CN103329617A - Compatible with trailing edge dimmers with dimmer high impedance prediction - Google Patents
Compatible with trailing edge dimmers with dimmer high impedance prediction Download PDFInfo
- Publication number
- CN103329617A CN103329617A CN201180055250XA CN201180055250A CN103329617A CN 103329617 A CN103329617 A CN 103329617A CN 201180055250X A CN201180055250X A CN 201180055250XA CN 201180055250 A CN201180055250 A CN 201180055250A CN 103329617 A CN103329617 A CN 103329617A
- Authority
- CN
- China
- Prior art keywords
- trailing edge
- voltage
- voltage signal
- impedance state
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B39/00—Circuit arrangements or apparatus for operating incandescent light sources
- H05B39/04—Controlling
- H05B39/041—Controlling the light-intensity of the source
- H05B39/044—Controlling the light-intensity of the source continuously
- H05B39/048—Controlling the light-intensity of the source continuously with reverse phase control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/10—Controlling the intensity of the light
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/357—Driver circuits specially adapted for retrofit LED light sources
- H05B45/3574—Emulating the electrical or functional characteristics of incandescent lamps
- H05B45/3575—Emulating the electrical or functional characteristics of incandescent lamps by means of dummy loads or bleeder circuits, e.g. for dimmers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
- H05B45/38—Switched mode power supply [SMPS] using boost topology
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Lock And Its Accessories (AREA)
Abstract
Description
相关申请的交叉引用Cross References to Related Applications
本申请根据35U.S.C.§119(e)以及37C.F.R.§1.78要求于2010年11月16日提交的美国临时专利申请第61/414,291号的权益,其全部内容通过引证结合于此。本申请根据美国的35U.S.C.§119(e)以及37C.F.R.§1.78还要求于2010年11月16日提交的美国临时专利申请第13/298,002号的权益,其全部内容通过引证结合于此。This application claims the benefit under 35 U.S.C. §119(e) and 37 C.F.R. §1.78 of U.S. Provisional Patent Application No. 61/414,291, filed November 16, 2010, which is hereby incorporated by reference in its entirety. This application also claims the benefit of U.S. Provisional Patent Application No. 13/298,002, filed November 16, 2010, the entire contents of which are hereby incorporated by reference under 35 U.S.C. §119(e) and 37 C.F.R. §1.78 of the United States .
技术领域technical field
本发明总体上涉及电子领域,更具体地,涉及用于使后沿调光器兼容有高阻抗预测的方法和系统。The present invention relates generally to the field of electronics, and more particularly to methods and systems for making trailing edge dimmers compatible with high impedance prediction.
背景技术Background technique
高效节能技术的开发和利用对于许多机构(包括许多公司和国家)仍然是优先考虑的。感兴趣的一个领域是用更高效节能的灯(例如基于电子光源的灯)来代替白炽灯。对于这个描述,电子光源是发光二极管(LED)和紧凑型荧光灯(CFL)。基于电子光源的灯的开发并没有太多挑战。挑战之一是开发与现有基础设施兼容的基于电子光源的灯。下列讨论集中于基于LED的照明系统,但是也适用于基于CFL的照明系统以及基于LED和CFL组合的照明系统。The development and deployment of energy-efficient technologies remains a priority for many institutions, including many companies and countries. One area of interest is the replacement of incandescent lamps with more energy-efficient lamps, such as lamps based on electronic light sources. For this description, the electronic light sources are light emitting diodes (LEDs) and compact fluorescent lamps (CFLs). The development of lamps based on electronic light sources does not pose many challenges. One of the challenges is to develop lamps based on electronic light sources that are compatible with existing infrastructure. The following discussion focuses on LED-based lighting systems, but is also applicable to CFL-based lighting systems and combined LED and CFL-based lighting systems.
许多电子系统包括电路,例如与调光器相连接的开关功率转换器。接口电路根据由调光器设定的调光水平,向负载供应电力。例如,在照明系统中,调光器向照明系统提供输入信号。输入信号表示使照明系统调整向灯供应的电力的调光水平,因此根据调光水平增加或降低灯的亮度。存在许多不同类型的调光器。通常,调光器生成指示期望的调光水平的数字或模拟编码调光信号。后沿调光器相位切割交流(“AC”)供电电压的后沿。Many electronic systems include circuits such as switching power converters connected to dimmers. The interface circuit supplies power to the load according to the dimming level set by the dimmer. For example, in a lighting system, a dimmer provides an input signal to the lighting system. The input signal represents a dimming level that causes the lighting system to adjust the power supplied to the lamps, thus increasing or decreasing the brightness of the lamps according to the dimming level. There are many different types of dimmers. Typically, dimmers generate digital or analog coded dimming signals indicative of desired dimming levels. A trailing edge dimmer phase cuts the trailing edge of an alternating current ("AC") supply voltage.
图1示出包括后沿相位切割调光器102的照明系统100。图2示出与照明系统100相关联的示例性后沿相位切割电压曲线图200以及调光器控制信号201。参考图1和2,照明系统100从电源电压104接收AC供给电压VIN。由电压波形202表示的供给电压VIN是例如美利坚合众国的标称60Hz/110V线电压或欧洲的标称50Hz/220V线电压。后沿调光器102相位切割供给电压VIN的每半个周期的后沿,例如后沿202和204。由于供给电压VIN的每半个周期是供给电压VIN的180度,所以后沿调光器102以大于0度且小于180度的角度相位切割供给电压VIN。至照明系统100的相位切割输入电压VΦ_IN表示使照明系统100调整向灯106供应的电力的调光水平,因此,根据该调光水平增加或降低灯106的亮度。灯106是白炽灯,并且通常可以模拟为电阻108。FIG. 1 shows a
调光器102包括定时控制器110,其生成用于控制开关112的占空比的调光器控制信号DCS。开关112的占空比是脉冲宽度,例如对于调光器控制信号DCS的每个周期来说,其是调光器控制信号周期,例如时间t3-t0被划分的时间t1-t0。定时控制器110将期望的调光水平转换为开关112的占空比。对于越低调光水平,即,灯106的越高亮度,减少调光器控制信号DCS的占空比,而对于越高的调光水平,则增加调光器控制信号DCS的占空比。在调光器控制信号DCS的脉冲(例如脉冲206和脉冲208)期间,开关112导通(即,打开),并且调光器102进入低阻抗状态。在调光器102的低阻抗状态下,开关112的电阻少于或等于例如10欧姆。在开关112的低阻抗状态期间,相位切割输入电压VΦ_in跟随输入供给电压VIN,以及调光器102将调光器电流iDIM传送到灯106。The
当定时控制器110使调光器控制信号206的脉冲结束时,调光器控制信号206将开关112关闭,这使调光器102进入高阻抗状态,即,关闭。在调光器102的高阻抗状态下,开关112的电阻大于例如1k欧姆。调光器102包括电容器114,其在调光器控制信号DCS的每个脉冲期间向供给电压VIN充电。在调光器102的高阻抗和低阻抗状态中,电容器114保持连接于开关112的两端。当开关112关闭并且调光器112进入高阻抗状态时,电容器114两端的电压VC例如在时间t1与t2之间以及t4与t5之间衰减。衰减速率是电容器114的电容量C和流过灯108的电阻R的调光器电流iDIM的函数。式子[1]表示电容器114的电容C、调光器电流iDIM以及相位切割输入电压VΦ_IN的衰减速率dVΦ_IN/dt之间的关系:When the
iDIM=C·dVΦ_IN/dt [1]i DIM =C·dV Φ_IN /dt [1]
灯106的电阻值R相对较低,并且容许足够高的调光器电流iDIM值,从而允许相位切割输入电压VΦ_IN在调光器控制信号DCS的下一个脉冲之前,衰减到过零点,例如时间t2和t5。The resistance value R of the
后沿调光器(例如后沿调光器102)具有一些有利的特性。例如,后沿调光器102在调光器102开始导通时(例如在时间t0和t3时),没有突然电压增加,以及当调光器102进入高阻抗状态时,具有衰减减少。因此,谐波频率较低,并且调光器102生成更少的电磁干扰。A trailing edge dimmer, such as
如上所述,与输出相当量光的白炽灯相比,电子光源具有更高的能量效率。因此,电子光源被改进到包括后沿调光器(例如后沿调光器102)的现有基础设施中。电子光源具有较低的功率要求,因此,更少的调光器电流iDIM被传送到电子光源。因此,根据式子[1],调光器电流iDIM越小,衰减速率dVΦ_IN/dt越小。如果衰减速率dVΦ_IN/dt太低,则相位切割输入电压VΦ_IN在供给电压VIN的下一个周期开始之前不会到达过零点。无法到达过零点会使一些后沿调光器故障。As mentioned above, electronic light sources are more energy efficient than incandescent lamps which output a comparable amount of light. Accordingly, electronic light sources are retrofitted into existing infrastructure including trailing edge dimmers, such as
图3示出包括后沿调光器102和LED302的照明系统300。调光器102具有前述功能,并且提供相位切割输入电压VΦ_IN和调光器电流至全桥二极管整流器304。整流器304向功率转换器306提供相位切割整流电压VΦ_R。功率转换器306分别将相位切割整流电压VΦ_R和整流输入电流iR转换为近似恒定电压VOUT和输出电流iOUT。输出电流iOUT根据相位切割输入电压VΦ_IN的相位角指示的调光水平来被调整,并且对于任何给定的调光水平,其近似恒定。FIG. 3 shows a
控制器308包括电流控制器310,其控制向功率转换器306传送电流iR并且调节传送到LED302的功率。LED基本需要很少的功率来提供白炽灯的同等光输出。例如,LED302使用4W功率来提供60W白炽灯的同等光输出。输出电压VOUT通常由功率转换器306升压到例如400V。由于提供给LED302的功率P近似是P=VOUT·iOUT,所以传送到功率转换器306的最大电流iR通常仅是50mA,其小于60W灯从110V供给输入电压VIN汲取的近似545mA最大电流。因此,根据式子[1],照明系统300的衰减时间dVΦ_IN/dt增加。控制器308包括比较器312,用于检测相位切割整流电压VΦ_R的后沿,例如后沿314和316。
相位切割整流电压VΦ_R的后沿检测不是简单的任务。整流输入电压VΦR_IN在时间t1和t4的后沿通常是有噪声的,并且可能包括其他失真。为了检测后沿,控制器308用比较器312来检测位于相位切割整流电压VΦ_R的更稳定部分的后沿。比较器312接收相位切割整流电压VΦ_R或在比较器312的反相输入端接收相位切割整流电压VΦ_R的缩放版本。比较器312将相位切割整流电压VΦ_R与固定的后沿检测电压阀值(例如+20V)比较,并生成后沿检测信号TE_DETECT。在检测相位切割整流电压VΦ_R的后沿之前,后沿脉冲检测信号TE_DETECT是逻辑0,并在检测到后沿后,转变为逻辑1。一旦后沿检测信号TE_DETECT指示检测到后沿,电流控制器310增加流过调光器102的电流iDIM,以增加衰减速率dVΦ_IN/dt,因此,增加相位切割整流电压VΦ_R在例如时间t2和t4的衰减速率。增加时间t2和t5的衰减速率有助于确保相位切割整流电压VΦ_R在相位切割整流电压VΦ_R的下一个周期开始之前到达过零点。后沿检测阀值被设定得足够低,以避免过早检测后沿。然而,由于衰减速率dVΦ_IN/dt对于电子光源较大,所以后沿检测阀值的低值也意味着,对于大的相位角度,在相位切割整流电压VΦ_R的过零点之前,可能不会检测到后沿。增加后沿检测阀值的值会导致从电压供给104传送不必要的电流量。The detection of the trailing edge of the phase-cut rectified voltage V Φ_R is not a simple task. The trailing edges of the rectified input voltage V ΦR_IN at times t1 and t4 are typically noisy and may include other distortions. To detect the trailing edge, the
期望改善后沿调光器的兼容性。Improved compatibility of trailing edge dimmers is desired.
发明内容Contents of the invention
在本发明的一个实施方式中,装置包括用于提供灯与后沿调光器之间的兼容性的控制器。控制器能够预测后沿调光器的高阻抗状态的估计发生。当后沿调光器开始相位切割交流(AC)电压信号时,发生高阻抗状态。基于估计预测出的后沿调光器的高阻抗状态的发生,控制器进一步能够操作在高电流模式下。控制器还能够在AC电压信号达到低电压阀值后,操作在低阻抗模式下。In one embodiment of the invention, the apparatus includes a controller for providing compatibility between the lamp and the trailing edge dimmer. The controller is capable of predicting the estimated occurrence of the high impedance state of the trailing edge dimmer. A high-impedance state occurs when a trailing-edge dimmer begins phase-cutting an alternating current (AC) voltage signal. The controller is further capable of operating in a high current mode based on the estimated predicted occurrence of the high impedance state of the trailing edge dimmer. The controller is also capable of operating in a low impedance mode after the AC voltage signal reaches a low voltage threshold.
在本发明的另一实施方式中,一种用于提供灯与后沿调光器之间的兼容性的方法包括:预测后沿调光器的高阻抗状态的估计发生。当后沿调光器开始相位切割交流(AC)电压信号时,发生高阻抗状态。该方法进一步包括:基于估计预测出的后沿调光器的高阻抗状态的发生,将至少功率转换器的控制器操作在高电流模式下。该方法还包括在AC电压信号达到低电压阀值后,将控制器操作在低阻抗模式下。In another embodiment of the present invention, a method for providing compatibility between a lamp and a trailing edge dimmer includes predicting an estimated occurrence of a high impedance state of the trailing edge dimmer. A high-impedance state occurs when a trailing-edge dimmer begins phase-cutting an alternating current (AC) voltage signal. The method further includes operating at least a controller of the power converter in a high current mode based on the estimated occurrence of the predicted high impedance state of the trailing edge dimmer. The method also includes operating the controller in a low impedance mode after the AC voltage signal reaches a low voltage threshold.
在本发明的另一个实施方式中,装置包括能够预测后沿调光器的高阻抗状态的估计发生的控制器。当后沿调光器开始相位切割相位切割AC电压的交流(AC)电压信号时,发生高阻抗状态。控制器进一步能够加速AC电压从后沿到预定电压阀值的转变。In another embodiment of the invention, the apparatus includes a controller capable of predicting the estimated occurrence of the high impedance state of the trailing edge dimmer. The high impedance state occurs when the trailing edge dimmer begins to phase cut an alternating current (AC) voltage signal that phase cuts the AC voltage. The controller is further capable of accelerating the transition of the AC voltage from the trailing edge to the predetermined voltage threshold.
在本发明的又一实施方式中,方法包括预测后沿调光器的高阻抗状态的估计发生。当后沿调光器开始相位切割相位切割AC电压的交流(AC)电压信号时,发生高阻抗状态。该方法进一步包括加速AC电压从后沿到预定电压阀值的转变。In yet another embodiment of the invention, the method includes predicting the estimated occurrence of the high impedance state of the trailing edge dimmer. The high impedance state occurs when the trailing edge dimmer begins to phase cut an alternating current (AC) voltage signal that phase cuts the AC voltage. The method further includes accelerating the transition of the AC voltage from the trailing edge to the predetermined voltage threshold.
附图说明Description of drawings
通过参考附图,将更好地理解本发明,并且本发明的多个目标、特征和优点对于本领域的技术人员来说是显而易见的。遍及若干附图,相同参考标号指示类似或相似的元件。The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. Throughout the several drawings, the same reference numerals indicate similar or analogous elements.
图1(被标记为现有技术)示出包括后沿调光器的照明系统。Figure 1 (labeled prior art) shows a lighting system comprising a trailing edge dimmer.
图2(被标记为现有技术)示出与图1的后沿调光器相关联的调光器控制信号和电压波形。FIG. 2 (labeled Prior Art) shows dimmer control signals and voltage waveforms associated with the trailing edge dimmer of FIG. 1 .
图3(被标记为现有技术)示出包括后沿调光器102和LED的照明系统。Figure 3 (labeled prior art) shows a lighting system comprising a trailing
图4示出包括用于提供后沿调光器与电子光源之间的兼容性的控制器的照明系统。Figure 4 shows a lighting system comprising a controller for providing compatibility between a trailing edge dimmer and an electronic light source.
图5示出图4的照明系统工作期间的示例性电压和电流波形。FIG. 5 shows exemplary voltage and current waveforms during operation of the lighting system of FIG. 4 .
图6示出示例性后沿兼容性操作流程图,其表示提供图4的后沿调光器与电子光源之间的兼容性的一个实施方式。6 illustrates an exemplary trailing edge compatibility operational flowchart representing one embodiment for providing compatibility between the trailing edge dimmer of FIG. 4 and electronic light sources.
图7示出表示图4的照明系统的一个实施方式的照明系统。FIG. 7 shows a lighting system representing one embodiment of the lighting system of FIG. 4 .
图8示出过零点和有效时段检测器。Figure 8 shows the zero crossing and active period detectors.
图9示出电流控制模块。Figure 9 shows the current control module.
具体实施方式Detailed ways
在至少一个实施方式中,电子系统包括控制器,以及控制器提供电子光源与后沿调光器之间的兼容性。在至少一个实施方式中,控制器能够预测相位切割AC电压的后沿的估计发生,并能够加速相位切割AC电压从后沿到预定电压阀值的转变。术语“预测”及其派生词“预知”和“预言”意思是事先声明或表明。因此,在至少一个实施方式中,预测相位切割AC电压的后沿的估计发生事先声明或指示相位切割AC电压的后沿的估计发生。在至少一个实施方式中,控制器基于相位切割AC电压的一个或多个先前周期的实际观察,预测相位切割AC电压的后沿的估计发生。In at least one embodiment, the electronic system includes a controller, and the controller provides compatibility between the electronic light source and the trailing edge dimmer. In at least one embodiment, the controller can predict the estimated occurrence of the trailing edge of the phase-cut AC voltage and can accelerate the transition of the phase-cut AC voltage from the trailing edge to a predetermined voltage threshold. The term "forecast" and its derivatives "predict" and "prophet" mean to state or indicate in advance. Thus, in at least one embodiment, predicting the estimated occurrence of the trailing edge of the phase-cut AC voltage pre-declares or indicates that the estimated occurrence of the trailing edge of the phase-cut AC voltage occurs. In at least one embodiment, the controller predicts the estimated occurrence of the trailing edge of the phase-cut AC voltage based on actual observations of one or more previous cycles of the phase-cut AC voltage.
在至少一个实施方式中,为了提供后沿调光器与电子光源之间的兼容性,控制器预测后沿调光器的高阻抗状态的估计发生。当后沿调光器进入高阻抗状态时,相位切割AC电压的后沿开始。因此,当后沿调光器开始相位切割交流(AC)电压信号时,发生高阻抗状态。基于后沿调光器的高阻抗状态的估计发生的预测,控制器能够并被配置为进一步操作在高电流模式下,以增加自后沿调光器的电流的传送。操作在高电流模式下增加了相位切割AC电压的衰减速率,并且在至少一个实施方式中,确保相位切割AC电压在开始另一个周期之前达到低电压阀值。一旦相位切割AC电压达到低电压阀值,控制器能够并被配置为操作在低阻抗模式下,以将相位切割AC电压保持在低电压阀值或低电压阀值以下。In at least one embodiment, in order to provide compatibility between the trailing edge dimmer and the electronic light source, the controller predicts the estimated occurrence of the high impedance state of the trailing edge dimmer. The trailing edge of the phase cut AC voltage begins when the trailing edge dimmer enters the high impedance state. Therefore, a high impedance state occurs when a trailing edge dimmer begins to phase cut an alternating current (AC) voltage signal. Based on the prediction that the estimated high impedance state of the trailing edge dimmer occurs, the controller can and is configured to further operate in the high current mode to increase the delivery of current from the trailing edge dimmer. Operating in the high current mode increases the decay rate of the phase cut AC voltage and, in at least one embodiment, ensures that the phase cut AC voltage reaches the low voltage threshold before starting another cycle. Once the phase cut AC voltage reaches the low voltage threshold, the controller can and is configured to operate in a low impedance mode to maintain the phase cut AC voltage at or below the low voltage threshold.
图4示出包括控制器402的照明系统400,其中控制器402提供后沿调光器404与光源410之间的兼容性。后沿调光器404可以是任何后沿调光器,例如相位切割来自电源电压104的输入供给电压VIN的后沿的后沿调光器102。全桥二极管整流器408整流相位切割输入电压VΦ_IN,以生成相位切割整流电压VΦ_R。功率转换器406接收相位切割整流电压VΦ_R以及整流电流iR以生成输出电压VOUT和输出电流iOUT。输出电压VOUT和输出电流iOUT提供供光源410用的功率。在至少一个实施方式中,光源410是包括一个或多个LED、一个或多个CFL或一个或多个LED和一个或多个CFL的组合的电子光源。功率转换器406可以是任何类型的功率转换器,并且可以包括例如升压转换器、降压转换器、升降转换器或Cúk转换器。FIG. 4 shows a
图5示出照明系统400工作期间的示例性电压和电流波形500。图6示出示例性后沿兼容性操作流程图600,其表示提供后沿调光器404与光源410之间兼容性的一个实施方式。参考图4、图5和图6,相位切割整流电压VΦ_R的每个周期具有从第一过零点到第二过零点的有效时段。波形500示出相位切割整流电压VΦ_R的一系列有效时段TA(n)~TA(n-N),其中n是整数指标,而N是大于或等于1的整数。“有效时段TA(n-X)”指的是对于范围从0到N的“X”来说,相位切割AC电压不近似等于0的部分。在至少一个实施方式中,控制器402预测相位切割整流电压VΦ_R的第n个周期的估计有效时段,其从时间tZC(n)1的第一过零点TA(n)EST跨到有效时段TA(n)EST的下一个近似过零点tZC(n)2。TA(n)EST表示当前的第n个周期的有效时段TA(n)的预测估计值。FIG. 5 shows exemplary voltage and
在至少一个实施方式中,控制器402包括后沿调光器高阻抗状态预测器412,其利用相位切割整流电压VΦ_R的N个先前周期的实际测量的有效时段TA(n-1)至TA(n-N),预测第n个周期的估计有效时段TA(n)EST,其中N是大于或等于1的整数。后沿调光器高阻抗状态预测器412在节点414检测相位切割整流电压VΦ_R。每个有效时段TA(n-X)等于整流输入电压VΦR_IN的第(n-X)周期的第一过零点tZC(n-X)1与第二过零点tZC(n-X)2之间的时间。因此,在至少一个实施方式中,在操作602中,后沿调光器高阻抗状态检测器412检测相位切割整流电压VΦ_R的每个周期的近似过零点tZC(n-X)1与tZC(n-X)2之间的时间,以确定对于范围从1至N的X,相位切割整流电压VΦ_R的有效时段TA(n-X)。In at least one embodiment, the
在操作603中,后沿调光器高阻抗状态预测器412预测相位切割整流电压VΦ_R的第n周期的估计有效时段TA(n)EST。用于预测估计有效时段TA(n)EST的具体算法是根据设计选择的。在至少一个实施方式中,后沿调光器高阻抗状态预测器412假设估计的有效时段TA(n)EST等于先前实际测量的有效时段TA(n-1)。在至少一个实施方式中,后沿调光器高阻抗状态预测器412采用反映相位切割整流电压VΦ_R的先前N个周期的有效时段TA(n-X)持续时间趋势的算法。例如,在至少一个实施方式中,N等于2,并且后沿调光器高阻抗状态预测器412利用式子[2]确定有效时段的持续时间的趋势,以预测估计的第n个有效时段TA(n)EST:In
TA(n)EST=TA(n-l)+TA(n-l)-TA(n-2)=2·TA(n-l)-TA(n-2) [2]T A (n) EST =T A (nl)+T A (nl)-T A (n-2)=2 T A (nl)-T A (n-2) [2]
在式子[2]中,TA(n)EST表示第n周期的预测有效时段,TA(n-1)表示先前的第(n-1)周期的近似实际时段,以及TA(n-2)表示先前的第(n-2)周期的近似实际测量时段。如结合图8详细讨论的,后沿调光器高阻抗状态预测器412检测相位切割整流电压VΦ_R的每个有效周期的近似实际过零点。在至少一个实施方式中,利用实际过零点的检测,后沿调光器高阻抗状态预测器412确定近似实际的有效时段TA(n)。当估计相位切割整流电压VΦ_R的下一个周期的实际时段时,被确定的近似实际时段TA(n)变成在式子[2]中使用的近似实际时段TA(n-l),以及在估计相位切割整流电压VΦ_R的下一个周期后的周期的实际时段时,其变成在式子[2]中使用的近似实际时段TA(n-2)。In the formula [2], T A (n) EST represents the predicted effective period of the nth period, T A (n-1) represents the approximate actual period of the previous (n-1)th period, and T A (n -2) represents the approximate actual measurement period of the previous (n-2)th cycle. As discussed in detail in connection with FIG. 8 , the trailing edge dimmer high
在至少一个实施方式中,由于奇数周期和偶数周期有更好的相关性,所以后沿调光器高阻抗状态预测器412将相位切割整流电压VΦ_R的奇数周期和偶数周期分离。当分离奇数周期和偶数周期时,后沿调光器高阻抗状态预测器412利用式子[3]确定偶数有效时段的持续时间的趋势,以预测估计的第n有效时段TA(n)EST:In at least one embodiment, the trailing edge dimmer high
TA(n)EST=TA(n-2)+TA(n-2)-TA(n-4)=2·TA(n-2)-TA(n-4) [3],T A (n) EST =T A (n-2)+T A (n-2)-T A (n-4)=2 T A (n-2)-T A (n-4) [3 ],
当分离偶数周期和奇数周期时,后沿调光器高阻抗状态预测器412利用式子[4]确定偶数有效时段的持续时间的趋势,以预测估计的第n+1有效时段TA(n)EST:When separating the even and odd periods, the trailing edge dimmer high
TA(n+l)EST=TA(n-l)+TA(n-l)-TA(n-3)=2·TA(n-l)-TA(n-3) [4]T A (n+l) EST =T A (nl)+T A (nl)-T A (n-3)=2·T A (nl)-T A (n-3) [4]
在操作604中,后沿调光器高阻抗状态预测器412检测相位切割整流电压VΦ_R的当前第n周期的第一近似过零点tZC(n)1。根据第n周期的已知第一过零点时间tZC(n)1和预测的估计有效时段TA(n)EST,后沿调光器高阻抗状态预测器412预测何时将发生第二过零点tZC(n)2。In
在操作606中,后沿调光器高阻抗状态预测器412基于相位切割整流电压VΦ_R的n个先前周期的持续时间以及当前第n周期的第一近似过零点tZC(n)1的检测,预测后沿调光器404的高阻抗状态的估计发生。在至少一个实施方式中,通过假设后沿调光器404的高阻抗状态的发生等于第n周期的预测第二过零点tZC(n)2减去相位切割整流电压VΦ_R的第n周期的后沿502的估计的衰减时间TDC(n),后沿调光器高阻抗状态预测器412确定后沿调光器404的第n周期的高阻抗状态的预测估计发生。In
获得估计的衰减时间TDC(n)的方法是根据设计选择的。在至少一个实施方式中,后沿调光器高阻抗状态预测器412基于后沿调光器404的电容器(例如电容器114)(图1)的最差情况值和由电流控制模块416控制的电流量iDIM,采用预先存储的估计的衰减时间TDC(n),例如180μs。在其他实施方式中,后沿调光器高阻抗状态预测器412采用若干算法中的任一个来确定相位切割整流电压VΦ_R的估计衰减时间TDC(n)。例如,在至少一个实施方式中,估计的衰减时间存储在针对后沿调光器404的各种电容值和相位切割整流电压VΦ_R的相位切割角度的查找表(未示出)中,并且由后沿高阻抗状态预测器412存取。在至少一个实施方式中,后沿调光器404的电容值存储在后沿调光器高阻抗状态预测器412的可选存储器417中。在至少一个实施方式中,后沿调光器高阻抗状态预测器412测量或确定相位切割整流电压VΦ_R的先前第(n-l)周期的衰减时间TDC(n-l),并且采用先前的第(n-l)周期的衰减时间TDC(n-1)作为相位切割整流电压VΦ_R的当前第n周期的衰减时间TDC(n)。在至少一个实施方式中,通过在利用实际的调光器和实际的光源(例如LED和/或CFL)的实验室设定中以实验方式确定光源410在特定相位切割角度的衰减时间。接着,相位切割整流电压VΦ_R的衰减时间经由控制器402的终端419存储在可选的非易失性存储器417中,并由后沿调光器高阻抗状态预测器412用于预测后沿调光器404的高阻抗状态的估计发生。The method of obtaining the estimated decay time T DC (n) is a design choice. In at least one embodiment, trailing edge dimmer high
在至少一个实施方式中,操作606考虑到随着调光水平降低,相位切割整流电压VΦ_R的周期到周期的相位角度会减小。为了补偿相位角度的潜在减少,后沿调光器高阻抗状态预测器412从第二过零点时间tZC(n)2减去动态的调光水平补偿时间TDDLC,以获得调光器在时间tHR(n)的高阻抗状态的预测发生。动态的调光水平补偿时间TDDLC值是设计选择问题,以及在至少一个实施方式中,表示有效时段TA(n)EST与TA(n-1)EST的预测估计值之间的最大可能变化。在至少一个实施方式中,动态调光水平补偿时间tDDLC是120μs。因此,在至少一个实施方式中,调光器的高阻抗状态的预测发生tHR(n)等于tZC(n)2-(TDC-TDDLC)。在至少一个实施方式中,动态调光水平补偿时间tDDLC是衰减时间TDC(n)的百分比,例如50-75%。后沿调光器高阻抗状态预测器412向电流控制模块416提供HRSTATE_PREDICTION信号,以指示调光器的高阻抗状态的预测发生tHR(n)。In at least one embodiment,
在操作608中,在调光器的高阻抗状态的预测发生tHR(n)时,后沿调光器高阻抗状态预测器412增加通过后沿调光器404传送到功率转换器406的调光器电流量iDIM。调光器电流iDIM的增加减少了衰减时间TDC,因此,加速相位切割整流电压VΦ_R的第n周期的后沿到预定阈值电压的转变。在至少一个实施方式中,预定的电压阀值是0至65V的范围。在作为调光器电流iDIM的整流形式的电流iR的示例性描述中,电流iR跟随相位切割整流电压VΦ_R直至调光器高阻抗状态的预测发生tHR(n)。在调光器高阻抗状态的预测发生tHR(n)时,相比正常操作,电流控制模块416将通过后沿调光器404传送到功率转换器406的电流iR增加到后沿加速器电流值iR_ACCEL。In
后沿加速器电流值iR_ACCEL的具体值是设计选择的问题。增加后沿加速器电流值iR_ACCEL减少了衰减时间TDC,并增加照明系统400的调光范围。减少后沿加速器电流值iR_ACCEL,则增加衰减时间TDC,并减少照明系统400的调光范围。由于增加了与调光水平相关的相位切割角度范围,同时仍确保相位切割整流电压VΦ_R在下一个过零点之前达到过零点,所以增加了照明系统400的调光范围。然而,增加后沿加速器电流值iR_ACCEL,也潜在地增加了功率转换器406耗散的功率量。而且,增加后沿加速器电流值iR_ACCEL会导致功率转换器406须具有更高的额定电流以及更昂贵的组件。The specific value of the trailing accelerator current value i R_ACCEL is a matter of design choice. Increasing the trailing accelerator current value i R_ACCEL reduces the decay time T DC and increases the dimming range of the
在至少一个实施方式中,电流控制模块416动态调整后沿加速器电流值iR_ACCEL,以确保操作在不连续电流模式下(DCM)而又最小化功率耗散。在至少一个实施方式中,控制器402可以在DCM操作模式、连续导通模式(CCM)和/或临界导通模式(CRM)之间切换,以允许电流控制模块416灵活选择后沿加速器电流值iR_ACCEL。DCM是当相位切割整流电压VΦ_R在相位切割整流电压VΦ_R的下一个周期的第一过零点tZC(n-X+l)1之前到达第二过零点tZC(n-X)2之时。CCM是相位切割整流电压VΦ_R在相位切割整流电压VΦ_R的下一个周期的第一过零点tZC(n-X+l)1之前未到达第二过零点tZC(n-X)2之时。CRM是第二过零点tZC(n-X)2与相位切割整流电压VΦ_R的下一个周期的第一过零点tZC(n-X+l)1相同之时。In at least one embodiment, the
在至少一个实施方式中,后沿加速器电流值iR_ACCEL比正常操作电流峰值iR高100-500%。在至少一个实施方式中,正常操作电流峰值大约是100mA,而后沿加速器电流值iR_ACCEL大约是500mA。在至少一个实施方式中,功率转换器406包括传送附加电流iR并耗散与附加电流iR关联的功率的一个或多个可选的功率耗散电路418。示例性功率耗散电路在下列专利文献中描述:(i)于2011年11月4日提交的题为“Controlled PowerDissipation in a Switch Path in a Lighting System”、发明人是John L.Melanson和Eric J.King的美国专利申请第13/289,845号;(ii)于2011年11月4日提交的题为“Controlled Power Dissipation in a LightingSystem”、发明人是John L.Melanson和Eric J.King的美国专利申请第13/289.931号;以及(iii)于2011年11月4日提交的题为“Controlled PowerDissipation in a Link Path in a Lighting System”、发明人是John L.Melanson和Eric J.King的美国专利申请第13/289,967号。In at least one embodiment, the trailing edge accelerator current value i R_ACCEL is 100-500% higher than the normal operating current peak value i R . In at least one embodiment, the normal operating current peak value is approximately 100 mA and the trailing edge accelerator current value i R_ACCEL is approximately 500 mA. In at least one embodiment, the
在至少一个实施方式中,因为电源电压104能够提供大大超出后沿加速器电流值iR_ACCEL的电流值,所以如果调光水平增加,因而相位切割整流电压VΦ_R的相位角度增加而不是减少,后沿加速器电流值iR_ACCEL不会使相位切割整流电压VΦ_R的波形失真。In at least one embodiment, because the
在至少一个实施方式中,在每个第二过零点tZC(n-X)2,电流控制模块416控制通过调光器404传送的电流iR,以使得功率转换器406进入低阻抗状态。在至少一个实施方式中,低阻抗状态下的电流被称为粘附电流,在以下专利文献中对粘附电流进行了一般的描述:于2010年8月7日提交的题为“Dimmer Output Emulation”、发明人是:John L.Melanson(在这里被称为“Melanson I”)的美国专利申请第12/858,164号以及于2011年8月24日提交的题为“Multi-Mode Dimmer Interfacing Including AttachState Control”、发明人是:Eric J.King和John L.Melanson的美国专利申请第13/217,174号,上述两个专利申请的全部内容结合于此供参考。In at least one embodiment, at each second zero crossing t ZC (nX) 2 , the
后沿调光器高阻抗状态预测器412的具体实施是可以设计选择问题。后沿调光器高阻抗状态预测器412可以使用模拟电路、数字电路或模拟和数字电路实施,并且可以使用分立组件实施。在至少一个实施方式中,控制器402是集成电路,并且后沿调光器高阻抗状态预测器412和电流控制模块416被实施为集成电路的一部分。在至少一个实施方式中,控制器402包括处理器(未示出)以及存储和执行代码的存储器(未示出),其中所述代码实施示例性后沿兼容操作流程图600的一个或多个实施方式。The specific implementation of trailing edge dimmer high
图7示出作为照明系统400的一个实施方式的照明系统700。照明系统700包括控制器702,其包括后沿调光器高阻抗状态预测器412。后沿调光器高阻抗状态预测器412生成HRSTATE_PREDICT1ON信号,并且向电流控制模块704提供HRSTATE_PREDICT1ON信号,以指示调光器的高阻抗状态的预测发生tHR(n),如先前参考照明系统400所描述的。电流控制模块704使用与参照照明系统400所讨论以及在示例性电压和电流波形500(图5)中描述的相同电流和电压轮廓(profile),控制升压型开关功率转换器706。开关功率转换器706包括升压开关707,并且电流控制模块704控制功率因数校正,以及调节链路电容器708两端的链路电压VLINK如以下专利文献描述的:于2007年12月31日提交的,题为“PowerControl System Using a Nonlinear Delta-Sigma Modulator With NonlinearPower Conversion Process Modeling”、发明人是John L.Melanson(在这里被称为“Melanson I”)的美国专利申请第11/967,269;于2007年12月31日提交的题为“Programmable Power Control System”、发明人是John L.Melanson(在这里被称为“Melanson II”)的美国专利申请第11/967,275号;于2009年6月30日提交的题为“Cascode Configured Switching Using atLeast One Low Breakdown Voltage Internal,Integrated Circuit Switch toControl At Least One High Breakdown Voltage External Switch”、发明人是John L.Melanson(在这里被称为“Melanson III”)的美国专利申请第12/495,457;以及于2011年6月30日提交的题为“Constant Current Controller WithSelectable Gain”、发明人是John L.Melanson、Rahul Singh和Siddharth Maru的美国专利申请第12/174,404号,上述的全部内容结合于本文中作为参考。FIG. 7 shows a
开关功率转换器包括电容器710,其过滤整流电压VΦR_IN的高频成分。栅极偏置电压VG偏置开关707的栅极。栅极偏置电压VG的具体值是设计选择问题,并且取决于例如开关707的操作参数。在至少一个实施方式中,栅极偏置电压VG是+12V。为了控制开关功率转换器706的操作,控制器702生成控制场效应管(FET)开关707的导通的控制信号CS1。控制信号CS1是脉宽调制信号。控制信号CS1的每个脉冲使开关707打开(即,导通),以及电感器电流iR增加,以给电感器712充电。二极管714防止电流从链路电容器708流到开关707。当脉冲结束时,电感器712将电压极性反相(通常被称为“回扫”),并且在回扫阶段,电感器电流iR降低。电感器电流iR通过二极管714将链路电容器708两端的链路电压升压。开关功率转换器706是升压型转换器,因此,链路电压VLINK大于相位切割整流电压VΦ_R。具有电子光源的负载716包括例如变压器类的接口电路,其向电子光源提供电力。The switching power converter includes a
图8示出过零点和有效时间检测器800的一个实施方式,其用在用于检测相位切割整流电压VΦ_R的近似过零点值tZC(n)1与tZC(n)2的后沿调光器高阻抗状态预测器412的一个实施方式中。过零点检测器800包括比较器802,其比较相位切割整流电压VΦ_R与相位切割整流电压VΦ_R的阀值。相位切割整流电压VΦ_R的阀值是例如在0至15V的范围。当比较器802检测到相位切割整流电压VΦ_R已经转变成大于相位切割整流电压VΦ_R阀值时,比较器802的ZC_DETECT输出信号指示从逻辑1变到逻辑0的转变。该转变指示检测到第一过零点tZC(n)1。接着,计时器804以大于相位切割整流电压VΦ_R的频率的频率开始计时。例如,在至少一个实施方式中,计时器804以10kHz以上的频率计时。当比较器802检测出相位切割整流电压VΦ_R小于相位切割整流电压VΦ_R阀值时,比较器802的ZC_DETECT输出信号指示从逻辑0改变到逻辑1的转变。ZC_DETECT输出信号从逻辑0到逻辑1的转变指示检测到第二过零点tZC(n)2。接着,计时器804指示两个过零点的检测之间的时间,其是近似实际有效时间TA(n)。FIG. 8 shows one embodiment of a zero-crossing and valid time detector 800 for detecting the trailing edge of the approximate zero-crossing values t ZC (n) 1 and t ZC (n) 2 of the phase-cut rectified voltage V Φ_R In one embodiment of the dimmer high
图9示出电流控制模块900,其表示电流控制模块704的一个实施方式。电流控制模块900包括可控的电流源902。电流源902包括被配置成电流镜的FET904和906。参考图7和9,在至少一个实施方式中,控制器908调制用于控制通过开关707的电流的控制信号CS1,以控制功率因数校正和调节开关功率转换器706的链路电压VLINK,生成后沿加速器电流值iR_ACCEL,生成开关功率转换器7066的低阻抗状态,以及耗散过量的功率,如先前所述。FIG. 9 illustrates a
电流源902提供流过FET906的参考电流iREF。在至少一个实施方式中,控制信号CS1将升压开关707打开。通过缩放因数Z,FET904的尺寸被缩放到FET906的尺寸。缩放因数Z的值是正数,并且是可以设计选择的。缩放因数Z的值乘以参考电流iREF的值来设定后沿加速器电流值iR_ACCEL。因此,当后沿调光器高阻抗状态预测器412预测到调光器的高阻抗状态发生tHR(n)时,控制器908使可控的电流源902将后沿加速器电流值iR_ACCEL传送到开关功率转换器706。
因此,电子系统包括控制器,以及控制器提供电子光源与后沿调光器之间的兼容性。在至少一个实施方式中,控制器能够预测相位切割AC电压的后沿的估计发生,以及能够加速相位切割AC电压从后沿到预定电压阀值的转变。Accordingly, the electronic system includes a controller, and the controller provides compatibility between the electronic light source and the trailing edge dimmer. In at least one embodiment, the controller can predict the estimated occurrence of the trailing edge of the phase-cut AC voltage and can accelerate the transition of the phase-cut AC voltage from the trailing edge to a predetermined voltage threshold.
虽然已经详细描述了实施方式,但是应当理解,在不背离由所附权利要求限定的本发明的精神和范围的前提下,可以对所述实施方式进行各种改变、替换和变更。Although the embodiments have been described in detail, it should be understood that various changes, substitutions and alterations could be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims (40)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41429110P | 2010-11-16 | 2010-11-16 | |
US61/414,291 | 2010-11-16 | ||
US13/298,002 US8547034B2 (en) | 2010-11-16 | 2011-11-16 | Trailing edge dimmer compatibility with dimmer high resistance prediction |
US13/298,002 | 2011-11-16 | ||
PCT/US2011/061033 WO2012128794A1 (en) | 2010-11-16 | 2011-11-16 | Trailing edge dimmer compatibility with dimmer high resistance prediction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103329617A true CN103329617A (en) | 2013-09-25 |
CN103329617B CN103329617B (en) | 2016-04-06 |
Family
ID=46047159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180055250.XA Active CN103329617B (en) | 2010-11-16 | 2011-11-16 | The trailing edge dimmer that compatibility has dimmer high impedance to predict |
Country Status (7)
Country | Link |
---|---|
US (2) | US8547034B2 (en) |
EP (1) | EP2681969B1 (en) |
CN (1) | CN103329617B (en) |
DK (1) | DK2681969T3 (en) |
ES (1) | ES2718100T3 (en) |
PL (1) | PL2681969T3 (en) |
WO (1) | WO2012128794A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106538054A (en) * | 2014-04-17 | 2017-03-22 | 飞利浦照明控股有限公司 | Systems and methods for minimizing power dissipation in a low-power lamp coupled to a trailing-edge dimmer |
CN108351676A (en) * | 2015-10-20 | 2018-07-31 | 高通股份有限公司 | Source voltage is adjusted based on operation voltage responsive |
US11533043B2 (en) * | 2020-12-17 | 2022-12-20 | Huazhong University Of Science And Technology | Method for impedance prediction of a voltage source converter under variable operating points |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7667408B2 (en) | 2007-03-12 | 2010-02-23 | Cirrus Logic, Inc. | Lighting system with lighting dimmer output mapping |
US7288902B1 (en) | 2007-03-12 | 2007-10-30 | Cirrus Logic, Inc. | Color variations in a dimmable lighting device with stable color temperature light sources |
KR101781399B1 (en) | 2008-11-17 | 2017-09-25 | 익스프레스 이미징 시스템즈, 엘엘씨 | Electronic control to regulate power for solid-state lighting and methods thereof |
US8872964B2 (en) | 2009-05-20 | 2014-10-28 | Express Imaging Systems, Llc | Long-range motion detection for illumination control |
US9155174B2 (en) | 2009-09-30 | 2015-10-06 | Cirrus Logic, Inc. | Phase control dimming compatible lighting systems |
WO2011128798A1 (en) * | 2010-04-14 | 2011-10-20 | Koninklijke Philips Electronics N.V. | Method and apparatus for detecting presence of dimmer and controlling power delivered to solid state lighting load |
US8536799B1 (en) | 2010-07-30 | 2013-09-17 | Cirrus Logic, Inc. | Dimmer detection |
US8729811B2 (en) | 2010-07-30 | 2014-05-20 | Cirrus Logic, Inc. | Dimming multiple lighting devices by alternating energy transfer from a magnetic storage element |
US9307601B2 (en) | 2010-08-17 | 2016-04-05 | Koninklijke Philips N.V. | Input voltage sensing for a switching power converter and a triac-based dimmer |
CN103314639B (en) | 2010-08-24 | 2016-10-12 | 皇家飞利浦有限公司 | Prevent the apparatus and method that dimmer resets in advance |
US9084316B2 (en) | 2010-11-04 | 2015-07-14 | Cirrus Logic, Inc. | Controlled power dissipation in a switch path in a lighting system |
EP2636139A2 (en) | 2010-11-04 | 2013-09-11 | Cirrus Logic, Inc. | Controlled energy dissipation in a switching power converter |
WO2012061454A2 (en) | 2010-11-04 | 2012-05-10 | Cirrus Logic, Inc. | Duty factor probing of a triac-based dimmer |
EP2681969B1 (en) | 2010-11-16 | 2019-01-09 | Philips Lighting Holding B.V. | Trailing edge dimmer compatibility with dimmer high resistance prediction |
US20120139442A1 (en) * | 2010-12-07 | 2012-06-07 | Astec International Limited | Mains Dimmable LED Driver Circuits |
US8901825B2 (en) | 2011-04-12 | 2014-12-02 | Express Imaging Systems, Llc | Apparatus and method of energy efficient illumination using received signals |
US9360198B2 (en) * | 2011-12-06 | 2016-06-07 | Express Imaging Systems, Llc | Adjustable output solid-state lighting device |
EP2792059B1 (en) * | 2011-12-14 | 2020-07-15 | Signify Holding B.V. | Isolation of secondary transformer winding current during auxiliary power supply generation |
DE102011088966A1 (en) * | 2011-12-19 | 2013-06-20 | Tridonic Gmbh & Co. Kg | Operating circuit for light-emitting diodes and method for operating light-emitting diodes |
GB2499220B (en) * | 2012-02-08 | 2018-12-12 | Radiant Res Limited | A power control system for an illumination system |
WO2013126836A1 (en) | 2012-02-22 | 2013-08-29 | Cirrus Logic, Inc. | Mixed load current compensation for led lighting |
US9497393B2 (en) | 2012-03-02 | 2016-11-15 | Express Imaging Systems, Llc | Systems and methods that employ object recognition |
US8853968B2 (en) * | 2012-03-13 | 2014-10-07 | Dialog Semiconductor Inc. | Adaptive compensation for effects of cat-ear dimmers on conduction angle measurement |
US9210751B2 (en) | 2012-05-01 | 2015-12-08 | Express Imaging Systems, Llc | Solid state lighting, drive circuit and method of driving same |
US9204523B2 (en) | 2012-05-02 | 2015-12-01 | Express Imaging Systems, Llc | Remotely adjustable solid-state lamp |
US9167664B2 (en) | 2012-07-03 | 2015-10-20 | Cirrus Logic, Inc. | Systems and methods for low-power lamp compatibility with a trailing-edge dimmer and an electronic transformer |
US8933648B1 (en) | 2012-07-03 | 2015-01-13 | Cirrus Logic, Inc. | Systems and methods for selecting a compatibility mode of operation for a lamp assembly |
US9215770B2 (en) * | 2012-07-03 | 2015-12-15 | Philips International, B.V. | Systems and methods for low-power lamp compatibility with a trailing-edge dimmer and an electronic transformer |
US9131552B2 (en) | 2012-07-25 | 2015-09-08 | Express Imaging Systems, Llc | Apparatus and method of operating a luminaire |
US9184661B2 (en) | 2012-08-27 | 2015-11-10 | Cirrus Logic, Inc. | Power conversion with controlled capacitance charging including attach state control |
US9144139B2 (en) * | 2012-08-27 | 2015-09-22 | The Watt Stopper, Inc. | Method and apparatus for controlling light levels to save energy |
US8896215B2 (en) | 2012-09-05 | 2014-11-25 | Express Imaging Systems, Llc | Apparatus and method for schedule based operation of a luminaire |
US9215765B1 (en) | 2012-10-26 | 2015-12-15 | Philips International, B.V. | Systems and methods for low-power lamp compatibility with an electronic transformer |
US9301365B2 (en) | 2012-11-07 | 2016-03-29 | Express Imaging Systems, Llc | Luminaire with switch-mode converter power monitoring |
US9363862B1 (en) * | 2012-12-05 | 2016-06-07 | Universal Lighting Technologies | Automatic current and reference gain control for wide range current control |
US9273858B2 (en) | 2012-12-13 | 2016-03-01 | Phillips International, B.V. | Systems and methods for low-power lamp compatibility with a leading-edge dimmer and an electronic transformer |
US9496844B1 (en) | 2013-01-25 | 2016-11-15 | Koninklijke Philips N.V. | Variable bandwidth filter for dimmer phase angle measurements |
US9288873B2 (en) | 2013-02-13 | 2016-03-15 | Express Imaging Systems, Llc | Systems, methods, and apparatuses for using a high current switching device as a logic level sensor |
US9565782B2 (en) | 2013-02-15 | 2017-02-07 | Ecosense Lighting Inc. | Field replaceable power supply cartridge |
US9263964B1 (en) | 2013-03-14 | 2016-02-16 | Philips International, B.V. | Systems and methods for low-power lamp compatibility with an electronic transformer |
US10187934B2 (en) | 2013-03-14 | 2019-01-22 | Philips Lighting Holding B.V. | Controlled electronic system power dissipation via an auxiliary-power dissipation circuit |
US9282598B2 (en) | 2013-03-15 | 2016-03-08 | Koninklijke Philips N.V. | System and method for learning dimmer characteristics |
WO2014186371A1 (en) | 2013-05-13 | 2014-11-20 | Cirrus Logic, Inc. | Stabilization circuit for low-voltage lighting |
TW201448663A (en) * | 2013-05-23 | 2014-12-16 | Zentr Mikroelekt Dresden Gmbh | Assembly and a method for activating leds |
US9466443B2 (en) | 2013-07-24 | 2016-10-11 | Express Imaging Systems, Llc | Photocontrol for luminaire consumes very low power |
US9635723B2 (en) | 2013-08-30 | 2017-04-25 | Philips Lighting Holding B.V. | Systems and methods for low-power lamp compatibility with a trailing-edge dimmer and an electronic transformer |
US9414449B2 (en) | 2013-11-18 | 2016-08-09 | Express Imaging Systems, Llc | High efficiency power controller for luminaire |
DE102013114761B3 (en) * | 2013-12-23 | 2014-12-24 | Insta Elektro Gmbh | Circuit for operating a lamp-operated lamp unit and method for operating such a lamp unit |
WO2015116812A1 (en) | 2014-01-30 | 2015-08-06 | Express Imaging Systems, Llc | Ambient light control in solid state lamps and luminaires |
US9621062B2 (en) | 2014-03-07 | 2017-04-11 | Philips Lighting Holding B.V. | Dimmer output emulation with non-zero glue voltage |
US9277611B2 (en) | 2014-03-17 | 2016-03-01 | Terralux, Inc. | LED driver with high dimming compatibility without the use of bleeders |
US9385598B2 (en) | 2014-06-12 | 2016-07-05 | Koninklijke Philips N.V. | Boost converter stage switch controller |
WO2016016797A2 (en) * | 2014-07-31 | 2016-02-04 | Hau King Kuen | Phase cut dimming control and protection |
US10477636B1 (en) | 2014-10-28 | 2019-11-12 | Ecosense Lighting Inc. | Lighting systems having multiple light sources |
US11306897B2 (en) | 2015-02-09 | 2022-04-19 | Ecosense Lighting Inc. | Lighting systems generating partially-collimated light emissions |
US9869450B2 (en) | 2015-02-09 | 2018-01-16 | Ecosense Lighting Inc. | Lighting systems having a truncated parabolic- or hyperbolic-conical light reflector, or a total internal reflection lens; and having another light reflector |
US9746159B1 (en) | 2015-03-03 | 2017-08-29 | Ecosense Lighting Inc. | Lighting system having a sealing system |
US9651227B2 (en) | 2015-03-03 | 2017-05-16 | Ecosense Lighting Inc. | Low-profile lighting system having pivotable lighting enclosure |
US9568665B2 (en) | 2015-03-03 | 2017-02-14 | Ecosense Lighting Inc. | Lighting systems including lens modules for selectable light distribution |
US9651216B2 (en) | 2015-03-03 | 2017-05-16 | Ecosense Lighting Inc. | Lighting systems including asymmetric lens modules for selectable light distribution |
US9462662B1 (en) | 2015-03-24 | 2016-10-04 | Express Imaging Systems, Llc | Low power photocontrol for luminaire |
WO2016184729A1 (en) * | 2015-05-18 | 2016-11-24 | Philips Lighting Holding B.V. | Deep dimming of lighting device with trailing edge phase-cut dimmer |
USD785218S1 (en) | 2015-07-06 | 2017-04-25 | Ecosense Lighting Inc. | LED luminaire having a mounting system |
USD782093S1 (en) | 2015-07-20 | 2017-03-21 | Ecosense Lighting Inc. | LED luminaire having a mounting system |
USD782094S1 (en) | 2015-07-20 | 2017-03-21 | Ecosense Lighting Inc. | LED luminaire having a mounting system |
US9651232B1 (en) | 2015-08-03 | 2017-05-16 | Ecosense Lighting Inc. | Lighting system having a mounting device |
US9538612B1 (en) | 2015-09-03 | 2017-01-03 | Express Imaging Systems, Llc | Low power photocontrol for luminaire |
US9924582B2 (en) | 2016-04-26 | 2018-03-20 | Express Imaging Systems, Llc | Luminaire dimming module uses 3 contact NEMA photocontrol socket |
US9985429B2 (en) | 2016-09-21 | 2018-05-29 | Express Imaging Systems, Llc | Inrush current limiter circuit |
US10230296B2 (en) | 2016-09-21 | 2019-03-12 | Express Imaging Systems, Llc | Output ripple reduction for power converters |
WO2018132110A1 (en) | 2017-01-15 | 2018-07-19 | Ecosense Lighting Inc. | Lighting systems, and systems for determining periodic values of a phase angle of a waveform power input |
US10904992B2 (en) | 2017-04-03 | 2021-01-26 | Express Imaging Systems, Llc | Systems and methods for outdoor luminaire wireless control |
US11375599B2 (en) | 2017-04-03 | 2022-06-28 | Express Imaging Systems, Llc | Systems and methods for outdoor luminaire wireless control |
US9900949B1 (en) | 2017-08-04 | 2018-02-20 | Ledvance Llc | Solid-state light source dimming system and techniques |
US10483850B1 (en) | 2017-09-18 | 2019-11-19 | Ecosense Lighting Inc. | Universal input-voltage-compatible switched-mode power supply |
US11234304B2 (en) | 2019-05-24 | 2022-01-25 | Express Imaging Systems, Llc | Photocontroller to control operation of a luminaire having a dimming line |
US11317497B2 (en) | 2019-06-20 | 2022-04-26 | Express Imaging Systems, Llc | Photocontroller and/or lamp with photocontrols to control operation of lamp |
US11212887B2 (en) | 2019-11-04 | 2021-12-28 | Express Imaging Systems, Llc | Light having selectively adjustable sets of solid state light sources, circuit and method of operation thereof, to provide variable output characteristics |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1145782A (en) * | 1997-07-28 | 1999-02-16 | Matsushita Electric Works Ltd | Dimmer monitor control system |
CN101010649A (en) * | 2004-06-30 | 2007-08-01 | Tir系统有限公司 | Switched constant current driving and control circuit |
CN101513122A (en) * | 2006-09-04 | 2009-08-19 | 路创电子公司 | Variable load circuits for use with lighting control devices |
KR101021780B1 (en) * | 2008-10-20 | 2011-03-17 | 박채원 | Light Emitting Diode AC Phase Control Driver |
Family Cites Families (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4523128A (en) | 1982-12-10 | 1985-06-11 | Honeywell Inc. | Remote control of dimmable electronic gas discharge lamp ballasts |
US5319301A (en) | 1984-08-15 | 1994-06-07 | Michael Callahan | Inductorless controlled transition and other light dimmers |
US5321350A (en) | 1989-03-07 | 1994-06-14 | Peter Haas | Fundamental frequency and period detector |
US5055746A (en) | 1990-08-13 | 1991-10-08 | Electronic Ballast Technology, Incorporated | Remote control of fluorescent lamp ballast using power flow interruption coding with means to maintain filament voltage substantially constant as the lamp voltage decreases |
FR2671930B1 (en) | 1991-01-21 | 1993-04-16 | Legrand Sa | CURRENT DIMMER FOR POWER LOAD, WITH REDUCED FILTER LOSSES. |
US5430635A (en) | 1993-12-06 | 1995-07-04 | Bertonee, Inc. | High power factor electronic transformer system for gaseous discharge tubes |
US5691605A (en) | 1995-03-31 | 1997-11-25 | Philips Electronics North America | Electronic ballast with interface circuitry for multiple dimming inputs |
US5770928A (en) | 1995-11-02 | 1998-06-23 | Nsi Corporation | Dimming control system with distributed command processing |
US6043635A (en) | 1996-05-17 | 2000-03-28 | Echelon Corporation | Switched leg power supply |
DE19632282A1 (en) | 1996-08-09 | 1998-02-19 | Holzer Walter Prof Dr H C Ing | Process and device for controlling the brightness of fluorescent lamps |
US6111368A (en) | 1997-09-26 | 2000-08-29 | Lutron Electronics Co., Inc. | System for preventing oscillations in a fluorescent lamp ballast |
US6091205A (en) | 1997-10-02 | 2000-07-18 | Lutron Electronics Co., Inc. | Phase controlled dimming system with active filter for preventing flickering and undesired intensity changes |
US6046550A (en) | 1998-06-22 | 2000-04-04 | Lutron Electronics Co., Inc. | Multi-zone lighting control system |
US6433525B2 (en) | 2000-05-03 | 2002-08-13 | Intersil Americas Inc. | Dc to DC converter method and circuitry |
US6531831B2 (en) | 2000-05-12 | 2003-03-11 | O2Micro International Limited | Integrated circuit for lamp heating and dimming control |
DE60101978T2 (en) | 2000-06-15 | 2004-12-23 | City University Of Hong Kong | Dimmable ECG |
US7038399B2 (en) | 2001-03-13 | 2006-05-02 | Color Kinetics Incorporated | Methods and apparatus for providing power to lighting devices |
US6510995B2 (en) | 2001-03-16 | 2003-01-28 | Koninklijke Philips Electronics N.V. | RGB LED based light driver using microprocessor controlled AC distributed power system |
US6900599B2 (en) | 2001-03-22 | 2005-05-31 | International Rectifier Corporation | Electronic dimming ballast for cold cathode fluorescent lamp |
US6407514B1 (en) | 2001-03-29 | 2002-06-18 | General Electric Company | Non-synchronous control of self-oscillating resonant converters |
US6577512B2 (en) | 2001-05-25 | 2003-06-10 | Koninklijke Philips Electronics N.V. | Power supply for LEDs |
JP3741035B2 (en) | 2001-11-29 | 2006-02-01 | サンケン電気株式会社 | Switching power supply |
IL147578A (en) | 2002-01-10 | 2006-06-11 | Lightech Electronics Ind Ltd | Lamp transformer for use with an electronic dimmer and method for use thereof for reducing acoustic noise |
KR100481444B1 (en) | 2002-03-18 | 2005-04-11 | 원 호 이 | Dimming system of the discharge lamp for energy saving |
US6940733B2 (en) | 2002-08-22 | 2005-09-06 | Supertex, Inc. | Optimal control of wide conversion ratio switching converters |
JP4433677B2 (en) | 2003-02-14 | 2010-03-17 | パナソニック電工株式会社 | Electrodeless discharge lamp lighting device |
US6865093B2 (en) | 2003-05-27 | 2005-03-08 | Power Integrations, Inc. | Electronic circuit control element with tap element |
US7733678B1 (en) | 2004-03-19 | 2010-06-08 | Marvell International Ltd. | Power factor correction boost converter with continuous, discontinuous, or critical mode selection |
WO2005115058A1 (en) | 2004-05-19 | 2005-12-01 | Goeken Group Corp. | Dimming circuit for led lighting device with means for holding triac in conduction |
US20060022648A1 (en) | 2004-08-02 | 2006-02-02 | Green Power Technologies Ltd. | Method and control circuitry for improved-performance switch-mode converters |
US7812576B2 (en) | 2004-09-24 | 2010-10-12 | Marvell World Trade Ltd. | Power factor control systems and methods |
US7180250B1 (en) | 2005-01-25 | 2007-02-20 | Henry Michael Gannon | Triac-based, low voltage AC dimmer |
JP5069129B2 (en) | 2005-01-28 | 2012-11-07 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Circuit apparatus and method for operating a high pressure gas discharge lamp |
US7081722B1 (en) | 2005-02-04 | 2006-07-25 | Kimlong Huynh | Light emitting diode multiphase driver circuit and method |
US7102902B1 (en) | 2005-02-17 | 2006-09-05 | Ledtronics, Inc. | Dimmer circuit for LED |
US7184937B1 (en) | 2005-07-14 | 2007-02-27 | The United States Of America As Represented By The Secretary Of The Army | Signal repetition-rate and frequency-drift estimator using proportional-delayed zero-crossing techniques |
CN100576965C (en) | 2005-11-11 | 2009-12-30 | 王际 | Led drive circuit and control method |
KR101588044B1 (en) | 2005-12-20 | 2016-01-25 | 코닌클리케 필립스 엔.브이. | Method and apparatus for controlling current supplied to electronic devices |
US8441210B2 (en) | 2006-01-20 | 2013-05-14 | Point Somee Limited Liability Company | Adaptive current regulation for solid state lighting |
US8558470B2 (en) | 2006-01-20 | 2013-10-15 | Point Somee Limited Liability Company | Adaptive current regulation for solid state lighting |
US7902769B2 (en) | 2006-01-20 | 2011-03-08 | Exclara, Inc. | Current regulator for modulating brightness levels of solid state lighting |
US7656103B2 (en) | 2006-01-20 | 2010-02-02 | Exclara, Inc. | Impedance matching circuit for current regulation of solid state lighting |
US20080018261A1 (en) | 2006-05-01 | 2008-01-24 | Kastner Mark A | LED power supply with options for dimming |
US7443146B2 (en) | 2006-05-23 | 2008-10-28 | Intersil Americas Inc. | Auxiliary turn-on mechanism for reducing conduction loss in body-diode of low side MOSFET of coupled-inductor DC-DC converter |
JP4661736B2 (en) | 2006-08-28 | 2011-03-30 | パナソニック電工株式会社 | Dimmer |
US7864546B2 (en) | 2007-02-13 | 2011-01-04 | Akros Silicon Inc. | DC-DC converter with communication across an isolation pathway |
US7928662B2 (en) | 2006-12-18 | 2011-04-19 | Microsemi Corp.—Analog Mixed Signal Group Ltd. | Voltage range extender mechanism |
US7288902B1 (en) | 2007-03-12 | 2007-10-30 | Cirrus Logic, Inc. | Color variations in a dimmable lighting device with stable color temperature light sources |
US7804256B2 (en) | 2007-03-12 | 2010-09-28 | Cirrus Logic, Inc. | Power control system for current regulated light sources |
US7667408B2 (en) | 2007-03-12 | 2010-02-23 | Cirrus Logic, Inc. | Lighting system with lighting dimmer output mapping |
US7554473B2 (en) | 2007-05-02 | 2009-06-30 | Cirrus Logic, Inc. | Control system using a nonlinear delta-sigma modulator with nonlinear process modeling |
JP5169170B2 (en) | 2007-11-26 | 2013-03-27 | 株式会社リコー | Step-down switching regulator |
GB0800755D0 (en) | 2008-01-16 | 2008-02-27 | Melexis Nv | Improvements in and relating to low power lighting |
JP2009170240A (en) | 2008-01-16 | 2009-07-30 | Sharp Corp | LED dimmer |
US8040070B2 (en) | 2008-01-23 | 2011-10-18 | Cree, Inc. | Frequency converted dimming signal generation |
US8274241B2 (en) | 2008-02-06 | 2012-09-25 | C. Crane Company, Inc. | Light emitting diode lighting device |
US8102167B2 (en) | 2008-03-25 | 2012-01-24 | Microsemi Corporation | Phase-cut dimming circuit |
US7759881B1 (en) | 2008-03-31 | 2010-07-20 | Cirrus Logic, Inc. | LED lighting system with a multiple mode current control dimming strategy |
WO2009140525A1 (en) * | 2008-05-15 | 2009-11-19 | Marko Cencur | Method for dimming non-linear loads using an ac phase control scheme and a universal dimmer using the method |
US8212492B2 (en) | 2008-06-13 | 2012-07-03 | Queen's University At Kingston | Electronic ballast with high power factor |
US8125798B2 (en) | 2008-07-01 | 2012-02-28 | Active-Semi, Inc. | Constant current and voltage controller in a three-pin package operating in critical conduction mode |
US7936132B2 (en) | 2008-07-16 | 2011-05-03 | Iwatt Inc. | LED lamp |
US8212491B2 (en) | 2008-07-25 | 2012-07-03 | Cirrus Logic, Inc. | Switching power converter control with triac-based leading edge dimmer compatibility |
US8487546B2 (en) | 2008-08-29 | 2013-07-16 | Cirrus Logic, Inc. | LED lighting system with accurate current control |
US8228002B2 (en) | 2008-09-05 | 2012-07-24 | Lutron Electronics Co., Inc. | Hybrid light source |
JP5211959B2 (en) | 2008-09-12 | 2013-06-12 | 株式会社リコー | DC-DC converter |
CN101686587B (en) | 2008-09-25 | 2015-01-28 | 皇家飞利浦电子股份有限公司 | Drive for providing variable power for LED array |
US9167641B2 (en) | 2008-11-28 | 2015-10-20 | Lightech Electronic Industries Ltd. | Phase controlled dimming LED driver system and method thereof |
US8288954B2 (en) | 2008-12-07 | 2012-10-16 | Cirrus Logic, Inc. | Primary-side based control of secondary-side current for a transformer |
CN101505568B (en) | 2009-03-12 | 2012-10-03 | 深圳市众明半导体照明有限公司 | LED light modulating apparatus suitable for light modulator |
US8310171B2 (en) | 2009-03-13 | 2012-11-13 | Led Specialists Inc. | Line voltage dimmable constant current LED driver |
EP2257124B1 (en) | 2009-05-29 | 2018-01-24 | Silergy Corp. | Circuit for connecting a low current lighting circuit to a dimmer |
US8222832B2 (en) | 2009-07-14 | 2012-07-17 | Iwatt Inc. | Adaptive dimmer detection and control for LED lamp |
US8390214B2 (en) | 2009-08-19 | 2013-03-05 | Albeo Technologies, Inc. | LED-based lighting power supplies with power factor correction and dimming control |
US8492988B2 (en) | 2009-10-07 | 2013-07-23 | Lutron Electronics Co., Inc. | Configurable load control device for light-emitting diode light sources |
US8531138B2 (en) | 2009-10-14 | 2013-09-10 | National Semiconductor Corporation | Dimmer decoder with improved efficiency for use with LED drivers |
US8203277B2 (en) | 2009-10-26 | 2012-06-19 | Light-Based Technologies Incorporated | Efficient electrically isolated light sources |
US8686668B2 (en) | 2009-10-26 | 2014-04-01 | Koninklijke Philips N.V. | Current offset circuits for phase-cut power control |
CN102577624B (en) | 2009-10-26 | 2015-01-07 | 皇家飞利浦有限公司 | Holding current circuits for phase-cut power control and method for maintaining holding current circuit |
US9301348B2 (en) | 2009-11-05 | 2016-03-29 | Eldolab Holding B.V. | LED driver for powering an LED unit from a electronic transformer |
WO2011084525A1 (en) | 2009-12-16 | 2011-07-14 | Exclara, Inc. | Adaptive current regulation for solid state lighting |
TWI434611B (en) | 2010-02-25 | 2014-04-11 | Richtek Technology Corp | Led array control circuit with voltage adjustment function and driver circuit and method for the same |
JP5031865B2 (en) | 2010-03-23 | 2012-09-26 | シャープ株式会社 | LED drive circuit, LED illumination lamp, LED illumination device, and LED illumination system |
CN102238774B (en) | 2010-04-30 | 2016-06-01 | 奥斯兰姆有限公司 | Angle of flow acquisition methods and device, and LED driving method and device |
CN101835314B (en) | 2010-05-19 | 2013-12-04 | 成都芯源系统有限公司 | LED drive circuit with dimming function and lamp |
US8508147B2 (en) | 2010-06-01 | 2013-08-13 | United Power Research Technology Corp. | Dimmer circuit applicable for LED device and control method thereof |
US8729811B2 (en) | 2010-07-30 | 2014-05-20 | Cirrus Logic, Inc. | Dimming multiple lighting devices by alternating energy transfer from a magnetic storage element |
US8536799B1 (en) | 2010-07-30 | 2013-09-17 | Cirrus Logic, Inc. | Dimmer detection |
WO2012016197A1 (en) | 2010-07-30 | 2012-02-02 | Cirrus Logic, Inc. | Powering high-efficiency lighting devices from a triac-based dimmer |
US8569972B2 (en) | 2010-08-17 | 2013-10-29 | Cirrus Logic, Inc. | Dimmer output emulation |
US8610365B2 (en) | 2010-11-04 | 2013-12-17 | Cirrus Logic, Inc. | Switching power converter input voltage approximate zero crossing determination |
CN103314639B (en) | 2010-08-24 | 2016-10-12 | 皇家飞利浦有限公司 | Prevent the apparatus and method that dimmer resets in advance |
US8531131B2 (en) | 2010-09-22 | 2013-09-10 | Osram Sylvania Inc. | Auto-sensing switching regulator to drive a light source through a current regulator |
WO2012061454A2 (en) * | 2010-11-04 | 2012-05-10 | Cirrus Logic, Inc. | Duty factor probing of a triac-based dimmer |
EP2681969B1 (en) | 2010-11-16 | 2019-01-09 | Philips Lighting Holding B.V. | Trailing edge dimmer compatibility with dimmer high resistance prediction |
JP5666268B2 (en) | 2010-11-26 | 2015-02-12 | ルネサスエレクトロニクス株式会社 | Semiconductor integrated circuit and operation method thereof |
JP5834236B2 (en) | 2011-05-12 | 2015-12-16 | パナソニックIpマネジメント株式会社 | Solid light source lighting device and lighting apparatus using the same |
US9060397B2 (en) | 2011-07-15 | 2015-06-16 | General Electric Company | High voltage LED and driver |
EP2792059B1 (en) | 2011-12-14 | 2020-07-15 | Signify Holding B.V. | Isolation of secondary transformer winding current during auxiliary power supply generation |
US9167664B2 (en) * | 2012-07-03 | 2015-10-20 | Cirrus Logic, Inc. | Systems and methods for low-power lamp compatibility with a trailing-edge dimmer and an electronic transformer |
-
2011
- 2011-11-16 EP EP11794283.9A patent/EP2681969B1/en active Active
- 2011-11-16 WO PCT/US2011/061033 patent/WO2012128794A1/en active Application Filing
- 2011-11-16 PL PL11794283T patent/PL2681969T3/en unknown
- 2011-11-16 US US13/298,002 patent/US8547034B2/en active Active
- 2011-11-16 CN CN201180055250.XA patent/CN103329617B/en active Active
- 2011-11-16 ES ES11794283T patent/ES2718100T3/en active Active
- 2011-11-16 DK DK11794283.9T patent/DK2681969T3/en active
-
2013
- 2013-08-28 US US14/012,775 patent/US9155163B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1145782A (en) * | 1997-07-28 | 1999-02-16 | Matsushita Electric Works Ltd | Dimmer monitor control system |
CN101010649A (en) * | 2004-06-30 | 2007-08-01 | Tir系统有限公司 | Switched constant current driving and control circuit |
CN101513122A (en) * | 2006-09-04 | 2009-08-19 | 路创电子公司 | Variable load circuits for use with lighting control devices |
KR101021780B1 (en) * | 2008-10-20 | 2011-03-17 | 박채원 | Light Emitting Diode AC Phase Control Driver |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106538054A (en) * | 2014-04-17 | 2017-03-22 | 飞利浦照明控股有限公司 | Systems and methods for minimizing power dissipation in a low-power lamp coupled to a trailing-edge dimmer |
CN108351676A (en) * | 2015-10-20 | 2018-07-31 | 高通股份有限公司 | Source voltage is adjusted based on operation voltage responsive |
US11533043B2 (en) * | 2020-12-17 | 2022-12-20 | Huazhong University Of Science And Technology | Method for impedance prediction of a voltage source converter under variable operating points |
Also Published As
Publication number | Publication date |
---|---|
PL2681969T3 (en) | 2019-11-29 |
EP2681969A1 (en) | 2014-01-08 |
US20120119669A1 (en) | 2012-05-17 |
DK2681969T3 (en) | 2019-03-25 |
US9155163B2 (en) | 2015-10-06 |
ES2718100T3 (en) | 2019-06-27 |
US8547034B2 (en) | 2013-10-01 |
US20130342123A1 (en) | 2013-12-26 |
WO2012128794A1 (en) | 2012-09-27 |
CN103329617B (en) | 2016-04-06 |
EP2681969B1 (en) | 2019-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103329617A (en) | Compatible with trailing edge dimmers with dimmer high impedance prediction | |
TWI508625B (en) | Switching power converter control apparatus and method, and power control/lighting system | |
TWI492659B (en) | A novel control scheme to achieve low brightness for dimmable led driver | |
KR101306538B1 (en) | A cascade boost and inverting buck converter with independent control | |
CN104066253B (en) | Use dimming control system and the method for TRIAC dimmer | |
US8698407B1 (en) | Highly integrated non-inductive LED driver | |
US9167662B2 (en) | Mixed load current compensation for LED lighting | |
CN102413600B (en) | Light emitting device and control method thereof | |
US20140077721A1 (en) | Powering high-efficiency lighting devices from a triac-based dimmer | |
US9232581B2 (en) | Output current compensation for jitter in input voltage for dimmable LED lamps | |
US9184661B2 (en) | Power conversion with controlled capacitance charging including attach state control | |
US8569964B2 (en) | Control circuit of light-emitting element | |
JPWO2011065047A1 (en) | LED drive power supply device and LED illumination device | |
TWI580303B (en) | Led driver system with dimmer detection | |
CN106464126A (en) | Primary side controlled led driver with ripple cancellation | |
WO2011159813A1 (en) | Dimmable offline led driver | |
CN105554973A (en) | Accurate Mains Time-Base for LED Light Driver | |
TWI459854B (en) | A white LED (WLED) drive circuit and driving method for three - terminal controllable silicon dimmer | |
US9596729B1 (en) | Dimmable switching mode LED driving circuit without phase angle measurement | |
ES2681994B1 (en) | DETACHABLE SYSTEM OF ASSEMBLY AND UNION OF PARTS FOR CONFORMATION OF STRUCTURES AND PARTS OF THE SAME | |
CN102907178A (en) | Dimmer conduction angle detection circuit and system incorporating it | |
ES1231613U (en) | FIXING ELEMENT TO THE PLATFORM FOR POSITIONING THE FEET IN A SKATEBOARD (Machine-translation by Google Translate, not legally binding) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20160304 Address after: The city of Eindhoven in Holland Applicant after: Koninkl Philips Electronics NV Address before: American Texas Applicant before: Cirrus Logic, Inc. Applicant before: Melanson John L Applicant before: King Eric J |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170322 Address after: The city of Eindhoven in Holland Patentee after: KONINKL PHILIPS NV Address before: The city of Eindhoven in Holland Patentee before: Koninkl Philips Electronics NV |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: Eindhoven Patentee after: Signify Holdings Ltd. Address before: The city of Eindhoven in Holland Patentee before: PHILIPS LIGHTING HOLDING B.V. |