CN103337547A - Photovoltaic cells with treated surfaces and related applications - Google Patents
Photovoltaic cells with treated surfaces and related applications Download PDFInfo
- Publication number
- CN103337547A CN103337547A CN2013102194702A CN201310219470A CN103337547A CN 103337547 A CN103337547 A CN 103337547A CN 2013102194702 A CN2013102194702 A CN 2013102194702A CN 201310219470 A CN201310219470 A CN 201310219470A CN 103337547 A CN103337547 A CN 103337547A
- Authority
- CN
- China
- Prior art keywords
- photovoltaic cell
- vmj
- cells
- cell
- junction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 30
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 45
- 229910052710 silicon Inorganic materials 0.000 claims description 45
- 239000010703 silicon Substances 0.000 claims description 45
- 239000004065 semiconductor Substances 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 33
- 230000004044 response Effects 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 15
- 238000001228 spectrum Methods 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 10
- 230000003595 spectral effect Effects 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 230000001737 promoting effect Effects 0.000 claims description 2
- 230000037396 body weight Effects 0.000 claims 2
- 239000004411 aluminium Substances 0.000 claims 1
- 239000006185 dispersion Substances 0.000 claims 1
- 230000006798 recombination Effects 0.000 abstract description 21
- 238000005215 recombination Methods 0.000 abstract description 21
- 229910052751 metal Inorganic materials 0.000 abstract description 15
- 239000002184 metal Substances 0.000 abstract description 15
- 239000000969 carrier Substances 0.000 abstract description 14
- 230000008901 benefit Effects 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 6
- 239000003989 dielectric material Substances 0.000 abstract description 5
- 238000000059 patterning Methods 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 360
- 235000012431 wafers Nutrition 0.000 description 27
- 238000005516 engineering process Methods 0.000 description 19
- 238000013461 design Methods 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 13
- 238000005755 formation reaction Methods 0.000 description 13
- 230000005611 electricity Effects 0.000 description 11
- 230000031700 light absorption Effects 0.000 description 10
- 230000004580 weight loss Effects 0.000 description 10
- 238000011161 development Methods 0.000 description 9
- 230000018109 developmental process Effects 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 6
- 239000006117 anti-reflective coating Substances 0.000 description 6
- 238000005094 computer simulation Methods 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 6
- 239000006023 eutectic alloy Substances 0.000 description 6
- 229910052732 germanium Inorganic materials 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 238000005476 soldering Methods 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 238000010420 art technique Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000001627 detrimental effect Effects 0.000 description 4
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000000116 mitigating effect Effects 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000013082 photovoltaic technology Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 229910021422 solar-grade silicon Inorganic materials 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 210000000746 body region Anatomy 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 206010064127 Solar lentigo Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 210000004692 intercellular junction Anatomy 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 231100000817 safety factor Toxicity 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/142—Photovoltaic cells having only PN homojunction potential barriers comprising multiple PN homojunctions, e.g. tandem cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/10—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising photovoltaic cells in arrays in a single semiconductor substrate, the photovoltaic cells having vertical junctions or V-groove junctions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
本申请是国际申请号为PCT/US2009/053576、中国申请号为200980139221.4的发明名称为“具有经处理表面的光伏电池及相关应用”的专利申请的分案申请,原申请的国际申请日是2009年08月12日。This application is a divisional application of a patent application with the international application number PCT/US2009/053576 and the Chinese application number 200980139221.4 entitled "Photovoltaic cells with treated surfaces and related applications". The international filing date of the original application is 2009 August 12th.
技术领域technical field
本申请案请求对以下申请案的权益:在2008年8月15日提出申请且标题为“具有经图案化触点的太阳能电池(SOLAR CELL WITH PATTERNED CONTACTS)”的第61/089,389号美国临时申请案,其请求对于2009年8月5日提出申请且标题为“具有经图案化触点的光伏电池(PHOTOVOLTAIC CELL WITHPATTERNED CONTACTS)”的第12/535,952号美国专利申请案的优先权;在2009年8月6日提出申请且标题为“具有纹理化表面的垂直多结电池(VERTICAL MULTI JUNCTION CELL WITH TEXTURED SURFACE)”的第12/536,982号美国专利申请案,其请求对于2008年8月14日提出申请且标题为“具有纹理化表面的垂直多结电池(VERTICAL MULTIJUNCTION CELL WITH TEXTURED SURFACE)”的第61/088,921号美国临时申请案的优先权;在2009年8月6日提出申请且标题为“具有缓冲带的光伏电池(PHOTOVOLTAICCELL WITH BUFFER ZONE)”的第12/536,987号美国专利申请案,其请求对于2008年8月14日提出申请且标题为“具有缓冲带的太阳能电池(SOLAR CELL WITH BUFFER ZONE)”的第61/088,936号美国临时申请案的优先权;及在2009年8月6日提出申请且标题为“经由垂直多结光伏电池的电解(ELECTROLYSIS VIA VERTICAL MULTI-JUNCTION PHOTOVOLTAIC CELL)”的第12/536,992号美国专利申请案,其请求对于2008年8月28日提出申请且标题为“经由垂直多结太阳能电池的电解(ELECTROLYSIS VIA VERTICAL MULTI-JUNCTION SOLAR CELL)”的第61/092,531号美国临时申请案的优先权。上文参考的各申请案的全文以引用方式并入本文中。This application claims benefit to U.S. Provisional Application No. 61/089,389, filed August 15, 2008, and entitled "SOLAR CELL WITH PATTERNED CONTACTS" claiming priority to U.S. Patent Application No. 12/535,952, filed August 5, 2009, and entitled "PHOTOVOLTAIC CELL WITH PATTERNED CONTACTS"; in 2009 U.S. Patent Application No. 12/536,982, filed August 6, and entitled "VERTICAL MULTI JUNCTION CELL WITH TEXTURED SURFACE," which was filed on August 14, 2008 Priority to U.S. Provisional Application No. 61/088,921, filed August 6, 2009, and titled "VERTICAL MULTIJUNCTION CELL WITH TEXTURED SURFACE" US Patent Application No. 12/536,987 for "PHOTOVOLTAIC CELL WITH BUFFER ZONE," filed August 14, 2008, and entitled "SOLAR CELL WITH BUFFER ZONE 61/088,936, filed on August 6, 2009 and entitled "ELECTROLYSIS VIA VERTICAL MULTI-JUNCTION PHOTOVOLTAIC CELL" US Patent Application No. 12/536,992, which petitions for 61/092,531 filed August 28, 2008 and entitled "ELECTROLYSIS VIA VERTICAL MULTI-JUNCTION SOLAR CELL" Priority of U.S. Provisional Application No. Each of the applications referenced above is incorporated herein by reference in its entirety.
背景技术Background technique
化石能源的有限供应及对其的增加的需求及相关联全球环境破坏已驱使全球努力使利用能源及相关技术多元化。一种此类资源为太阳能,其采用光伏(PV)技术来将光转换为电。此外,太阳能可用于热量产生(例如,在太阳能炉、蒸汽产生器等中)。太阳能技术通常实施于一系列PV电池或太阳能电池或其面板中,其接收日光且将日光转换为电,电随后可被传递到电力网中。已在太阳能面板的设计及生产中达成重大进步,其已有效地增加效率同时降低其制造成本。随着开发出效率更高的太阳能电池,电池的大小减小,从而导致采用太阳能面板来提供替代逐渐减少且高度需求的非再生源的具竞争性可再生能量的实际性增加。为此,可部署像太阳能聚集器等太阳能收集系统以将太阳能转换为可被传递到电力网的电且也收获热量。除开发太阳能聚集器技术以外,也已开始利用太阳能聚集器来开发太阳能电池。The limited supply and increasing demand for fossil energy sources and the associated global environmental damage have driven global efforts to diversify the use of energy sources and related technologies. One such resource is solar energy, which employs photovoltaic (PV) technology to convert light into electricity. In addition, solar energy can be used for heat generation (eg, in solar furnaces, steam generators, etc.). Solar energy technology is typically implemented in a series of PV cells or solar cells or panels thereof, which receive sunlight and convert it into electricity, which can then be delivered into the power grid. Significant advances have been made in the design and production of solar panels that have effectively increased efficiency while reducing their manufacturing costs. As more efficient solar cells are developed, the size of the cells decreases, leading to a substantial increase in the adoption of solar panels to provide competing renewable energy to replace dwindling and highly demanded non-renewable sources. To this end, solar energy harvesting systems like solar concentrators can be deployed to convert solar energy into electricity that can be delivered to the power grid and also harvest heat. In addition to the development of solar concentrator technology, the development of solar cells using solar concentrators has also begun.
称作垂直多结VMJ太阳能电池的高强度太阳能电池技术是边缘照射且端上具有电触点的小型垂直结电池单元的整体接合的串联连接阵列。所述独特VMJ太阳能电池设计可固有地提供高压低串联电阻输出特性,从而使其理想地适于高强度光伏聚集器中的高效性能。VMJ太阳能电池的另一关键特征是其导致低制造成本的设计简单性。A high-intensity solar cell technology known as vertical multi-junction VMJ solar cells is an integrally bonded series-connected array of small vertical junction cells that are edge-illuminated and have electrical contacts on the ends. The unique VMJ solar cell design can inherently provide high voltage low series resistance output characteristics, making it ideally suited for high efficiency performance in high intensity photovoltaic concentrators. Another key feature of VMJ solar cells is their design simplicity leading to low manufacturing costs.
可根据在100到2500个太阳聚光强度的范围内在具有40个串联连接的结的实验性VMJ太阳能电池上取得的性能数据证明VMJ太阳能电池的效力,其中在25伏下输出功率密度超过400,000瓦/m2,其效率接近20%。应了解,VMJ太阳能电池中的上述性能通过低制造成本及低制造复杂性实现。相信此类方面是使得光伏聚集器系统在解决全球能量问题是显著地成本更加高效且可行所需要的切实可行技术性能及经济效率的所需助推器。此外,电池效率的任何增加(例如,输出更多瓦)会直接减小聚集器系统大小(例如,与材料账单相关联的较低成本),从而产生较低$/瓦的光伏电力成本。The efficacy of VMJ solar cells can be demonstrated from performance data obtained on experimental VMJ solar cells with 40 series-connected junctions in the range of 100 to 2500 suns of concentration, with output power densities in excess of 400,000 watts at 25 volts /m 2 , its efficiency is close to 20%. It will be appreciated that the above properties in VMJ solar cells are achieved by low manufacturing cost and complexity. It is believed that such aspects are the required boosters of the practical technical performance and economic efficiency needed to make photovoltaic concentrator systems significantly more cost-effective and feasible in solving global energy problems. Furthermore, any increase in cell efficiency (eg, outputting more watts) directly reduces concentrator system size (eg, lower costs associated with bill of materials), resulting in a lower $/watt cost of photovoltaic electricity.
应注意,较低$/瓦成本实质上与太阳能电池技术采用及市场渗透性相关,因为全球能量需求正稳定增加(不仅在新兴国家而且也在发达国家),同时传统化石燃料成本正逐步升高。此外,存在对所有相关联问题(例如,环境污染、全球变暖及与对外来燃料供应的依赖性联系在一起的国家安全及经济危险)的广泛增加的关注。与增长的公共意识相关的这些环境、经济及安全因素正驱使对找到更加成本高效且环境友好型可再生能量解决方案的浓厚兴趣。在所有可用可再生能源中,太阳能具有以高效且持续的方式满足需求的大致最大潜力。事实上,地球每几分钟的周期接收到比人类一整年可从大致所有其它资源消耗的能量多的日光形式的能量。It should be noted that lower $/W cost is substantially related to solar cell technology adoption and market penetration as global energy demand is steadily increasing (not only in emerging countries but also in developed countries) while traditional fossil fuel costs are escalating . In addition, there are broadly increased concerns over all associated issues such as environmental pollution, global warming, and national security and economic dangers associated with dependence on foreign fuel supplies. These environmental, economic and safety factors associated with increasing public awareness are driving strong interest in finding more cost-effective and environmentally friendly renewable energy solutions. Of all available renewable energy sources, solar energy has roughly the greatest potential to meet demand in an efficient and sustainable manner. In fact, the earth receives more energy in the form of sunlight every few minutes' cycle than humans can consume from roughly all other sources in an entire year.
即使光伏电力被广泛地视为理想可再生能量技术,但其相关联成本可为采用及市场渗透性的主要障碍。在获得市场份额及采用之前,基于光伏的电力需要变得比传统电源(包括良好地发展、用于消费者中且大致成本高效的燃煤电力)具成本竞争性。此外,对低成本电力的可用性在所有全球经济体中被视为根本性的;因此可需要光伏电力系统的太瓦(例如,数千十亿瓦)。市场研究显示所安装的光伏电力系统必须降到$3/瓦的基准成本才能在大效用规模应用中在无补贴的情况下称得上具成本竞争性。由于所安装光伏系统成本当前超过$6/瓦,因此仍需要实质成本改善。Even though photovoltaic power is widely regarded as an ideal renewable energy technology, its associated costs can be a major barrier to adoption and market penetration. Before gaining market share and adoption, photovoltaic-based electricity needs to become cost-competitive with traditional power sources, including coal-fired electricity, which is well developed, used in consumers, and generally cost-effective. Furthermore, the availability of low-cost electricity is considered essential in all global economies; therefore terawatts (eg, tens of gigawatts) of photovoltaic power systems may be required. Market research shows that installed PV power systems must fall to a baseline cost of $3/W to be considered cost-competitive without subsidies in large utility-scale applications. With installed photovoltaic system costs currently exceeding $6/watt, substantial cost improvements are still needed.
在过去几十年间,尝试达成较低$/瓦的性能是光伏技术中多数研究及开发的首要目标。尽管所述行业花费数十亿美元来追求各种技术(目标是使光伏能量更加成本高效),但现有光伏行业仍需要相当大补贴来支持销售,此可为市场发展及行业发展的不利状况的指标。Trying to achieve lower $/Watt performance has been the primary goal of much research and development in photovoltaic technology over the past few decades. Although the industry is spending billions of dollars pursuing various technologies (with the goal of making photovoltaic energy more cost-efficient), the existing photovoltaic industry still requires considerable subsidies to support sales, which can be a disadvantage for market development and industry development index of.
当前,硅太阳能电池(其保持与20世纪60年代的最初发现及发展时大致相同)支配~93%的光伏市场。力图降低成本的现有光伏行业深深依赖于低成本废料级半导体硅的可用性来制造常规太阳能电池。应注意,此种尾料级硅(经常称作太阳能级硅)主要是从晶片生产剩下的铸锭头及尾及要求较高质量的甲级硅晶片的半导体装置制造商拒绝的不合格材料。尽管光伏销售额快速增加,在过去十年中每年增长~40%(其中2007年产量估计为3.8十亿瓦(GW),但销售额现在受到太阳能级硅的短缺及较高价格的阻碍。尽管甲级硅可用,但其不被视为可选项,因为其使制造成本进一步增加若干倍。Currently, silicon solar cells (which remain about the same as when they were originally discovered and developed in the 1960s) dominate -93% of the photovoltaic market. The existing photovoltaic industry, which seeks to reduce costs, relies heavily on the availability of low-cost scrap-grade semiconductor silicon to manufacture conventional solar cells. It should be noted that this tailings grade silicon (often referred to as solar grade silicon) is primarily an ingot head and tail leftover from wafer production and rejected material by semiconductor device manufacturers requiring higher quality Class A silicon wafers . Despite rapid growth in PV sales, growing ~40% annually over the past decade (with production estimated at 3.8 gigawatts (GW) in 2007), sales are now hampered by shortages and higher prices of solar-grade silicon. Despite Grade A silicon is available, but it is not considered an option as it further increases the manufacturing cost several times.
对于典型常规太阳能电池,超过一半制造成本是用于生产用于太阳能电池的晶片的原始半导体多晶硅。因此,典型14%效率的太阳能电池额定为0.014W/cm2且在任何额外制造之前具有高于$3/瓦(或$0.042/cm2)的硅晶片成本。因此,现有光伏行业必须提出并解决仅开始硅材料成本超过大规模应用的基准价格效用需要的事实。作为对比方面,生产在面积基础上以超过$100/cm2销售的微处理器芯片的半导体制造商能够负担与利用甲级硅晶片相关联的成本。For a typical conventional solar cell, more than half of the manufacturing cost is the raw semiconductor polysilicon used to produce the wafers for the solar cell. Thus, a typical 14% efficient solar cell is rated at 0.014 W/cm 2 and has a silicon wafer cost above $3/watt (or $0.042/cm 2 ) before any additional fabrication. Therefore, the existing photovoltaic industry must address and address the fact that the cost of silicon material only to begin with exceeds the benchmark price utility needs for large-scale applications. In contrast, semiconductor manufacturers producing microprocessor chips that sell at over $100/ cm2 on an area basis can afford the costs associated with utilizing Grade A silicon wafers.
太阳能级硅的短缺及光伏行业不能够达成重要基准成本连同开发用于太空应用的新颖更高效三结太阳能电池的出现最近已重新产生对光伏聚集器的大量兴趣。光伏聚集器的明显优点为,由于使用大面积不昂贵材料(玻璃镜面反射器或塑料透镜)来将日光聚集于面积小得多的昂贵太阳能电池上而产生的潜在成本效益,从而使用便宜材料来取代昂贵材料。设计用于1000个太阳聚光强度的光伏聚集器会将昂贵半导体硅需要显著降低~99.9%,此意指1000MW的VMJ太阳能电池使用1MW的常规太阳能电池当前所需要的相同量昂贵半导体硅是可能的。实用主义地,此被视为缓和任一硅短缺问题的实际方法。The shortage of solar-grade silicon and the photovoltaic industry's inability to meet important cost benchmarks, together with the advent of novel, more efficient triple-junction solar cells being developed for space applications, has recently revived a great deal of interest in photovoltaic concentrators. The obvious advantage of photovoltaic concentrators is the potential cost-effectiveness of using large areas of inexpensive materials (glass mirror reflectors or plastic lenses) to concentrate sunlight on expensive solar cells of much smaller areas, thereby using inexpensive materials to Replace expensive materials. A photovoltaic concentrator designed for 1000 sun concentration intensity would significantly reduce the need for expensive semiconducting silicon by ~99.9%, meaning that 1000MW of VMJ solar cells is possible using the same amount of expensive semiconducting silicon currently required for 1MW of conventional solar cells of. Pragmatically, this is seen as a practical way to alleviate any silicon shortage problems.
对太阳能聚集器的相当多工作多数聚焦于开发用于高强度的硅聚集器太阳能电池设计;虽然在20世纪70年代能量危机期间已做了大量卓有成效的开发工作,但当时其结果在成本效益上表现中庸而不能令人满意。进行了对最初以用于以500个太阳聚光的强度操作的聚集器系统的硅电池为目标的研究及开发;然而,当在尝试克服正在研究的太阳能电池设计中的串联电阻问题时遇到未解决的开发困难时所述目标降低到250个太阳聚光。举例来说,聚集器太阳能电池中的高串联电阻损失确实曾被视为常规VMJ太阳能电池技术已提出且已解决的主要问题。应注意,针对聚集器技术开发的相当大部分太阳能电池制造起来相当复杂及昂贵,其通过6或7个高温步骤(>1000℃)及6或7个光刻遮掩步骤。此复杂性归因于最小化基本上将这些设计中的最好设计的最大强度操作限制为不高于250个太阳聚光的串联电阻损失的设计尝试。此种复杂性及相关联成本阻碍聚集器技术及相关联太阳能电池技术的实质发展,而促进像薄膜太阳能电池技术等替代技术的发展。Considerable work on solar concentrators has mostly focused on developing silicon concentrator solar cell designs for high intensity; although a great deal of fruitful development work had been done during the energy crisis of the 1970s, the results were cost-effective at the time Performance is mediocre and unsatisfactory. Research and development was carried out on silicon cells originally targeted for use in concentrator systems operating at 500 sun concentration intensities; however, when trying to overcome the series resistance problem in the solar cell design under study encountered Unresolved development difficulty when said target was lowered to 250 sunspots. For example, high series resistance losses in concentrator solar cells were indeed seen as a major problem addressed and solved by conventional VMJ solar cell technology. It should be noted that a considerable majority of solar cells developed for concentrator technology are rather complex and expensive to manufacture through 6 or 7 high temperature steps (>1000°C) and 6 or 7 photolithographic masking steps. This complexity is due to design attempts to minimize the series resistance losses that essentially limit the maximum intensity operation of the best of these designs to no higher than 250 suns of concentration. Such complexity and associated costs hinder substantial development of concentrator technology and associated solar cell technology, while promoting the development of alternative technologies like thin film solar cell technology.
垂直多结VMJ太阳能电池技术大致不同于常规聚集器太阳能电池。所述VMJ太阳能电池技术相对于其它技术提供至少两个优点:(1)其不需要光刻,及(2)可采用大于1000℃的温度下的单个高温扩散步骤来形成两个结。因此,较低制造成本是理所当然的。此外,可以高强度操作VMJ太阳能电池;例如以2500个太阳聚光操作。从此种操作显而易见,串联电阻在VMJ太阳能电池设计中并不成问题;甚至在强度高于常规常识的数量级时也不成问题,即便这在经济上是不可行的。此外,2500个太阳聚光下的VMJ电池单元的电流密度通常接近70A/cm2,此为可对基于其它技术的多数太阳能电池大致有害的辐射等级。Vertical multi-junction VMJ solar cell technology differs substantially from conventional concentrator solar cells. The VMJ solar cell technology offers at least two advantages over other technologies: (1) it does not require photolithography, and (2) a single high temperature diffusion step at temperatures greater than 1000°C can be used to form both junctions. Therefore, lower manufacturing costs are taken for granted. Furthermore, VMJ solar cells can be operated at high intensity; for example at 2500 suns concentrated. It is evident from this operation that series resistance is not a problem in VMJ solar cell design; not even at intensities orders of magnitude higher than conventional wisdom, even if this is not economically feasible. Furthermore, the current density of a VMJ cell at 2500 suns concentration is typically close to 70 A/cm 2 , a level of radiation that can be roughly harmful to most solar cells based on other technologies.
如上所述,重新对光伏聚集器的兴趣主要是由于三结太阳能电池通过III到V材料(包含镓(Ga)、磷(P)、砷化物(As)、铟(In)及锗(Ge))作出的发展。三结电池可使用20到30个串联分层于锗晶片上的不同半导体:生长于金属有机化学气相沉积(MOCVD)反应器中的经掺杂GaInP2及GaAs层,其中每一类型的半导体将具有致使其以某一色彩最有效地吸收日光的特性带隙能量。所述半导体层经精心选择以吸收接近整个太阳光谱,从而从尽可能多的日光发电。这些多结装置是到目前为止最高效的太阳能电池,其在适度太阳能聚集及实验室条件下达到40.7%效率高的记录。但由于其制造起来较昂贵,因此其需要应用于光伏聚集器中。As mentioned above, the renewed interest in photovoltaic concentrators is mainly due to triple-junction solar cells through III to V materials including gallium (Ga), phosphorus (P), arsenide (As), indium (In) and germanium (Ge) ) made for development. A triple-junction cell can use 20 to 30 different semiconductors layered in series on a germanium wafer: doped GaInP2 and GaAs layers grown in a metal-organic chemical vapor deposition (MOCVD) reactor, where each type of semiconductor will Has a characteristic bandgap energy that causes it to absorb sunlight most efficiently in a certain color. The semiconductor layers are carefully selected to absorb nearly the entire solar spectrum, generating electricity from as much sunlight as possible. These multijunction devices are the most efficient solar cells to date, achieving a record high efficiency of 40.7% under moderate solar concentration and laboratory conditions. But since it is expensive to manufacture, it needs to be applied in photovoltaic concentrators.
然而,对III到V太阳能电池材料的需求及其成本正快速增加。作为实例,在12个月(12/2006到12/2007)中,纯镓的成本从约$350/Kg增加到$680/kg且锗价格大致增加到$1000到$1200/Kg。在2002年价格为$94/Kg的铟在2007年增加到接近$1000/Kg。此外,预计对铟的需求随着若干新公司在2007年开始的对薄膜CIGS(CuInGaSe)太阳能电池的大规模制造而继续增加。此外,铟是广泛用于形成用于液晶显示器及大平板监视器的铟锡氧化物形式的透明电涂层的稀有元素。实际地,这些材料似乎并非解决主要全球能量问题提供太瓦低成本电力所需要的可行长期光伏(PV)解决方案。However, the demand for III to V solar cell materials and their cost are rapidly increasing. As an example, in 12 months (12/2006 to 12/2007), the cost of pure gallium increased from about $350/Kg to $680/kg and the price of germanium increased roughly to $1000 to $1200/Kg. Indium, which was priced at $94/Kg in 2002, increased to nearly $1000/Kg in 2007. In addition, demand for indium is expected to continue to increase with the start of large-scale fabrication of thin-film CIGS (CuInGaSe) solar cells in 2007 by several new companies. Furthermore, indium is a rare element widely used to form transparent electrical coatings in the form of indium tin oxide for liquid crystal displays and large flat panel monitors. Practically speaking, these materials do not appear to be viable long-term photovoltaic (PV) solutions needed to provide terawatts of low-cost electricity to solve major global energy problems.
尽管面积为0.26685cm2的III到V半导体太阳能电池可产生2.6瓦的功率(或约10W/cm2),且已估计此种技术可最终以8到10分/kWh产生电,但大致类似于来自常规源的电的价格,可需要进一步分析来支持此种估计。然而,VMJ太阳能电池使用成本最低的半导体材料通过低成本制造在2500个太阳聚光的强度下显示超过40W/cm2的输出功率。(此输出功率超过400,000W/m2。)除基于先进材料的复杂PV技术以外,基于Si的太阳能电池技术在光伏元件及应用中保持大致支配地位。此外,如果全球需要出现,在广泛全球应用的可预知的未来中硅是将能够供应太瓦光伏电力的具有现有行业基础的唯一半导体材料。Although a III to V semiconductor solar cell with an area of 0.26685 cm2 can produce 2.6 watts (or about 10W/ cm2 ), and it has been estimated that this technology can eventually generate electricity at 8 to 10 fen/kWh, it is roughly similar to The price of electricity from conventional sources may require further analysis to support such estimates. However, VMJ solar cells exhibit output powers exceeding 40 W/cm 2 at an intensity of 2500 suns concentrated by low-cost fabrication using the lowest-cost semiconductor materials. (This output exceeds 400,000 W/ m2 .) In addition to complex PV technologies based on advanced materials, Si-based solar cell technologies remain largely dominant in photovoltaic elements and applications. Furthermore, silicon is the only semiconductor material with an existing industry base that will be able to supply terawatts of photovoltaic power in the foreseeable future of widespread global application if global demand arises.
发明内容Contents of the invention
下文呈现简化概要以提供对本文所述一些方面的基本理解。此概要并非详尽概述,也非既定识别关键/紧要元件或刻画本文所述各种方面的范围。其唯一目的是以简化形式呈现一些概念来作为稍后呈现的更详细说明的前序。A simplified summary is presented below to provide a basic understanding of some aspects described herein. This summary is not an exhaustive overview, nor is it intended to identify key/critical elements or to delineate the scope of the various aspects described herein. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
本发明提供基于半导体的光伏电池及减轻光生载子的重组损失的工艺。在一方面中,为降低重组损失,用减小金属触点与作用光伏元件之间的接触的电介质材料图案来涂覆所述作用PV元件中的扩散掺杂层。可利用各种图案,且可用一种或一种以上电介质来涂覆所述PV元件的一个或一个以上表面。可通过经图案化的PV元件或电池单元来产生垂直多结VMJ太阳能电池。经图案化的PV元件可增加VMJ太阳能电池的串联电阻,且图案化所述PV元件中的一个或一个以上表面可给用于产生VMJ太阳能电池的工艺添加复杂性;此外,降低扩散掺杂层处的载子损失可增加太阳能电池的效率且因此提供超过增加的制造复杂性的PV操作优点。还提供实现基于半导体的PV电池的制作的系统。The present invention provides semiconductor-based photovoltaic cells and processes for mitigating recombination losses of photogenerated carriers. In one aspect, to reduce recombination losses, the diffusely doped layer in the active PV element is coated with a pattern of dielectric material that reduces contact between the metal contacts and the active PV element. Various patterns can be utilized, and one or more surfaces of the PV element can be coated with one or more dielectrics. Vertical multi-junction VMJ solar cells can be created from patterned PV elements or cells. Patterned PV elements can increase the series resistance of a VMJ solar cell, and patterning one or more surfaces in the PV element can add complexity to the process used to create a VMJ solar cell; furthermore, reducing the diffusion doping layer Loss of carriers at can increase the efficiency of the solar cell and thus provide PV operating advantages that outweigh the increased manufacturing complexity. Also provided are systems enabling the fabrication of semiconductor-based PV cells.
可在任一类光伏电池(例如,太阳能电池、热光伏电池或通过光子的激光源激发的电池)中利用本文所述方面或特征及相关联优点,例如降低光生载子的重组损失。另外,也可将本发明的方面实施于其它类能量转换电池(例如,β伏打电池(betavoltaic cell))中。Aspects or features described herein and associated advantages, such as reduced recombination losses of photogenerated carriers, can be utilized in any type of photovoltaic cell (eg, solar cells, thermal photovoltaic cells, or cells excited by a laser source of photons). Additionally, aspects of the invention may also be implemented in other types of energy conversion cells (eg, betavoltaic cells).
本发明经由垂直多结VMJ光伏电池的光接收表面上的纹理化来减轻所述垂直多结VMJ光伏电池中的体重组损失。所述纹理可呈腔形凹槽(如“V”形横截面配置、“U”形横截面配置等)的形式,其中包括此种横截面配置的平面大致垂直于堆叠形成VMJ光伏电池的电池单元的方向。在一个方面中,包括大致重复横截面(例如,横截凹槽在其上延伸的方向)的平面大致垂直于堆叠所述电池单元的方向。此布置促进将折射光引导离开VMJ光伏电池的p+及n+扩散掺杂区,同时在减小的体积中产生所需载子。相应地,入射光可在包括所述横截面配置且大致垂直于堆叠所述电池单元的所述方向的平面中折射。The present invention mitigates bulk weight loss in vertical multi-junction VMJ photovoltaic cells via texturing on the light receiving surface of the vertical multi-junction VMJ photovoltaic cells. The texture may be in the form of cavity-shaped grooves (e.g., "V" shaped cross-sectional configuration, "U" shaped cross-sectional configuration, etc.), wherein the plane comprising such cross-sectional configuration is approximately perpendicular to the cells stacked to form a VMJ photovoltaic cell The orientation of the unit. In one aspect, a plane comprising a substantially repeating cross-section (eg, transverse to a direction in which a groove extends) is substantially perpendicular to a direction in which the battery cells are stacked. This arrangement facilitates directing refracted light away from the p+ and n+ diffusely doped regions of the VMJ photovoltaic cell while generating the desired carriers in a reduced volume. Accordingly, incident light may be refracted in a plane including the cross-sectional configuration and substantially perpendicular to the direction in which the battery cells are stacked.
应了解,本发明的VMJ光伏电池的纹理化在PN结的定向及/或与入射光的交互两个方面上与用于常规硅光伏电池纹理的现有技术不同。举例来说,常规硅光伏电池通常经纹理化以阻止光的穿透,使得更接近于PN结(水平定位)吸收更多较长波长以实现更好的载子电流收集,且从而减轻对太阳光谱中较长波长的差光谱响应。相比的下,此在本发明的包括垂直结且因此已经提供对太阳光谱中较长波长的增强光谱响应的VMJ光伏电池中不需要。It will be appreciated that the texturing of VMJ photovoltaic cells of the present invention differs from prior art techniques for conventional silicon photovoltaic cell texturing in both the orientation of the PN junction and/or interaction with incident light. For example, conventional silicon photovoltaic cells are usually textured to block the penetration of light so that more of the longer wavelengths are absorbed closer to the PN junction (horizontally positioned) for better carrier current collection and thereby lessen the impact on the sun. The differential spectral response at longer wavelengths in the spectrum. In contrast, this is not required in the VMJ photovoltaic cells of the present invention which include vertical junctions and thus already provide an enhanced spectral response to longer wavelengths in the solar spectrum.
在特定方面中,实施本发明的凹槽(例如,V凹槽)的结果是通过减小体积来减轻体重组损失-(与使用纹理化的常规太阳能表面相反,此降低反射,或致使经反射或折射的光变得更接近于结)。特定来说,所述VMJ光伏电池已展现针对短波长及长波长两者的更好的载子电流收集,其中所述短波长响应是由于消除顶表面处高度掺杂的水平结,且所述长波长响应是由于垂直结的增强的收集效率。)作为另一实例,如果替代本发明的腔形凹槽纹理,将其它纹理(例如,随机、棱锥、穹形及类似凸起配置)实施为VMJ光伏电池的一部分,那么入射光变为在所有方向上折射,从而在p+及n+扩散区中产生光吸收且因此产生降低的效率。In particular aspects, the result of implementing the inventive grooves (e.g., V-grooves) is to mitigate weight weight loss by reducing volume—(as opposed to using textured conventional solar surfaces, which reduce reflection, or cause reflected or refracted light becomes closer to the knot). In particular, the VMJ photovoltaic cells have exhibited better carrier current collection for both short and long wavelengths, wherein the short wavelength response is due to the elimination of highly doped horizontal junctions at the top surface, and the The long wavelength response is due to the enhanced collection efficiency of the vertical junction. ) As another example, if instead of the cavity-shaped groove texture of the present invention, other textures (e.g., random, pyramidal, domed, and similar raised configurations) are implemented as part of a VMJ photovoltaic cell, then the incident light becomes direction, resulting in light absorption in the p+ and n+ diffused regions and thus reduced efficiency.
根据相关方法,最初可通过堆叠多个电池单元来形成VMJ光伏电池,其中每一电池本身可包括堆叠在一起的多个平行半导体衬底或层。每一层可由形成PN结的杂质掺杂半导体材料构成,且进一步包括增强朝向此种PN结的少数载子移动的“内部(built–in)”静电漂移场。随后,集成多个此类电池单元以形成VMJ光伏电池。接下来,在所述VMJ光伏电池的接收光的表面上,可形成腔形凹槽(例如,经由划片锯),其中包括所述横截面配置的平面大致垂直于堆叠形成所述VMJ光伏电池的所述电池单元的方向。相应地,入射光可在包括所述重复横截面配置且大致垂直于堆叠所述电池单元的所述方向的平面中折射(例如,从而针对给定深度供应较高吸收。)此外,可结合本发明的各种方面来实施具有反射涂层的各种后表面及侧表面。According to a related approach, a VMJ photovoltaic cell may initially be formed by stacking multiple battery cells, where each cell may itself include multiple parallel semiconductor substrates or layers stacked together. Each layer may consist of an impurity-doped semiconductor material forming a PN junction, and further includes a "built-in" electrostatic drift field that enhances movement of minority carriers towards such a PN junction. Subsequently, multiple such cells are integrated to form a VMJ photovoltaic cell. Next, on the light-receiving surface of the VMJ photovoltaic cell, a cavity-shaped groove can be formed (eg, via a dicing saw), wherein the plane comprising the cross-sectional configuration is approximately perpendicular to the stack forming the VMJ photovoltaic cell orientation of the battery cell. Accordingly, incident light may be refracted in a plane comprising said repeated cross-sectional configuration and generally perpendicular to said direction of stacking said battery cells (eg, thereby providing higher absorption for a given depth.) Furthermore, the present invention may be combined Various aspects of the invention are implemented with various rear and side surfaces having reflective coatings.
在相关方面中,本发明的凹槽表面进一步改善载子收集,同时降低体重组损失。举例来说,可垂直于所述p+nn+(或n+pp+)电池单元来定位所述V凹槽,以增加太阳光谱中较长波长的光学吸收路径且使得光吸收能够被大致局限于p+nn+电池单元的n型体区内。此外,此类V凹槽可具有经施加以改善电池中的入射光吸收的抗反射涂层。In a related aspect, the grooved surfaces of the present invention further improve carrier collection while reducing bulk weight loss. For example, the V-groove can be positioned perpendicular to the p+nn+ (or n+pp+) cell to increase the optical absorption path for longer wavelengths in the solar spectrum and enable light absorption to be roughly localized to p +nn+ in the n-type body region of the battery cell. Additionally, such V-grooves may have anti-reflective coatings applied to improve incident light absorption in the cell.
在相关方面中,本发明经由垂直多结VMJ光伏电池的光接收表面上的纹理化来减轻所述垂直多结VMJ光伏电池中的体重组损失。所述纹理可呈腔形凹槽(如“V”形横截面配置、“U”形横截面配置等)的形式,其中包括此种横截面配置的平面大致垂直于堆叠形成VMJ光伏电池的电池单元的方向。在一个方面中,包括大致重复横截面(例如,横截凹槽在其上延伸的方向)的平面大致垂直于堆叠所述电池单元的所述方向。此布置促进将折射光引导离开VMJ光伏电池的p+及n+扩散掺杂区,同时在减小的体积中产生所需载子。相应地,入射光可在包括所述横截面配置且大致垂直于堆叠所述电池单元的所述方向的平面中折射。In a related aspect, the present invention mitigates bulk weight loss in vertical multi-junction VMJ photovoltaic cells via texturing on the light receiving surface of the vertical multi-junction VMJ photovoltaic cells. The texture may be in the form of cavity-shaped grooves (e.g., "V" shaped cross-sectional configuration, "U" shaped cross-sectional configuration, etc.), wherein the plane comprising such cross-sectional configuration is approximately perpendicular to the cells stacked to form a VMJ photovoltaic cell The orientation of the unit. In one aspect, a plane comprising a substantially repeating cross-section (eg, transverse to a direction in which a groove extends) is substantially perpendicular to said direction of stacking said battery cells. This arrangement facilitates directing refracted light away from the p+ and n+ diffusely doped regions of the VMJ photovoltaic cell while generating the desired carriers in a reduced volume. Accordingly, incident light may be refracted in a plane including the cross-sectional configuration and substantially perpendicular to the direction in which the battery cells are stacked.
应了解,本发明的VMJ光伏电池的纹理化在PN结的定向及/或与入射光的交互两个方面上与用于常规硅光伏电池纹理的现有技术不同。举例来说,常规硅光伏电池通常经纹理化以阻止光的穿透,使得更接近于PN结(水平定位)吸收更多较长波长以实现更好的载子电流收集,且从而减轻对太阳光谱中较长波长的差光谱响应。相比的下,此在本发明的包括垂直结且因此已经提供对太阳光谱中较长波长的增强光谱响应的VMJ光伏电池中不需要。It will be appreciated that the texturing of VMJ photovoltaic cells of the present invention differs from prior art techniques for conventional silicon photovoltaic cell texturing in both the orientation of the PN junction and/or interaction with incident light. For example, conventional silicon photovoltaic cells are usually textured to block the penetration of light so that more of the longer wavelengths are absorbed closer to the PN junction (horizontally positioned) for better carrier current collection and thereby lessen the impact on the sun. The differential spectral response at longer wavelengths in the spectrum. In contrast, this is not required in the VMJ photovoltaic cells of the present invention which include vertical junctions and thus already provide an enhanced spectral response to longer wavelengths in the solar spectrum.
在特定方面中,实施本发明的凹槽(例如,V凹槽)的结果是通过减小体积来减轻体重组损失-(与使用纹理化的常规太阳能表面相反,此降低反射,或致使经反射或折射的光变得更接近于结)。特定来说,所述VMJ光伏电池已展现针对短波长及长波长两者的更好的载子电流收集,其中所述短波长响应是由于消除顶表面处高度掺杂的水平结,且所述长波长响应是由于垂直结的增强的收集效率。)作为另一实例,如果替代本发明的腔形凹槽纹理,将其它纹理(例如,随机、棱锥、穹形及类似凸起配置)实施为VMJ光伏电池的一部分,那么入射光变为在所有方向上折射,从而在p+及n+扩散区中产生光吸收且因此产生降低的效率。In particular aspects, the result of implementing the inventive grooves (e.g., V-grooves) is to mitigate weight weight loss by reducing volume—(as opposed to using textured conventional solar surfaces, which reduce reflection, or cause reflected or refracted light becomes closer to the knot). In particular, the VMJ photovoltaic cells have exhibited better carrier current collection for both short and long wavelengths, wherein the short wavelength response is due to the elimination of highly doped horizontal junctions at the top surface, and the The long wavelength response is due to the enhanced collection efficiency of the vertical junction. ) As another example, if instead of the cavity-shaped groove texture of the present invention, other textures (e.g., random, pyramidal, domed, and similar raised configurations) are implemented as part of a VMJ photovoltaic cell, then the incident light becomes direction, resulting in light absorption in the p+ and n+ diffused regions and thus reduced efficiency.
根据相关方法,最初可通过堆叠多个电池单元来形成VMJ光伏电池,其中每一电池本身可包括堆叠在一起的多个平行半导体衬底或层。每一层可由形成PN结的杂质掺杂半导体材料构成,且进一步包括增强朝向此种PN结的少数载子移动的“内部”静电漂移场。随后,集成多个此类电池单元以形成VMJ光伏电池。接下来,在所述VMJ光伏电池的接收光的表面上,可形成腔形凹槽(例如,经由划片锯),其中包括所述横截面配置的平面大致垂直于堆叠形成所述VMJ光伏电池的所述电池单元的方向。相应地,入射光可在包括所述重复横截面配置且大致垂直于堆叠所述电池单元的所述方向的平面中折射(例如,从而针对给定深度供应较高吸收。)此外,可结合本发明的各种方面来实施具有反射涂层的各种后表面及侧表面。According to a related approach, a VMJ photovoltaic cell may initially be formed by stacking multiple battery cells, where each cell may itself include multiple parallel semiconductor substrates or layers stacked together. Each layer may consist of an impurity-doped semiconductor material forming a PN junction, and further includes an "internal" electrostatic drift field that enhances minority carrier movement towards such a PN junction. Subsequently, multiple such cells are integrated to form a VMJ photovoltaic cell. Next, on the light-receiving surface of the VMJ photovoltaic cell, a cavity-shaped groove can be formed (eg, via a dicing saw), wherein the plane comprising the cross-sectional configuration is approximately perpendicular to the stack forming the VMJ photovoltaic cell orientation of the battery cell. Accordingly, incident light may be refracted in a plane comprising said repeated cross-sectional configuration and generally perpendicular to said direction of stacking said battery cells (eg, thereby providing higher absorption for a given depth.) Furthermore, the present invention may be combined Various aspects of the invention are implemented with various rear and side surfaces having reflective coatings.
在相关方面中,本发明的凹槽表面进一步改善载子收集,同时降低体重组损失。举例来说,可垂直于所述p+nn+(或n+pp+)电池单元来定位所述V凹槽,以增加太阳光谱中较长波长的光学吸收路径且使得光吸收能够被大致局限于p+nn+电池单元的n型体区内。此外,此类V凹槽可具有经施加以改善电池中的入射光吸收的抗反射涂层。In a related aspect, the grooved surfaces of the present invention further improve carrier collection while reducing bulk weight loss. For example, the V-groove can be positioned perpendicular to the p+nn+ (or n+pp+) cell to increase the optical absorption path for longer wavelengths in the solar spectrum and enable light absorption to be roughly localized to p +nn+ in the n-type body region of the battery cell. Additionally, such V-grooves may have anti-reflective coatings applied to improve incident light absorption in the cell.
在另一方面中,本发明在高电压硅垂直多结VMJ光伏电池的末端层处供应一个或一个以上缓冲带,以提供保护所述作用层同时提供欧姆触点的障壁。此类缓冲带可呈另外堆叠于所述VMJ光伏电池电池的末端层上方及/或下方的非作用层布置的形式。所述VMJ光伏电池本身可包括多个电池单元,其中每一电池单元采用若干作用层(例如,三个)来形成PN结及“内部”静电漂移场(其增强朝向所述PN结的少数载子移动)。In another aspect, the present invention supplies one or more buffer strips at the terminal layers of a high voltage silicon vertical multi-junction VMJ photovoltaic cell to provide a barrier protecting the active layer while providing an ohmic contact. Such buffer strips may be in the form of an arrangement of inactive layers that are additionally stacked above and/or below the terminal layers of the VMJ photovoltaic cell cells. The VMJ photovoltaic cell itself may comprise multiple cells, where each cell employs several active layers (e.g., three) to form a PN junction and an "internal" electrostatic drift field (which enhances the minority load towards the PN junction). submove).
因此,可保护位于VMJ光伏电池的任何端处(且作为其电池单元的一部分)的各种作用层(例如,nn+及/或p+n结)免受有害形式的应力及/或应变(例如,在所述VMJ光伏电池的制作及/或操作期间可在所述VMJ光伏电池中诱发的热/机械压力、扭力、力矩、剪切力等)。此外,可经由具有大致低电阻率欧姆触点的材料(金属或半导体)形成所述缓冲带,使得其在操作条件下在所述光伏电池中将不会贡献任何实质串联电阻损失。举例来说,可通过采用p型掺杂的低电阻率硅晶片来形成所述缓冲带,使得当制造所述VMJ光伏电池时使用其它p型掺杂剂(例如,铝合金)时,其将减轻自动掺杂的风险(与采用可产生不期望pn结的n型晶片相比-当目标是产生大致低电阻率欧姆触点时)。应了解,可将本发明实施为任一类光伏电池(例如,太阳能电池或热光伏电池)的一部分。另外,也可将本发明的方面实施于其它类能量转换电池(例如,β伏打电池)中。Thus, the various active layers (e.g., nn+ and/or p+n junctions) located at either end of a VMJ photovoltaic cell (and as part of its cell) can be protected from detrimental forms of stress and/or strain (e.g. , thermal/mechanical stresses, torques, moments, shear forces, etc. that may be induced in the VMJ photovoltaic cell during its fabrication and/or operation). Furthermore, the buffer strip can be formed via a material (metal or semiconductor) with a substantially low-resistivity ohmic contact such that it will not contribute any substantial series resistance losses in the photovoltaic cell under operating conditions. For example, the buffer zone can be formed by employing a p-type doped low-resistivity silicon wafer such that when other p-type dopants (e.g., aluminum alloys) are used in fabricating the VMJ photovoltaic cell, it will Mitigates the risk of auto-doping (compared to using n-type wafers which can create undesired pn junctions - when the goal is to create substantially low-resistivity ohmic contacts). It should be appreciated that the present invention may be implemented as part of any type of photovoltaic cell (eg, a solar cell or a thermophotovoltaic cell). Additionally, aspects of the invention may also be implemented in other types of energy conversion cells (eg, beta voltaic cells).
在相关方面中,所述缓冲带可呈电池单元的末端层的表面上的边沿的形式,其充当此种作用层的保护边界且进一步形成所述VMJ光伏电池的框架以便于搬运及运输。同样,通过实现对所述VMJ光伏电池的牢固抓握,此种边沿形成物也便于与抗反射性涂层相关的操作(例如,当在操作期间牢固地维持所述电池(例如,通过对其的机械夹持)时可均匀地施加涂层)。此外,可在沉积期间物理地将所述缓冲带(例如,定位于所述VMJ光伏电池的端处的非作用层)定位为邻近其它缓冲带,且从而可在不破坏作用电池单元的情况下容易地移除无意地向下穿透到接触表面上的任一不期望电介质涂层材料。可由大致低电阻率且高度掺杂的硅(例如,约0.008”的厚度)来形成所述缓冲带。此种缓冲带可随后接触将VMJ光伏电池从光伏电池阵列中的另一VMJ光伏电池分割或分离的导电引线。In a related aspect, the buffer strip may be in the form of a rim on the surface of the terminal layer of the cell, which acts as a protective boundary for such active layers and further forms the frame of the VMJ photovoltaic cell for ease of handling and transportation. Also, by enabling a secure grip on the VMJ photovoltaic cell, such edge formations also facilitate handling associated with anti-reflective coatings (e.g., when holding the cell securely during operation (e.g., by Coating can be applied evenly when held by mechanical clamping). In addition, the buffer strips (e.g., non-active layers positioned at the ends of the VMJ photovoltaic cells) can be physically positioned adjacent to other buffer strips during deposition, and thus can be removed without damaging active cells. Any undesired dielectric coating material that inadvertently penetrates down onto the contact surface is easily removed. The buffer strips can be formed from substantially low resistivity and highly doped silicon (e.g., about 0.008" thick). Such buffer strips can then be contacted to separate a VMJ photovoltaic cell from another VMJ photovoltaic cell in a photovoltaic cell array. or separate conductive leads.
根据再一方面,可将所述缓冲带夹于电触点与所述VMJ光伏电池的作用层之间。此外,此类缓冲带可具有大致匹配于所述作用层的热膨胀特性的热膨胀特性,从而减轻性能降格(例如,在制造时焊接或软焊引线时所导致的应力/应变的减轻)。举例来说,可采用匹配于所有作用电池单元的热膨胀系数(3x10–6/℃)的高度掺杂的低电阻率硅层。相应地,可向所述作用电池单元提供大致强的欧姆触点,其另外减轻由焊接/软焊所导致及/或来自触点材料中的不匹配热膨胀系数的应力问题。其它实例包括引入金属层,例如钨(4.5x10–6/℃)或钼(5.3x10–6/℃),其因大致类似于活性硅(3x10–6/℃)p+nn+电池单元的热膨胀系数而被选择。可在不向高强度太阳能电池或光伏电池引入有害应力的情况下焊接或软焊施加到所述缓冲带的低电阻率硅层的外层或施加到熔合到所述作用电池单元的电极的金属层的金属化,其中此类外层用作欧姆触点;而不是与其它电池单元串联的电池单元段。According to a further aspect, the buffer tape may be sandwiched between an electrical contact and an active layer of the VMJ photovoltaic cell. In addition, such buffer strips may have thermal expansion characteristics that generally match those of the active layer, thereby mitigating performance degradation (eg, stress/strain relief from soldering or soldering leads during fabrication). For example, a highly doped low-resistivity silicon layer matching the coefficient of thermal expansion (3x10 −6 /° C.) of all active cells can be employed. Accordingly, substantially strong ohmic contacts may be provided to the active cell, which additionally alleviates stress problems caused by soldering/soldering and/or from mismatched coefficients of thermal expansion in the contact materials. Other examples include the introduction of metal layers such as tungsten (4.5x10 –6 /°C) or molybdenum (5.3x10 –6 /°C) due to their thermal expansion coefficient being roughly similar to that of active silicon (3x10 –6 /°C) p+nn+ cells And was chosen. The outer layer of the low-resistivity silicon layer applied to the buffer strip or the metal applied to the electrodes fused to the active cell can be welded or soldered without introducing detrimental stress to high-strength solar cells or photovoltaic cells Metallization of layers where such outer layers serve as ohmic contacts; rather than segments of cells in series with other cells.
可将本发明的各种方面实施为具有用于所述缓冲带的相关联晶面的定向的米勒指数(111)的晶片的一部分,其被视为比通常用于制作作用VMJ光伏电池单元的(100)结晶定向硅在机械上更强且蚀刻更慢。相应地,低电阻率硅层可具有与所述作用电池单元的结晶定向不同的结晶定向,其中通过采用此种替代定向,提供具有改善的机械强度/端触点的装置。换句话说,与非作用(111)定向的末端层相比,(100)定向的电池单元的边缘通常蚀刻较快且实质上修整具有此种结晶定向的作用电池单元的角,从而产生具有用于焊接或另外连接端触点的更高机械强度的更稳定装置结构。Various aspects of the present invention can be implemented as part of a wafer having a Miller index (111) for the orientation of the associated crystal planes of the buffer zone, which is considered to be higher than that typically used to fabricate functional VMJ photovoltaic cells. The (100) crystalline oriented silicon is mechanically stronger and etches slower. Accordingly, the low-resistivity silicon layer may have a different crystallographic orientation than that of the active cell, wherein by employing such an alternate orientation, a device with improved mechanical strength/terminal contacts is provided. In other words, the edges of a (100) oriented cell typically etch faster and substantially trim the corners of an active cell with this crystallographic orientation compared to a non-active (111) oriented end layer, resulting in a cell with a useful A more stable device structure with higher mechanical strength for soldering or otherwise connecting end contacts.
为实现上述及相关目的,本文结合以下说明及附图描述某些说明性方面。这些方面表示可实践的各种方式,所有所述方面既定涵盖于本文中。当结合图式考虑以下详细说明时其它优点及新颖特征可变得显而易见。To the accomplishment of the foregoing and related ends, certain illustrative aspects are described herein in conjunction with the following description and drawings. These aspects represent various ways in which it can be practiced, and all such aspects are intended to be covered herein. Other advantages and novel features may become apparent when the following detailed description is considered in conjunction with the accompanying drawings.
附图说明Description of drawings
图1图解说明根据本发明的一方面作为垂直多结VMJ光伏电池的一部分的纹理化或凹槽表面的示意性透视图。Figure 1 illustrates a schematic perspective view of a textured or grooved surface as part of a vertical multi-junction VMJ photovoltaic cell according to one aspect of the invention.
图2图解说明用于实施本发明的凹槽的例示性横截面。Figure 2 illustrates an exemplary cross-section of a groove for use in practicing the invention.
图3图解说明根据本发明的一方面用以形成具有凹槽表面的VMJ光伏电池的电池单元的例示性堆叠。3 illustrates an exemplary stack of cells used to form a VMJ photovoltaic cell with a grooved surface in accordance with an aspect of the invention.
图4图解说明根据本发明的一方面部分地形成VMJ光伏电池的特定电池单元。Figure 4 illustrates a particular cell that partially forms a VMJ photovoltaic cell according to one aspect of the invention.
图5图解说明根据本发明的一方面产生具有凹槽表面的VMJ光伏电池以减轻体重组损失的相关方法。Figure 5 illustrates a related method of producing VMJ photovoltaic cells with grooved surfaces to mitigate weight loss in accordance with an aspect of the present invention.
图6图解说明根据本发明的一方面作为垂直多结VMJ光伏电池的一部分的缓冲带的布置的示意性框图。Figure 6 illustrates a schematic block diagram of the arrangement of buffer strips as part of a vertical multi-junction VMJ photovoltaic cell according to an aspect of the invention.
图7图解说明根据本发明的一特定方面其阵列可形成VMJ光伏电池的电池单元的特定方面。Figure 7 illustrates certain aspects of cells whose arrays may form VMJ photovoltaic cells according to a certain aspect of the invention.
图8图解说明呈位于VMJ光伏电池的任一端处的电池单元的表面上的边沿形成物形式的缓冲带的例示性横截面。8 illustrates an exemplary cross-section of a buffer strip in the form of an edge formation on the surface of a cell at either end of a VMJ photovoltaic cell.
图9图解说明在高电压硅垂直多结VMJ光伏电池的末端层处采用缓冲带以提供保护其作用层的障壁的相关方法。Figure 9 illustrates a related method of employing a buffer strip at the terminal layer of a high voltage silicon vertical multi-junction VMJ photovoltaic cell to provide a barrier protecting its active layer.
图10图解说明可用于本发明的电解的VMJ光伏电池。Figure 10 illustrates a VMJ photovoltaic cell that can be used in the electrolysis of the present invention.
图11图解说明单个电池单元,多个所述单个电池单元形成用于本发明的电解的VMJ光伏电池。Figure 11 illustrates a single cell, a plurality of which forms a VMJ photovoltaic cell for electrolysis of the present invention.
图12图解说明具有凹槽表面以改善电解工艺的效率的VMJ光伏电池。Figure 12 illustrates a VMJ photovoltaic cell with a grooved surface to improve the efficiency of the electrolytic process.
图13图解说明根据本发明的一方面用于电解的VMJ光伏电池的表面的例示性凹槽化。Figure 13 illustrates an exemplary grooved surface of a VMJ photovoltaic cell for electrolysis according to an aspect of the invention.
图14呈现根据本文所述方面具有纹理化表面的光伏电池的实施例的透视图。14 presents a perspective view of an embodiment of a photovoltaic cell having a textured surface according to aspects described herein.
具体实施方式Detailed ways
现在参照图式来描述本发明,其中在所有图式中使用相同的参考编号来指代相同的元件。出于解释的目的,在以下说明中,列举了大量具体细节以便提供对本发明的透彻理解。然而,可显而易见,可在没有这些具体细节的情况下实践本发明。在其它实例中,以框图形式显示众所周知的结构及装置,以促进描述本发明。The present invention is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It may be evident, however, that the invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the present invention.
在本说明、所附权利要求书或图式中,术语“或”既定意指包括性“或”而非排他性“或”。也就是说,“X采用A或B”既定意指所述自然包括性排列中的任一者,除非另有规定或从上下文中明显看出。也就是说,如果X采用A,X采用B,或X采用A及B两者,那么在上述实例中任一者的情况下均满足“X采用A或B”。此外,本说明书及附图中所用冠词“一(a)”及“一(an)”通常应解释为意指“一个或一个以上”,除非另有规定或根据上下文明显是指单数形式。In this specification, the appended claims, or the drawings, the term "or" is intended to mean an inclusive "or" rather than an exclusive "or". That is, "X employs A or B" is intended to mean any of the stated naturally inclusive permutations, unless otherwise specified or apparent from the context. That is, if X employs A, X employs B, or X employs both A and B, then "X employs A or B" is satisfied under any of the above instances. In addition, the articles "a" and "an" used in this specification and drawings should generally be construed to mean "one or more" unless specified otherwise or obvious from the context to refer to the singular.
此外,相对于作为本文所述光伏电池的一部分的杂质掺杂材料的命名法,对于掺杂施体杂质,可互换使用术语“n型”及“N型”,术语“n+型”及“N+型”也如此。对于掺杂受体杂质,术语“p型”及“P型”也可互换使用,且术语“p+型”及“P+型”也如此。为清晰起见,掺杂类型还以缩写形式出现,例如,n型被标记为N,p+型被指示为P+等。多层光伏元件或电池单元被标记为一组字母,其中每一者指示所述层的掺杂类型;举例来说,p型/n型结被标记为PN,而p+型/n型/n+型结通过P+NN+指示;其它结组合的标记也遵守此注解。In addition, the terms "n-type" and "N-type", the terms "n+-type" and " The same goes for "N+ type". For doping acceptor impurities, the terms "p-type" and "P-type" are also used interchangeably, as are the terms "p+-type" and "P+-type". For clarity, doping types are also shown in abbreviated form, for example, n-type is denoted as N, p+-type is indicated as P+, etc. Multilayer photovoltaic elements or cells are labeled with a set of letters, each of which indicates the doping type of the layer; for example, a p-type/n-type junction is labeled PN, while p+-type/n-type/n+ Type knots are indicated by P+NN+; the notation of other knot combinations also obeys this annotation.
图1图解说明根据本发明的一方面作为垂直多结VMJ光伏电池120的一部分的凹槽100表面的示意性透视图。此纹理化100布置使得折射光能够被引导离开p+及n+扩散掺杂区,同时产生所需载子。相应地,入射光可在具有法向向量n的平面110中折射。此种平面110平行于VMJ光伏电池120的PN结平面,且可包括凹槽100的横截面配置。此外,可将抗反射涂层施加到纹理化100的表面以增加所述光伏电池中的入射光吸收。换句话说,平面110的定向大致垂直于堆叠电池单元111、113、115的方向。应了解,也可涵盖其它非垂直定向(例如,以各种角度暴露的晶面)且所有此类方面被视为归属于本发明的范围内。Figure 1 illustrates a schematic perspective view of the surface of a
图2图解说明用于将所述VMJ光伏电池的表面凹槽化的例示性纹理,所述VMJ光伏电池在所述表面上接收光。此种凹槽化可呈腔形凹槽的形式,举例来说,如具有各种角度(例如,0°<<180°)的“V”形横截面配置、“U”形横截面配置等,其中包括所述横截面配置的平面大致垂直于堆叠形成所述VMJ光伏电池的电池单元的方向及/或大致平行于所述VMJ光伏电池的PN结。应了解,本发明的VMJ光伏电池的纹理化210、220、230在PN结的定向及/或与入射光的交互上与用于常规硅光伏电池纹理的现有技术不同。举例来说,常规硅光伏电池通常经纹理化以阻止光的穿透,使得更接近于PN结(水平定位)吸收更多较长波长以实现更好的载子电流收集,且从而减轻对太阳光谱中较长波长的差光谱响应。相比的下,此在本发明的包括垂直结且已经提供对太阳光谱中较长波长的增强光谱响应的VMJ光伏电池中不需要。2 illustrates an exemplary texture used to groove the surface of the VMJ photovoltaic cell on which the VMJ photovoltaic cell receives light. Such grooving may be in the form of cavity-shaped grooves, such as, for example, "V" shaped cross-sectional configurations, "U" shaped cross-sectional configurations with various angles (e.g., 0° << 180°), etc. , wherein the plane comprising the cross-sectional configuration is substantially perpendicular to the direction in which cells forming the VMJ photovoltaic cell are stacked and/or substantially parallel to the PN junction of the VMJ photovoltaic cell. It will be appreciated that the
而是,用于实施本发明的凹槽(例如,V凹槽)的一个方面是通过减小体积来减轻体重组损失-(与使用纹理化的常规太阳能表面相反,此降低反射,或致使经反射或折射的光变得更接近于结)。特定来说,VMJ光伏电池已展现针对短波长及长波长两者的更好的载子电流收集,其中所述短波长响应是由于消除顶表面处高度掺杂的水平结且所述长波长响应是由于垂直结的增强的收集效率。)作为另一实例,如果替代本发明的腔形凹槽纹理,将其它纹理(例如,随机、棱锥、穹形及类似凸起配置)实施为VMJ光伏电池的一部分,那么入射光变为在所有方向上折射,从而在p+及n+扩散区中产生光吸收且因此产生降低的效率。应了解,此类“U”及“V”形凹槽在性质上为例示性且其它配置也归属于本发明的范围内。Rather, one aspect of the grooves (e.g., V-grooves) used to practice the invention is to mitigate mass weight loss by reducing volume—(as opposed to using textured conventional solar The reflected or refracted light becomes closer to the knot). In particular, VMJ photovoltaic cells have demonstrated better carrier current collection for both short and long wavelengths, where the short wavelength response is due to the elimination of highly doped horizontal junctions at the top surface and the long wavelength response is due to the enhanced collection efficiency of the vertical junction. ) As another example, if instead of the cavity-shaped groove texture of the present invention, other textures (e.g., random, pyramidal, domed, and similar raised configurations) are implemented as part of a VMJ photovoltaic cell, then the incident light becomes direction, resulting in light absorption in the p+ and n+ diffused regions and thus reduced efficiency. It should be understood that such "U" and "V" shaped grooves are exemplary in nature and that other configurations are also within the scope of the present invention.
图3图解说明根据本发明的一方面可在侧345上实施凹槽纹理的电池单元311、313、317的布置。如前文所解释,VMJ光伏电池315本身由多个整体接合的电池单元311、313、317(1到k,k为整数)形成,其中每一电池单元本身由堆叠的衬底或层(未显示)形成。举例来说,每一电池单元311可包括堆叠在一起的多个平行半导体衬底,且由杂质掺杂的半导体材料构成,所述杂质掺杂的半导体材料形成PN结及增强朝向此种PN结的少数载子移动的“内部”静电漂移场。应了解,可将各种N+型及P型掺杂层形成物实施为所述电池单元的一部分且此类布置也归属于本发明的范围内。FIG. 3 illustrates an arrangement of
相应地,光接收表面345上的纹理促进折射光被引导离开p+及n+扩散掺杂区,同时产生所需载子。因此,入射光可在包括横截面配置且大致垂直于堆叠所述电池单元的所述方向(例如,垂直于向量n)的平面中折射。Correspondingly, the texture on the
图4图解说明电池单元的特定方面,其阵列可形成具有本发明的纹理化凹槽化的VMJ光伏电池。电池单元400包括在大致平行的布置中堆叠在一起的层411、413、415。此类层411、413、415可进一步包括杂质掺杂的半导体材料,其中层413为一种传导率类型且层411为相反传导率类型-以在交点412处界定PN结。同样,层415可为与层413相同的传导率类型-此外通过大致较高的杂质浓度,从而产生增强朝向PN结412的少数载子移动的内部静电漂移场。可将此类电池单元整体接合在一起以形成VMJ光伏电池及根据本发明的各种方面凹槽化的表面。Figure 4 illustrates certain aspects of battery cells, an array of which can form a VMJ photovoltaic cell with the textured grooves of the present invention. The
根据再一方面,为由多个电池400制作所述VMJ光伏电池,最初可将相同PNN+(或NPP+)结形成为到N型(或P型)硅的高电阻率(例如,高于100ohm-cm)扁平晶片(具有约0.008英寸的厚度)中约3到10μm的深度。随后,将此类PNN+晶片堆叠在一起,其中将薄铝片插入其之间,其中每一晶片的PNN+结及结晶定向可以相同方向定向。此外,可采用铝-硅共熔合金,或具有大致匹配于硅的热系数的金属,例如钼或钨。接下来,可将所述硅晶片与铝界面熔合在一起,使得可将堆叠的组合件接合在一起。也可以另外堆叠于所述VMJ光伏电池的末端层上方及/或下方的非作用层布置的形式供应具有大致低电阻率的缓冲带,从而实施保护所述作用层免受有害形式的应力及/或应变(例如,在VMJ光伏电池的制作及/或操作期间可在所述VMJ光伏电池中诱发的热/机械压力、扭力、力矩、剪切力等)的障壁。然后可将此种电池的表面凹槽化以减轻体重组损失,如前文所详细描述。应了解,也可采用其它材料,例如锗及钛。同样,也可采用铝-硅共熔合金。According to yet another aspect, to fabricate the VMJ photovoltaic cell from
图5图解说明将VMJ光伏电池的接收光的表面凹槽化的相关方法500。尽管本文将所述例示性方法图解说明及描述为一系列代表各种事件及/或动作的块,但本发明并不受此类块的所图解说明的次序限制。举例来说,根据本发明,除本文所图解说明的次序以外,一些动作或事件可以不同次序及/或与其它动作或事件同时发生。此外,实施根据本发明的方法可能并不需要所有所图解说明的块、事件或动作。此外,应了解,根据本发明的例示性方法及其它方法可与本文所图解说明及描述的方法结合实施,且也可与其它未图解说明或描述的系统及设备结合实施。FIG. 5 illustrates a
最初,且在510处,如前文所详细描述形成具有PN结的多个电池单元。如前文所解释,每一电池单元本身可包括堆叠在一起的多个平行半导体衬底。每一层可由形成PN结的杂质掺杂半导体材料构成,且进一步包括增强朝向此种PN结的少数载子移动的“内部”静电漂移场。随后,且在520处,集成多个此类电池单元以形成VMJ光伏电池,其中也可将缓冲带实施为对此类电池的保护(例如,在制作期间在其上诱发的应力/应变)。接下来且在530处,在所述VMJ光伏电池的接收光的表面上,可形成腔形凹槽(例如,经由划片锯),其中包括横截面配置的平面大致垂直于堆叠形成所述VMJ光伏电池的所述电池单元的方向。随后且在540处,可在包括所述横截面配置(及/或平行于所述PN结)且大致垂直于堆叠所述电池单元的方向的平面中折射入射光。Initially, and at 510, a plurality of battery cells having PN junctions are formed as previously described in detail. As previously explained, each battery cell itself may comprise a plurality of parallel semiconductor substrates stacked together. Each layer may consist of an impurity-doped semiconductor material forming a PN junction, and further includes an "internal" electrostatic drift field that enhances minority carrier movement towards such a PN junction. Subsequently, and at 520, a plurality of such cells are integrated to form a VMJ photovoltaic cell, where buffer strips may also be implemented as protection for such cells (eg, stress/strain induced thereon during fabrication). Next and at 530, on the light-receiving surface of the VMJ photovoltaic cell, a cavity-shaped groove can be formed (e.g., via a dicing saw), wherein the plane comprising the cross-sectional configuration is approximately perpendicular to the stack forming the VMJ The orientation of the cells of the photovoltaic cell. Then and at 540, incident light may be refracted in a plane including the cross-sectional configuration (and/or parallel to the PN junction) and substantially perpendicular to a direction in which the battery cells are stacked.
图6图解说明根据本发明的一方面作为垂直多结VMJ光伏电池的一部分的缓冲带的布置的示意性框图。VMJ光伏电池615本身由多个整体接合的电池单元611、617(1到n,n为整数)形成,其中每一电池单元本身由堆叠的衬底或层(未显示)形成。举例来说,每一电池单元611、617可包括堆叠在一起的多个平行半导体衬底,且由杂质掺杂的半导体材料构成,所述杂质掺杂的半导体材料形成PN结及增强朝向此种PN结的少数载子移动的“内部”静电漂移场。相应地,可保护定位于VMJ光伏电池615的任何端处(且作为其电池单元的一部分)的各种作用层(例如,nn+及/或p+n结,或pp+及/或pn+结)免受有害形式的应力及/或应变(例如,在VMJ光伏电池的制作及/或操作期间可在所述VMJ光伏电池中诱发的热/机械压力、扭力、力矩、剪切力等)。Figure 6 illustrates a schematic block diagram of the arrangement of buffer strips as part of a vertical multi-junction VMJ photovoltaic cell according to an aspect of the invention. The VMJ
此外,可经由具有大致低电阻率的欧姆触点(例如,具有小于约0.5ohm-cm的上限的任一范围)的材料形成缓冲带610、612中的每一者,同时减轻及/或消除不期望的自动掺杂。举例来说,可通过采用p型掺杂的低电阻率晶片使用其它p型掺杂剂(例如,铝合金)来形成缓冲带610、612,以减轻自动掺杂的风险(与采用可产生不期望pn结的n型晶片相比-当期望产生大致低电阻率欧姆触点时)。Furthermore, each of the buffer strips 610, 612 may be formed via a material having a substantially low resistivity ohmic contact (eg, any range with an upper limit of less than about 0.5 ohm-cm), while mitigating and/or eliminating Undesired auto doping. For example, the buffer strips 610, 612 can be formed by using p-type doped low-resistivity wafers using other p-type dopants (eg, aluminum alloys) to mitigate the risk of auto-doping (as opposed to using expect pn junctions compared to n-type wafers - when it is desired to create substantially low-resistivity ohmic contacts).
图7图解说明电池单元的特定方面,其阵列可形成VMJ光伏电池。电池单元700包括在大致平行的布置中堆叠在一起的层711、713、715。此类层711、713、715可进一步包括杂质掺杂的半导体材料,其中层713为一种传导率类型且层711为相反传导率类型-以在交点712处界定PN结。同样,层715可为与层713相同的传导率类型-此外通过大致较高的杂质浓度,从而产生增强朝向PN结712的少数载子移动的内部静电漂移场。可将此类电池单元整体接合在一起以形成VMJ光伏电池,其中可定位本发明的缓冲带以保护所述VMJ光伏电池及形成其的相关联电池单元及/或层。Figure 7 illustrates certain aspects of battery cells, an array of which may form a VMJ photovoltaic cell.
根据再一方面,为由多个电池单元700制作所述VMJ光伏电池,最初可将相同PNN+(或NPP+)结形成为到N型(或P型)硅的高电阻率(例如,高于100ohm-cm)扁平晶片(具有约0.008英寸的厚度)中约3到10μm的深度。随后,将此类PNN+晶片堆叠在一起,其中薄铝层插入每一晶片之间,其中每一晶片的PNN+结及结晶定向可以相同方向定向。此外,可采用铝-硅共熔合金,或具有大致匹配于硅的热系数的金属,例如钼或钨。接下来,可将所述硅晶片与铝界面熔合在一起,使得可将堆叠的组合件接合在一起。此外,也可采用铝-硅共熔合金。应了解,可将各种N+型及P型掺杂层实施为所述电池单元的一部分且此类布置也归属于本发明的范围内。According to yet another aspect, to fabricate the VMJ photovoltaic cell from
也可以另外堆叠于所述VMJ光伏电池的末端层上方及/或下方的非作用层布置的形式供应具有大致低电阻率的缓冲带,从而实施保护所述作用层免受有害形式的应力及/或应变(例如,在VMJ光伏电池的制作及/或操作期间可在所述VMJ光伏电池中诱发的热/机械压力、扭力、力矩、剪切力等)的障壁。Buffer strips with substantially low resistivity may also be provided in the form of a non-active layer arrangement stacked above and/or below the terminal layers of the VMJ photovoltaic cell in addition, thereby implementing protection of the active layer from harmful forms of stress and/or or strain (eg, thermal/mechanical stress, torsion, moment, shear, etc.) that may be induced in a VMJ photovoltaic cell during its fabrication and/or operation.
图8图解说明呈电池单元830(840)的末端层831(841)的表面上的边沿形成物810(812)形式的缓冲带的例示性横截面,其部分形成VMJ光伏电池800。此类边沿形成物810、812充当所述电池单元的作用层的保护边界,且进一步部分地形成VMJ光伏电池800的框架以便于搬运及运输(例如,所述VMJ光伏电池的低电阻率缓冲带及边缘或端触点)。同样,通过实现对VMJ光伏电池800的牢固抓握,所述边沿形成物也便于与抗反射性涂层相关的操作(例如,当在操作期间牢固地维持所述电池(例如,通过对其的机械夹持)时可均匀地施加涂层)。此外,可在沉积工艺期间物理地将此类边沿形成物定位为邻近其它边形成物,其中可在不破坏电池单元830、840的情况下容易地移除无意地向下穿透到接触表面上的任一不期望电介质涂层材料。代表缓冲带的边沿形成物810(812)可由大致低电阻率且高度掺杂的硅(例如,约0.008”的厚度)形成,其中所述边沿形成物随后可接触将VMJ光伏电池从光伏电池阵列中的另一VMJ光伏电池分割的导电引线。此外,由于所述缓冲带的大致低电阻率,不要求所述导电引线具有与所述缓冲带的完全电接触。因此,其可为部分接触,例如点接触或一系列点接触,同时又提供良好的电接触。应了解,图8在性质上为例示性,且其它变化形式(例如,在制造时形成的到达800的表面的缓冲带810,其中810接合到作用层841)也归属于本发明的范围内。举例来说,810的形状可代表与如前文所述的缓冲带上的金属化层的部分引线接触。8 illustrates an exemplary cross-section of a buffer strip in the form of an edge formation 810 ( 812 ) on the surface of a terminal layer 831 ( 841 ) of a battery cell 830 ( 840 ), which partially forms the VMJ
所述导电引线可呈电极层的形式,其通过在衬底上沉积第一导电材料而形成-且可包含钨、银、铜、钛、铬、钴、钽、锗、金、铝、镁、锰、铟、铁、镍、钯、铂、锌、其合金、铟锡氧化物、其它导电及半导电金属氧化物、氮化物及二氧化硅、多晶硅、经掺杂非晶形硅及各种金属组合物合金。此外,电极可采用其它经掺杂或未经掺杂的导电或半导电聚合物、低聚物或单片,例如PEDOT/PSS、聚苯胺、聚噻吩、聚吡咯、其衍生物等。此外,由于一些金属可具有形成于其上的可有害地影响VMJ光伏电池的性能的氧化物层,因此非金属材料(例如,非晶形碳)也可用于电极形成。应了解,图8的边沿形成物在性质上为例示性且具有与所述作用层的表面接触范围的其它缓冲带配置(例如,矩形、圆形、横截面)也归属于本发明的范围内。The conductive leads may be in the form of electrode layers formed by depositing a first conductive material on a substrate - and may comprise tungsten, silver, copper, titanium, chromium, cobalt, tantalum, germanium, gold, aluminum, magnesium, Manganese, indium, iron, nickel, palladium, platinum, zinc, their alloys, indium tin oxide, other conductive and semiconductive metal oxides, nitrides and silicon dioxide, polysilicon, doped amorphous silicon and various metals composition alloy. In addition, other doped or undoped conductive or semiconductive polymers, oligomers or monoliths can be used as electrodes, such as PEDOT/PSS, polyaniline, polythiophene, polypyrrole, its derivatives, and the like. In addition, non-metallic materials (eg, amorphous carbon) can also be used for electrode formation since some metals can have oxide layers formed thereon that can deleteriously affect the performance of VMJ photovoltaic cells. It should be appreciated that the edge formation of FIG. 8 is exemplary in nature and that other buffer strip configurations (e.g., rectangular, circular, cross-sectional) having extents of surface contact with the active layer are also within the scope of the present invention. .
此外,可将本发明的各种方面实施为具有用于所述缓冲带的相关联晶面的定向的米勒指数(111)的晶片的一部分,其被视为比通常用于制作作用VMJ光伏电池单元的(100)结晶定向硅在机械上更强且蚀刻更慢。相应地,低电阻率硅层可具有与所述作用电池单元的结晶定向不同的结晶定向,其中通过采用此种替代定向,提供具有改善的机械强度/端触点的装置。换句话说,与非作用(111)定向的末端层相比,(100)定向的电池单元的边缘蚀刻较快且实质上修整具有此种结晶定向的作用电池单元的角,从而产生具有用于焊接或另外连接端触点的更高机械强度的更稳定装置结构。Furthermore, various aspects of the present invention can be implemented as part of a wafer having a Miller index (111) for the orientation of the associated crystal planes of the buffer zone, which is considered to be more efficient than is typically used to fabricate functional VMJ photovoltaics. The (100) crystalline oriented silicon of the battery cell is mechanically stronger and etches slower. Accordingly, the low-resistivity silicon layer may have a different crystallographic orientation than that of the active cell, wherein by employing such an alternate orientation, a device with improved mechanical strength/terminal contacts is provided. In other words, the edges of a (100) oriented cell etch faster and substantially trim the corners of an active cell with this crystallographic orientation compared to a non-active (111) oriented end layer, resulting in an More stable device construction with higher mechanical strength for soldering or otherwise connecting end contacts.
图9图解说明在高电压硅垂直多结VMJ光伏电池的末端层处采用缓冲带以提供保护其作用层的障壁的相关方法900。尽管本文将所述例示性方法图解说明及描述为一系列代表各种事件及/或动作的块,但本发明并不受此类块的所图解说明的次序限制。举例来说,根据本发明,除本文所图解说明的次序以外,一些动作或事件可以不同次序及/或与其它动作或事件同时发生。此外,实施根据本发明的方法可能并不需要所有所图解说明的块、事件或动作。此外,应了解,根据本发明的例示性方法及其它方法可与本文所图解说明及描述的方法结合实施,且也可与其它未图解说明或描述的系统及设备结合实施。最初,且在910处,如前文所详细描述形成具有PN结的多个电池单元。如前文所解释,每一电池单元本身可包括堆叠在一起的多个平行半导体衬底。每一层可由形成PN结的杂质掺杂半导体材料构成,且进一步包括增强朝向此种PN结的少数载子移动的“内部”静电漂移场。随后且在920处,集成多个此类电池单元以形成VMJ光伏电池。接下来且在930处,可实施接触所述VMJ光伏电池的末端层的缓冲带,以提供保护其作用层的障壁。此类缓冲带可呈另外堆叠于所述VMJ光伏电池的末端层上方及/或下方的非作用层布置的形式。然后可在940处将所述VMJ光伏电池实施为光伏电池的一部分。Figure 9 illustrates a
图10图解说明可用于根据本发明的一方面的VMJ光伏电池。VMJ光伏电池1515本身由多个整体接合的电池单元1511、1517(1到n,n为整数)形成,其中每一电池单元本身由堆叠的衬底或层(未显示)形成。举例来说,每一电池单元1511、1517可包括堆叠在一起的多个平行半导体衬底,且由杂质掺杂的半导体材料构成,所述杂质掺杂的半导体材料形成PN结及增强朝向此种PN结的少数载子移动的“内部”静电漂移场。此外,通过实施一个或一个以上缓冲带1510、1512,可保护位于VMJ光伏电池1515的任何端处(且作为其电池单元的一部分)的各种作用层(例如,nn+及/或p+n结)免受有害形式的应力及/或应变(例如,在VMJ光伏电池的制作及/或操作期间可在所述VMJ光伏电池中诱发的热/机械压力、扭力、力矩、剪切力等)。可经由具有大致低电阻率欧姆触点(例如,具有小于约0.5ohm-cm的上限的任一范围)的材料形成此类缓冲带1510、1512中的每一者,同时减轻及/或消除不期望的自动掺杂。举例来说,可通过采用p型掺杂的低电阻率晶片使用其它p型掺杂剂(例如,铝合金)来形成缓冲带1510、1512,以减轻自动掺杂的风险(与采用可产生不期望pn结的n型晶片相比-当期望产生大致低电阻率欧姆触点时)。举例来说,在所述VMJ光伏电池的端触点处也可采用催化剂材料(例如,铂、钛等),以促进电解操作。)Figure 10 illustrates a VMJ photovoltaic cell that may be used in accordance with one aspect of the invention. The VMJ
图11图解说明电池单元1600的特定方面,其阵列可形成用于本发明的VMJ光伏电池。电池单元1600包括在大致平行的布置中堆叠在一起的层1611、1613、1615。此类层1611、1613、1615可进一步包括杂质掺杂的半导体材料,其中层1613为一种传导率类型且层1611为相反传导率类型-以在交点1612处界定PN结。同样,层1615可为与层1613相同的传导率类型-此外通过大致较高的杂质浓度,从而产生增强朝向PN结1612的少数载子移动的内部静电漂移场。可将此类电池单元整体接合在一起以形成VMJ光伏电池。Figure 11 illustrates certain aspects of battery cells 1600, an array of which may form a VMJ photovoltaic cell for use in the present invention. Battery cell 1600 includes layers 1611 , 1613 , 1615 stacked together in a generally parallel arrangement. Such layers 1611 , 1613 , 1615 may further comprise impurity-doped semiconductor material, where layer 1613 is of one conductivity type and layer 1611 is of the opposite conductivity type—to define a PN junction at intersection 1612 . Likewise, layer 1615 may be of the same conductivity type as layer 1613 - additionally with a generally higher impurity concentration, thereby creating an internal electrostatic drift field that enhances minority carrier movement towards PN junction 1612 . Such cells can be monolithically joined together to form a VMJ photovoltaic cell.
根据再一方面,为由多个电池单元1600制作VMJ光伏电池,最初可将相同PNN+(或NPP+)结形成为到N型(或P型)硅的高电阻率(例如,高于100ohm-cm)扁平晶片(具有约0.008英寸的厚度)中约3到10μm英寸的深度。随后,将此类PNN+晶片堆叠在一起,其中薄铝层插入每一晶片之间,其中每一晶片的PNN+结及结晶定向可以相同方向定向。此外,可采用铝-硅共熔合金,或也可采用具有大致匹配于硅的热系数的例如锗及钛等金属或例如钼或钨等金属。接下来,可将所述硅晶片与铝合金界面熔合在一起,使得可将堆叠的组合件接合在一起(例如,进一步包括催化剂材料)。应了解,也可采用其它材料,例如锗及钛。同样,也可采用铝-硅共熔合金。应进一步了解,应选择电解质使得其不会有害地影响VMJ光伏电池的操作,及/或导致对VMJ光伏电池有害的化学反应。应了解,可将各种N+型及P型掺杂层形成物实施为所述电池单元的一部分且此类布置也归属于本发明的范围内。According to yet another aspect, to fabricate a VMJ photovoltaic cell from multiple cells 1600, initially the same PNN+ (or NPP+) junction can be formed to a high resistivity (e.g., greater than 100 ohm-cm) to N-type (or P-type) silicon ) to a depth of about 3 to 10 μm inches in a flat wafer (having a thickness of about 0.008 inches). Subsequently, such PNN+ wafers are stacked together with a thin aluminum layer inserted between each wafer, where the PNN+ junctions and crystallographic orientation of each wafer can be oriented in the same direction. In addition, aluminum-silicon eutectic alloys may be used, or metals such as germanium and titanium, or metals such as molybdenum or tungsten, which have thermal coefficients approximately matched to silicon, may also be used. Next, the silicon wafer and aluminum alloy interfaces can be fused together so that the stacked assembly (eg, further including catalyst material) can be bonded together. It should be understood that other materials such as germanium and titanium may also be used. Likewise, aluminum-silicon eutectic alloys may also be used. It should be further appreciated that the electrolyte should be selected such that it does not deleteriously affect the operation of the VMJ photovoltaic cell, and/or cause chemical reactions that are deleterious to the VMJ photovoltaic cell. It is understood that various N+-type and P-type doped layer formations can be implemented as part of the battery cell and such arrangements are also within the scope of the present invention.
图12图解说明包括用于具有纹理化表面的VMJ光伏电池的本发明再一方面。绘示根据本发明的一方面作为垂直多结VMJ光伏电池1720的一部分的凹槽表面1700的示意性透视图。此纹理化1700布置使得折射光能够被引导离开p+及n+扩散掺杂区,同时产生所需载子。相应地,入射光可在具有法向向量n的平面1710中折射。此种平面1710平行于VMJ光伏电池1720的PN结平面,且可包括凹槽1700的横截面配置。换句话说,平面1710的定向大致垂直于堆叠电池单元1711、1713、1715的方向。Figure 12 illustrates yet another aspect of the invention including use in VMJ photovoltaic cells with textured surfaces. Depicted is a schematic perspective view of a
图13图解说明用于将所述VMJ光伏电池的表面凹槽化的例示性纹理,所述表面在其上接收光以用于电解质的电解。此种凹槽化可呈腔形凹槽的形式,举例来说,如具有各种角度θ(例如,0°<θ<180°)的“V”形横截面配置、“U”形横截面配置等,其中包括所述横截面配置的平面大致垂直于堆叠形成所述VMJ光伏电池的电池单元的方向,及/或大致平行于所述VMJ光伏电池的PN结。应了解,本发明的VMJ光伏电池的纹理化1810、1820、1830在PN结的定向及/或与入射光的交互上与用于常规硅光伏电池纹理的现有技术不同。举例来说,常规硅光伏电池通常经纹理化以阻止光的穿透,使得更接近于PN结(水平定位)吸收更多较长波长以实现更好的载子电流收集,且从而减轻对太阳光谱中较长波长的差光谱响应。相比的下,此在本发明的包括垂直结且已经提供对太阳光谱中较长波长的增强光谱响应的VMJ光伏电池中不需要。Figure 13 illustrates an exemplary texture used to groove the surface of the VMJ photovoltaic cell on which it receives light for electrolysis of electrolyte. Such grooving may be in the form of cavity-shaped grooves, such as "V" shaped cross-sectional configurations, "U" shaped cross-sectional configuration, etc., wherein the plane comprising said cross-sectional configuration is substantially perpendicular to the direction in which the cells forming said VMJ photovoltaic cell are stacked, and/or substantially parallel to a PN junction of said VMJ photovoltaic cell. It will be appreciated that the
而是,用于实施图7的凹槽(例如,V凹槽)的一个方面是通过减小体积来减轻体重组损失-(与使用纹理化的常规太阳能表面相反,此降低反射,或致使经反射或折射的光变得更接近于结)。特定来说,VMJ光伏电池已展现针对短波长及长波长两者的更好的载子电流收集,其中所述短波长响应是由于消除顶表面处高度掺杂的水平结且所述长波长响应是由于垂直结的增强的收集效率。)作为另一实例,如果替代本发明的腔形凹槽纹理,将其它纹理(例如,随机、棱锥、穹形及类似凸起配置)实施为VMJ光伏电池的一部分,那么入射光变为在所有方向上折射,从而在p+及n+扩散区中产生光吸收且因此产生降低的效率。此外,可向所述VMJ光伏电池的背侧施加反射涂层以进一步增强光吸收。Rather, one aspect of the grooves (e.g., V-grooves) used to implement Figure 7 is to mitigate mass weight loss by reducing volume—(as opposed to using textured conventional solar The reflected or refracted light becomes closer to the knot). In particular, VMJ photovoltaic cells have demonstrated better carrier current collection for both short and long wavelengths, where the short wavelength response is due to the elimination of highly doped horizontal junctions at the top surface and the long wavelength response is due to the enhanced collection efficiency of the vertical junction. ) As another example, if instead of the cavity-shaped groove texture of the present invention, other textures (e.g., random, pyramidal, domed, and similar raised configurations) are implemented as part of a VMJ photovoltaic cell, then the incident light becomes direction, resulting in light absorption in the p+ and n+ diffused regions and thus reduced efficiency. In addition, a reflective coating can be applied to the backside of the VMJ photovoltaic cell to further enhance light absorption.
在另一方面中,本发明涉及改善光伏电池(例如,太阳能电池)尤其是在高强度辐射等级下可产生大致高电力输出的高强度太阳能电池(例如,边缘照射或垂直结结构)的性能。在本文中列举形成用于制作VMJ光伏电池的电池单元的PV元件的各种设计以经由经图案化的触点来降低光生载子的重组损失。In another aspect, the invention relates to improving the performance of photovoltaic cells (eg, solar cells), especially high intensity solar cells (eg, edge-illuminated or vertical junction structures) that can produce substantially high power outputs at high-intensity radiation levels. Listed herein are various designs of PV elements forming cells for making VMJ photovoltaic cells to reduce recombination losses of photogenerated carriers via patterned contacts.
所述VMJ光伏电池在1000个太阳聚光强度下具有超过30%的固有理论上限效率,因此使用实验理解及来自计算机模拟及建模分析的见识,进一步性能改善是可能的。尽管易于使用分析方程式以良好的结果对常规一个太阳聚光太阳能电池建模,但对于以高强度操作的边缘照射的VMJ光伏电池情况并非如此,因为在高强度下,即使二阶效应可对电池操作效率具有实质影响。尽管结合太阳能电池图解说明本发明的方面或特征,但可在其它光伏电池(例如,热光伏电池或通过光子的激光源激发的电池)中利用此类方面或特征及相关联优点(例如,光生载子的重组损失的降低)。此外,也可将本发明的方面实施于其它类能量转换电池(例如,β伏打电池)中。The VMJ photovoltaic cell has an inherent theoretical upper limit efficiency of more than 30% at 1000 suns concentration, so further performance improvements are possible using experimental understanding and insights from computer simulations and modeling analysis. While it is easy to model conventional one solar concentrator solar cells with good results using analytical equations, this is not the case for edge-illuminated VMJ photovoltaic cells operating at high intensities, where even second-order effects can affect the cell Operational efficiency has a real impact. Although aspects or features of the invention are illustrated in connection with solar cells, such aspects or features and associated advantages can be utilized in other photovoltaic cells (e.g., thermal photovoltaic cells or cells excited by a laser source of photons) (e.g., Carrier recombination loss reduction). Furthermore, aspects of the invention may also be implemented in other types of energy conversion cells (eg, beta voltaic cells).
在高强度下的太阳能电池中产生的电子-电洞载子对的物理性质相当复杂,因为许多物理参数发挥作用,包括但不限于:表面重组速度、载子移动性及浓度、发射极(例如,扩散)反向饱和电流、少数载子寿命、带隙变窄、内建式静电场及各种重组机制。移动性随载子密度的增加而快速降低,且奥格重组随作为载子密度的立方的强度快速增加。为将此类方面并入到VMJ太阳能电池性能的建模中,计算机模拟(例如,半导体中光生载子运输的二维数字计算分析)可提供对以高强度操作或用于高强度下的操作的垂直结电池单元或PV元件中的物理参数的见识。此类模拟提供分析及设计工具以理解性能效率的可能来源并提高高强度下的VMJ光伏电池的性能。应了解,尽管即使易于使用简单分析方程式以良好的结果对常规一个太阳聚光太阳能电池建模,但对于以高照射强度操作的边缘照射的VMJ光伏电池情况并非如此,因为在高强度下,即使二阶效应也可对电池操作效率具有强烈影响。The physics of electron-hole carrier pairs generated in solar cells at high intensities is quite complex, as many physical parameters come into play, including but not limited to: surface recombination velocity, carrier mobility and concentration, emitter (e.g. , diffusion) reverse saturation current, minority carrier lifetime, bandgap narrowing, built-in electrostatic field and various recombination mechanisms. Mobility decreases rapidly with increasing carrier density, and Auger recombination rapidly increases with intensity as the cube of carrier density. To incorporate such aspects into the modeling of VMJ solar cell performance, computer simulations (e.g., two-dimensional numerical calculation analysis of photogenerated carrier transport in semiconductors) can provide insights into operating at or at high intensities. Insights on the physical parameters of vertical junction cells or PV elements. Such simulations provide analysis and design tools to understand possible sources of performance efficiency and improve the performance of VMJ photovoltaic cells at high intensities. It should be appreciated that while it is easy to model conventional one solar concentrator solar cells with good results using simple analytical equations, this is not the case for edge-illuminated VMJ photovoltaic cells operating at high irradiance intensities, since at high intensities even Second order effects can also have a strong impact on cell operating efficiency.
基于并入有半导体物理元件阵列的触点对触点VMJ光伏电池单元的模型的计算模拟揭露VMJ光伏电池单元中在高强度下发生光生载子的重组损失的若干特定区。此类区中的至少一些区呈现取决于强度的复杂损失机制。计算模拟揭露PV元件或VMJ光伏电池单元中可经改善以降低重组损失且改善VMJ光伏电池的性能的若干区。本发明的方面提供此类改善。Computational simulations based on a model of a contact-to-contact VMJ photovoltaic cell incorporating an array of semiconductor physical elements revealed several specific regions in the VMJ photovoltaic cell where recombination loss of photogenerated carriers occurs at high intensities. At least some of such regions exhibit complex loss mechanisms that depend on intensity. Computational simulations revealed several regions in a PV element or VMJ photovoltaic cell that could be improved to reduce recombination loss and improve the performance of the VMJ photovoltaic cell. Aspects of the invention provide such improvements.
串联电阻已被视为常规聚集器太阳能电池的设计问题的重要来源。VMJ光伏电池设计证明在此方面不止足够,显示即使在2500个太阳聚光的强度下串联电阻也不成问题。然而,在一些情形中,可有利地以串联电阻的增加来交换较小的设计简单性,以改善光伏聚集器的以接近1000个太阳聚光操作的VMJ光伏电池的效率。Series resistance has been recognized as an important source of design problems for conventional concentrator solar cells. The VMJ photovoltaic cell design proved more than adequate in this regard, showing that series resistance was not a problem even at a concentration of 2500 suns. In some cases, however, it may be advantageous to trade an increase in series resistance for a minor design simplicity to improve the efficiency of the VMJ photovoltaic cells of the photovoltaic concentrator operating at close to 1000 suns concentration.
应了解,针对大致较高强度下(例如,VMJ光伏电池仍能够高效地操作的2500个太阳聚光)的操作的设计在光学、结构、太阳追踪及热控制方面可能需要大致更苛刻且昂贵的聚集器系统工程设计,而不可能贡献任何更好的总性能或经济效益。因此,本发明中所列举的太阳能电池的方面或特征及用于其产生的相关联工艺可提高在1000个太阳聚光或更高的范围内操作的高强度VMJ光伏电池的效率性能。效率提高可使利用本发明的方面的VMJ太阳能电池或其它太阳能电池成本更高效且可行,即使其针对大于1000个太阳聚光的强度可涉及额外制造及串联电阻的潜在增加。本文所述方面或特征可提供足够的工程设计折衷以使使用太阳能电池、VMJ光伏电池或另外利用本发明的方面的光伏聚集器系统在提供较低$/瓦的性能时更可行且成本更高效。It will be appreciated that designing for operation at substantially higher intensities (e.g., 2500 suns concentrating at which VMJ photovoltaic cells can still operate efficiently) may require substantially more demanding and expensive Aggregator systems are engineered without the potential to contribute any better overall performance or economics. Thus, aspects or features of solar cells recited in this disclosure and associated processes for their production can improve the efficiency performance of high intensity VMJ photovoltaic cells operating in the 1000 sun concentration range or higher. Efficiency improvements may make VMJ solar cells or other solar cells utilizing aspects of the present invention more cost efficient and feasible, even though their intensity for greater than 1000 sun concentration may involve additional fabrication and a potential increase in series resistance. Aspects or features described herein may provide sufficient engineering design trade-offs to make photovoltaic concentrator systems using solar cells, VMJ photovoltaic cells, or otherwise utilizing aspects of the invention more feasible and cost-effective while providing lower $/watt performance .
使用大于500个太阳聚光的强度下的良好硅处理的现实参数(少数-载子寿命、表面重组速度等)对常规VMJ光伏电池单元设计(例如,具有深结的P+NN+片)的计算机建模分析显示一些特定区的以下百分比重组损失:In silico for conventional VMJ photovoltaic cell designs (e.g. P+NN+ sheets with deep junctions) using realistic parameters for good silicon processing (minority-carrier lifetime, surface recombination velocity, etc.) at intensities greater than 500 suns Modeling analysis revealed the following percentage recombination losses for some specific regions:
因此,此分析表明其金属触点占超过形成VMJ太阳能电池的电池单元中的所有重组损失的一半的重掺杂P+及N+扩散发射极区,及优化的扩散N+发射极在设计上可不同于最佳扩散P+发射极(部分由于移动性的差异)。可针对N+PP+电池单元或P+NN+电池单元(具有浅P+N结)切换源自N+及P+区中的重组损失的相对量值。在一方面中,本发明针对降低前述扩散区中的重组损失以改善VMJ光伏电池的性能。Thus, this analysis shows that the heavily doped P+ and N+ diffused emitter regions whose metal contacts account for more than half of all recombination losses in cells forming VMJ solar cells, and that optimized diffused N+ emitters can differ in design from Optimal diffused P+ emitter (partially due to differences in mobility). The relative magnitude of recombination losses from the N+ and P+ regions can be switched for N+PP+ cells or P+NN+ cells (with shallow P+N junctions). In one aspect, the present invention is directed to reducing recombination losses in the aforementioned diffusion regions to improve the performance of VMJ photovoltaic cells.
通过高强度下每一电池单元结的开路电压Voc=0.8伏,在常规VMJ光伏电池开发中成功达成高少数-载子寿命及低表面重组速度。Voc由日光产生的电流及扩散发射极反向饱和电流(Jo)确定,其中存在于VMJ太阳能电池的电池单元中的P+N及NN+结两者为开路电压做贡献。来自电视点的最佳结为最低Jo;使用Jo=1x10–13Acm–2,其代表扩散结中的高质量低反向饱和电流,分析显示约3到10μm的扩散深度为用于P+及N+扩散两者的充足深度,即使在考虑欧姆金属触点处的无限重组速度时。High minority-carrier lifetime and low surface recombination velocity have been successfully achieved in conventional VMJ photovoltaic cell development with open circuit voltage V oc =0.8 volts per cell junction at high strength. V oc is determined by the current generated by sunlight and the diffuse emitter reverse saturation current (J o ), where both P+N and NN+ junctions present in the cell of a VMJ solar cell contribute to the open circuit voltage. The best junction from the TV point is the lowest J o ; using J o =1x10 –13 Acm –2 , which represents a high quality low reverse saturation current in a diffused junction, analysis shows that a diffusion depth of about 3 to 10 μm is optimal for P+ and N+ diffusion, even when considering the infinite recombination velocity at the ohmic metal contacts.
应注意,即使深且渐进的NN+扩散轮廓将提供将增强朝向结障壁的少数载子移动的内部静电漂移场(针对最终收集)且降低此区中的重组,但计算机模拟揭露NN+结增强在高强度下变得较不有效,此可导致如上所示N+区中的较高重组。It should be noted that computer simulations reveal NN+ junction enhancement at high becomes less effective at lower intensities, which can lead to higher recombination in the N+ region as shown above.
图14呈现具有纹理化表面且通过沿法向于电池单元24101到241010的平面的方向堆叠所述电池单元形成的纹理化垂直多结VMJ光伏电池2405的实例性实施例的透视图;每一电池单元2410κ(其中κ=1,2,…10)由具有经图案化电介质涂层及金属触点的PV元件构成,如本文所述。尽管在实例性纹理化PV电池2405中图解说明一组10个电池单元,但注意,纹理化VMJ光伏电池可包含M个电池单元,其中M为正整数。可将纹理VMJ光伏电池(例如,2410κ)中的电池单元体现于电池单元2070λ、2180λ,或2350,或如本文所述生产的任何其它电池单元中。在光伏电池2405中,纹理化表面2412为V凹槽表面;然而,可形成其它各种形状的凹槽或腔,例如U凹槽。将所述纹理化表面形成到因处理具有本文所述的经图案化金属触点的电池单元或PV元件的单片堆叠而暴露或大致暴露到电磁辐射的平面(qrs)上;例如,参见图20D。入射光可在具有法向向量n2432的平面2430中折射。此种平面2430平行于其上涂覆有经图案化的电介质材料的电池单元2410κ的表面,且可包括凹槽2415的横截面配置—平面2430大致垂直于堆叠电池单元2410κ的方向。电池单元2410κ的单片堆叠的表面的纹理化(其导致纹理化表面2412)使得折射光能够被引导离开P+及N+扩散掺杂区而不阻碍载子的光生,从而有效地将组成纹理化光伏电池2405的电池单元制作得较薄,且如前文所指示降低重组损失。此外,可将抗反射涂层施加到纹理化表面2410以增加所述电池中的入射光吸收。14 presents a perspective view of an example embodiment of a textured vertical multi-junction VMJ
上文所述内容包括提供本发明的优点的系统及方法的实例。当然,不可能出于描述本发明的目的而描述各组件或方法的每一种可构想的组合,但所属领域的技术人员可认识到,所请求的标的物可具有许多其它组合及排列。此外,就本详细说明、权利要求书、附件及图式中所用术语“包括(includes)”、“具有(has)”、“拥有(possesses)”等来说,此类术语的包括方式既定类似于术语“包含(comprising)”在权利要求书中用作转折词时“包含(comprising)”被解释的那样。What has been described above includes examples of systems and methods that provide the advantages of the present invention. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the present invention, but one skilled in the art can recognize that claimed subject matter is possible in many other combinations and permutations. Furthermore, to the extent that the terms "includes", "has", "possesses" and the like are used in this detailed description, claims, appendices, and drawings, such terms are intended to be included in a manner similar to The term "comprising" is to be construed when it is used as a transition word in the claims.
Claims (20)
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8893608P | 2008-08-14 | 2008-08-14 | |
US8892108P | 2008-08-14 | 2008-08-14 | |
US61/088,936 | 2008-08-14 | ||
US61/088,921 | 2008-08-14 | ||
US8938908P | 2008-08-15 | 2008-08-15 | |
US61/089,389 | 2008-08-15 | ||
US9253108P | 2008-08-28 | 2008-08-28 | |
US61/092,531 | 2008-08-28 | ||
US12/535,952 US20100037937A1 (en) | 2008-08-15 | 2009-08-05 | Photovoltaic cell with patterned contacts |
US12/535,952 | 2009-08-05 | ||
US12/536,992 US8293079B2 (en) | 2008-08-28 | 2009-08-06 | Electrolysis via vertical multi-junction photovoltaic cell |
US12/536,982 US20100037943A1 (en) | 2008-08-14 | 2009-08-06 | Vertical multijunction cell with textured surface |
US12/536,987 US8106293B2 (en) | 2008-08-14 | 2009-08-06 | Photovoltaic cell with buffer zone |
US12/536,982 | 2009-08-06 | ||
US12/536,987 | 2009-08-06 | ||
US12/536.992 | 2009-08-06 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009801392214A Division CN102171840A (en) | 2008-08-14 | 2009-08-12 | Photovoltaic cells with processed surfaces and related applications |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103337547A true CN103337547A (en) | 2013-10-02 |
Family
ID=43663782
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102194702A Pending CN103337547A (en) | 2008-08-14 | 2009-08-12 | Photovoltaic cells with treated surfaces and related applications |
CN2009801392214A Pending CN102171840A (en) | 2008-08-14 | 2009-08-12 | Photovoltaic cells with processed surfaces and related applications |
CN201310219215.8A Expired - Fee Related CN103337546B (en) | 2008-08-14 | 2009-08-12 | Photovoltaic cells with treated surfaces and related applications |
CN201310219468.5A Expired - Fee Related CN103354247B (en) | 2008-08-14 | 2009-08-12 | Electrolysis system and method for electrolyzing electrolyte |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009801392214A Pending CN102171840A (en) | 2008-08-14 | 2009-08-12 | Photovoltaic cells with processed surfaces and related applications |
CN201310219215.8A Expired - Fee Related CN103337546B (en) | 2008-08-14 | 2009-08-12 | Photovoltaic cells with treated surfaces and related applications |
CN201310219468.5A Expired - Fee Related CN103354247B (en) | 2008-08-14 | 2009-08-12 | Electrolysis system and method for electrolyzing electrolyte |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP2327107A1 (en) |
JP (1) | JP2012500474A (en) |
CN (4) | CN103337547A (en) |
AU (1) | AU2009281960A1 (en) |
BR (1) | BRPI0917838A2 (en) |
CA (2) | CA2820184A1 (en) |
IL (1) | IL211205A0 (en) |
MX (1) | MX2011001738A (en) |
RU (2) | RU2472251C2 (en) |
TW (1) | TWI535042B (en) |
WO (1) | WO2010019685A1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI424657B (en) * | 2010-12-03 | 2014-01-21 | Mh Solar Co Ltd | Concentrating solar cell system with the heating device |
TWI418046B (en) * | 2010-12-03 | 2013-12-01 | Mh Solar Co Ltd | A manufacturing method for the multi-junction solar cell |
TWI420798B (en) * | 2010-12-03 | 2013-12-21 | Mh Solar Co Ltd | Hybrid solar energy power system |
TWI420781B (en) * | 2010-12-06 | 2013-12-21 | Mh Solar Co Ltd | A portable solar cell device with self-power generation |
TWI420782B (en) * | 2010-12-06 | 2013-12-21 | Mh Solar Co Ltd | A electronic device with self power generation |
CN102646749A (en) * | 2011-02-18 | 2012-08-22 | 美环光能股份有限公司 | Fabrication method of vertical multi-junction solar cell |
CN102437208B (en) * | 2011-12-08 | 2013-11-20 | 上海太阳能电池研究与发展中心 | Mechanically assembled solar cell |
TWI506801B (en) * | 2011-12-09 | 2015-11-01 | Hon Hai Prec Ind Co Ltd | Solar battery pack |
CN103165742B (en) * | 2011-12-16 | 2016-06-08 | 清华大学 | The preparation method of solar cell |
CN103165719B (en) * | 2011-12-16 | 2016-04-13 | 清华大学 | Solar cell |
CN103165690B (en) | 2011-12-16 | 2015-11-25 | 清华大学 | Solar cell |
CN103178137B (en) * | 2011-12-22 | 2016-04-13 | 清华大学 | Solar battery group |
RU2487437C1 (en) * | 2012-02-02 | 2013-07-10 | Федеральное государственное унитарное предприятие "Всероссийский Электротехнический институт им. В.И. Ленина" (ФГУП ВЭИ) | Photoelectronic element |
DE102012205258A1 (en) | 2012-03-30 | 2013-10-02 | Evonik Industries Ag | Photoelectrochemical cell, system and method for light-driven generation of hydrogen and oxygen with a photo-electrochemical cell and method for producing the photo-electrochemical cell |
WO2014100707A1 (en) * | 2012-12-20 | 2014-06-26 | The Trustees Of Boston College | Methods and systems for controlling phonon-scattering |
TWI513017B (en) * | 2013-06-28 | 2015-12-11 | Mh Gopower Company Ltd | Solar cell having a passivation layer and method of manufacturing the same |
TWI513018B (en) * | 2013-06-28 | 2015-12-11 | Mh Gopower Company Ltd | Solar cell having an anti-reflective layer and method of manufacturing the same |
US9786800B2 (en) | 2013-10-15 | 2017-10-10 | Solarworld Americas Inc. | Solar cell contact structure |
CN106328643A (en) * | 2015-06-29 | 2017-01-11 | 美环能股份有限公司 | Energy conversion device and power transistor module using same |
US10553736B2 (en) * | 2015-07-01 | 2020-02-04 | Mh Go Power Company Limited | Photovoltaic power converter receiver |
CN105261659A (en) * | 2015-11-12 | 2016-01-20 | 天津三安光电有限公司 | Solar cell and manufacturing method thereof |
US11431280B2 (en) * | 2019-08-06 | 2022-08-30 | Tesla, Inc. | System and method for improving color appearance of solar roofs |
CN116445949A (en) * | 2023-04-04 | 2023-07-18 | 光子集成(温州)创新研究院 | Photovoltaic hydrogen production device and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4082570A (en) * | 1976-02-09 | 1978-04-04 | Semicon, Inc. | High intensity solar energy converter |
US4516314A (en) * | 1974-11-08 | 1985-05-14 | Sater Bernard L | Method of making a high intensity solar cell |
US5261969A (en) * | 1992-04-14 | 1993-11-16 | The Boeing Company | Monolithic voltage-matched tandem photovoltaic cell and method for making same |
US6583350B1 (en) * | 2001-08-27 | 2003-06-24 | Sandia Corporation | Thermophotovoltaic energy conversion using photonic bandgap selective emitters |
US20040200523A1 (en) * | 2003-04-14 | 2004-10-14 | The Boeing Company | Multijunction photovoltaic cell grown on high-miscut-angle substrate |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4332973A (en) * | 1974-11-08 | 1982-06-01 | Sater Bernard L | High intensity solar cell |
US4193081A (en) * | 1978-03-24 | 1980-03-11 | Massachusetts Institute Of Technology | Means for effecting cooling within elements for a solar cell array |
US4996577A (en) * | 1984-01-23 | 1991-02-26 | International Rectifier Corporation | Photovoltaic isolator and process of manufacture thereof |
US4634641A (en) * | 1985-07-03 | 1987-01-06 | The United States Of America As Represented By The United States Department Of Energy | Superlattice photoelectrodes for photoelectrochemical cells |
JP2784841B2 (en) * | 1990-08-09 | 1998-08-06 | キヤノン株式会社 | Substrates for solar cells |
JPH0797653B2 (en) * | 1991-10-01 | 1995-10-18 | 工業技術院長 | Photoelectric conversion element |
US5266125A (en) * | 1992-05-12 | 1993-11-30 | Astropower, Inc. | Interconnected silicon film solar cell array |
JP3152328B2 (en) * | 1994-03-22 | 2001-04-03 | キヤノン株式会社 | Polycrystalline silicon device |
JPH08125210A (en) * | 1994-10-24 | 1996-05-17 | Jiyousuke Nakada | Light receiving element, light receiving element array, and electrolysis apparatus using the same |
JP2762993B2 (en) * | 1996-11-19 | 1998-06-11 | 日本電気株式会社 | Light emitting device and method of manufacturing the same |
CA2287209C (en) * | 1998-01-23 | 2003-08-26 | Josuke Nakata | Solar battery module for photoelectrolytic device and photoelectrolytic device |
JP2002170980A (en) * | 2000-11-30 | 2002-06-14 | Rasa Ind Ltd | Photovoltaic cell for electrolysis of aqueous solution |
JP2003124481A (en) * | 2001-10-11 | 2003-04-25 | Mitsubishi Heavy Ind Ltd | Solar battery |
RU2210142C1 (en) * | 2002-04-17 | 2003-08-10 | Общество с ограниченной ответственностью Научно-производственный центр завода "Красное знамя" | Solar cell manufacturing process |
CN1177375C (en) * | 2003-01-14 | 2004-11-24 | 河北科技大学 | A kind of solar energy conversion multi-junction pole-connected photovoltaic cell |
US7718888B2 (en) * | 2005-12-30 | 2010-05-18 | Sunpower Corporation | Solar cell having polymer heterojunction contacts |
AU2006344623C1 (en) * | 2006-06-14 | 2014-01-09 | Sphelar Power Corporation | Rod-shaped semiconductor device |
CN100463231C (en) * | 2007-07-13 | 2009-02-18 | 南京大学 | Method for setting the structure of indium gallium nitride p-n junction multi-junction solar cell |
-
2009
- 2009-08-12 RU RU2011109164/28A patent/RU2472251C2/en not_active IP Right Cessation
- 2009-08-12 CN CN2013102194702A patent/CN103337547A/en active Pending
- 2009-08-12 BR BRPI0917838A patent/BRPI0917838A2/en not_active IP Right Cessation
- 2009-08-12 CA CA2820184A patent/CA2820184A1/en not_active Abandoned
- 2009-08-12 EP EP09807234A patent/EP2327107A1/en not_active Withdrawn
- 2009-08-12 AU AU2009281960A patent/AU2009281960A1/en not_active Abandoned
- 2009-08-12 CN CN2009801392214A patent/CN102171840A/en active Pending
- 2009-08-12 WO PCT/US2009/053576 patent/WO2010019685A1/en active Application Filing
- 2009-08-12 MX MX2011001738A patent/MX2011001738A/en active IP Right Grant
- 2009-08-12 CN CN201310219215.8A patent/CN103337546B/en not_active Expired - Fee Related
- 2009-08-12 JP JP2011523143A patent/JP2012500474A/en active Pending
- 2009-08-12 CN CN201310219468.5A patent/CN103354247B/en not_active Expired - Fee Related
- 2009-08-12 CA CA2733976A patent/CA2733976C/en not_active Expired - Fee Related
- 2009-08-14 TW TW098127486A patent/TWI535042B/en not_active IP Right Cessation
-
2011
- 2011-02-13 IL IL211205A patent/IL211205A0/en unknown
-
2012
- 2012-10-02 RU RU2012141985/28A patent/RU2012141985A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4516314A (en) * | 1974-11-08 | 1985-05-14 | Sater Bernard L | Method of making a high intensity solar cell |
US4082570A (en) * | 1976-02-09 | 1978-04-04 | Semicon, Inc. | High intensity solar energy converter |
US5261969A (en) * | 1992-04-14 | 1993-11-16 | The Boeing Company | Monolithic voltage-matched tandem photovoltaic cell and method for making same |
US6583350B1 (en) * | 2001-08-27 | 2003-06-24 | Sandia Corporation | Thermophotovoltaic energy conversion using photonic bandgap selective emitters |
US20040200523A1 (en) * | 2003-04-14 | 2004-10-14 | The Boeing Company | Multijunction photovoltaic cell grown on high-miscut-angle substrate |
Also Published As
Publication number | Publication date |
---|---|
MX2011001738A (en) | 2011-08-12 |
CN102171840A (en) | 2011-08-31 |
AU2009281960A1 (en) | 2010-02-18 |
IL211205A0 (en) | 2011-04-28 |
CN103354247B (en) | 2016-10-05 |
WO2010019685A4 (en) | 2010-05-06 |
CN103354247A (en) | 2013-10-16 |
WO2010019685A1 (en) | 2010-02-18 |
TW201013951A (en) | 2010-04-01 |
RU2011109164A (en) | 2012-09-20 |
CA2733976C (en) | 2015-12-22 |
CN103337546A (en) | 2013-10-02 |
JP2012500474A (en) | 2012-01-05 |
CA2733976A1 (en) | 2010-02-18 |
CN103337546B (en) | 2017-03-01 |
RU2472251C2 (en) | 2013-01-10 |
RU2012141985A (en) | 2014-05-10 |
EP2327107A1 (en) | 2011-06-01 |
BRPI0917838A2 (en) | 2017-02-14 |
CA2820184A1 (en) | 2010-02-18 |
TWI535042B (en) | 2016-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103337546B (en) | Photovoltaic cells with treated surfaces and related applications | |
JP6975368B1 (en) | Solar cells and solar cell modules | |
Green et al. | Very high efficiency silicon solar cells-science and technology | |
Blakers et al. | High efficiency silicon solar cells | |
Taguchi et al. | 24.7% record efficiency HIT solar cell on thin silicon wafer | |
CN102460715B (en) | High-efficiency solar cell structures and methods of manufacture | |
US8120132B2 (en) | Holey electrode grids for photovoltaic cells with subwavelength and superwavelength feature sizes | |
Terheiden et al. | Manufacturing 100‐µm‐thick silicon solar cells with efficiencies greater than 20% in a pilot production line | |
US20100037937A1 (en) | Photovoltaic cell with patterned contacts | |
Gassenbauer et al. | Rear-surface passivation technology for crystalline silicon solar cells: a versatile process for mass production | |
CN102064216A (en) | Novel crystalline silicon solar cell and manufacturing method thereof | |
Fernández et al. | Back‐surface optimization of germanium TPV cells | |
Mehmood et al. | Recent progress in silicon-based solid-state solar cells | |
Yamaguchi et al. | Approaches for III‐V/Si tandem solar cells and comparative studies on Si tandem solar cells | |
US20100037943A1 (en) | Vertical multijunction cell with textured surface | |
Kranzl et al. | Bifacial solar cells on multi-crystalline silicon with boron BSF and open rear contact | |
Franklin et al. | Sliver solar cells for concentrator PV systems with concentration ratio below 50 | |
Schwartz | Photovoltaic power generation | |
US20170084763A1 (en) | Semiconductor device | |
KR102499055B1 (en) | Solar cell with tunneling quantum wells structures directly connected to semiconductor pn junction structures | |
AU2013251282B2 (en) | Photovoltaic cells with processed surfaces and related applications | |
CN102646749A (en) | Fabrication method of vertical multi-junction solar cell | |
Franklin et al. | A 20% efficient Sliver solar cell | |
KR101307204B1 (en) | Solar cell and manufacturing method thereof | |
Rubin | Crystalline silicon solar cells and modules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20131002 |