CN103332235A - Modularized walking robot with flexible torso - Google Patents
Modularized walking robot with flexible torso Download PDFInfo
- Publication number
- CN103332235A CN103332235A CN2013102366573A CN201310236657A CN103332235A CN 103332235 A CN103332235 A CN 103332235A CN 2013102366573 A CN2013102366573 A CN 2013102366573A CN 201310236657 A CN201310236657 A CN 201310236657A CN 103332235 A CN103332235 A CN 103332235A
- Authority
- CN
- China
- Prior art keywords
- steering gear
- seat
- flexible
- shaft
- walking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manipulator (AREA)
Abstract
本发明的目的在于提供一种具有柔性躯干模块化步行机器人,包括柔性躯干、步行足,柔性躯干包括前机身板、后机身板和连接前机身板、后机身板的腰关节,步行足有两组,分别安装前机身板和后机身板的左右两侧并均与前机身板和后机身板相连,第一舵机驱动步行足,第二舵机驱动柔性躯干。本发明摒弃了传统的躯体刚性结构,拥有三个两自由度的腰部关节,使机器人的运动灵活性和稳定性更高,越障能力更强。可以很方便的扩展为六足、八足、十足或更多足的步行机器人。由于步行足结构更加简化,减少了行走过程中由于重力作用的无功损耗,而且在大腿和小腿之间装有双作用阻尼器,起到了被动缓冲的效果,减小了机器人在行走过程中来自于地面的冲击力。
The object of the present invention is to provide a modular walking robot with a flexible trunk, including a flexible trunk and walking feet. The flexible trunk includes a front fuselage panel, a rear fuselage panel and a waist joint connecting the front fuselage panel and the rear fuselage panel. There are two sets of walking feet, which are respectively installed on the left and right sides of the front fuselage plate and the rear fuselage plate and are connected to the front fuselage plate and the rear fuselage plate. The first steering gear drives the walking legs, and the second steering gear drives the flexible torso. . The invention abandons the traditional body rigid structure, and has three two-degree-of-freedom waist joints, which makes the robot more flexible and stable, and has a stronger ability to overcome obstacles. It can be easily extended to a walking robot with six legs, eight legs, decapod or more legs. Since the structure of the walking foot is more simplified, the reactive power loss due to gravity during walking is reduced, and a double-acting damper is installed between the thigh and the calf, which plays a passive buffering effect and reduces the impact of the robot on walking. impact on the ground.
Description
技术领域technical field
本发明涉及的是一种机器人,具体地说是足式机器人。The invention relates to a robot, specifically a legged robot.
背景技术Background technique
随着时代的发展,机器人的研究方向已经从结构化环境的定点作业中转向航空航天、星际探索、水下地下管道、疾病检查治疗、抢险救灾以及反恐活动等非结构化环境下的自主作业方面发展。未来机器人将在人类难以到达的或者存在危险的环境下为人类工作。不规则和不平坦地形成了这些环境的共同特点,传统的轮式或履带式机器人的应用受到了极大的限制,在这种背景下,对于足式机器人的研究蓬勃发展起来。多足步行机器人是以模仿多足动物运动模式为基础的机器人。所谓的多足一般是指四足及四足以上,常见的多足机器人包括四足机器人、六足机器人和八足机器人等。多足机器人在行走的过程中具有较高的运动稳定性,其冗余的肢节结构使其能够在复杂不规则环境中仍能保持稳定状态,即使个别关节出现故障仍然可以完成作业。相对于轮式和履带式机器人,其离散的落足点使其具有较强的地面适应性。With the development of the times, the research direction of robots has shifted from fixed-point operations in structured environments to autonomous operations in unstructured environments such as aerospace, interstellar exploration, underwater underground pipelines, disease inspection and treatment, emergency rescue and disaster relief, and anti-terrorism activities. develop. In the future, robots will work for humans in environments that are difficult for humans to reach or where there are dangers. Irregularity and unevenness form the common characteristics of these environments, and the application of traditional wheeled or tracked robots is greatly restricted. Under this background, research on legged robots has flourished. The multi-legged walking robot is a robot based on imitating the movement patterns of multi-legged animals. The so-called multi-legged generally refers to four-legged and more than four-legged robots. Common multi-legged robots include quadruped robots, hexapod robots and eight-legged robots. The multi-legged robot has high motion stability in the process of walking, and its redundant limb structure enables it to maintain a stable state in complex and irregular environments, and can still complete the work even if individual joints fail. Compared with wheeled and tracked robots, its discrete footholds make it more adaptable to the ground.
六足机器人稳定性和负载能力优于四足机器人,并且较八足机器人结构简单,是多足机器人的一个典型代表,六足机器人的优点使其尤其适合在复杂不规则环境中执行野外侦查、水下探寻以及太空探测等对自主性、可靠性要求比较高的任务。在六足机器人领域比较有代表性的如美国加州理工大学喷气推进实验室研制机器人LEMUR,LEMUR机器人主要用于太空设备的勘察、装配和维护。每条腿有4个转动自由度,肢体为刚性正六边形结构,集成了个各种先进的末端执行器,具有快速连接功能,可快速执行工具。另外一个经典的六足机器人是由美国加州伯克利分校等单位研制的RHex机器人。该机器人每条腿有一个驱动自由度。刚性机体上装备了1个三轴加速度计和1个三轴光纤陀螺仪,可在受外力扰动后调整姿态,通过各腿的应变测量单元获取躯干的瞬时姿态,并迅速改变步态来减少驱动载荷,实现自适应奔跑。通过对比发现,现有的多足机器人基本都是采用刚性躯体,这样的机器人运动的灵活性和柔顺性较差,躯体的柔性不足也会限制机器人的行走、奔跑、跳跃和翻滚等功能,为了改善机器人运动过程中的稳定性,开始有一些研究人员尝试对多足机器人采用柔性躯体的设计。例如韩国庆北工业大学Kyoung-Ho Kim等人研制的ELIRO-II四足机器人,该仿生四足机器人在前后机体之间包含了一个两自由度的腰关节,其中一个为左右摆动的被动自由度,用来扩展机器人的步长和速度,另外一个俯仰自由度为主动自由度,用来增加机器人在不规则地面的灵活性,含柔性躯干的多足机器人比传统刚性机体步行机器人更加的稳定,行走时的步态与自然界中的动物更加的相似。还有专利申请号:201110196221.7,公布号:CN102343950A专利文件记载的由北京交通大学张秀丽等人研制了一种具有柔性腰部和弹性腿的柔顺四足机器人,该机器人躯干具有三个自由度,前躯干与脊柱之间为主动俯仰自由度,脊柱与腰部、腰部和后躯干用带有扭簧的转动副连接,使机器人机体分别具有横滚和偏转的被动自由度。该发明采用柔性结构代替传统的刚性结构,增加了机器人的运动稳定性。通过分析发现,文献中多是四足机器人采用柔性结构躯干,含有柔性躯干的六足机器人还没有相关介绍,现有技术存在躯体柔性不足,使机器人的灵活性较差,限制了机器人的收缩、扭转、翻滚等功能;而且机器人单步行足结构复杂、重量大,从而增加了机器人在行走过程中的重力做的无用功,使能量损耗增加。The stability and load capacity of the hexapod robot is better than that of the quadruped robot, and its structure is simpler than that of the eight-legged robot. It is a typical representative of the multi-legged robot. The advantages of the hexapod robot make it especially suitable for field investigation, Underwater exploration and space exploration and other tasks that require relatively high autonomy and reliability. In the field of hexapod robots, such as the robot LEMUR developed by the Jet Propulsion Laboratory of California Institute of Technology, the LEMUR robot is mainly used for the survey, assembly and maintenance of space equipment. Each leg has 4 rotational degrees of freedom, and the limb is a rigid regular hexagonal structure, which integrates a variety of advanced end effectors with a quick connection function for rapid execution of tools. Another classic hexapod robot is the RHex robot developed by the University of California, Berkeley and other units. Each leg of the robot has an actuation degree of freedom. The rigid body is equipped with a three-axis accelerometer and a three-axis fiber optic gyroscope, which can adjust the posture after being disturbed by external forces, obtain the instantaneous posture of the trunk through the strain measurement unit of each leg, and quickly change the gait to reduce the driving force. Load, to achieve adaptive running. Through comparison, it is found that the existing multi-legged robots basically use rigid bodies, such robots have poor flexibility and compliance, and the lack of flexibility of the body will also limit the functions of the robot such as walking, running, jumping and rolling. To improve the stability of the robot during motion, some researchers have begun to try to design flexible bodies for multi-legged robots. For example, the ELIRO-II quadruped robot developed by Kyoung-Ho Kim et al. of Kyungpook University of Technology in South Korea. The bionic quadruped robot includes a waist joint with two degrees of freedom between the front and rear body, one of which is a passive degree of freedom for left and right swings. , used to expand the step length and speed of the robot, and the other pitch degree of freedom is the active degree of freedom, which is used to increase the flexibility of the robot on irregular ground. The multi-legged robot with a flexible torso is more stable than the traditional rigid body walking robot. The gait of walking is more similar to that of animals in nature. There is also a patent application number: 201110196221.7, publication number: CN102343950A patent document records a kind of compliant quadruped robot with flexible waist and elastic legs developed by Zhang Xiuli et al. of Beijing Jiaotong University. The robot trunk has three degrees of freedom. Between the spine and the active pitching degree of freedom, the spine is connected with the waist, waist and rear torso with a rotating joint with torsion springs, so that the robot body has passive degrees of freedom of rolling and deflection respectively. The invention uses a flexible structure to replace the traditional rigid structure, which increases the stability of the robot's movement. Through analysis, it is found that in the literature, most of the quadruped robots use a flexible torso, and there is no related introduction to the hexapod robot with a flexible torso. The existing technology has insufficient flexibility of the body, which makes the robot less flexible and limits the robot's shrinkage. Functions such as twisting and rolling; and the structure of the single walking foot of the robot is complex and heavy, which increases the useless work done by the gravity of the robot in the walking process and increases the energy loss.
发明内容Contents of the invention
本发明的目的在于提供模块化、扩展性强、结构紧凑、具有柔性躯干、具有减缓地面冲击的一种具有柔性躯干模块化步行机器人。The object of the present invention is to provide a modular walking robot with a flexible torso, which has modularization, strong expandability, compact structure, a flexible torso, and the ability to slow down ground impact.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
本发明一种具有柔性躯干模块化步行机器人,其特征是:包括柔性躯干、步行足,柔性躯干包括前机身板、后机身板和连接前机身板、后机身板的腰关节,步行足有两组,分别安装前机身板和后机身板的左右两侧并均与前机身板和后机身板相连,第一舵机驱动步行足,第二舵机驱动柔性躯干。A modular walking robot with a flexible trunk of the present invention is characterized in that it includes a flexible trunk and walking feet, the flexible trunk includes a front fuselage board, a rear fuselage board and a waist joint connecting the front fuselage board and the rear fuselage board, There are two sets of walking feet, which are respectively installed on the left and right sides of the front fuselage plate and the rear fuselage plate and are connected to the front fuselage plate and the rear fuselage plate. The first steering gear drives the walking legs, and the second steering gear drives the flexible torso .
本发明还可以包括:The present invention may also include:
1、所述的步行足包括第一-第三大腿连杆、小腿连杆、足尖、第一舵机、支承轴、支撑架、第一U型架、第一双作用阻尼器,支撑轴固定在前机身板上,支撑轴与支撑架固连构成支撑框架,第一舵机固定在第一舵机固定座上,第一舵机固定座固定在支撑架上,第一舵机的输出轴与第一舵盘相连,第一U型架的一端与第一舵盘相连、另一端与舵机尾端轴和第一舵机固定座共同构成转动副,第一U型架1背离第一舵机的一端与第二大腿连杆相连,第一-第三大腿连杆、小腿连杆构成平行四边形机构,相邻两个连杆之间构成转动副,小腿连杆与足尖之间为铰接,第一双作用阻尼器安放在足尖和小腿连杆之间形成被动自由度,第一双作用阻尼器一端与小腿连杆构成转动副、另一端与足尖形成铰接。1. The walking foot includes the first-third thigh link, calf link, toe, first steering gear, support shaft, support frame, first U-shaped frame, first double-acting damper, support shaft It is fixed on the front fuselage plate, the support shaft and the support frame are fixedly connected to form a support frame, the first steering gear is fixed on the first steering gear fixing seat, the first steering gear fixing seat is fixed on the support frame, and the first steering gear The output shaft is connected with the first steering wheel, one end of the first U-shaped frame is connected with the first steering wheel, and the other end is connected with the tail end shaft of the steering gear and the fixing seat of the first steering gear to form a revolving pair. The first U-shaped
2、柔性躯干还包括第二舵机、第二舵机固定座、第二U型架、第二舵盘、第一-第二球头杆、第一-第二球头座、连杆、带座轴、第二双作用阻尼器、十字轴、轴套、上轴承座、下轴承座、第一-第二连接架、M型连接板;2. The flexible torso also includes a second steering gear, a second steering gear fixing seat, a second U-shaped frame, a second steering wheel, a first-second ball head rod, a first-second ball head seat, a connecting rod, Shaft with seat, second double-acting damper, cross shaft, bushing, upper bearing seat, lower bearing seat, first-second connecting frame, M-shaped connecting plate;
柔性躯干为左右对称式结构,其中一侧的结构为:第二舵机固定在第二舵机固定座,第二舵机固定座与后机身板,第二U型架的输出端与第二舵盘相连,第二U型架的伸出端平板与第一球头杆相连,第一球头杆与第一球头座构成球铰,连杆的两端有螺纹,并与第一球头座和第二球头座构成螺纹连接,第二球头杆与第二球头座也同样构成球铰,第二球头杆与前机身板固连;The flexible torso is a left-right symmetrical structure, and the structure on one side is as follows: the second steering gear is fixed on the second steering gear fixing seat, the second steering gear fixing seat and the rear fuselage plate, the output end of the second U-shaped frame and the second steering gear The two rudder plates are connected, the extended end plate of the second U-shaped frame is connected with the first ball head rod, the first ball head rod and the first ball head seat form a ball joint, and the two ends of the connecting rod are threaded and connected with the first ball head rod. The ball head seat and the second ball head seat form a threaded connection, the second ball head rod and the second ball head seat also form a ball joint, and the second ball head rod is fixedly connected with the front fuselage plate;
腰关节的结构为:带座轴固定在后机身板上,第二双作用阻尼器一端与带座轴间隙配合构成转动副,另一端与十字轴的一个短轴端间隙配合构成转动副,十字轴的长轴端与轴套构成转动副,使腰关节具有左右摆动自由度,上轴承座与下轴承座相连构成滑动轴承座,轴瓦嵌入到轴承座内并限制其周向转动,轴套的两个伸出端插入到轴瓦的孔内,使腰关节具有上下摆动自由度,第一连接架与M型连接板相连,第二连接架固定到轴套上,M型连接板与第二连接架相连,第一连接架和第二连接架分别固定在前机身板上。The structure of the waist joint is as follows: the seated shaft is fixed on the rear fuselage plate, one end of the second double-acting damper cooperates with the seated shaft to form a rotating pair, and the other end cooperates with a short axis end of the cross shaft to form a rotating pair. The long shaft end of the cross shaft and the shaft sleeve form a revolving pair, so that the waist joint has left and right swing freedom. The upper bearing seat is connected with the lower bearing seat to form a sliding bearing seat. The bearing bush is embedded in the bearing seat to limit its circumferential rotation. The shaft sleeve The two protruding ends of the shaft are inserted into the holes of the bearing bush, so that the waist joint has a degree of freedom of swinging up and down. The first connecting frame is connected with the M-shaped connecting plate, the second connecting frame is fixed on the bushing, and the M-shaped connecting plate is connected with the second The connecting frames are connected, and the first connecting frame and the second connecting frame are respectively fixed on the front fuselage board.
3、每一组柔性躯干和每两组步行足构成一组运动单元,所述的运动单元有三组或三组以上,所有运动单元前后布置、通过机体连接架连接为一体形成多足步行机构。3. Each group of flexible torso and two groups of walking feet form a group of motion units. There are three or more groups of motion units. All the motion units are arranged in front and rear and connected by body connecting frames to form a multi-legged walking mechanism.
4、柔性躯干上还安装第一-第二卡簧,第一卡簧卡在带座轴的沟槽内,限制第二双作用阻尼器轴向运动,第二卡簧安装在第二球头座里,限定第二球头座的轴向位置。4. The first-second circlip is also installed on the flexible torso. The first circlip is stuck in the groove of the shaft with seat to limit the axial movement of the second double-acting damper. The second circlip is installed on the second ball head In the seat, the axial position of the second ball head seat is defined.
本发明的优势在于:本发明摒弃了传统的躯体刚性结构,拥有三个两自由度的腰部关节,使机器人的运动灵活性和稳定性更高,越障能力更强。由于采用了模块化的设计思想,可以很方便的扩展为六足、八足、十足或更多足的步行机器人。由于步行足结构更加简化,减少了行走过程中由于重力作用的无功损耗,而且在大腿和小腿之间装有双作用阻尼器,起到了被动缓冲的效果,减小了机器人在行走过程中来自于地面的冲击力。The advantage of the present invention is that: the present invention abandons the traditional body rigid structure, and has three two-degree-of-freedom waist joints, which makes the robot more flexible and stable, and has a stronger ability to overcome obstacles. Due to the adoption of a modular design concept, it can be easily extended to a walking robot with six legs, eight legs, full legs or more. Since the structure of the walking foot is more simplified, the reactive power loss due to gravity during walking is reduced, and a double-acting damper is installed between the thigh and the calf, which plays a passive buffering effect and reduces the impact of the robot on walking. impact on the ground.
附图说明Description of drawings
图1是本发明主视图;Fig. 1 is a front view of the present invention;
图2是本发明俯视图;Fig. 2 is a top view of the present invention;
图3是本发明机身立体图;Fig. 3 is a perspective view of the fuselage of the present invention;
图4是柔顺性躯干立体图;Fig. 4 is a perspective view of a flexible torso;
图5是柔顺性躯干仰视图;Figure 5 is a bottom view of the flexible trunk;
图6是六足步行机器人整机俯视图;Fig. 6 is a top view of the whole machine of the hexapod walking robot;
图7是六足步行机器人整机立体图。Fig. 7 is a three-dimensional view of the whole machine of the hexapod walking robot.
具体实施方式Detailed ways
下面结合附图举例对本发明做更详细地描述:The present invention is described in more detail below in conjunction with accompanying drawing example:
结合图1~7,本发明的具有柔性躯干模块化步行机器人由以下几部分组成:模块化结构机身前端67、模块化结构机身中端66、模块化结构机身后端64、机体连接架65、六角头螺栓63。1 to 7, the walking robot with a flexible torso of the present invention is composed of the following parts: the front end 67 of the fuselage with a modular structure, the middle end 66 of the fuselage with a modular structure, the rear end 64 of the fuselage with a modular structure, and the body connection Frame 65, hex head bolt 63.
整机组装如下:模块化结构机身前端67、机身中端66、机身后端64通过六角头螺栓63与机体连接架65相连。The whole machine is assembled as follows: the front end 67 of the modular structure fuselage, the middle end 66 of the fuselage, and the rear end 64 of the fuselage are connected to each other with the connecting frame 65 of the fuselage by hexagon head bolts 63.
结合图3每个模块化机身结构都由分布于机体两侧的两条步行足和一个两自由度的柔顺性躯干组成。Referring to Figure 3, each modular fuselage structure is composed of two walking legs distributed on both sides of the fuselage and a compliant torso with two degrees of freedom.
结合图1和图2,步行机器人包括步行足,它具体包括:足尖1、销轴12、开口销3、小腿连杆4、双作用阻尼器15、销轴26、大腿连杆17、大腿连杆28、大腿连杆39、销轴310舵机座固定螺栓111、舵机尾端轴12、舵机轴固定螺钉13、U型架固定螺钉14、舵盘115、舵机116、舵机固定螺栓117、舵机固定螺母18、舵机固定座119、U型架120、传动螺钉21、支撑轴22、支撑架23、六角头螺栓124、六角头螺栓225。In conjunction with Fig. 1 and Fig. 2, walking robot comprises walking foot, and it specifically comprises:
单步行足结构组装如下:支撑轴22由两个内六角头螺栓124固定在前机身板61上,支撑轴22通过两个六角头螺栓225与支撑架23固连,支撑轴22和支撑架23共同构成了整条步行足的支撑框架。舵机116通过两个舵机固定螺栓117、舵机固定螺母18固定在舵机固定座119上,舵机固定螺母18由四个舵机座固定螺栓111固定在支撑架23上,舵机116作为整条步行足的主动关节的动力源,舵机116的输出轴与舵盘115通过舵机轴固定螺钉13相连,U型架116的一端与舵盘115通过4个U型架固定螺钉14相连,另一端和舵机尾端轴12、舵机固定座119共同构成转动副,U型架120背离舵机116的一端通过传动螺钉21、与大腿连杆28相连,大腿连杆17、大腿连杆28、大腿连杆39、小腿连杆4构成平行四边形机构,相邻两杆之间通过销轴310和销轴26构成转动副,小腿连杆4与足尖1之间为铰接,其转轴为销轴12,开口销3插入到销轴12的一端圆孔内,起到防止销轴脱落的作用,双作用阻尼器15安放在足尖1和小腿连杆4之间形成一个被动自由度,双作用阻尼器15一端与小腿连杆4通过销轴26构成转动副,另一端与足尖1通过销轴12形成铰接。The single walking foot structure is assembled as follows: the
其工作原理是:舵机116带动大腿连杆28转动,大腿连杆28作为大腿连杆17、大腿连杆28、大腿连杆39、小腿连杆4构成的平面平行四边形机构的一个杆,当大腿连杆28转动会带动此平行四边形机构运动,从而实现了步行足大腿的上下摆动,此自由度为主动自由度。大腿和小腿连接处通过足尖1、小腿连杆4和销轴12构成转动副,此处为一被动关节,一个双作用阻尼器15安放在此被动关节处起到减缓地面冲击的作用。Its working principle is: steering gear 116 drives
结合图4和图5,模块化机身结构中的柔顺性躯干包括:六角头螺栓326、轴套连接架27、上轴承座28、紧定螺钉129、轴承座连接螺栓30、轴瓦31、开槽圆柱头螺钉132、下轴承座33、轴套34、开槽圆柱头螺钉235、六角头螺栓436、带座轴37、卡簧138、双作用阻尼器239、十字轴40、M型连接板41、六角头螺栓542、连接架143、连接架244、开槽圆柱头螺钉345、后机身板46、舵机座固定螺栓247、舵机固定座248、舵机固定螺钉249、舵机250、舵盘251、开槽圆柱头螺钉452、U型架253、球头杆154、开槽圆柱头螺钉555、球头座156、连杆57、球头座258、球头杆259、卡簧260、前机身板61、六角头螺钉62。4 and 5, the flexible trunk in the modular fuselage structure includes: hexagon head bolt 326,
柔顺性躯干结构组装如下:此柔性躯干由前机身板61、后机身板46和腰关节三部分组成。两个舵机250为该两自由度腰关节的动力源,分布于躯体的左右两侧,舵机250由舵机固定螺钉249固定到舵机固定座248上,舵机固定座248通过四个舵机座固定螺栓247与后机身板46固连。U型架253的输出端与舵盘251通过四个开槽圆柱头螺钉452相连,U型架253的伸出端平板由开槽圆柱头螺钉555与球头杆154相连,球头杆1与球头座156构成球铰,连杆57的两端攻有螺纹,与球头座156和球头座258构成螺纹连接,球头杆259与球头座258同样也构成球铰运动副,卡簧260对球头座2起到轴向定位的作用,球头杆259通过四个六角头螺钉62与前机身板61固连。带座轴37由四个六角头螺栓436固定在后机身板46上,双作用阻尼器239一端与带座轴37间隙配合构成转动副,卡簧138卡在带座轴37的沟槽内,起到限制双作用阻尼器239轴向窜动作用,双作用阻尼器239的另一端与十字轴40的一个短轴端同样进行间隙配合,构成转动副,十字轴40的长轴端与轴套34构成转动副,使腰部具有左右摆动自由度,上轴承座28与下轴承座33通过轴承座连接螺栓30相连构成滑动轴承座,起到支撑轴瓦和转轴的作用,轴瓦31嵌入到轴承座内,通过紧定螺钉129限制其周向转动,轴套34的两个伸出端插入到轴瓦31的孔内,使腰部具有上下摆动自由度,连接架143通过四个六角头螺栓542与M型连接板41相连,连接架244由四个开槽圆柱头螺钉235固定到轴套34上,M型连接板41与连接架244通过两个六角头螺栓542相连。连接架143和连接架244分别由四个开槽圆柱头螺钉345固定到前机身板61上。The flexible torso structure is assembled as follows: the flexible torso is made up of three parts, the
其工作原理是:当位于机体左右两端的舵机250转动时会带动球头杆154做圆周运动,球头杆154与球头座156构成球铰,球头杆154的运动会通过球铰传递到连杆57,从而带动连杆57的摆动,连杆57的另一端球头座258与球头杆259也构成球铰,连杆57的摆动同样也会带动球头杆259的运动,因球头杆259与前机身板61固连,球头杆259的运动相应会带动前机身板61与后机身板46发生相对转动。综上所述,当机体左右两端舵机250同速同向转动时,会使前机身板61相对于后机身板46做上下俯仰运动,当机体左右两端舵机250同速反向转动时,会使前机身板61相对于后机身板46做左右摆动运动。Its working principle is: when the steering gear 250 located at the left and right ends of the body rotates, it will drive the ball head rod 154 to do circular motion, the ball head rod 154 and the ball head seat 156 form a ball joint, and the motion of the ball head rod 154 will be transmitted to the
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310236657.3A CN103332235B (en) | 2013-06-14 | 2013-06-14 | Modularized walking robot with flexible torso |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310236657.3A CN103332235B (en) | 2013-06-14 | 2013-06-14 | Modularized walking robot with flexible torso |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103332235A true CN103332235A (en) | 2013-10-02 |
CN103332235B CN103332235B (en) | 2015-06-17 |
Family
ID=49240465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310236657.3A Active CN103332235B (en) | 2013-06-14 | 2013-06-14 | Modularized walking robot with flexible torso |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103332235B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104354785A (en) * | 2014-10-27 | 2015-02-18 | 中北大学 | Bionic crab robot |
CN107085425A (en) * | 2017-04-21 | 2017-08-22 | 江苏大学 | A hexapod robot control system and stair climbing gait planning method |
CN107914789A (en) * | 2017-11-30 | 2018-04-17 | 山西大学 | The intelligent bionic walking robot of mobile terminal control |
CN108357581A (en) * | 2018-03-14 | 2018-08-03 | 中国科学院合肥物质科学研究院 | A kind of Bionic flexible pawl thorn is to grabbing sufficient constructed machine people |
CN108638041A (en) * | 2018-05-14 | 2018-10-12 | 南京蜘蛛侠智能机器人有限公司 | A kind of modularization robot |
CN108928450A (en) * | 2018-07-11 | 2018-12-04 | 哈尔滨工程大学 | A kind of underwater flying method of multi-foot robot |
CN108945359A (en) * | 2018-07-11 | 2018-12-07 | 哈尔滨工程大学 | A kind of multi-foot robot underwater gliding method |
CN109178137A (en) * | 2018-08-29 | 2019-01-11 | 燕山大学 | Multi-foot robot based on Three Degree Of Freedom pedipulator |
CN109533074A (en) * | 2018-11-14 | 2019-03-29 | 西北农林科技大学 | A kind of implementation method of hexapod robot and its gait of keeping straight on |
CN109533079A (en) * | 2018-12-29 | 2019-03-29 | 北京智能猿科技有限公司 | Manned six sufficient vehicles under a kind of unstructured landform |
CN110386203A (en) * | 2019-07-04 | 2019-10-29 | 广西广播电视大学 | A kind of multi-foot robot based on Arduino bluetooth wireless downloading |
CN112918586A (en) * | 2021-03-16 | 2021-06-08 | 上海电力大学 | Quadruped robot and flexible spine joint thereof |
CN113306353A (en) * | 2021-07-14 | 2021-08-27 | 北京理工大学 | Variable and modular amphibious bionic mobile platform |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS604474A (en) * | 1983-06-21 | 1985-01-10 | Sumitomo Electric Ind Ltd | Walking legs of walking mobile device |
CN201033434Y (en) * | 2006-10-25 | 2008-03-12 | 哈尔滨工程大学 | Gecko imitation miniature robot |
CN101850798A (en) * | 2010-03-29 | 2010-10-06 | 北京航空航天大学 | A bionic cockroach robot based on double four-bar linkage mechanism |
CN102343950A (en) * | 2011-07-13 | 2012-02-08 | 北京交通大学 | Pliant four-footed robot with flexible waist and elastic legs |
CN103144693A (en) * | 2013-03-26 | 2013-06-12 | 上海大学 | Leg mechanism for four-footed bionic robot |
-
2013
- 2013-06-14 CN CN201310236657.3A patent/CN103332235B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS604474A (en) * | 1983-06-21 | 1985-01-10 | Sumitomo Electric Ind Ltd | Walking legs of walking mobile device |
CN201033434Y (en) * | 2006-10-25 | 2008-03-12 | 哈尔滨工程大学 | Gecko imitation miniature robot |
CN101850798A (en) * | 2010-03-29 | 2010-10-06 | 北京航空航天大学 | A bionic cockroach robot based on double four-bar linkage mechanism |
CN102343950A (en) * | 2011-07-13 | 2012-02-08 | 北京交通大学 | Pliant four-footed robot with flexible waist and elastic legs |
CN103144693A (en) * | 2013-03-26 | 2013-06-12 | 上海大学 | Leg mechanism for four-footed bionic robot |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104354785B (en) * | 2014-10-27 | 2016-04-20 | 中北大学 | A kind of Bionic crab robot |
CN104354785A (en) * | 2014-10-27 | 2015-02-18 | 中北大学 | Bionic crab robot |
CN107085425A (en) * | 2017-04-21 | 2017-08-22 | 江苏大学 | A hexapod robot control system and stair climbing gait planning method |
CN107914789A (en) * | 2017-11-30 | 2018-04-17 | 山西大学 | The intelligent bionic walking robot of mobile terminal control |
CN107914789B (en) * | 2017-11-30 | 2023-12-29 | 山西大学 | Intelligent bionic walking robot controlled by mobile terminal |
CN108357581A (en) * | 2018-03-14 | 2018-08-03 | 中国科学院合肥物质科学研究院 | A kind of Bionic flexible pawl thorn is to grabbing sufficient constructed machine people |
CN108357581B (en) * | 2018-03-14 | 2023-07-25 | 中国科学院合肥物质科学研究院 | A robot with bionic flexible claw-to-grasping foot structure |
CN108638041A (en) * | 2018-05-14 | 2018-10-12 | 南京蜘蛛侠智能机器人有限公司 | A kind of modularization robot |
CN108928450B (en) * | 2018-07-11 | 2019-12-31 | 哈尔滨工程大学 | A multi-legged robot underwater flight method |
CN108928450A (en) * | 2018-07-11 | 2018-12-04 | 哈尔滨工程大学 | A kind of underwater flying method of multi-foot robot |
CN108945359A (en) * | 2018-07-11 | 2018-12-07 | 哈尔滨工程大学 | A kind of multi-foot robot underwater gliding method |
CN109178137A (en) * | 2018-08-29 | 2019-01-11 | 燕山大学 | Multi-foot robot based on Three Degree Of Freedom pedipulator |
CN109178137B (en) * | 2018-08-29 | 2019-09-13 | 燕山大学 | Multi-legged robot based on three-degree-of-freedom mechanical leg |
CN109533074A (en) * | 2018-11-14 | 2019-03-29 | 西北农林科技大学 | A kind of implementation method of hexapod robot and its gait of keeping straight on |
CN109533079A (en) * | 2018-12-29 | 2019-03-29 | 北京智能猿科技有限公司 | Manned six sufficient vehicles under a kind of unstructured landform |
CN110386203A (en) * | 2019-07-04 | 2019-10-29 | 广西广播电视大学 | A kind of multi-foot robot based on Arduino bluetooth wireless downloading |
CN112918586A (en) * | 2021-03-16 | 2021-06-08 | 上海电力大学 | Quadruped robot and flexible spine joint thereof |
CN113306353A (en) * | 2021-07-14 | 2021-08-27 | 北京理工大学 | Variable and modular amphibious bionic mobile platform |
CN113306353B (en) * | 2021-07-14 | 2023-10-13 | 北京理工大学 | Variable and modularized amphibious bionic mobile platform |
Also Published As
Publication number | Publication date |
---|---|
CN103332235B (en) | 2015-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103332235B (en) | Modularized walking robot with flexible torso | |
Li et al. | Design and experiments of a novel hydraulic wheel-legged robot (WLR) | |
US10189519B2 (en) | Leg configuration for spring-mass legged locomotion | |
US8635929B2 (en) | Robot joint driving apparatus, robot having the same and cable linkage method of robot joint driving apparatus | |
CN101121424B (en) | Double-foot robot lower limb mechanism with multiple freedom degree | |
CN104608837B (en) | Wheel-leg composite type four-leg robot | |
CN102390457B (en) | Leg mechanism for four-legged robots | |
CN110104088B (en) | Robot mouse leg and foot structure based on micro-steering gear | |
CN101850798B (en) | Bionic cockroach robot based on double-four link mechanism | |
CN105235766A (en) | Four-footed bio-robot single leg capable of achieving jumping function | |
CN103448828B (en) | A quadruped bionic robot leg mechanism | |
CN104924294B (en) | Quadruped robot with parallel waist structure | |
CN108910088B (en) | Landing and walking integrated robot | |
CN105599822A (en) | Under-actuated biped walking robot based on flexible drivers | |
CN111942491B (en) | Parallel connection mechanism wheel foot mobile robot based on UP and UPS | |
GB2538714A (en) | Robot Leg | |
CN203780644U (en) | Bionic quadruped robot with spine joints and elastic legs | |
Boxerbaum et al. | The latest generation Whegs™ robot features a passive-compliant body joint | |
CN206677988U (en) | A kind of soft drive hip joint for semi-passive biped robot | |
CN104925161B (en) | Rotate the Six-foot walking robot in parallel of driving | |
Alamdari et al. | Static balancing of highly reconfigurable articulated wheeled vehicles for power consumption reduction of actuators | |
CN114735105B (en) | Electro-hydraulic hybrid driven lower limb mechanism of humanoid robot | |
CN113479273B (en) | Modular composite robot | |
Zhang et al. | A bio-inspired quadruped robot with a global compliant spine | |
Tang et al. | Omni-directional gait of a passive-spine hexapod |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |