods 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 7
- 238000012545 processing Methods 0.000 abstract description 3
- 238000001241 arc-discharge method Methods 0.000 abstract description 2
- 238000009776 industrial production Methods 0.000 abstract description 2
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- -1 Transition metal carbides Chemical class 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000002114 nanocomposite Substances 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 101000686227 Homo sapiens Ras-related protein R-Ras2 Proteins 0.000 description 1
- 102100025003 Ras-related protein R-Ras2 Human genes 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 229910008482 TiSiN Inorganic materials 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007737 ion beam deposition Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- CNEOGBIICRAWOH-UHFFFAOYSA-N methane;molybdenum Chemical compound C.[Mo] CNEOGBIICRAWOH-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002103 nanocoating Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
技术领域 technical field
本发明属于材料领域,涉及一种纳米晶超硬复合涂层及其制备方法。 The invention belongs to the field of materials, and relates to a nanocrystalline superhard composite coating and a preparation method thereof.
背景技术 Background technique
以飞机制造为代表的高端制造业广泛采用高速高效的数控加工技术,钛合金(TC4、TC18、TC21)、高强度钢(300M)、碳纤维复合材料以及铝锂合金等新型材料代替传统的硅铝合金和结构钢,对切削刀具性能提出了更高要求。超细晶粒硬质合金是一种高硬度、高强度和高耐磨性的硬质合金,与被加工材料的吸附或扩散作用较小,可用于加工钛合金、高强度钢等材料。但在高速切削时,由于被加工材料导热差,导致刀具表面温度较高,严重影响加工性能。 The high-end manufacturing industry represented by aircraft manufacturing widely adopts high-speed and efficient CNC machining technology, and new materials such as titanium alloys (TC4, TC18, TC21), high-strength steel (300M), carbon fiber composite materials, and aluminum-lithium alloys replace traditional silicon-aluminum alloys. Alloy and structural steel put forward higher requirements on the performance of cutting tools. Ultra-fine-grained cemented carbide is a kind of cemented carbide with high hardness, high strength and high wear resistance. It has little adsorption or diffusion effect with the processed material, and can be used to process materials such as titanium alloy and high-strength steel. However, during high-speed cutting, due to the poor heat conduction of the processed material, the surface temperature of the tool is high, which seriously affects the processing performance.
纳米硬质涂层是一种有效的表面改性技术。超硬涂层是硬度大于40GPa的涂层材料,硬质合金超硬涂层刀具集成了强度、韧性和硬度优势,可大幅提高切削加工效率和质量,满足高速高效数控切削加工的新需求,成为新一代高档刀具的代表。开发超硬涂层,对提高我国数控加工技术应用水平,提升我国基础制造能力具有重要的现实意义。 Nano hard coating is an effective surface modification technology. Superhard coating is a coating material with a hardness greater than 40GPa. Carbide superhard coating tools integrate the advantages of strength, toughness and hardness, which can greatly improve the cutting efficiency and quality, and meet the new needs of high-speed and efficient CNC cutting. Representative of a new generation of high-end knives. The development of superhard coatings has important practical significance for improving the application level of my country's CNC machining technology and improving my country's basic manufacturing capabilities.
过渡金属碳化物和氮化物有许多吸引人的性质例如高硬度、完美的抗磨损性、低的摩擦系数和强的催化活性。过度金属碳化物和氮化物的形成是对硬度一个非常重要的贡献。到目前为止,在这些过度金属碳化物和氮化物中并没有得到非常高的硬度值。然而,在三元氮化物中如果形成纳米结构的涂层却可以得到高的硬度。这些膜层不但具有高的硬度而且具有低的摩擦系数和较高的耐磨性。 Transition metal carbides and nitrides have many attractive properties such as high hardness, perfect wear resistance, low friction coefficient and strong catalytic activity. The formation of transition metal carbides and nitrides is a very important contribution to hardness. So far, very high hardness values have not been obtained in these transition metal carbides and nitrides. However, high hardness can be obtained by forming nanostructured coatings in ternary nitrides. These film layers not only have high hardness but also have low coefficient of friction and high wear resistance.
理论研究表明MoCN很有可能表现出与TiCN、CrCN 和 TiSiN相接近的高硬度。在Mo金属碳氮化合物中MoC、MoN的纳米晶镶嵌在无定型膜层中可以导致膜层高的硬度。 Theoretical studies show that MoCN is likely to exhibit high hardness close to that of TiCN, CrCN and TiSiN. In Mo metal carbonitride, the nanocrystals of MoC and MoN embedded in the amorphous film can lead to high hardness of the film.
氮化碳(C3N4)薄膜具有高硬度、低摩擦系数和高热稳定性的特点,是一种最新型的超硬材料,其理论硬度接近金刚石,有望在在某些场合取代金刚石材料。研究表明当切削高硬度难加工材料时,氮化碳具有明显的优势。目前CNx 薄膜制备方法很多,常用的制备方法有振荡波压缩、高压热解、离子注入、低能离子辐射、离子束沉积、反应溅射、化学气相沉积、激光烧蚀、脉冲激光诱导、电化学沉积和电弧放电。目前国内外对氮化碳涂层已经进行了大量研究,但由于CN 涂层应力大,容易从基体上剥落,一直未获得大规模的工业应用。 Carbon nitride (C 3 N 4 ) film has the characteristics of high hardness, low friction coefficient and high thermal stability. It is a new type of superhard material. Its theoretical hardness is close to diamond, and it is expected to replace diamond material in some occasions. Studies have shown that carbon nitride has obvious advantages when cutting hard and difficult materials. At present, there are many methods for preparing CNx thin films. The commonly used preparation methods include oscillatory wave compression, high-pressure pyrolysis, ion implantation, low-energy ion radiation, ion beam deposition, reactive sputtering, chemical vapor deposition, laser ablation, pulsed laser induction, and electrochemical deposition. and arc discharge. At present, a lot of research has been done on carbon nitride coating at home and abroad. However, due to the large stress of CN coating, it is easy to peel off from the substrate, and it has not been applied in large-scale industry.
发明内容 Contents of the invention
本发明所要解决的技术问题在于提供一种纳米晶超硬复合涂层及其制备方法。 The technical problem to be solved by the present invention is to provide a nanocrystalline superhard composite coating and a preparation method thereof.
本发明的复合涂层,在基体表面从内到外由结合层、过渡层、支撑层和润滑层依次构成;其中,结合层的材料为过渡金属Mo,过渡层的材料为MoN ,支撑层的材料为Mo的渐变碳氮化物MoCxN,其中0≤x ≤ 1 ;润滑层的材料为含有氮化碳(C3N4)、氮化钼(MoN)和碳化钼(MoC)纳米晶的Mo的碳氮化物,即C3N4-MoCN。 The composite coating of the present invention is composed of a bonding layer, a transition layer, a supporting layer and a lubricating layer in sequence from the inside to the outside on the substrate surface; wherein, the material of the bonding layer is transition metal Mo, the material of the transition layer is MoN, and the material of the supporting layer The material is the graded carbonitride MoCxN of Mo, where 0≤x≤1; the material of the lubricating layer is Mo containing carbon nitride (C 3 N 4 ), molybdenum nitride (MoN) and molybdenum carbide (MoC) nanocrystals. Carbonitride, that is, C 3 N 4 -MoCN.
所述的基体为硬质合金、不锈钢、高速钢、碳钢或模具钢。 The substrate is cemented carbide, stainless steel, high-speed steel, carbon steel or mold steel.
所述润滑层中C3N4 、MoC和MoN为纳米晶,晶粒尺寸为5-10nm。 C 3 N 4 , MoC and MoN in the lubricating layer are nano crystals with a grain size of 5-10 nm.
为进一步提高本发明产品的性价比: For further improving the cost performance of product of the present invention:
结合层厚度为50-100 纳米;过渡层厚度为100-200 纳米;支撑层厚度为100-500 纳米;润滑层厚度为1-5 微米。 The thickness of the bonding layer is 50-100 nanometers; the thickness of the transition layer is 100-200 nanometers; the thickness of the support layer is 100-500 nanometers; the thickness of the lubricating layer is 1-5 microns.
本发明的纳米晶超硬复合涂层的制备方法,依次包括下述步骤: The preparation method of nanocrystalline superhard composite coating of the present invention, comprises the following steps successively:
1) 在基体表面等离子体清洗基体表面,清洗条件为:温度为250-400℃,气压0.1-0.5Pa,电压-800V 到-1000V 偏压; 1) Plasma cleaning the surface of the substrate, the cleaning conditions are: temperature 250-400°C, air pressure 0.1-0.5Pa, voltage -800V to -1000V bias;
2)在基体表面等离子体气相沉积结合层,沉积条件为:温度为200-400℃,气压0.5-1.5Pa,电压-100V 到-200V 偏压; 2) Plasma vapor deposition bonding layer on the surface of the substrate, the deposition conditions are: temperature 200-400°C, air pressure 0.5-1.5Pa, voltage -100V to -200V bias;
3)在上步得到的结合层上等离子体气相沉积过渡层,沉积条件为:氮气环境下,气压1-2Pa,电压-100V 到-200V偏压; 3) Plasma vapor deposition transition layer on the bonding layer obtained in the previous step, the deposition conditions are: nitrogen environment, pressure 1-2Pa, voltage -100V to -200V bias;
4)在上步得到的过渡层上等离子体气相沉积支撑层,沉积条件为:在保持氮气流量条件下通入乙炔,乙炔流量逐步增大至乙炔和氮气的体积流量比为3:4,气压1-1.2Pa,电压-100V 到-200V 偏压; 4) Plasma vapor deposition of the support layer on the transition layer obtained in the previous step, the deposition conditions are: acetylene is fed under the condition of maintaining the flow rate of nitrogen gas, and the flow rate of acetylene is gradually increased until the volume flow ratio of acetylene and nitrogen is 3:4, and the pressure is 1-1.2Pa, voltage -100V to -200V bias;
5)在上步得到的支撑层上等离子体气相沉积润滑层,沉积条件为:氮气和乙炔体积流量比保持3:4的环境下,电压-100V到-200V 偏压、气压1-1.2Pa,然后自然冷却,即得纳米晶超硬复合涂层。 5) Plasma vapor deposition of lubricating layer on the support layer obtained in the previous step, the deposition conditions are: the volume flow ratio of nitrogen and acetylene is kept at 3:4, the voltage is -100V to -200V, the pressure is 1-1.2Pa, Then cool naturally to get the nanocrystalline superhard composite coating.
所述的基体为硬质合金、不锈钢、高速钢、碳钢或模具钢。 The substrate is cemented carbide, stainless steel, high-speed steel, carbon steel or mold steel.
由上述技术方案可知本发明是利用电弧放电法和中空阴极电弧放电碳源联合法制备超硬C3N4-MoCN 复合涂层。常规MoCN 制备过程中,涂层晶粒尺度一般为微米级,涂层的硬度为25-30GPa,如果要进一步提高涂层硬度存在较大的技术难度。纳米结构涂层技术是近年来迅速发展的涂层新技术,分为纳米多层涂层和纳米晶-非晶复合涂层。纳米多层涂层的高硬度主要是由于层内或层间位错运动困难所致。与纳米多层膜不同,在纳米晶-非晶复合超硬涂层中,涂层的高硬度主要由涂层中的结晶相和非晶相的结构有关系,结晶相颗粒的大小直接决定了涂层的硬度。纳米晶复合超硬材料以其优异的性能,如超高硬度、高韧性及低的摩擦系数等,引起了全世界的科研工作者的极大兴趣。 It can be known from the above technical scheme that the present invention uses the combined method of arc discharge method and hollow cathode arc discharge carbon source to prepare superhard C 3 N 4 -MoCN composite coating. In the conventional MoCN preparation process, the grain size of the coating is generally in the micron order, and the hardness of the coating is 25-30GPa. It is difficult to further increase the hardness of the coating. Nano-structured coating technology is a new coating technology developed rapidly in recent years, which is divided into nano-multilayer coating and nano-crystalline-amorphous composite coating. The high hardness of nano-multilayer coatings is mainly due to the difficulty of movement of dislocations within or between layers. Different from the nano-multilayer film, in the nanocrystalline-amorphous composite superhard coating, the high hardness of the coating is mainly related to the structure of the crystalline phase and the amorphous phase in the coating, and the size of the crystalline phase particles directly determines The hardness of the coating. Nanocrystalline composite superhard materials have aroused great interest of researchers all over the world due to their excellent properties, such as ultra-high hardness, high toughness and low friction coefficient.
本发明利用C3N4 的高硬度特性,进一步提高MoCN 涂层的硬度;利用MoCN 的分散效应降低C3N4涂层的内应力。利用CN涂层非晶特性限制MoCN 涂层的晶粒生长,获取纳米晶状态的MoCN,使MoCN 涂层具有良好的韧性,形成CN-MCN 纳米晶复合涂层,为高硬度难加工材料的切削提供新的选择。 The present invention utilizes the high hardness characteristic of C 3 N 4 to further increase the hardness of the MoCN coating; utilizes the dispersion effect of MoCN to reduce the internal stress of the C 3 N 4 coating. Use the amorphous characteristics of CN coating to limit the grain growth of MoCN coating, obtain MoCN in nanocrystalline state, make MoCN coating have good toughness, and form CN-MCN nanocrystalline composite coating, which is suitable for cutting high hardness and difficult-to-machine materials Provide new options.
一般条件下,MoCN 制备主要通过金属电弧靶在乙炔和氮气共存的环境中电弧放电进行制备,但由于离化率有限,制备的MCN 涂层硬度较低,附着力较差,不能很好的满足工业实际应用。电弧放电利用中空阴极离子源的高离化率来离解乙炔气体产生碳源,并通入氮气,产生高浓度的碳离子和氮离子,氮气与碳反应在工件形成氮化碳,此外利用金属电弧靶产生高浓度金属离子,在金属离子和碳离子以及氮离子共同存在的条件下形成MoCN。 Under normal conditions, MoCN is prepared mainly by arc discharge of a metal arc target in an environment where acetylene and nitrogen coexist. However, due to the limited ionization rate, the prepared MCN coating has low hardness and poor adhesion, which cannot meet the requirements well. Industrial practical application. Arc discharge uses the high ionization rate of the hollow cathode ion source to dissociate acetylene gas to generate a carbon source, and nitrogen gas is introduced to generate high concentrations of carbon ions and nitrogen ions. The nitrogen and carbon react to form carbon nitride on the workpiece. In addition, the metal arc is used to The target produces a high concentration of metal ions, and MoCN is formed under the condition of the coexistence of metal ions, carbon ions and nitrogen ions.
在本发明中,利用C3N4 的高硬度提高MoCN 涂层的硬度,最后开发出新型的C3N4-MCN 复合涂层。为了提高涂层和基体之间的结合力,本专利首先利用大功率的圆形电弧源的使Mo金属离化,在工件上加负高压,Mo离子在偏压轰击下对工件表面进行清洗去除表面的氧化层,随后降低工件偏压,在工件上沉积纯Mo结合层。经过结合层的制备,基体材料成分从复杂的多元变成了单一的Mo材料,Mo涂层的硬度为20-23GPa,在此基础上逐步通入氮气,与Mo反应生成MoN,MoN为陶瓷相,与钢的膨胀系数较为接近,MoN 和Mo之间为原位制备,相互之间为冶金结合,MoN硬度为25-28GPa,钢基体的硬度为5-6GPa。为了进一步提高基体硬度和降低应力,在MoN 基础上逐步通入乙炔,制备硬度较高的MoCxN 支撑涂层,MoCxN(0<x ≤ 1) 涂层的硬度为25-30GPa。在MoCxN 支撑层中,为了达到成分渐变和硬度渐变,控制乙炔和氮气流量,在保证氮气流量条件下逐步通入乙炔,乙炔流量的逐步增大使MoCN 材料发生了成分上的渐变,低碳含量的MoCxN 涂层中,其成分和底层的MoN 比较接近,使其膨胀系数比较接近,同时硬度也比较接近,这有利于降低涂层的内应力;随后逐步增大乙炔流量,最后乙炔和氮气达到3:4的比例,达到较高的硬度值。在MoCxN 涂层基础上,开启中空阴极离子源,将乙炔气体从中空阴极离子源尾部通入,氮气从其它进气口进入真空室,当乙炔气体经过中空阴极离子源时,被电弧放电等离子体离化成碳离子,由于中空阴极离子源和真空室中的压力差,在压力作用下碳离子高速喷出中空阴极离子源,当工件转动到中空阴极离子源的出口部位时,碳离子和真空室中的氮离子反应生成C3N4。同时真空室中配置有金属电弧靶,当工件运动到金属靶前端时,金属离子和碳离子以及氮离子反应生成MoCN。 In the present invention, the high hardness of C 3 N 4 is used to increase the hardness of MoCN coating, and finally a new type of C 3 N 4 -MCN composite coating is developed. In order to improve the bonding force between the coating and the substrate, this patent first uses a high-power circular arc source to ionize the Mo metal, and applies a negative high voltage to the workpiece, and the Mo ions clean and remove the surface of the workpiece under bias bombardment The oxide layer on the surface, followed by lowering the workpiece bias, deposits a pure Mo bonding layer on the workpiece. After the preparation of the bonding layer, the composition of the matrix material has changed from a complex multi-component to a single Mo material. The hardness of the Mo coating is 20-23GPa. On this basis, nitrogen gas is gradually introduced to react with Mo to form MoN. MoN is a ceramic phase. , and the expansion coefficient of steel is relatively close, MoN and Mo are prepared in situ, and they are metallurgically combined with each other. The hardness of MoN is 25-28GPa, and the hardness of the steel matrix is 5-6GPa. In order to further increase the hardness of the substrate and reduce the stress, acetylene is gradually introduced on the basis of MoN to prepare a MoCxN support coating with higher hardness. The hardness of the MoCxN (0<x ≤ 1) coating is 25-30GPa. In the MoCxN support layer, in order to achieve gradual changes in composition and hardness, the flow of acetylene and nitrogen is controlled, and acetylene is gradually introduced under the condition of ensuring the flow of nitrogen. The gradual increase in the flow of acetylene makes the MoCN material undergo a gradual change in composition, and low carbon content. In the MoCxN coating, its composition is relatively close to that of the underlying MoN, so that the expansion coefficient is relatively close, and the hardness is also relatively close, which is conducive to reducing the internal stress of the coating; then gradually increase the flow of acetylene, and finally the acetylene and nitrogen reach 3 : The ratio of 4, to achieve a higher hardness value. On the basis of the MoCxN coating, the hollow cathode ion source is turned on, the acetylene gas is introduced from the tail of the hollow cathode ion source, and the nitrogen gas enters the vacuum chamber from other inlets. When the acetylene gas passes through the hollow cathode ion source, it is arc-discharged into the plasma Ionized into carbon ions, due to the pressure difference between the hollow cathode ion source and the vacuum chamber, the carbon ions are ejected from the hollow cathode ion source at high speed under pressure, when the workpiece rotates to the outlet of the hollow cathode ion source, the carbon ions and the vacuum chamber The nitrogen ions in the reaction form C 3 N 4 . At the same time, a metal arc target is arranged in the vacuum chamber. When the workpiece moves to the front end of the metal target, the metal ions react with carbon ions and nitrogen ions to form MoCN.
因此本发明具有如下技术优点:第一,与常规MoCN 涂层相比(25-30GPa),本发明采用C3N4强化MoCN 涂层硬度更高(30-35GPa);第二,中空阴极碳源的使用,克服了过滤石墨靶制备氮化碳时产生的大颗粒,大幅度简化了设备;第三,本发明涂层结构设计合理,从底部结合层一直到顶部超硬润滑层,不但有成分渐变,也有结构上的调整,可大幅度降低涂层的应力;第四,制备设备和现行涂层设备相近,同时涂层设备结构简单,易于控制,工业应用前景良好;根据使用要求可在硬质合金、不锈钢、高速钢、碳钢、模具钢等各类工件上进行不同厚度C3N4-MoCN 复合涂层的制备。 Therefore, the present invention has the following technical advantages: First, compared with the conventional MoCN coating (25-30GPa), the present invention uses C 3 N 4 to strengthen the MoCN coating with higher hardness (30-35GPa); second, the hollow cathode carbon The use of the source overcomes the large particles produced when the graphite target is filtered to prepare carbon nitride, and greatly simplifies the equipment; third, the coating structure of the present invention is designed reasonably, from the bottom bonding layer to the top superhard lubricating layer, not only has Gradual changes in composition and structural adjustments can greatly reduce the stress of the coating; fourth, the preparation equipment is similar to the current coating equipment, and the coating equipment is simple in structure, easy to control, and has a good industrial application prospect; Preparation of C 3 N 4 -MoCN composite coatings with different thicknesses on various workpieces such as cemented carbide, stainless steel, high-speed steel, carbon steel, and die steel.
总之,本发明的制备方法具有离化率高、涂层设备结构简单、沉积速率快等特点。所制备C3N4-MoCN 复合涂层材料具有涂层硬度高、附着力强、自润滑性能好、涂层生长速率快、生产效率高、生产成本低、摩擦系数低,涂层韧性好,可以大幅度提高加工刀具、模具以及机械零部件的耐磨和润滑性能,此外其制备方法简单,易于实现工业生产,具有良好的应用前景。 In a word, the preparation method of the present invention has the characteristics of high ionization rate, simple structure of coating equipment, fast deposition rate and the like. The prepared C 3 N 4 -MoCN composite coating material has high coating hardness, strong adhesion, good self-lubricating performance, fast coating growth rate, high production efficiency, low production cost, low friction coefficient, and good coating toughness. The wear-resisting and lubricating properties of processing cutters, molds and mechanical parts can be greatly improved. In addition, the preparation method is simple, easy to realize industrial production, and has good application prospects.
附图说明 Description of drawings
图1. 为本发明中所采用的涂层装置示意图; Fig. 1. is the schematic diagram of coating device adopted among the present invention;
图2. 为本发明制备的C3N4-MoCN 复合涂层结构示意图; Figure 2. Schematic diagram of the structure of the C 3 N 4 -MoCN composite coating prepared for the present invention;
图3 为实施例制备的C3N4-MoCN 复合涂层表面扫描电镜照片; Figure 3 is a scanning electron micrograph of the surface of the C 3 N 4 -MoCN composite coating prepared in the example;
图4. 为实施例制备的C3N4-TiCN 复合涂层截面形貌图; Figure 4. The cross-sectional morphology of the C 3 N 4 -TiCN composite coating prepared for the embodiment;
图1 中:1. 中心加热器; 2. 1#金属电弧靶;3. 工件架; 4. 中空阴极电弧放电碳源; 5. 炉门; 6. 2#金属电弧靶;7. 抽气口; In Figure 1: 1. Central heater; 2. 1# metal arc target; 3. Workpiece holder; 4. Hollow cathode arc discharge carbon source; 5. Furnace door; 6. 2# metal arc target; 7. Air extraction port;
图2 中:1. 基体;2. 结合层Mo; 3. 过渡层MoN;4. 支撑层MoCxN; 5. 润滑层C3N4-MoCN。 In Fig. 2: 1. substrate; 2. bonding layer Mo; 3. transition layer MoN; 4. support layer MoCxN; 5. lubricating layer C 3 N 4 -MoCN.
具体实施方式 Detailed ways
实施本发明方法的装置如图1 所示,装置的真空室由炉壁围成,真空室高度为50cm,体积为50x50x 50cm3。真空室侧面设有炉门,以方便工件的装卸。真空室设有抽真空口,抽真空机组通过抽真空口对真空室进行抽真空,抽真空机组由机械泵和分子泵组成,极限真空可以达到10-4Pa。炉门上安装中空阴极离子源,用以提高乙炔气体的离化率,真空室两侧分别安装两个电弧Ti 靶,圆形电弧靶的直径为100mm,电弧靶上装有强性磁铁用于束缚靶弧的形状。炉膛内安装有加热器,可以方便的调节真空室中的温度。样品架位于炉膛的中心位置,样品悬挂于样品架上,可以进行公转和自转,样品架转速可调。这样布局可以使 The device for implementing the method of the present invention is shown in Figure 1. The vacuum chamber of the device is surrounded by furnace walls, the height of the vacuum chamber is 50cm, and the volume is 50x50x50cm 3 . There is a furnace door on the side of the vacuum chamber to facilitate loading and unloading of workpieces. The vacuum chamber is equipped with a vacuum port, through which the vacuum pumping unit vacuumizes the vacuum chamber. The vacuum pumping unit is composed of a mechanical pump and a molecular pump, and the ultimate vacuum can reach 10-4Pa. A hollow cathode ion source is installed on the furnace door to increase the ionization rate of acetylene gas. Two arc Ti targets are respectively installed on both sides of the vacuum chamber. The diameter of the circular arc target is 100mm. The arc target is equipped with a strong magnet for binding The shape of the target arc. A heater is installed in the furnace, which can easily adjust the temperature in the vacuum chamber. The sample holder is located in the center of the furnace, and the sample is suspended on the sample holder, which can perform revolution and rotation, and the speed of the sample holder is adjustable. Such a layout can make
真空室中等离子体密度大幅度增加,工件完全浸没在等离子体中。使涂层沉积速率、硬度、附着力得到较大的提高。由于对靶结构进行了优化,磁场分布更均匀,使电弧在靶面上均匀燃烧,提高了涂层的均匀性和降低了靶材的消耗。 The plasma density in the vacuum chamber is greatly increased, and the workpiece is completely immersed in the plasma. The coating deposition rate, hardness and adhesion are greatly improved. Due to the optimization of the target structure, the distribution of the magnetic field is more uniform, so that the arc burns evenly on the target surface, which improves the uniformity of the coating and reduces the consumption of the target.
实施例1:在:250℃,在0.1Pa,-800V 条件下用Mo靶清洗基体10min;然后250℃,在0.5Pa,-200V 条件沉积50纳米厚的过渡金属Mo层;氮气环境下,在1Pa,-100V 条件沉积150 纳米厚的过渡层MoN;然后在1.0Pa,-100V 条件下,保证氮气流量条件下逐步通入乙炔,乙炔流量的逐步增大至乙炔和氮气比例为3:4,沉积200 纳米厚的支持层MoCxN ;然后在氮气和乙炔比例保持3:4的环境下,-100V 偏压,1.0Pa气压条件下沉积1 微米C3N4-MoCN 超硬自润滑涂层;涂层硬度控制在30GPa,摩擦系数低于0.20,涂层总厚度为1.40 微米。制备结束后自然冷却,得到C3N4-MoCN 纳米晶超硬自润滑纳米复合涂层。润滑层中C3N4 、MoN、MoC晶粒为纳米晶,晶粒尺寸为3nm。 Example 1: Clean the substrate with a Mo target at 250°C, 0.1Pa, -800V for 10min; then deposit a 50nm-thick transition metal Mo layer at 250°C, 0.5Pa, -200V; 1Pa, -100V conditions to deposit a 150nm thick transition layer MoN; then under the conditions of 1.0Pa, -100V, acetylene is gradually introduced under the condition of nitrogen flow, and the flow of acetylene is gradually increased until the ratio of acetylene to nitrogen is 3:4. Deposit a 200 nm-thick support layer MoCxN; then deposit a 1 micron C 3 N 4 -MoCN superhard self-lubricating coating under the condition of a nitrogen and acetylene ratio of 3:4, a bias of -100V, and a pressure of 1.0Pa; The layer hardness is controlled at 30GPa, the friction coefficient is lower than 0.20, and the total coating thickness is 1.40 microns. After the preparation, it is naturally cooled to obtain a C 3 N 4 -MoCN nanocrystalline superhard self-lubricating nanocomposite coating. The crystal grains of C 3 N 4 , MoN and MoC in the lubricating layer are nano crystals with a grain size of 3nm.
实施例2:在350℃,在0.5Pa,-1000V 条件下用Mo靶清洗基体10 min;然后在1Pa,-200V,300 ℃条件下沉积50纳米厚的过渡金属Mo层;氮气环境下,在1.2Pa,-200V 条件沉积100 纳米厚的过渡层MoN;然后在1.0Pa,-100V 条件下,保证氮气流量条件下逐步通入乙炔,乙炔流量的逐步增大至乙炔和氮气比例为3:4,沉积100 纳米厚的支持层MoCxN ;然后在氮气和乙炔比列保持3:4的环境下,-100V 偏压,1.0Pa气压条件下沉积1 微米C3N4-MoCN 超硬自润滑涂层;涂层硬度控制在35GPa,摩擦系数低于0.20,涂层总厚度为1.21 微米。制备结束后自然冷却,得到C3N4-MoCN 纳米晶超硬自润滑纳米复合涂层。润滑层中C3N4 、MoN、MoC晶粒为纳米晶,晶粒尺寸为5nm。 Example 2: Clean the substrate with a Mo target at 350°C, 0.5Pa, -1000V for 10 minutes; then deposit a 50nm-thick transition metal Mo layer at 1Pa, -200V, and 300°C; Deposit a 100nm-thick transition layer MoN under the condition of 1.2Pa and -200V; then under the condition of 1.0Pa and -100V, gradually feed acetylene under the condition of nitrogen flow, and gradually increase the flow of acetylene until the ratio of acetylene to nitrogen is 3:4 , deposit a 100 nm thick support layer MoCxN; then deposit a 1 micron C3N4-MoCN superhard self-lubricating coating under the condition of nitrogen and acetylene ratio of 3:4, -100V bias, and 1.0Pa pressure; the coating The hardness is controlled at 35GPa, the coefficient of friction is lower than 0.20, and the total thickness of the coating is 1.21 microns. Cool naturally after preparation to obtain a C3N4-MoCN nanocrystalline superhard self-lubricating nanocomposite coating. The crystal grains of C 3 N 4 , MoN and MoC in the lubricating layer are nano crystals with a grain size of 5nm.
实施例3:在400℃,在0.5Pa,-1000V 条件下下用Mo靶清洗基体10min;然后在1.5Pa,-100V,400℃条件下沉积100纳米厚的过渡金属Mo层;氮气环境下,在 2 Pa,-200V 条件沉积200 纳米厚的过渡层MoN;然后在1.2Pa,-200V 条件下,保证氮气流量条件下逐步通入乙炔,乙炔流量的逐步增大至乙炔和氮气比例为3:4,沉积500 纳米厚的支持层MoCxN ;然后在氮气和乙炔比列保持3:4的环境下,-200V 偏压,1.2Pa气压条件下沉积1 微米C3N4-MoCN 超硬自润滑涂层;涂层硬度控制在32GPa,摩擦系数低于0.20,涂层总厚度为1.81 微米。制备结束后自然冷却,得到C3N4-MoCN 纳米晶超硬自润滑纳米复合涂层。润滑层中C3N4 、MoN、MoC晶粒为纳米晶,晶粒尺寸为5-8nm。 Example 3: At 400°C, under the conditions of 0.5Pa, -1000V, the substrate was cleaned with a Mo target for 10min; then at 1.5Pa, -100V, and 400°C, a transition metal Mo layer with a thickness of 100 nanometers was deposited; under a nitrogen environment, Deposit a transition layer MoN with a thickness of 200 nanometers at 2 Pa and -200V; then under the condition of 1.2Pa and -200V, acetylene is gradually introduced under the condition of nitrogen flow, and the flow of acetylene is gradually increased until the ratio of acetylene to nitrogen is 3: 4. Deposit a 500 nanometer thick support layer MoCxN; then deposit 1 micron C3N4-MoCN superhard self-lubricating coating under the condition of nitrogen and acetylene ratio of 3:4, -200V bias, and 1.2Pa pressure; The hardness of the layer is controlled at 32GPa, the coefficient of friction is lower than 0.20, and the total thickness of the coating is 1.81 microns. Cool naturally after preparation to obtain C3N4-MoCN nanocrystalline superhard self-lubricating nanocomposite coating. The C3N4, MoN, and MoC grains in the lubricating layer are nanocrystalline, and the grain size is 5-8nm.
图2 为本发明所设计的C3N4-MoCN 复合涂层结构示意图,涂层从纯金属Mo 层过渡到MoN层,随后渐变成MoCxN 层,最后到C3N4-MoCN 复合涂层,涂层成分上有渐变,同时硬度上也有渐变,合理的设计使涂层的内应力小,附着力强。 Figure 2 is a schematic diagram of the structure of the C 3 N 4 -MoCN composite coating designed by the present invention. The coating transitions from a pure metal Mo layer to a MoN layer, then gradually becomes a MoCxN layer, and finally reaches a C 3 N 4 -MoCN composite coating , There is a gradual change in the composition of the coating, and a gradual change in the hardness at the same time. Reasonable design makes the internal stress of the coating small and the adhesion strong.
图3 为实施例2制得的C3N4-MoCN 复合涂层的的表面形貌图,从图中可以看出,涂层表面有少量的小颗粒,这是电弧放电过程中造成的少量污染,主要是Mo的金属液滴。 Figure 3 is the surface morphology of the C 3 N 4 -MoCN composite coating prepared in Example 2. It can be seen from the figure that there are a small amount of small particles on the surface of the coating, which is caused by a small amount of particles in the arc discharge process. Contamination, mainly Mo metal droplets.
图4 为实施例制得的C3N4-MoCN 复合涂层的的透射电子衍射图,从图中可以看出C3N4 、MoN、MoC晶粒的衍射环,说明晶粒是无序的镶嵌在MoCN涂层中。其中存在的明显的C3N4的晶体衍射环,说明该涂层中包含相当数量的C3N4晶粒,正是由于C3N4 晶粒的高硬度提高了MoCN 涂层的硬度。 Figure 4 is the transmission electron diffraction pattern of the C 3 N 4 -MoCN composite coating prepared in the example. From the figure, it can be seen that the diffraction rings of C 3 N 4 , MoN, and MoC grains indicate that the grains are disordered embedded in the MoCN coating. The obvious crystal diffraction ring of C 3 N 4 in it shows that the coating contains a considerable amount of C 3 N 4 grains, and it is precisely because of the high hardness of C 3 N 4 grains that the hardness of the MoCN coating is improved.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310284198.6A CN103343326B (en) | 2013-07-08 | 2013-07-08 | Nanocrystalline ultrahard composite coating and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310284198.6A CN103343326B (en) | 2013-07-08 | 2013-07-08 | Nanocrystalline ultrahard composite coating and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103343326A CN103343326A (en) | 2013-10-09 |
CN103343326B true CN103343326B (en) | 2015-04-01 |
Family
ID=49278151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310284198.6A Expired - Fee Related CN103343326B (en) | 2013-07-08 | 2013-07-08 | Nanocrystalline ultrahard composite coating and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103343326B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2767970C1 (en) * | 2021-10-29 | 2022-03-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" | Method for applying a protective coating to a metal mold for casting copper alloys |
RU2784931C1 (en) * | 2022-06-30 | 2022-12-01 | федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н.Туполева-КАИ" | Method for applying a protective coating to a metal mold for casting aluminum alloys |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103741101B (en) * | 2014-01-19 | 2016-01-13 | 宜昌后皇真空科技有限公司 | A kind of MoN/CrN nanocomposite coating and deposition method thereof |
CN105779948A (en) * | 2016-03-08 | 2016-07-20 | 武汉大学苏州研究院 | TiAlN/MoN multi-film composite coating and preparing method thereof |
CN105568235B (en) * | 2016-03-08 | 2018-06-08 | 武汉大学苏州研究院 | A kind of high rigidity CrBCN nano composite structure protective coatings and preparation method thereof |
CN112030121B (en) * | 2019-06-03 | 2023-06-02 | 中国科学院宁波材料技术与工程研究所 | Wide-temperature-range antifriction wear-resistant MoCN composite film, and preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102864411A (en) * | 2012-10-17 | 2013-01-09 | 武汉大学 | CN-MCN superhard self-lubricating nano-composite coating and preparation method thereof |
-
2013
- 2013-07-08 CN CN201310284198.6A patent/CN103343326B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102864411A (en) * | 2012-10-17 | 2013-01-09 | 武汉大学 | CN-MCN superhard self-lubricating nano-composite coating and preparation method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2767970C1 (en) * | 2021-10-29 | 2022-03-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" | Method for applying a protective coating to a metal mold for casting copper alloys |
RU2784931C1 (en) * | 2022-06-30 | 2022-12-01 | федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н.Туполева-КАИ" | Method for applying a protective coating to a metal mold for casting aluminum alloys |
Also Published As
Publication number | Publication date |
---|---|
CN103343326A (en) | 2013-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101818332B (en) | Super-hard self-lubricating diamond/diamond-like composite laminated coating material and preparation method thereof | |
CN108642449B (en) | Superhard tough high-entropy alloy nitride nano composite coating hard alloy blade and preparation method thereof | |
CN102864411B (en) | CN-MCN superhard self-lubricating nano-composite coating and preparation method thereof | |
CN101457359B (en) | A preparation method of Ti-Si-N nanocrystalline-amorphous composite superhard coating | |
CN103056425B (en) | Gradient composite coating alloy bit of super hard nanometer crystal TiN-CN (carbon nitride)-DLC (diamond-like carbon) and preparation method thereof | |
CN103668095B (en) | A kind of high power pulse plasma enhancing combined magnetic-controlled sputter deposition apparatus and using method thereof | |
CN101701332B (en) | Method for preparing compound diamond-like carbon coating by using medium-frequency magnetic-control glow discharge method | |
CN103343326B (en) | Nanocrystalline ultrahard composite coating and preparation method thereof | |
CN101798678B (en) | A Novel Superhard TiB2/c-BN Nano-Multilayer Film Prepared by Magnetron Sputtering Technology | |
CN104213075A (en) | AlTiSiN-AlCrSiN nanocrystalline-amorphous multilayer composite superhard toughness coating material and manufacturing method | |
CN104928638A (en) | AlCrSiN-based multilayer nanometer composite cutter coating layer and preparation method thereof | |
CN103084600B (en) | Superhard TiN-TiSiN-CN multilayer alternate composite gradient coating carbide blade and preparation method thereof | |
CN102650053A (en) | Manufacturing method for CVD (Chemical Vapor Deposition) diamond/diamond-like composite coating tool with complex shape | |
CN109023243B (en) | A kind of super tough, low friction carbon-based tool coating and preparation method thereof | |
CN103382548A (en) | Preparation method of matrix surface nano compound Me-Si-N superhard coating | |
CN104141109B (en) | Method for in-situ synthesis of composite TiC-DLC coating on surface of titanium | |
CN101113516A (en) | A kind of preparation method of nanocomposite diamond-like carbon coating | |
CN108330459A (en) | A kind of application of symmetrical magnetron sputtering technique and its diamond-like coating | |
CN108396309A (en) | A kind of cubic boron nitride coated cutting tool and its preparation method | |
CN108385066A (en) | A kind of hydrogen-free metal doped diamond coating production and its product | |
CN108220916A (en) | A kind of preparation method of the GNCD-cBN nanocomposite laminated coating cutters with toughening mechanisms | |
CN114507858A (en) | Preparation method of long-life ultra-nano diamond periodic multilayer coating cutter | |
CN108441825A (en) | Doping metals diamond-like coating preparation method and its product | |
CN103317793B (en) | A kind of diamond-like ground mass nano-composite coating cutter and preparation method thereof | |
CN102785422B (en) | Vanadium nitride tool coating and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150401 Termination date: 20160708 |