[go: up one dir, main page]

CN103329617A - Compatible with trailing edge dimmers with dimmer high impedance prediction - Google Patents

Compatible with trailing edge dimmers with dimmer high impedance prediction Download PDF

Info

Publication number
CN103329617A
CN103329617A CN201180055250XA CN201180055250A CN103329617A CN 103329617 A CN103329617 A CN 103329617A CN 201180055250X A CN201180055250X A CN 201180055250XA CN 201180055250 A CN201180055250 A CN 201180055250A CN 103329617 A CN103329617 A CN 103329617A
Authority
CN
China
Prior art keywords
trailing edge
voltage
voltage signal
impedance state
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180055250XA
Other languages
Chinese (zh)
Other versions
CN103329617B (en
Inventor
约翰·L·梅兰松
埃里克·J·金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signify Holding BV
Original Assignee
Cirrus Logic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cirrus Logic Inc filed Critical Cirrus Logic Inc
Publication of CN103329617A publication Critical patent/CN103329617A/en
Application granted granted Critical
Publication of CN103329617B publication Critical patent/CN103329617B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • H05B39/044Controlling the light-intensity of the source continuously
    • H05B39/048Controlling the light-intensity of the source continuously with reverse phase control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3574Emulating the electrical or functional characteristics of incandescent lamps
    • H05B45/3575Emulating the electrical or functional characteristics of incandescent lamps by means of dummy loads or bleeder circuits, e.g. for dimmers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Lock And Its Accessories (AREA)

Abstract

An electronic system (100) including a controller (402) for providing compatibility between an electronic light source (410) and a trailing edge dimmer (404). The controller can predict an estimated occurrence of a trailing edge of the phase cut AC voltage and can accelerate a transition of the phase cut voltage from the trailing edge to a predetermined voltage threshold. The controller predicts an estimated occurrence of a trailing edge of the phase cut AC voltage based on actual observations of one or more previous cycles of the phase cut AC voltage.

Description

兼容有调光器高阻抗预测的后沿调光器Compatible with trailing edge dimmers with dimmer high impedance prediction

相关申请的交叉引用Cross References to Related Applications

本申请根据35U.S.C.§119(e)以及37C.F.R.§1.78要求于2010年11月16日提交的美国临时专利申请第61/414,291号的权益,其全部内容通过引证结合于此。本申请根据美国的35U.S.C.§119(e)以及37C.F.R.§1.78还要求于2010年11月16日提交的美国临时专利申请第13/298,002号的权益,其全部内容通过引证结合于此。This application claims the benefit under 35 U.S.C. §119(e) and 37 C.F.R. §1.78 of U.S. Provisional Patent Application No. 61/414,291, filed November 16, 2010, which is hereby incorporated by reference in its entirety. This application also claims the benefit of U.S. Provisional Patent Application No. 13/298,002, filed November 16, 2010, the entire contents of which are hereby incorporated by reference under 35 U.S.C. §119(e) and 37 C.F.R. §1.78 of the United States .

技术领域technical field

本发明总体上涉及电子领域,更具体地,涉及用于使后沿调光器兼容有高阻抗预测的方法和系统。The present invention relates generally to the field of electronics, and more particularly to methods and systems for making trailing edge dimmers compatible with high impedance prediction.

背景技术Background technique

高效节能技术的开发和利用对于许多机构(包括许多公司和国家)仍然是优先考虑的。感兴趣的一个领域是用更高效节能的灯(例如基于电子光源的灯)来代替白炽灯。对于这个描述,电子光源是发光二极管(LED)和紧凑型荧光灯(CFL)。基于电子光源的灯的开发并没有太多挑战。挑战之一是开发与现有基础设施兼容的基于电子光源的灯。下列讨论集中于基于LED的照明系统,但是也适用于基于CFL的照明系统以及基于LED和CFL组合的照明系统。The development and deployment of energy-efficient technologies remains a priority for many institutions, including many companies and countries. One area of interest is the replacement of incandescent lamps with more energy-efficient lamps, such as lamps based on electronic light sources. For this description, the electronic light sources are light emitting diodes (LEDs) and compact fluorescent lamps (CFLs). The development of lamps based on electronic light sources does not pose many challenges. One of the challenges is to develop lamps based on electronic light sources that are compatible with existing infrastructure. The following discussion focuses on LED-based lighting systems, but is also applicable to CFL-based lighting systems and combined LED and CFL-based lighting systems.

许多电子系统包括电路,例如与调光器相连接的开关功率转换器。接口电路根据由调光器设定的调光水平,向负载供应电力。例如,在照明系统中,调光器向照明系统提供输入信号。输入信号表示使照明系统调整向灯供应的电力的调光水平,因此根据调光水平增加或降低灯的亮度。存在许多不同类型的调光器。通常,调光器生成指示期望的调光水平的数字或模拟编码调光信号。后沿调光器相位切割交流(“AC”)供电电压的后沿。Many electronic systems include circuits such as switching power converters connected to dimmers. The interface circuit supplies power to the load according to the dimming level set by the dimmer. For example, in a lighting system, a dimmer provides an input signal to the lighting system. The input signal represents a dimming level that causes the lighting system to adjust the power supplied to the lamps, thus increasing or decreasing the brightness of the lamps according to the dimming level. There are many different types of dimmers. Typically, dimmers generate digital or analog coded dimming signals indicative of desired dimming levels. A trailing edge dimmer phase cuts the trailing edge of an alternating current ("AC") supply voltage.

图1示出包括后沿相位切割调光器102的照明系统100。图2示出与照明系统100相关联的示例性后沿相位切割电压曲线图200以及调光器控制信号201。参考图1和2,照明系统100从电源电压104接收AC供给电压VIN。由电压波形202表示的供给电压VIN是例如美利坚合众国的标称60Hz/110V线电压或欧洲的标称50Hz/220V线电压。后沿调光器102相位切割供给电压VIN的每半个周期的后沿,例如后沿202和204。由于供给电压VIN的每半个周期是供给电压VIN的180度,所以后沿调光器102以大于0度且小于180度的角度相位切割供给电压VIN。至照明系统100的相位切割输入电压VΦ_IN表示使照明系统100调整向灯106供应的电力的调光水平,因此,根据该调光水平增加或降低灯106的亮度。灯106是白炽灯,并且通常可以模拟为电阻108。FIG. 1 shows a lighting system 100 including a trailing edge phase-cut dimmer 102 . FIG. 2 shows an exemplary trailing edge phase cut voltage graph 200 and dimmer control signal 201 associated with lighting system 100 . Referring to FIGS. 1 and 2 , the lighting system 100 receives an AC supply voltage V IN from a supply voltage 104 . The supply voltage V IN represented by voltage waveform 202 is, for example, a nominal 60Hz/110V line voltage in the United States of America or a nominal 50Hz/220V line voltage in Europe. The trailing edge dimmer 102 phase cuts trailing edges, such as trailing edges 202 and 204 , of each half cycle of the supply voltage V IN . Since each half cycle of the supply voltage V IN is 180 degrees of the supply voltage V IN , the trailing edge dimmer 102 cuts the supply voltage V IN with an angular phase greater than 0 degrees and less than 180 degrees. The phase cut input voltage VΦ_IN to the lighting system 100 represents a dimming level that causes the lighting system 100 to adjust the power supplied to the lamp 106, thus increasing or decreasing the brightness of the lamp 106 according to the dimming level. Lamp 106 is an incandescent lamp and can generally be modeled as resistor 108 .

调光器102包括定时控制器110,其生成用于控制开关112的占空比的调光器控制信号DCS。开关112的占空比是脉冲宽度,例如对于调光器控制信号DCS的每个周期来说,其是调光器控制信号周期,例如时间t3-t0被划分的时间t1-t0。定时控制器110将期望的调光水平转换为开关112的占空比。对于越低调光水平,即,灯106的越高亮度,减少调光器控制信号DCS的占空比,而对于越高的调光水平,则增加调光器控制信号DCS的占空比。在调光器控制信号DCS的脉冲(例如脉冲206和脉冲208)期间,开关112导通(即,打开),并且调光器102进入低阻抗状态。在调光器102的低阻抗状态下,开关112的电阻少于或等于例如10欧姆。在开关112的低阻抗状态期间,相位切割输入电压VΦ_in跟随输入供给电压VIN,以及调光器102将调光器电流iDIM传送到灯106。The dimmer 102 includes a timing controller 110 that generates a dimmer control signal DCS for controlling the duty cycle of a switch 112 . The duty cycle of the switch 112 is the pulse width, eg for each cycle of the dimmer control signal DCS, which is the dimmer control signal period, eg time t 3 -t 0 divided by time t 1 -t 0 . The timing controller 110 translates the desired dimming level into a duty cycle of the switch 112 . For lower dimming levels, ie higher brightness of the lamp 106, the duty cycle of the dimmer control signal DCS is decreased, and for higher dimming levels, the duty cycle of the dimmer control signal DCS is increased. During pulses of dimmer control signal DCS (eg, pulse 206 and pulse 208 ), switch 112 conducts (ie, opens), and dimmer 102 enters a low impedance state. In the low impedance state of the dimmer 102, the resistance of the switch 112 is less than or equal to, for example, 10 ohms. During the low impedance state of switch 112 , phase cut input voltage V Φ — in follows input supply voltage V IN , and dimmer 102 delivers dimmer current i DIM to lamp 106 .

当定时控制器110使调光器控制信号206的脉冲结束时,调光器控制信号206将开关112关闭,这使调光器102进入高阻抗状态,即,关闭。在调光器102的高阻抗状态下,开关112的电阻大于例如1k欧姆。调光器102包括电容器114,其在调光器控制信号DCS的每个脉冲期间向供给电压VIN充电。在调光器102的高阻抗和低阻抗状态中,电容器114保持连接于开关112的两端。当开关112关闭并且调光器112进入高阻抗状态时,电容器114两端的电压VC例如在时间t1与t2之间以及t4与t5之间衰减。衰减速率是电容器114的电容量C和流过灯108的电阻R的调光器电流iDIM的函数。式子[1]表示电容器114的电容C、调光器电流iDIM以及相位切割输入电压VΦ_IN的衰减速率dVΦ_IN/dt之间的关系:When the timing controller 110 ends the pulse of the dimmer control signal 206 , the dimmer control signal 206 closes the switch 112 , which puts the dimmer 102 into a high impedance state, ie, off. In the high impedance state of the dimmer 102, the resistance of the switch 112 is greater than, for example, 1k ohms. The dimmer 102 includes a capacitor 114 that charges the supply voltage VIN during each pulse of the dimmer control signal DCS. Capacitor 114 remains connected across switch 112 during the high impedance and low impedance states of dimmer 102 . When switch 112 is closed and dimmer 112 enters a high impedance state, the voltage V C across capacitor 114 decays, for example, between times t1 and t2 and between t4 and t5 . The rate of decay is a function of the capacitance C of capacitor 114 and the dimmer current i DIM flowing through resistor R of lamp 108 . Equation [1] expresses the relationship between the capacitance C of the capacitor 114, the dimmer current i DIM and the decay rate dV Φ_IN /dt of the phase-cut input voltage V Φ_IN :

iDIM=C·dVΦ_IN/dt     [1]i DIM =C·dV Φ_IN /dt [1]

灯106的电阻值R相对较低,并且容许足够高的调光器电流iDIM值,从而允许相位切割输入电压VΦ_IN在调光器控制信号DCS的下一个脉冲之前,衰减到过零点,例如时间t2和t5The resistance value R of the lamp 106 is relatively low and allows a sufficiently high value of the dimmer current i DIM to allow the phase-cut input voltage V Φ_IN to decay to a zero crossing before the next pulse of the dimmer control signal DCS, e.g. times t 2 and t 5 .

后沿调光器(例如后沿调光器102)具有一些有利的特性。例如,后沿调光器102在调光器102开始导通时(例如在时间t0和t3时),没有突然电压增加,以及当调光器102进入高阻抗状态时,具有衰减减少。因此,谐波频率较低,并且调光器102生成更少的电磁干扰。A trailing edge dimmer, such as trailing edge dimmer 102, has several advantageous properties. For example, the trailing edge dimmer 102 has no sudden voltage increase when the dimmer 102 starts to conduct (eg, at times t0 and t3 ), and has a decrease in attenuation when the dimmer 102 enters a high impedance state. Therefore, the harmonic frequencies are lower and dimmer 102 generates less electromagnetic interference.

如上所述,与输出相当量光的白炽灯相比,电子光源具有更高的能量效率。因此,电子光源被改进到包括后沿调光器(例如后沿调光器102)的现有基础设施中。电子光源具有较低的功率要求,因此,更少的调光器电流iDIM被传送到电子光源。因此,根据式子[1],调光器电流iDIM越小,衰减速率dVΦ_IN/dt越小。如果衰减速率dVΦ_IN/dt太低,则相位切割输入电压VΦ_IN在供给电压VIN的下一个周期开始之前不会到达过零点。无法到达过零点会使一些后沿调光器故障。As mentioned above, electronic light sources are more energy efficient than incandescent lamps which output a comparable amount of light. Accordingly, electronic light sources are retrofitted into existing infrastructure including trailing edge dimmers, such as trailing edge dimmer 102 . Electronic light sources have lower power requirements, therefore, less dimmer current i DIM is delivered to the electronic light source. Therefore, according to the formula [1], the smaller the dimmer current i DIM is, the smaller the decay rate dV Φ_IN /dt is. If the decay rate dV Φ_IN /dt is too low, the phase-cut input voltage V Φ_IN will not reach the zero-crossing point before the next cycle of the supply voltage V IN starts. Failure to reach the zero crossing will cause some trailing edge dimmers to fail.

图3示出包括后沿调光器102和LED302的照明系统300。调光器102具有前述功能,并且提供相位切割输入电压VΦ_IN和调光器电流至全桥二极管整流器304。整流器304向功率转换器306提供相位切割整流电压VΦ_R。功率转换器306分别将相位切割整流电压VΦ_R和整流输入电流iR转换为近似恒定电压VOUT和输出电流iOUT。输出电流iOUT根据相位切割输入电压VΦ_IN的相位角指示的调光水平来被调整,并且对于任何给定的调光水平,其近似恒定。FIG. 3 shows a lighting system 300 including trailing edge dimmer 102 and LED 302 . The dimmer 102 has the aforementioned functions and provides the phase cut input voltage V Φ_IN and the dimmer current to the full bridge diode rectifier 304 . The rectifier 304 provides the phase-cut rectified voltage V Φ — R to the power converter 306 . The power converter 306 converts the phase-cut rectified voltage V Φ_R and the rectified input current i R into approximately constant voltage V OUT and output current i OUT , respectively. The output current i OUT is adjusted according to the dimming level indicated by the phase angle of the phase cut input voltage V Φ_IN and is approximately constant for any given dimming level.

控制器308包括电流控制器310,其控制向功率转换器306传送电流iR并且调节传送到LED302的功率。LED基本需要很少的功率来提供白炽灯的同等光输出。例如,LED302使用4W功率来提供60W白炽灯的同等光输出。输出电压VOUT通常由功率转换器306升压到例如400V。由于提供给LED302的功率P近似是P=VOUT·iOUT,所以传送到功率转换器306的最大电流iR通常仅是50mA,其小于60W灯从110V供给输入电压VIN汲取的近似545mA最大电流。因此,根据式子[1],照明系统300的衰减时间dVΦ_IN/dt增加。控制器308包括比较器312,用于检测相位切割整流电压VΦ_R的后沿,例如后沿314和316。Controller 308 includes a current controller 310 that controls the delivery of current i R to power converter 306 and regulates the power delivered to LED 302 . LEDs require substantially less power to provide the equivalent light output of incandescent lamps. For example, LED 302 uses 4W of power to provide the equivalent light output of a 60W incandescent lamp. The output voltage V OUT is typically boosted by the power converter 306 to, for example, 400V. Since the power P supplied to the LED 302 is approximately P=V OUT ·i OUT , the maximum current i R delivered to the power converter 306 is typically only 50mA, which is less than the approximately 545mA maximum current drawn by a 60W lamp from a 110V supply input voltage VIN . Therefore, according to the formula [1], the decay time dV Φ — IN /dt of the lighting system 300 increases. The controller 308 includes a comparator 312 for detecting trailing edges, such as trailing edges 314 and 316 , of the phase-cut rectified voltage V Φ_R .

相位切割整流电压VΦ_R的后沿检测不是简单的任务。整流输入电压VΦR_IN在时间t1和t4的后沿通常是有噪声的,并且可能包括其他失真。为了检测后沿,控制器308用比较器312来检测位于相位切割整流电压VΦ_R的更稳定部分的后沿。比较器312接收相位切割整流电压VΦ_R或在比较器312的反相输入端接收相位切割整流电压VΦ_R的缩放版本。比较器312将相位切割整流电压VΦ_R与固定的后沿检测电压阀值(例如+20V)比较,并生成后沿检测信号TE_DETECT。在检测相位切割整流电压VΦ_R的后沿之前,后沿脉冲检测信号TE_DETECT是逻辑0,并在检测到后沿后,转变为逻辑1。一旦后沿检测信号TE_DETECT指示检测到后沿,电流控制器310增加流过调光器102的电流iDIM,以增加衰减速率dVΦ_IN/dt,因此,增加相位切割整流电压VΦ_R在例如时间t2和t4的衰减速率。增加时间t2和t5的衰减速率有助于确保相位切割整流电压VΦ_R在相位切割整流电压VΦ_R的下一个周期开始之前到达过零点。后沿检测阀值被设定得足够低,以避免过早检测后沿。然而,由于衰减速率dVΦ_IN/dt对于电子光源较大,所以后沿检测阀值的低值也意味着,对于大的相位角度,在相位切割整流电压VΦ_R的过零点之前,可能不会检测到后沿。增加后沿检测阀值的值会导致从电压供给104传送不必要的电流量。The detection of the trailing edge of the phase-cut rectified voltage V Φ_R is not a simple task. The trailing edges of the rectified input voltage V ΦR_IN at times t1 and t4 are typically noisy and may include other distortions. To detect the trailing edge, the controller 308 uses the comparator 312 to detect the trailing edge at a more stable portion of the phase-cut rectified voltage VΦ_R . The comparator 312 receives the phase cut rectified voltage V Φ_R or a scaled version of the phase cut rectified voltage V Φ_R at the inverting input of the comparator 312 . The comparator 312 compares the phase cut rectified voltage V Φ_R with a fixed trailing edge detection voltage threshold (eg +20V), and generates a trailing edge detection signal TE_DETECT. Before detecting the trailing edge of the phase-cut rectified voltage VΦ_R , the trailing edge pulse detection signal TE_DETECT is logic 0, and changes to logic 1 after detecting the trailing edge. Once the trailing edge detection signal TE_DETECT indicates that a trailing edge is detected, the current controller 310 increases the current i DIM flowing through the dimmer 102 to increase the decay rate dVΦ_IN/dt, thus increasing the phase-cut rectified voltage V Φ_R at, for example, time t 2 and a decay rate of t4 . Increasing the decay rate at times t2 and t5 helps to ensure that the phase-cut rectified voltage V Φ_R reaches the zero-crossing point before the next cycle of the phase-cut rectified voltage V Φ_R begins. The trailing edge detection threshold is set low enough to avoid premature detection of a trailing edge. However, since the decay rate dV Φ_IN /dt is large for electron sources, the low value of the trailing edge detection threshold also means that, for large phase angles, the detection may not occur until the zero crossing of the phase-cut rectified voltage V Φ_R to the trailing edge. Increasing the value of the trailing edge detection threshold can result in an unnecessary amount of current being delivered from the voltage supply 104 .

期望改善后沿调光器的兼容性。Improved compatibility of trailing edge dimmers is desired.

发明内容Contents of the invention

在本发明的一个实施方式中,装置包括用于提供灯与后沿调光器之间的兼容性的控制器。控制器能够预测后沿调光器的高阻抗状态的估计发生。当后沿调光器开始相位切割交流(AC)电压信号时,发生高阻抗状态。基于估计预测出的后沿调光器的高阻抗状态的发生,控制器进一步能够操作在高电流模式下。控制器还能够在AC电压信号达到低电压阀值后,操作在低阻抗模式下。In one embodiment of the invention, the apparatus includes a controller for providing compatibility between the lamp and the trailing edge dimmer. The controller is capable of predicting the estimated occurrence of the high impedance state of the trailing edge dimmer. A high-impedance state occurs when a trailing-edge dimmer begins phase-cutting an alternating current (AC) voltage signal. The controller is further capable of operating in a high current mode based on the estimated predicted occurrence of the high impedance state of the trailing edge dimmer. The controller is also capable of operating in a low impedance mode after the AC voltage signal reaches a low voltage threshold.

在本发明的另一实施方式中,一种用于提供灯与后沿调光器之间的兼容性的方法包括:预测后沿调光器的高阻抗状态的估计发生。当后沿调光器开始相位切割交流(AC)电压信号时,发生高阻抗状态。该方法进一步包括:基于估计预测出的后沿调光器的高阻抗状态的发生,将至少功率转换器的控制器操作在高电流模式下。该方法还包括在AC电压信号达到低电压阀值后,将控制器操作在低阻抗模式下。In another embodiment of the present invention, a method for providing compatibility between a lamp and a trailing edge dimmer includes predicting an estimated occurrence of a high impedance state of the trailing edge dimmer. A high-impedance state occurs when a trailing-edge dimmer begins phase-cutting an alternating current (AC) voltage signal. The method further includes operating at least a controller of the power converter in a high current mode based on the estimated occurrence of the predicted high impedance state of the trailing edge dimmer. The method also includes operating the controller in a low impedance mode after the AC voltage signal reaches a low voltage threshold.

在本发明的另一个实施方式中,装置包括能够预测后沿调光器的高阻抗状态的估计发生的控制器。当后沿调光器开始相位切割相位切割AC电压的交流(AC)电压信号时,发生高阻抗状态。控制器进一步能够加速AC电压从后沿到预定电压阀值的转变。In another embodiment of the invention, the apparatus includes a controller capable of predicting the estimated occurrence of the high impedance state of the trailing edge dimmer. The high impedance state occurs when the trailing edge dimmer begins to phase cut an alternating current (AC) voltage signal that phase cuts the AC voltage. The controller is further capable of accelerating the transition of the AC voltage from the trailing edge to the predetermined voltage threshold.

在本发明的又一实施方式中,方法包括预测后沿调光器的高阻抗状态的估计发生。当后沿调光器开始相位切割相位切割AC电压的交流(AC)电压信号时,发生高阻抗状态。该方法进一步包括加速AC电压从后沿到预定电压阀值的转变。In yet another embodiment of the invention, the method includes predicting the estimated occurrence of the high impedance state of the trailing edge dimmer. The high impedance state occurs when the trailing edge dimmer begins to phase cut an alternating current (AC) voltage signal that phase cuts the AC voltage. The method further includes accelerating the transition of the AC voltage from the trailing edge to the predetermined voltage threshold.

附图说明Description of drawings

通过参考附图,将更好地理解本发明,并且本发明的多个目标、特征和优点对于本领域的技术人员来说是显而易见的。遍及若干附图,相同参考标号指示类似或相似的元件。The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. Throughout the several drawings, the same reference numerals indicate similar or analogous elements.

图1(被标记为现有技术)示出包括后沿调光器的照明系统。Figure 1 (labeled prior art) shows a lighting system comprising a trailing edge dimmer.

图2(被标记为现有技术)示出与图1的后沿调光器相关联的调光器控制信号和电压波形。FIG. 2 (labeled Prior Art) shows dimmer control signals and voltage waveforms associated with the trailing edge dimmer of FIG. 1 .

图3(被标记为现有技术)示出包括后沿调光器102和LED的照明系统。Figure 3 (labeled prior art) shows a lighting system comprising a trailing edge dimmer 102 and LEDs.

图4示出包括用于提供后沿调光器与电子光源之间的兼容性的控制器的照明系统。Figure 4 shows a lighting system comprising a controller for providing compatibility between a trailing edge dimmer and an electronic light source.

图5示出图4的照明系统工作期间的示例性电压和电流波形。FIG. 5 shows exemplary voltage and current waveforms during operation of the lighting system of FIG. 4 .

图6示出示例性后沿兼容性操作流程图,其表示提供图4的后沿调光器与电子光源之间的兼容性的一个实施方式。6 illustrates an exemplary trailing edge compatibility operational flowchart representing one embodiment for providing compatibility between the trailing edge dimmer of FIG. 4 and electronic light sources.

图7示出表示图4的照明系统的一个实施方式的照明系统。FIG. 7 shows a lighting system representing one embodiment of the lighting system of FIG. 4 .

图8示出过零点和有效时段检测器。Figure 8 shows the zero crossing and active period detectors.

图9示出电流控制模块。Figure 9 shows the current control module.

具体实施方式Detailed ways

在至少一个实施方式中,电子系统包括控制器,以及控制器提供电子光源与后沿调光器之间的兼容性。在至少一个实施方式中,控制器能够预测相位切割AC电压的后沿的估计发生,并能够加速相位切割AC电压从后沿到预定电压阀值的转变。术语“预测”及其派生词“预知”和“预言”意思是事先声明或表明。因此,在至少一个实施方式中,预测相位切割AC电压的后沿的估计发生事先声明或指示相位切割AC电压的后沿的估计发生。在至少一个实施方式中,控制器基于相位切割AC电压的一个或多个先前周期的实际观察,预测相位切割AC电压的后沿的估计发生。In at least one embodiment, the electronic system includes a controller, and the controller provides compatibility between the electronic light source and the trailing edge dimmer. In at least one embodiment, the controller can predict the estimated occurrence of the trailing edge of the phase-cut AC voltage and can accelerate the transition of the phase-cut AC voltage from the trailing edge to a predetermined voltage threshold. The term "forecast" and its derivatives "predict" and "prophet" mean to state or indicate in advance. Thus, in at least one embodiment, predicting the estimated occurrence of the trailing edge of the phase-cut AC voltage pre-declares or indicates that the estimated occurrence of the trailing edge of the phase-cut AC voltage occurs. In at least one embodiment, the controller predicts the estimated occurrence of the trailing edge of the phase-cut AC voltage based on actual observations of one or more previous cycles of the phase-cut AC voltage.

在至少一个实施方式中,为了提供后沿调光器与电子光源之间的兼容性,控制器预测后沿调光器的高阻抗状态的估计发生。当后沿调光器进入高阻抗状态时,相位切割AC电压的后沿开始。因此,当后沿调光器开始相位切割交流(AC)电压信号时,发生高阻抗状态。基于后沿调光器的高阻抗状态的估计发生的预测,控制器能够并被配置为进一步操作在高电流模式下,以增加自后沿调光器的电流的传送。操作在高电流模式下增加了相位切割AC电压的衰减速率,并且在至少一个实施方式中,确保相位切割AC电压在开始另一个周期之前达到低电压阀值。一旦相位切割AC电压达到低电压阀值,控制器能够并被配置为操作在低阻抗模式下,以将相位切割AC电压保持在低电压阀值或低电压阀值以下。In at least one embodiment, in order to provide compatibility between the trailing edge dimmer and the electronic light source, the controller predicts the estimated occurrence of the high impedance state of the trailing edge dimmer. The trailing edge of the phase cut AC voltage begins when the trailing edge dimmer enters the high impedance state. Therefore, a high impedance state occurs when a trailing edge dimmer begins to phase cut an alternating current (AC) voltage signal. Based on the prediction that the estimated high impedance state of the trailing edge dimmer occurs, the controller can and is configured to further operate in the high current mode to increase the delivery of current from the trailing edge dimmer. Operating in the high current mode increases the decay rate of the phase cut AC voltage and, in at least one embodiment, ensures that the phase cut AC voltage reaches the low voltage threshold before starting another cycle. Once the phase cut AC voltage reaches the low voltage threshold, the controller can and is configured to operate in a low impedance mode to maintain the phase cut AC voltage at or below the low voltage threshold.

图4示出包括控制器402的照明系统400,其中控制器402提供后沿调光器404与光源410之间的兼容性。后沿调光器404可以是任何后沿调光器,例如相位切割来自电源电压104的输入供给电压VIN的后沿的后沿调光器102。全桥二极管整流器408整流相位切割输入电压VΦ_IN,以生成相位切割整流电压VΦ_R。功率转换器406接收相位切割整流电压VΦ_R以及整流电流iR以生成输出电压VOUT和输出电流iOUT。输出电压VOUT和输出电流iOUT提供供光源410用的功率。在至少一个实施方式中,光源410是包括一个或多个LED、一个或多个CFL或一个或多个LED和一个或多个CFL的组合的电子光源。功率转换器406可以是任何类型的功率转换器,并且可以包括例如升压转换器、降压转换器、升降转换器或Cúk转换器。FIG. 4 shows a lighting system 400 including a controller 402 that provides compatibility between a trailing edge dimmer 404 and a light source 410 . Trailing edge dimmer 404 may be any trailing edge dimmer, such as trailing edge dimmer 102 that phase cuts the trailing edge of input supply voltage V IN from supply voltage 104 . The full-bridge diode rectifier 408 rectifies the phase-cut input voltage V Φ_IN to generate a phase-cut rectified voltage V Φ_R . The power converter 406 receives the phase-cut rectified voltage V Φ_R and the rectified current i R to generate an output voltage V OUT and an output current i OUT . The output voltage V OUT and the output current i OUT provide power for the light source 410 . In at least one embodiment, light source 410 is an electronic light source comprising one or more LEDs, one or more CFLs, or a combination of one or more LEDs and one or more CFLs. Power converter 406 may be any type of power converter and may include, for example, a boost converter, a buck converter, a boost converter, or a Cúk converter.

图5示出照明系统400工作期间的示例性电压和电流波形500。图6示出示例性后沿兼容性操作流程图600,其表示提供后沿调光器404与光源410之间兼容性的一个实施方式。参考图4、图5和图6,相位切割整流电压VΦ_R的每个周期具有从第一过零点到第二过零点的有效时段。波形500示出相位切割整流电压VΦ_R的一系列有效时段TA(n)~TA(n-N),其中n是整数指标,而N是大于或等于1的整数。“有效时段TA(n-X)”指的是对于范围从0到N的“X”来说,相位切割AC电压不近似等于0的部分。在至少一个实施方式中,控制器402预测相位切割整流电压VΦ_R的第n个周期的估计有效时段,其从时间tZC(n)1的第一过零点TA(n)EST跨到有效时段TA(n)EST的下一个近似过零点tZC(n)2。TA(n)EST表示当前的第n个周期的有效时段TA(n)的预测估计值。FIG. 5 shows exemplary voltage and current waveforms 500 of the lighting system 400 during operation. FIG. 6 illustrates an exemplary trailing edge compatibility operational flowchart 600 representing one embodiment of providing compatibility between trailing edge dimmers 404 and light sources 410 . Referring to FIG. 4 , FIG. 5 and FIG. 6 , each period of the phase-cut rectified voltage V Φ_R has an effective period from the first zero-crossing point to the second zero-crossing point. The waveform 500 shows a series of valid periods T A (n) ˜TA (nN) of the phase-cut rectified voltage V Φ_R , where n is an integer index and N is an integer greater than or equal to one. "Active period T A (nX)" refers to a portion where the phase-cut AC voltage is not approximately equal to 0 for "X" ranging from 0 to N. In at least one embodiment, the controller 402 predicts the estimated active period of the nth cycle of the phase-cut rectified voltage V Φ_R , which crosses from the first zero-crossing T A (n) EST at time t ZC (n) 1 to the active The next approximate zero crossing t ZC (n) 2 of the period T A (n) EST . T A (n) EST represents the predicted estimated value of the effective period T A (n) of the current nth cycle.

在至少一个实施方式中,控制器402包括后沿调光器高阻抗状态预测器412,其利用相位切割整流电压VΦ_R的N个先前周期的实际测量的有效时段TA(n-1)至TA(n-N),预测第n个周期的估计有效时段TA(n)EST,其中N是大于或等于1的整数。后沿调光器高阻抗状态预测器412在节点414检测相位切割整流电压VΦ_R。每个有效时段TA(n-X)等于整流输入电压VΦR_IN的第(n-X)周期的第一过零点tZC(n-X)1与第二过零点tZC(n-X)2之间的时间。因此,在至少一个实施方式中,在操作602中,后沿调光器高阻抗状态检测器412检测相位切割整流电压VΦ_R的每个周期的近似过零点tZC(n-X)1与tZC(n-X)2之间的时间,以确定对于范围从1至N的X,相位切割整流电压VΦ_R的有效时段TA(n-X)。In at least one embodiment, the controller 402 includes a trailing edge dimmer high-impedance state predictor 412 that utilizes the actual measured effective period T A (n-1) to N previous cycles of the phase-cut rectified voltage V Φ_R to T A (nN), predicting the estimated effective period T A (n) EST of the nth period, where N is an integer greater than or equal to 1. The trailing edge dimmer high impedance state predictor 412 detects the phase cut rectified voltage V Φ — R at node 414 . Each effective period T A (nX) is equal to the time between the first zero-crossing point t ZC (nX) 1 and the second zero-crossing point t ZC (nX) 2 of the (nX)th cycle of the rectified input voltage V ΦR_IN . Therefore, in at least one embodiment, in operation 602, the trailing edge dimmer high impedance state detector 412 detects the approximate zero-crossing points t ZC (nX) 1 and t ZC ( nX) 2 to determine the effective period T A (nX) of the phase-cut rectified voltage V Φ_R for X ranging from 1 to N.

在操作603中,后沿调光器高阻抗状态预测器412预测相位切割整流电压VΦ_R的第n周期的估计有效时段TA(n)EST。用于预测估计有效时段TA(n)EST的具体算法是根据设计选择的。在至少一个实施方式中,后沿调光器高阻抗状态预测器412假设估计的有效时段TA(n)EST等于先前实际测量的有效时段TA(n-1)。在至少一个实施方式中,后沿调光器高阻抗状态预测器412采用反映相位切割整流电压VΦ_R的先前N个周期的有效时段TA(n-X)持续时间趋势的算法。例如,在至少一个实施方式中,N等于2,并且后沿调光器高阻抗状态预测器412利用式子[2]确定有效时段的持续时间的趋势,以预测估计的第n个有效时段TA(n)ESTIn operation 603 , the trailing edge dimmer high impedance state predictor 412 predicts the estimated active period T A (n) EST of the nth cycle of the phase-cut rectified voltage V Φ_R . The specific algorithm for predicting the estimated effective period T A (n) EST is selected according to the design. In at least one embodiment, the trailing edge dimmer high impedance state predictor 412 assumes that the estimated active period T A (n) EST is equal to the previous actual measured active period T A (n−1). In at least one embodiment, the trailing edge dimmer high impedance state predictor 412 employs an algorithm reflecting the time trend of the active period T A (nX) of the previous N cycles of the phase-cut rectified voltage V Φ_R . For example, in at least one embodiment, N is equal to 2, and the trailing edge dimmer high impedance state predictor 412 uses equation [2] to determine the trend of the duration of the active period to predict the estimated nth active period T A (n) EST :

TA(n)EST=TA(n-l)+TA(n-l)-TA(n-2)=2·TA(n-l)-TA(n-2)     [2]T A (n) EST =T A (nl)+T A (nl)-T A (n-2)=2 T A (nl)-T A (n-2) [2]

在式子[2]中,TA(n)EST表示第n周期的预测有效时段,TA(n-1)表示先前的第(n-1)周期的近似实际时段,以及TA(n-2)表示先前的第(n-2)周期的近似实际测量时段。如结合图8详细讨论的,后沿调光器高阻抗状态预测器412检测相位切割整流电压VΦ_R的每个有效周期的近似实际过零点。在至少一个实施方式中,利用实际过零点的检测,后沿调光器高阻抗状态预测器412确定近似实际的有效时段TA(n)。当估计相位切割整流电压VΦ_R的下一个周期的实际时段时,被确定的近似实际时段TA(n)变成在式子[2]中使用的近似实际时段TA(n-l),以及在估计相位切割整流电压VΦ_R的下一个周期后的周期的实际时段时,其变成在式子[2]中使用的近似实际时段TA(n-2)。In the formula [2], T A (n) EST represents the predicted effective period of the nth period, T A (n-1) represents the approximate actual period of the previous (n-1)th period, and T A (n -2) represents the approximate actual measurement period of the previous (n-2)th cycle. As discussed in detail in connection with FIG. 8 , the trailing edge dimmer high impedance state predictor 412 detects the approximate actual zero crossing of each active period of the phase-cut rectified voltage V Φ — R. In at least one embodiment, the trailing edge dimmer high impedance state predictor 412 determines approximately the actual active period T A (n) using the detection of the actual zero crossing. When estimating the actual period of the next cycle of the phase-cut rectified voltage V Φ_R , the determined approximate actual period T A (n) becomes the approximate actual period T A (nl) used in equation [2], and in When estimating the actual period of the period after the next period of the phase-cut rectified voltage VΦ_R , it becomes the approximate actual period T A (n-2) used in Equation [2].

在至少一个实施方式中,由于奇数周期和偶数周期有更好的相关性,所以后沿调光器高阻抗状态预测器412将相位切割整流电压VΦ_R的奇数周期和偶数周期分离。当分离奇数周期和偶数周期时,后沿调光器高阻抗状态预测器412利用式子[3]确定偶数有效时段的持续时间的趋势,以预测估计的第n有效时段TA(n)ESTIn at least one embodiment, the trailing edge dimmer high impedance state predictor 412 separates odd and even periods of the phase-cut rectified voltage V Φ_R due to better correlation between odd and even periods. When separating the odd and even periods, the trailing edge dimmer high impedance state predictor 412 uses equation [3] to determine the trend of the duration of the even active period to predict the estimated nth active period T A (n) EST :

TA(n)EST=TA(n-2)+TA(n-2)-TA(n-4)=2·TA(n-2)-TA(n-4)     [3],T A (n) EST =T A (n-2)+T A (n-2)-T A (n-4)=2 T A (n-2)-T A (n-4) [3 ],

当分离偶数周期和奇数周期时,后沿调光器高阻抗状态预测器412利用式子[4]确定偶数有效时段的持续时间的趋势,以预测估计的第n+1有效时段TA(n)ESTWhen separating the even and odd periods, the trailing edge dimmer high impedance state predictor 412 uses equation [4] to determine the trend of the duration of the even active period to predict the estimated n+1th active period T A (n ) EST :

TA(n+l)EST=TA(n-l)+TA(n-l)-TA(n-3)=2·TA(n-l)-TA(n-3)     [4]T A (n+l) EST =T A (nl)+T A (nl)-T A (n-3)=2·T A (nl)-T A (n-3) [4]

在操作604中,后沿调光器高阻抗状态预测器412检测相位切割整流电压VΦ_R的当前第n周期的第一近似过零点tZC(n)1。根据第n周期的已知第一过零点时间tZC(n)1和预测的估计有效时段TA(n)EST,后沿调光器高阻抗状态预测器412预测何时将发生第二过零点tZC(n)2In operation 604 , the trailing edge dimmer high impedance state predictor 412 detects the first approximate zero crossing t ZC (n) 1 of the current nth cycle of the phase cut rectified voltage V Φ_R . Based on the known first zero crossing time t ZC (n) 1 of cycle n and the predicted estimated effective period T A (n) EST , the trailing edge dimmer high impedance state predictor 412 predicts when the second crossing will occur. Zero point t ZC (n) 2 .

在操作606中,后沿调光器高阻抗状态预测器412基于相位切割整流电压VΦ_R的n个先前周期的持续时间以及当前第n周期的第一近似过零点tZC(n)1的检测,预测后沿调光器404的高阻抗状态的估计发生。在至少一个实施方式中,通过假设后沿调光器404的高阻抗状态的发生等于第n周期的预测第二过零点tZC(n)2减去相位切割整流电压VΦ_R的第n周期的后沿502的估计的衰减时间TDC(n),后沿调光器高阻抗状态预测器412确定后沿调光器404的第n周期的高阻抗状态的预测估计发生。In operation 606, the trailing edge dimmer high-impedance state predictor 412 is based on the detection of the first approximate zero-crossing point t ZC (n) 1 of the current n-th cycle based on the duration of n previous cycles of the phase-cut rectified voltage V Φ_R , predicting the estimation of the high impedance state of the trailing edge dimmer 404 to occur. In at least one embodiment, by assuming that the occurrence of the high impedance state of the trailing edge dimmer 404 is equal to the predicted second zero crossing t ZC (n) 2 of the nth cycle minus the nth cycle of the phase-cut rectified voltage V Φ_R The estimated decay time T DC (n) of the trailing edge 502 , the trailing edge dimmer high impedance state predictor 412 determines that the predicted estimated occurrence of the high impedance state of the nth cycle of the trailing edge dimmer 404 occurs.

获得估计的衰减时间TDC(n)的方法是根据设计选择的。在至少一个实施方式中,后沿调光器高阻抗状态预测器412基于后沿调光器404的电容器(例如电容器114)(图1)的最差情况值和由电流控制模块416控制的电流量iDIM,采用预先存储的估计的衰减时间TDC(n),例如180μs。在其他实施方式中,后沿调光器高阻抗状态预测器412采用若干算法中的任一个来确定相位切割整流电压VΦ_R的估计衰减时间TDC(n)。例如,在至少一个实施方式中,估计的衰减时间存储在针对后沿调光器404的各种电容值和相位切割整流电压VΦ_R的相位切割角度的查找表(未示出)中,并且由后沿高阻抗状态预测器412存取。在至少一个实施方式中,后沿调光器404的电容值存储在后沿调光器高阻抗状态预测器412的可选存储器417中。在至少一个实施方式中,后沿调光器高阻抗状态预测器412测量或确定相位切割整流电压VΦ_R的先前第(n-l)周期的衰减时间TDC(n-l),并且采用先前的第(n-l)周期的衰减时间TDC(n-1)作为相位切割整流电压VΦ_R的当前第n周期的衰减时间TDC(n)。在至少一个实施方式中,通过在利用实际的调光器和实际的光源(例如LED和/或CFL)的实验室设定中以实验方式确定光源410在特定相位切割角度的衰减时间。接着,相位切割整流电压VΦ_R的衰减时间经由控制器402的终端419存储在可选的非易失性存储器417中,并由后沿调光器高阻抗状态预测器412用于预测后沿调光器404的高阻抗状态的估计发生。The method of obtaining the estimated decay time T DC (n) is a design choice. In at least one embodiment, trailing edge dimmer high impedance state predictor 412 is based on the worst case value of a capacitor (eg, capacitor 114 ) ( FIG. 1 ) of trailing edge dimmer 404 and the current controlled by current control module 416 . For flow i DIM , a pre-stored estimated decay time T DC (n), for example 180 μs, is used. In other embodiments, the trailing edge dimmer high impedance state predictor 412 employs any one of several algorithms to determine the estimated decay time T DC (n) of the phase-cut rectified voltage V Φ — R . For example, in at least one embodiment, the estimated decay time is stored in a look-up table (not shown) for various capacitance values of the trailing edge dimmer 404 and the phase-cut angle of the phase-cut rectified voltage V Φ_R , and is determined by The trailing edge high impedance state predictor 412 accesses. In at least one embodiment, the capacitance value of trailing edge dimmer 404 is stored in optional memory 417 of trailing edge dimmer high impedance state predictor 412 . In at least one embodiment, the trailing edge dimmer high impedance state predictor 412 measures or determines the decay time T DC (nl) of the previous (nl)th cycle of the phase-cut rectified voltage V Φ_R , and adopts the previous (nl)th cycle ) cycle decay time T DC (n-1) is used as the decay time T DC (n) of the current n-th cycle of the phase-cut rectified voltage V Φ_R . In at least one embodiment, the decay time of the light source 410 at a particular phase cut angle is determined experimentally in a laboratory setting using an actual dimmer and an actual light source (eg, LED and/or CFL). Next, the decay time of the phase-cut rectified voltage V Φ_R is stored in the optional non-volatile memory 417 via the terminal 419 of the controller 402 and used by the trailing edge dimmer high impedance state predictor 412 to predict the trailing edge dimmer. Estimation of the high impedance state of optical device 404 occurs.

在至少一个实施方式中,操作606考虑到随着调光水平降低,相位切割整流电压VΦ_R的周期到周期的相位角度会减小。为了补偿相位角度的潜在减少,后沿调光器高阻抗状态预测器412从第二过零点时间tZC(n)2减去动态的调光水平补偿时间TDDLC,以获得调光器在时间tHR(n)的高阻抗状态的预测发生。动态的调光水平补偿时间TDDLC值是设计选择问题,以及在至少一个实施方式中,表示有效时段TA(n)EST与TA(n-1)EST的预测估计值之间的最大可能变化。在至少一个实施方式中,动态调光水平补偿时间tDDLC是120μs。因此,在至少一个实施方式中,调光器的高阻抗状态的预测发生tHR(n)等于tZC(n)2-(TDC-TDDLC)。在至少一个实施方式中,动态调光水平补偿时间tDDLC是衰减时间TDC(n)的百分比,例如50-75%。后沿调光器高阻抗状态预测器412向电流控制模块416提供HRSTATE_PREDICTION信号,以指示调光器的高阻抗状态的预测发生tHR(n)。In at least one embodiment, operation 606 takes into account that as the dimming level decreases, the cycle-to-cycle phase angle of the phase-cut rectified voltage V Φ_R decreases. To compensate for the potential reduction in phase angle, the trailing edge dimmer high impedance state predictor 412 subtracts the dynamic dimming level compensation time T DDLC from the second zero crossing time t ZC (n) 2 to obtain the dimmer at time The prediction of the high impedance state of t HR (n) occurs. The dynamic dimming level compensation time T DDLC value is a matter of design choice and, in at least one embodiment , represents the maximum possible Variety. In at least one embodiment, the dynamic dimming level compensation time t DDLC is 120 μs. Thus, in at least one embodiment, the predicted occurrence t HR (n) of the high impedance state of the dimmer is equal to t ZC (n) 2 −(T DC −T DDLC ). In at least one embodiment, the dynamic dimming level compensation time t DDLC is a percentage of the decay time T DC (n), such as 50-75%. The trailing edge dimmer high impedance state predictor 412 provides a HRSTATE_PREDICTION signal to the current control module 416 to indicate the predicted occurrence t HR (n) of the high impedance state of the dimmer.

在操作608中,在调光器的高阻抗状态的预测发生tHR(n)时,后沿调光器高阻抗状态预测器412增加通过后沿调光器404传送到功率转换器406的调光器电流量iDIM。调光器电流iDIM的增加减少了衰减时间TDC,因此,加速相位切割整流电压VΦ_R的第n周期的后沿到预定阈值电压的转变。在至少一个实施方式中,预定的电压阀值是0至65V的范围。在作为调光器电流iDIM的整流形式的电流iR的示例性描述中,电流iR跟随相位切割整流电压VΦ_R直至调光器高阻抗状态的预测发生tHR(n)。在调光器高阻抗状态的预测发生tHR(n)时,相比正常操作,电流控制模块416将通过后沿调光器404传送到功率转换器406的电流iR增加到后沿加速器电流值iR_ACCELIn operation 608 , the trailing edge dimmer high impedance state predictor 412 increases the dimming value delivered to the power converter 406 through the trailing edge dimmer 404 when the prediction of the high impedance state of the dimmer occurs t HR (n). Optical current amount i DIM . The increase of the dimmer current i DIM reduces the decay time T DC , thus accelerating the transition of the trailing edge of the n-th cycle of the phase-cut rectified voltage V Φ_R to the predetermined threshold voltage. In at least one embodiment, the predetermined voltage threshold is in the range of 0 to 65V. In an exemplary description of current i R as a rectified version of dimmer current i DIM , current i R follows the phase-cut rectified voltage V Φ_R until the predicted occurrence of the dimmer high impedance state t HR (n). At the predicted occurrence t HR (n) of the dimmer high impedance state, the current control module 416 increases the current i R delivered by the trailing edge dimmer 404 to the power converter 406 to the trailing edge accelerator current compared to normal operation Value i R_ACCEL .

后沿加速器电流值iR_ACCEL的具体值是设计选择的问题。增加后沿加速器电流值iR_ACCEL减少了衰减时间TDC,并增加照明系统400的调光范围。减少后沿加速器电流值iR_ACCEL,则增加衰减时间TDC,并减少照明系统400的调光范围。由于增加了与调光水平相关的相位切割角度范围,同时仍确保相位切割整流电压VΦ_R在下一个过零点之前达到过零点,所以增加了照明系统400的调光范围。然而,增加后沿加速器电流值iR_ACCEL,也潜在地增加了功率转换器406耗散的功率量。而且,增加后沿加速器电流值iR_ACCEL会导致功率转换器406须具有更高的额定电流以及更昂贵的组件。The specific value of the trailing accelerator current value i R_ACCEL is a matter of design choice. Increasing the trailing accelerator current value i R_ACCEL reduces the decay time T DC and increases the dimming range of the lighting system 400 . Decreasing the trailing accelerator current value i R_ACCEL increases the decay time T DC and reduces the dimming range of the lighting system 400 . The dimming range of the lighting system 400 is increased due to the increased phase cut angle range relative to the dimming level, while still ensuring that the phase cut rectified voltage VΦ_R reaches a zero crossing before the next zero crossing. However, increasing the trailing edge accelerator current value i R — ACCEL also potentially increases the amount of power dissipated by the power converter 406 . Moreover, increasing the trailing accelerator current value i R_ACCEL results in higher current ratings and more expensive components for the power converter 406 .

在至少一个实施方式中,电流控制模块416动态调整后沿加速器电流值iR_ACCEL,以确保操作在不连续电流模式下(DCM)而又最小化功率耗散。在至少一个实施方式中,控制器402可以在DCM操作模式、连续导通模式(CCM)和/或临界导通模式(CRM)之间切换,以允许电流控制模块416灵活选择后沿加速器电流值iR_ACCEL。DCM是当相位切割整流电压VΦ_R在相位切割整流电压VΦ_R的下一个周期的第一过零点tZC(n-X+l)1之前到达第二过零点tZC(n-X)2之时。CCM是相位切割整流电压VΦ_R在相位切割整流电压VΦ_R的下一个周期的第一过零点tZC(n-X+l)1之前未到达第二过零点tZC(n-X)2之时。CRM是第二过零点tZC(n-X)2与相位切割整流电压VΦ_R的下一个周期的第一过零点tZC(n-X+l)1相同之时。In at least one embodiment, the current control module 416 dynamically adjusts the trailing accelerator current value i R_ACCEL to ensure operation in discontinuous current mode (DCM) while minimizing power dissipation. In at least one embodiment, the controller 402 can switch between a DCM mode of operation, a continuous conduction mode (CCM), and/or a critical conduction mode (CRM) to allow the current control module 416 to flexibly select the trailing edge accelerator current value i R_ACCEL . DCM is when the phase-cut rectified voltage V Φ_R reaches the second zero-cross point t ZC (nX) 2 before the first zero - cross point t ZC (n-X+l) 1 of the next cycle of the phase-cut rectified voltage V Φ_R. CCM is when the phase-cut rectified voltage V Φ_R does not reach the second zero-cross point t ZC (nX) 2 before the first zero-cross point t ZC (n-X+l) 1 of the next cycle of the phase-cut rectified voltage V Φ_R . CRM is when the second zero-crossing point t ZC (nX) 2 is the same as the first zero-crossing point t ZC (n-X+l) 1 of the next cycle of the phase-cut rectified voltage V Φ_R .

在至少一个实施方式中,后沿加速器电流值iR_ACCEL比正常操作电流峰值iR高100-500%。在至少一个实施方式中,正常操作电流峰值大约是100mA,而后沿加速器电流值iR_ACCEL大约是500mA。在至少一个实施方式中,功率转换器406包括传送附加电流iR并耗散与附加电流iR关联的功率的一个或多个可选的功率耗散电路418。示例性功率耗散电路在下列专利文献中描述:(i)于2011年11月4日提交的题为“Controlled PowerDissipation in a Switch Path in a Lighting System”、发明人是John L.Melanson和Eric J.King的美国专利申请第13/289,845号;(ii)于2011年11月4日提交的题为“Controlled Power Dissipation in a LightingSystem”、发明人是John L.Melanson和Eric J.King的美国专利申请第13/289.931号;以及(iii)于2011年11月4日提交的题为“Controlled PowerDissipation in a Link Path in a Lighting System”、发明人是John L.Melanson和Eric J.King的美国专利申请第13/289,967号。In at least one embodiment, the trailing edge accelerator current value i R_ACCEL is 100-500% higher than the normal operating current peak value i R . In at least one embodiment, the normal operating current peak value is approximately 100 mA and the trailing edge accelerator current value i R_ACCEL is approximately 500 mA. In at least one embodiment, the power converter 406 includes one or more optional power dissipation circuits 418 that deliver the additional current i R and dissipate power associated with the additional current i R . Exemplary power dissipation circuits are described in: (i) "Controlled PowerDissipation in a Switch Path in a Lighting System," filed Nov. 4, 2011, inventors John L. Melanson and Eric J .King's U.S. Patent Application No. 13/289,845; (ii) U.S. Patent entitled "Controlled Power Dissipation in a Lighting System," filed Nov. 4, 2011, inventors John L. Melanson and Eric J. King Application Serial No. 13/289.931; and (iii) U.S. Patent entitled "Controlled PowerDissipation in a Link Path in a Lighting System," filed November 4, 2011, inventors John L. Melanson and Eric J. King Application No. 13/289,967.

在至少一个实施方式中,因为电源电压104能够提供大大超出后沿加速器电流值iR_ACCEL的电流值,所以如果调光水平增加,因而相位切割整流电压VΦ_R的相位角度增加而不是减少,后沿加速器电流值iR_ACCEL不会使相位切割整流电压VΦ_R的波形失真。In at least one embodiment, because the supply voltage 104 is capable of supplying a current value well in excess of the trailing accelerator current value i R_ACCEL , if the dimming level is increased and thus the phase angle of the phase-cut rectified voltage V Φ_R increases rather than decreases, the trailing edge The accelerator current value i R_ACCEL does not distort the waveform of the phase-cut rectified voltage V Φ_R .

在至少一个实施方式中,在每个第二过零点tZC(n-X)2,电流控制模块416控制通过调光器404传送的电流iR,以使得功率转换器406进入低阻抗状态。在至少一个实施方式中,低阻抗状态下的电流被称为粘附电流,在以下专利文献中对粘附电流进行了一般的描述:于2010年8月7日提交的题为“Dimmer Output Emulation”、发明人是:John L.Melanson(在这里被称为“Melanson I”)的美国专利申请第12/858,164号以及于2011年8月24日提交的题为“Multi-Mode Dimmer Interfacing Including AttachState Control”、发明人是:Eric J.King和John L.Melanson的美国专利申请第13/217,174号,上述两个专利申请的全部内容结合于此供参考。In at least one embodiment, at each second zero crossing t ZC (nX) 2 , the current control module 416 controls the current i R delivered through the dimmer 404 such that the power converter 406 enters a low impedance state. In at least one embodiment, the current flow in the low impedance state is referred to as the stick current, which is generally described in the following patent document: "Dimmer Output Emulation" filed on August 7, 2010 ", the inventors of which are: U.S. Patent Application Serial No. 12/858,164, filed August 24, 2011, by John L. Melanson (referred to herein as "Melanson I") and entitled "Multi-Mode Dimmer Interfacing Including AttachState Control", the inventors are: US Patent Application No. 13/217,174 to Eric J. King and John L. Melanson, the entire contents of the above two patent applications are hereby incorporated by reference.

后沿调光器高阻抗状态预测器412的具体实施是可以设计选择问题。后沿调光器高阻抗状态预测器412可以使用模拟电路、数字电路或模拟和数字电路实施,并且可以使用分立组件实施。在至少一个实施方式中,控制器402是集成电路,并且后沿调光器高阻抗状态预测器412和电流控制模块416被实施为集成电路的一部分。在至少一个实施方式中,控制器402包括处理器(未示出)以及存储和执行代码的存储器(未示出),其中所述代码实施示例性后沿兼容操作流程图600的一个或多个实施方式。The specific implementation of trailing edge dimmer high impedance state predictor 412 may be a matter of design choice. The trailing edge dimmer high impedance state predictor 412 may be implemented using analog circuitry, digital circuitry, or both, and may be implemented using discrete components. In at least one embodiment, the controller 402 is an integrated circuit, and the trailing edge dimmer high impedance state predictor 412 and the current control module 416 are implemented as part of the integrated circuit. In at least one embodiment, the controller 402 includes a processor (not shown) and a memory (not shown) that stores and executes code implementing one or more of the exemplary back-edge compatible operational flowchart 600. implementation.

图7示出作为照明系统400的一个实施方式的照明系统700。照明系统700包括控制器702,其包括后沿调光器高阻抗状态预测器412。后沿调光器高阻抗状态预测器412生成HRSTATE_PREDICT1ON信号,并且向电流控制模块704提供HRSTATE_PREDICT1ON信号,以指示调光器的高阻抗状态的预测发生tHR(n),如先前参考照明系统400所描述的。电流控制模块704使用与参照照明系统400所讨论以及在示例性电压和电流波形500(图5)中描述的相同电流和电压轮廓(profile),控制升压型开关功率转换器706。开关功率转换器706包括升压开关707,并且电流控制模块704控制功率因数校正,以及调节链路电容器708两端的链路电压VLINK如以下专利文献描述的:于2007年12月31日提交的,题为“PowerControl System Using a Nonlinear Delta-Sigma Modulator With NonlinearPower Conversion Process Modeling”、发明人是John L.Melanson(在这里被称为“Melanson I”)的美国专利申请第11/967,269;于2007年12月31日提交的题为“Programmable Power Control System”、发明人是John L.Melanson(在这里被称为“Melanson II”)的美国专利申请第11/967,275号;于2009年6月30日提交的题为“Cascode Configured Switching Using atLeast One Low Breakdown Voltage Internal,Integrated Circuit Switch toControl At Least One High Breakdown Voltage External Switch”、发明人是John L.Melanson(在这里被称为“Melanson III”)的美国专利申请第12/495,457;以及于2011年6月30日提交的题为“Constant Current Controller WithSelectable Gain”、发明人是John L.Melanson、Rahul Singh和Siddharth Maru的美国专利申请第12/174,404号,上述的全部内容结合于本文中作为参考。FIG. 7 shows a lighting system 700 as one embodiment of the lighting system 400 . The lighting system 700 includes a controller 702 that includes a trailing edge dimmer high impedance state predictor 412 . The trailing edge dimmer high impedance state predictor 412 generates the HRSTATE_PREDICT1ON signal and provides the HRSTATE_PREDICT1ON signal to the current control module 704 to indicate the predicted occurrence t HR (n) of the dimmer's high impedance state, as previously described with reference to the lighting system 400 describe. The current control module 704 controls the boost switching power converter 706 using the same current and voltage profiles discussed with reference to the lighting system 400 and described in the exemplary voltage and current waveforms 500 ( FIG. 5 ). Switching power converter 706 includes boost switch 707, and current control module 704 controls power factor correction, and regulates the link voltage V LINK across link capacitor 708 as described in the following patent document: filed December 31, 2007 , U.S. Patent Application No. 11/967,269, entitled "Power Control System Using a Nonlinear Delta-Sigma Modulator With Nonlinear Power Conversion Process Modeling," by John L. Melanson (referred to herein as "Melanson I") as inventor; filed in 2007 U.S. Patent Application Serial No. 11/967,275, entitled "Programmable Power Control System," to John L. Melanson (referred to herein as "Melanson II"), filed December 31; filed June 30, 2009 Submission entitled "Cascode Configured Switching Using at Least One Low Breakdown Voltage Internal, Integrated Circuit Switch to Control At Least One High Breakdown Voltage External Switch", inventor John L. Melanson (herein referred to as "Melanson III") US Patent Application Serial No. 12/495,457; and U.S. Patent Application Serial No. 12/174,404, filed June 30, 2011, entitled "Constant Current Controller With Selectable Gain," inventors John L. Melanson, Rahul Singh, and Siddharth Maru No., the entirety of which is incorporated herein by reference.

开关功率转换器包括电容器710,其过滤整流电压VΦR_IN的高频成分。栅极偏置电压VG偏置开关707的栅极。栅极偏置电压VG的具体值是设计选择问题,并且取决于例如开关707的操作参数。在至少一个实施方式中,栅极偏置电压VG是+12V。为了控制开关功率转换器706的操作,控制器702生成控制场效应管(FET)开关707的导通的控制信号CS1。控制信号CS1是脉宽调制信号。控制信号CS1的每个脉冲使开关707打开(即,导通),以及电感器电流iR增加,以给电感器712充电。二极管714防止电流从链路电容器708流到开关707。当脉冲结束时,电感器712将电压极性反相(通常被称为“回扫”),并且在回扫阶段,电感器电流iR降低。电感器电流iR通过二极管714将链路电容器708两端的链路电压升压。开关功率转换器706是升压型转换器,因此,链路电压VLINK大于相位切割整流电压VΦ_R。具有电子光源的负载716包括例如变压器类的接口电路,其向电子光源提供电力。The switching power converter includes a capacitor 710 that filters high frequency components of the rectified voltage V ΦR_IN . Gate bias voltage V G biases the gate of switch 707 . The specific value of gate bias voltage V G is a matter of design choice and depends on operating parameters of switch 707 , for example. In at least one embodiment, the gate bias voltage VG is +12V. To control the operation of the switching power converter 706 , the controller 702 generates a control signal CS 1 that controls the conduction of a field effect transistor (FET) switch 707 . The control signal CS 1 is a pulse width modulated signal. Each pulse of control signal CS 1 causes switch 707 to open (ie, conduct) and inductor current i R to increase to charge inductor 712 . Diode 714 prevents current flow from link capacitor 708 to switch 707 . When the pulse ends, the inductor 712 reverses the voltage polarity (often referred to as "retrace"), and during the retrace phase, the inductor current iR decreases. Inductor current i R boosts the link voltage across link capacitor 708 through diode 714 . The switching power converter 706 is a boost converter, therefore, the link voltage V LINK is greater than the phase-cut rectified voltage V Φ — R . The load 716 with the electronic light source includes an interface circuit, such as a transformer, which provides power to the electronic light source.

图8示出过零点和有效时间检测器800的一个实施方式,其用在用于检测相位切割整流电压VΦ_R的近似过零点值tZC(n)1与tZC(n)2的后沿调光器高阻抗状态预测器412的一个实施方式中。过零点检测器800包括比较器802,其比较相位切割整流电压VΦ_R与相位切割整流电压VΦ_R的阀值。相位切割整流电压VΦ_R的阀值是例如在0至15V的范围。当比较器802检测到相位切割整流电压VΦ_R已经转变成大于相位切割整流电压VΦ_R阀值时,比较器802的ZC_DETECT输出信号指示从逻辑1变到逻辑0的转变。该转变指示检测到第一过零点tZC(n)1。接着,计时器804以大于相位切割整流电压VΦ_R的频率的频率开始计时。例如,在至少一个实施方式中,计时器804以10kHz以上的频率计时。当比较器802检测出相位切割整流电压VΦ_R小于相位切割整流电压VΦ_R阀值时,比较器802的ZC_DETECT输出信号指示从逻辑0改变到逻辑1的转变。ZC_DETECT输出信号从逻辑0到逻辑1的转变指示检测到第二过零点tZC(n)2。接着,计时器804指示两个过零点的检测之间的时间,其是近似实际有效时间TA(n)。FIG. 8 shows one embodiment of a zero-crossing and valid time detector 800 for detecting the trailing edge of the approximate zero-crossing values t ZC (n) 1 and t ZC (n) 2 of the phase-cut rectified voltage V Φ_R In one embodiment of the dimmer high impedance state predictor 412 . The zero-crossing detector 800 includes a comparator 802 that compares the phase-cut rectified voltage V Φ_R with a threshold value of the phase-cut rectified voltage V Φ_R . The threshold value of the phase-cut rectified voltage VΦ_R is, for example, in the range of 0 to 15V. When the comparator 802 detects that the phase-cut rectified voltage VΦ_R has transitioned to be greater than the phase-cut rectified voltage VΦ_R threshold, the ZC_DETECT output signal of the comparator 802 indicates a transition from logic 1 to logic 0. This transition indicates the detection of the first zero crossing t ZC (n) 1 . Next, the timer 804 starts counting at a frequency greater than the frequency of the phase-cut rectified voltage V Φ_R . For example, in at least one embodiment, the timer 804 counts at a frequency above 10 kHz. When the comparator 802 detects that the phase-cut rectified voltage V Φ_R is less than the phase-cut rectified voltage V Φ_R threshold, the ZC_DETECT output signal of the comparator 802 indicates a transition from logic 0 to logic 1. A transition of the ZC_DETECT output signal from logic 0 to logic 1 indicates detection of the second zero crossing t ZC (n) 2 . Next, a timer 804 indicates the time between the detection of two zero crossings, which is an approximate actual effective time T A (n).

图9示出电流控制模块900,其表示电流控制模块704的一个实施方式。电流控制模块900包括可控的电流源902。电流源902包括被配置成电流镜的FET904和906。参考图7和9,在至少一个实施方式中,控制器908调制用于控制通过开关707的电流的控制信号CS1,以控制功率因数校正和调节开关功率转换器706的链路电压VLINK,生成后沿加速器电流值iR_ACCEL,生成开关功率转换器7066的低阻抗状态,以及耗散过量的功率,如先前所述。FIG. 9 illustrates a current control module 900 that represents one implementation of the current control module 704 . The current control module 900 includes a controllable current source 902 . Current source 902 includes FETs 904 and 906 configured as a current mirror. Referring to FIGS. 7 and 9 , in at least one embodiment, the controller 908 modulates the control signal CS 1 for controlling the current through the switch 707 to control power factor correction and regulate the link voltage V LINK of the switching power converter 706 , The trailing accelerator current value i R_ACCEL is generated, a low impedance state of switching power converter 7066 is generated, and excess power is dissipated, as previously described.

电流源902提供流过FET906的参考电流iREF。在至少一个实施方式中,控制信号CS1将升压开关707打开。通过缩放因数Z,FET904的尺寸被缩放到FET906的尺寸。缩放因数Z的值是正数,并且是可以设计选择的。缩放因数Z的值乘以参考电流iREF的值来设定后沿加速器电流值iR_ACCEL。因此,当后沿调光器高阻抗状态预测器412预测到调光器的高阻抗状态发生tHR(n)时,控制器908使可控的电流源902将后沿加速器电流值iR_ACCEL传送到开关功率转换器706。Current source 902 provides a reference current i REF through FET 906 . In at least one embodiment, the control signal CS 1 turns on the boost switch 707 . The size of FET 904 is scaled to the size of FET 906 by scaling factor Z. The value of the scaling factor Z is positive and is a design choice. The value of the scaling factor Z is multiplied by the value of the reference current i REF to set the trailing edge accelerator current value i R_ACCEL . Therefore, when the trailing edge dimmer high impedance state predictor 412 predicts that the high impedance state of the dimmer occurs t HR (n), the controller 908 makes the controllable current source 902 transmit the trailing edge accelerator current value i R_ACCEL to switching power converter 706 .

因此,电子系统包括控制器,以及控制器提供电子光源与后沿调光器之间的兼容性。在至少一个实施方式中,控制器能够预测相位切割AC电压的后沿的估计发生,以及能够加速相位切割AC电压从后沿到预定电压阀值的转变。Accordingly, the electronic system includes a controller, and the controller provides compatibility between the electronic light source and the trailing edge dimmer. In at least one embodiment, the controller can predict the estimated occurrence of the trailing edge of the phase-cut AC voltage and can accelerate the transition of the phase-cut AC voltage from the trailing edge to a predetermined voltage threshold.

虽然已经详细描述了实施方式,但是应当理解,在不背离由所附权利要求限定的本发明的精神和范围的前提下,可以对所述实施方式进行各种改变、替换和变更。Although the embodiments have been described in detail, it should be understood that various changes, substitutions and alterations could be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (40)

1.一种装置,包括:1. A device comprising: 控制器,用于提供灯与后沿调光器之间的兼容性,其中所述控制器能够执行以下操作:a controller for providing compatibility between lamps and trailing edge dimmers, wherein the controller is capable of: 预测所述后沿调光器的高阻抗状态的估计发生,其中当所述后沿调光器开始相位切割交流(AC)电压信号时,发生高阻抗状态;predicting an estimated occurrence of a high impedance state of the trailing edge dimmer, wherein the high impedance state occurs when the trailing edge dimmer begins phase cutting an alternating current (AC) voltage signal; 基于所述后沿调光器的高阻抗状态的估计预测发生,操作在高电流模式下;以及Prediction occurs based on an estimated high impedance state of the trailing edge dimmer, operating in a high current mode; and 在所述AC电压信号达到低电压阀值后,操作在低阻抗模式下。Operating in a low impedance mode after the AC voltage signal reaches a low voltage threshold. 2.根据权利要求1所述的装置,其中,所述控制器进一步能够操作在低阻抗模式下直至所述AC电压信号的相位切割之后的所述AC电压信号的下一个近似过零点。2. The apparatus of claim 1, wherein the controller is further operable in a low impedance mode until a next approximate zero crossing of the AC voltage signal after phase cutting of the AC voltage signal. 3.根据权利要求1所述的装置,其中,所述控制器能够在所述后沿调光器开始相位切割交流(AC)电压信号之前,操作在高电流模式下。3. The apparatus of claim 1, wherein the controller is capable of operating in a high current mode before the trailing edge dimmer begins phase cutting an alternating current (AC) voltage signal. 4.根据权利要求3所述的装置,其中,所述控制器能够在所述后沿调光器开始相位切割交流(AC)电压信号之前的0.1ms内,操作在高电流模式下。4. The apparatus of claim 3, wherein the controller is capable of operating in a high current mode within 0.1 ms before the trailing edge dimmer begins phase cutting an alternating current (AC) voltage signal. 5.根据权利要求1所述的装置,其中,所述控制器能够在所述后沿调光器的高阻抗状态的估计预测发生之前,操作在高电流模式下。5. The apparatus of claim 1, wherein the controller is capable of operating in a high current mode until an estimated prediction of a high impedance state of the trailing edge dimmer occurs. 6.根据权利要求1所述的装置,其中,所述控制器能够基于所述AC电压信号的N个直接在前周期中的高阻抗状态的实际发生趋势,预测所述AC电压信号的当前周期中所述后沿调光器的高阻抗状态的估计发生,其中N是大于或等于2的整数。6. The apparatus of claim 1 , wherein the controller is capable of predicting the current period of the AC voltage signal based on the actual occurrence trend of the high impedance state in the N immediately preceding periods of the AC voltage signal The estimation of the high impedance state of the trailing edge dimmer occurs in , where N is an integer greater than or equal to 2. 7.根据权利要求1所述的装置,其中,所述控制器进一步能够基于当前周期之前发生的电压信号的N个先前周期中电压信号的轮廓,预测所述后沿调光器的高阻抗状态的估计发生,其中N是大于或等于1的整数。7. The apparatus of claim 1, wherein the controller is further capable of predicting the high impedance state of the trailing edge dimmer based on the profile of the voltage signal in N previous cycles of the voltage signal occurring before the current cycle The estimation of takes place, where N is an integer greater than or equal to 1. 8.根据权利要求7所述的装置,其中,所述轮廓是由所述灯汲取的电流的轮廓。8. The apparatus of claim 7, wherein the profile is a profile of the current drawn by the lamp. 9.根据权利要求7所述的装置,其中,所述轮廓是所述灯的电压轮廓。9. The apparatus of claim 7, wherein the profile is a voltage profile of the lamp. 10..根据权利要求9所述的装置,其中,基于所述AC电压信号中电压随着时间的变化,确定所述电压轮廓。10. The apparatus of claim 9, wherein the voltage profile is determined based on a change in voltage in the AC voltage signal over time. 11.根据权利要求1所述的装置,其中,所述AC电压信号是从相位切割AC输入供给电压得到的整流的AC电压。11. The apparatus of claim 1, wherein the AC voltage signal is a rectified AC voltage derived from a phase cut AC input supply voltage. 12.根据权利要求1所述的装置,其中,所述控制器能够控制所述功率转换器,其中所述功率转换器耦接在所述后沿调光器与包括在所述灯中的一个或多个电子光源之间。12. The apparatus of claim 1, wherein the controller is capable of controlling the power converter, wherein the power converter is coupled between the trailing edge dimmer and one of the lamps included in the lamp. or between multiple electron light sources. 13.根据权利要求1所述的装置,其中,所述灯包括由以下组成的组中的成员:一个或多个发光二极管、一个或多个紧凑荧光灯以及一个或多个发光二极管和一个或多个紧凑荧光灯。13. The device of claim 1, wherein the light comprises a member of the group consisting of: one or more light emitting diodes, one or more compact fluorescent lamps, and one or more light emitting diodes and one or more a compact fluorescent lamp. 14.一种提供灯与后沿调光器之间兼容性的方法,所述方法包括:14. A method of providing compatibility between a lamp and a trailing edge dimmer, the method comprising: 预测所述后沿调光器的高阻抗状态的估计发生,其中当所述后沿调光器开始相位切割交流(AC)电压信号时,发生高阻抗状态;predicting an estimated occurrence of a high impedance state of the trailing edge dimmer, wherein the high impedance state occurs when the trailing edge dimmer begins phase cutting an alternating current (AC) voltage signal; 基于所述后沿调光器的高阻抗状态的估计预测发生,使至少功率转换器的控制器操作在高电流模式下;以及causing at least a controller of the power converter to operate in a high current mode based on an estimated prediction of the high impedance state of the trailing edge dimmer; and 在所述AC电压信号达到低电压阀值后,使所述控制器操作在低阻抗模式下。Operating the controller in a low impedance mode after the AC voltage signal reaches a low voltage threshold. 15.根据权利要求14所述的方法,进一步包括:15. The method of claim 14, further comprising: 使所述控制器以低阻抗模式操作,直至所述AC电压信号的相位切割之后的所述AC电压信号的下一个近似过零点。The controller is caused to operate in a low impedance mode until a next approximate zero crossing of the AC voltage signal following a phase cut of the AC voltage signal. 16.根据权利要求14所述的方法,进一步包括:16. The method of claim 14, further comprising: 在所述后沿调光器开始相位切割交流(AC)电压信号之前,使所述控制器以高电流模式操作。The controller is caused to operate in a high current mode before the trailing edge dimmer begins phase cutting an alternating current (AC) voltage signal. 17.根据权利要求16所述的方法,进一步包括:17. The method of claim 16, further comprising: 在所述后沿调光器开始相位切割交流(AC)电压信号之前的0.1ms内,使所述控制器以高电流模式操作。The controller is caused to operate in a high current mode within 0.1 ms before the trailing edge dimmer begins phase cutting an alternating current (AC) voltage signal. 18.根据权利要求14所述的方法,进一步包括:18. The method of claim 14, further comprising: 在所述后沿调光器的高阻抗状态的估计预测发生之前,使所述控制器以高电流模式操作。The controller is caused to operate in a high current mode until an estimated prediction of a high impedance state of the trailing edge dimmer occurs. 19.根据权利要求14所述的方法,进一步包括:19. The method of claim 14, further comprising: 基于所述AC电压信号的N个直接在前周期中的高阻抗状态的实际发生趋势,预测所述AC电压信号的当前周期中所述后沿调光器的高阻抗状态的估计发生,其中N是大于或等于2的整数。Predicting an estimated occurrence of the high impedance state of the trailing edge dimmer in the current cycle of the AC voltage signal based on an actual occurrence trend of the high impedance state in N immediately preceding cycles of the AC voltage signal, where N is an integer greater than or equal to 2. 20.根据权利要求14所述的方法,进一步包括:20. The method of claim 14, further comprising: 基于当前周期之前发生的电压信号的N个先前周期中电压信号的轮廓,预测所述交流(AC)电压信号的相位切割后沿的发生,其中N是大于或等于1的整数。An occurrence of a phase-cut trailing edge of the alternating current (AC) voltage signal is predicted based on a profile of the voltage signal in N previous cycles of the voltage signal occurring prior to the current cycle, where N is an integer greater than or equal to one. 21.根据权利要求20所述的方法,其中,所述轮廓是由所述灯汲取的电流的轮廓。21. The method of claim 20, wherein the profile is a profile of the current drawn by the lamp. 22.根据权利要求20所述的方法,其中,所述轮廓是所述灯的电压轮廓。22. The method of claim 20, wherein the profile is a voltage profile of the lamp. 23.根据权利要求22所述的方法,进一步包括:23. The method of claim 22, further comprising: 基于所述AC电压信号中的电压随着时间的变化,确定所述电压轮廓。The voltage profile is determined based on a change in voltage in the AC voltage signal over time. 24.根据权利要求14所述的方法,其中,所述AC电压信号是从相位切割AC输入供给电压得到的整流AC电压。24. The method of claim 14, wherein the AC voltage signal is a rectified AC voltage derived from a phase cut AC input supply voltage. 25.根据权利要求14所述的方法,进一步包括:25. The method of claim 14, further comprising: 控制所述功率转换器,其中所述功率转换器耦接在所述后沿调光器与包括在所述灯中的一个或多个电子光源之间。The power converter is controlled, wherein the power converter is coupled between the trailing edge dimmer and one or more electronic light sources included in the lamp. 26.根据权利要求14所述的方法,其中,所述灯包括由以下组成的组中的成员:一个或多个发光二极管、一个或多个紧凑荧光灯以及一个或多个发光二极管和一个或多个紧凑荧光灯。26. The method of claim 14, wherein the lamp comprises a member of the group consisting of: one or more light emitting diodes, one or more compact fluorescent lamps, and one or more light emitting diodes and one or more a compact fluorescent lamp. 27.一种装置,包括:27. A device comprising: 控制器,能够执行以下操作:Controller, capable of doing the following: 预测后沿调光器的高阻抗状态的估计发生,其中当所述后沿调光器开始对相位切割AC电压的交流(AC)电压信号进行相位切割时,发生高阻抗状态;以及predicting the estimated occurrence of a high impedance state of a trailing edge dimmer that occurs when the trailing edge dimmer begins phase cutting an alternating current (AC) voltage signal of a phase cut AC voltage; and 加速所述AC电压从后沿到预定电压阀值的转变。Accelerating the transition of the AC voltage from the trailing edge to a predetermined voltage threshold. 28.根据权利要求27所述的装置,其中,所述控制器进一步能够:28. The apparatus of claim 27, wherein the controller is further capable of: 基于所述后沿调光器的高阻抗状态的估计预测发生,以高电流模式操作,以加速所述AC电压从后沿到预定电压阀值的转变;以及operating in a high current mode to accelerate the transition of the AC voltage from a trailing edge to a predetermined voltage threshold based on an estimated prediction of a high impedance state of the trailing edge dimmer; and 在所述AC电压信号达到低电压阀值后,以低阻抗模式操作。Operating in a low impedance mode after the AC voltage signal reaches a low voltage threshold. 29.根据权利要求27所述的装置,其中,所述控制器能够基于所述AC电压信号的N个直接在前周期中的高阻抗状态的实际发生趋势,预测所述AC电压信号的当前周期中所述后沿调光器的高阻抗状态的估计发生,其中N是大于或等于2的整数。29. The apparatus of claim 27, wherein the controller is capable of predicting the current period of the AC voltage signal based on the actual occurrence trend of the high impedance state in the N immediately preceding periods of the AC voltage signal The estimation of the high impedance state of the trailing edge dimmer occurs in , where N is an integer greater than or equal to 2. 30.根据权利要求27所述的装置,其中,所述控制器进一步能够基于当前周期之前发生的电压信号的N个先前周期中电压信号的有效电压时段,预测所述后沿调光器的高阻抗状态的估计发生,其中N是大于或等于1的整数。30. The apparatus of claim 27, wherein the controller is further capable of predicting the high voltage of the trailing edge dimmer based on a valid voltage period of the voltage signal in N previous cycles of the voltage signal occurring before the current cycle. Estimation of the impedance state occurs, where N is an integer greater than or equal to one. 31.根据权利要求27所述的装置,其中,所述AC电压信号是从相位切割AC输入供给电压得到的整流AC电压。31. The apparatus of claim 27, wherein the AC voltage signal is a rectified AC voltage derived from a phase cut AC input supply voltage. 32.根据权利要求27所述的装置,其中,所述控制器能够控制功率转换器,其中所述功率转换器耦接在所述后沿调光器与包括在所述灯中的一个或多个电子光源之间。32. The apparatus of claim 27, wherein the controller is capable of controlling a power converter, wherein the power converter is coupled between the trailing edge dimmer and one or more between electronic light sources. 33.根据权利要求27所述的装置,其中,所述灯包括由以下组成的组中的成员:一个或多个发光二极管、一个或多个紧凑荧光灯以及一个或多个发光二极管和一个或多个紧凑荧光灯。33. The apparatus of claim 27, wherein the light comprises a member of the group consisting of: one or more light emitting diodes, one or more compact fluorescent lamps, and one or more light emitting diodes and one or more a compact fluorescent lamp. 34.一种方法,包括:34. A method comprising: 预测后沿调光器的高阻抗状态的估计发生,其中当所述后沿调光器开始对相位切割的AC电压的交流(AC)电压信号进行相位切割时,发生高阻抗状态;以及predicting the estimated occurrence of a high impedance state of a trailing edge dimmer that occurs when the trailing edge dimmer begins phase cutting an alternating current (AC) voltage signal of a phase cut AC voltage; and 加速所述AC电压从后沿到预定电压阀值的转变。Accelerating the transition of the AC voltage from the trailing edge to a predetermined voltage threshold. 35.根据权利要求34所述的方法,进一步包括:35. The method of claim 34, further comprising: 基于所述后沿调光器的高阻抗状态的估计预测发生,使至少功率转换器的控制器以高电流模式操作,以加速所述AC电压从后沿到预定电压阀值的转变;以及causing at least a controller of a power converter to operate in a high current mode to accelerate transition of the AC voltage from a trailing edge to a predetermined voltage threshold based on an estimated predictive occurrence of a high impedance state of the trailing edge dimmer; and 在所述AC电压信号达到低电压阀值后,使所述控制器以低阻抗模式操作。Operating the controller in a low impedance mode after the AC voltage signal reaches a low voltage threshold. 36.根据权利要求34所述的方法,进一步包括:36. The method of claim 34, further comprising: 基于所述AC电压信号的N个直接在前周期中高阻抗状态的实际发生趋势,预测所述AC电压信号的当前周期中所述后沿调光器的高阻抗状态的估计发生,其中N是大于或等于2的整数。Predicting an estimated occurrence of the high impedance state of the trailing edge dimmer in the current cycle of the AC voltage signal based on the actual occurrence trend of the high impedance state in N immediately preceding cycles of the AC voltage signal, where N is greater than or an integer equal to 2. 37.根据权利要求34所述的方法,进一步包括:37. The method of claim 34, further comprising: 基于当前周期之前发生的电压信号的N个先前周期中电压信号的有效电压时段,预测所述后沿调光器的高阻抗状态的估计发生,其中N是大于或等于1的整数。An estimated occurrence of the high impedance state of the trailing edge dimmer is predicted based on a valid voltage period of the voltage signal in N previous cycles of the voltage signal occurring prior to the current cycle, where N is an integer greater than or equal to one. 38.根据权利要求34所述的方法,其中,所述AC电压信号是从相位切割AC输入供给电压得到的整流AC电压。38. The method of claim 34, wherein the AC voltage signal is a rectified AC voltage derived from a phase cut AC input supply voltage. 39.根据权利要求34所述的方法,进一步包括:39. The method of claim 34, further comprising: 控制所述功率转换器,其中所述功率转换器耦接在所述后沿调光器与包括在所述灯中的一个或多个电子光源之间。The power converter is controlled, wherein the power converter is coupled between the trailing edge dimmer and one or more electronic light sources included in the lamp. 40.根据权利要求34所述的方法,其中,所述灯包括由以下组成的组中的成员:一个或多个发光二极管、一个或多个紧凑荧光灯以及一个或多个发光二极管和一个或多个紧凑荧光灯。40. The method of claim 34, wherein the lamp comprises a member of the group consisting of: one or more light emitting diodes, one or more compact fluorescent lamps, and one or more light emitting diodes and one or more a compact fluorescent lamp.
CN201180055250.XA 2010-11-16 2011-11-16 The trailing edge dimmer that compatibility has dimmer high impedance to predict Active CN103329617B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US41429110P 2010-11-16 2010-11-16
US61/414,291 2010-11-16
US13/298,002 US8547034B2 (en) 2010-11-16 2011-11-16 Trailing edge dimmer compatibility with dimmer high resistance prediction
US13/298,002 2011-11-16
PCT/US2011/061033 WO2012128794A1 (en) 2010-11-16 2011-11-16 Trailing edge dimmer compatibility with dimmer high resistance prediction

Publications (2)

Publication Number Publication Date
CN103329617A true CN103329617A (en) 2013-09-25
CN103329617B CN103329617B (en) 2016-04-06

Family

ID=46047159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180055250.XA Active CN103329617B (en) 2010-11-16 2011-11-16 The trailing edge dimmer that compatibility has dimmer high impedance to predict

Country Status (7)

Country Link
US (2) US8547034B2 (en)
EP (1) EP2681969B1 (en)
CN (1) CN103329617B (en)
DK (1) DK2681969T3 (en)
ES (1) ES2718100T3 (en)
PL (1) PL2681969T3 (en)
WO (1) WO2012128794A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106538054A (en) * 2014-04-17 2017-03-22 飞利浦照明控股有限公司 Systems and methods for minimizing power dissipation in a low-power lamp coupled to a trailing-edge dimmer
CN108351676A (en) * 2015-10-20 2018-07-31 高通股份有限公司 Source voltage is adjusted based on operation voltage responsive
US11533043B2 (en) * 2020-12-17 2022-12-20 Huazhong University Of Science And Technology Method for impedance prediction of a voltage source converter under variable operating points

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667408B2 (en) 2007-03-12 2010-02-23 Cirrus Logic, Inc. Lighting system with lighting dimmer output mapping
US7288902B1 (en) 2007-03-12 2007-10-30 Cirrus Logic, Inc. Color variations in a dimmable lighting device with stable color temperature light sources
KR101781399B1 (en) 2008-11-17 2017-09-25 익스프레스 이미징 시스템즈, 엘엘씨 Electronic control to regulate power for solid-state lighting and methods thereof
US8872964B2 (en) 2009-05-20 2014-10-28 Express Imaging Systems, Llc Long-range motion detection for illumination control
US9155174B2 (en) 2009-09-30 2015-10-06 Cirrus Logic, Inc. Phase control dimming compatible lighting systems
WO2011128798A1 (en) * 2010-04-14 2011-10-20 Koninklijke Philips Electronics N.V. Method and apparatus for detecting presence of dimmer and controlling power delivered to solid state lighting load
US8536799B1 (en) 2010-07-30 2013-09-17 Cirrus Logic, Inc. Dimmer detection
US8729811B2 (en) 2010-07-30 2014-05-20 Cirrus Logic, Inc. Dimming multiple lighting devices by alternating energy transfer from a magnetic storage element
US9307601B2 (en) 2010-08-17 2016-04-05 Koninklijke Philips N.V. Input voltage sensing for a switching power converter and a triac-based dimmer
CN103314639B (en) 2010-08-24 2016-10-12 皇家飞利浦有限公司 Prevent the apparatus and method that dimmer resets in advance
US9084316B2 (en) 2010-11-04 2015-07-14 Cirrus Logic, Inc. Controlled power dissipation in a switch path in a lighting system
EP2636139A2 (en) 2010-11-04 2013-09-11 Cirrus Logic, Inc. Controlled energy dissipation in a switching power converter
WO2012061454A2 (en) 2010-11-04 2012-05-10 Cirrus Logic, Inc. Duty factor probing of a triac-based dimmer
EP2681969B1 (en) 2010-11-16 2019-01-09 Philips Lighting Holding B.V. Trailing edge dimmer compatibility with dimmer high resistance prediction
US20120139442A1 (en) * 2010-12-07 2012-06-07 Astec International Limited Mains Dimmable LED Driver Circuits
US8901825B2 (en) 2011-04-12 2014-12-02 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination using received signals
US9360198B2 (en) * 2011-12-06 2016-06-07 Express Imaging Systems, Llc Adjustable output solid-state lighting device
EP2792059B1 (en) * 2011-12-14 2020-07-15 Signify Holding B.V. Isolation of secondary transformer winding current during auxiliary power supply generation
DE102011088966A1 (en) * 2011-12-19 2013-06-20 Tridonic Gmbh & Co. Kg Operating circuit for light-emitting diodes and method for operating light-emitting diodes
GB2499220B (en) * 2012-02-08 2018-12-12 Radiant Res Limited A power control system for an illumination system
WO2013126836A1 (en) 2012-02-22 2013-08-29 Cirrus Logic, Inc. Mixed load current compensation for led lighting
US9497393B2 (en) 2012-03-02 2016-11-15 Express Imaging Systems, Llc Systems and methods that employ object recognition
US8853968B2 (en) * 2012-03-13 2014-10-07 Dialog Semiconductor Inc. Adaptive compensation for effects of cat-ear dimmers on conduction angle measurement
US9210751B2 (en) 2012-05-01 2015-12-08 Express Imaging Systems, Llc Solid state lighting, drive circuit and method of driving same
US9204523B2 (en) 2012-05-02 2015-12-01 Express Imaging Systems, Llc Remotely adjustable solid-state lamp
US9167664B2 (en) 2012-07-03 2015-10-20 Cirrus Logic, Inc. Systems and methods for low-power lamp compatibility with a trailing-edge dimmer and an electronic transformer
US8933648B1 (en) 2012-07-03 2015-01-13 Cirrus Logic, Inc. Systems and methods for selecting a compatibility mode of operation for a lamp assembly
US9215770B2 (en) * 2012-07-03 2015-12-15 Philips International, B.V. Systems and methods for low-power lamp compatibility with a trailing-edge dimmer and an electronic transformer
US9131552B2 (en) 2012-07-25 2015-09-08 Express Imaging Systems, Llc Apparatus and method of operating a luminaire
US9184661B2 (en) 2012-08-27 2015-11-10 Cirrus Logic, Inc. Power conversion with controlled capacitance charging including attach state control
US9144139B2 (en) * 2012-08-27 2015-09-22 The Watt Stopper, Inc. Method and apparatus for controlling light levels to save energy
US8896215B2 (en) 2012-09-05 2014-11-25 Express Imaging Systems, Llc Apparatus and method for schedule based operation of a luminaire
US9215765B1 (en) 2012-10-26 2015-12-15 Philips International, B.V. Systems and methods for low-power lamp compatibility with an electronic transformer
US9301365B2 (en) 2012-11-07 2016-03-29 Express Imaging Systems, Llc Luminaire with switch-mode converter power monitoring
US9363862B1 (en) * 2012-12-05 2016-06-07 Universal Lighting Technologies Automatic current and reference gain control for wide range current control
US9273858B2 (en) 2012-12-13 2016-03-01 Phillips International, B.V. Systems and methods for low-power lamp compatibility with a leading-edge dimmer and an electronic transformer
US9496844B1 (en) 2013-01-25 2016-11-15 Koninklijke Philips N.V. Variable bandwidth filter for dimmer phase angle measurements
US9288873B2 (en) 2013-02-13 2016-03-15 Express Imaging Systems, Llc Systems, methods, and apparatuses for using a high current switching device as a logic level sensor
US9565782B2 (en) 2013-02-15 2017-02-07 Ecosense Lighting Inc. Field replaceable power supply cartridge
US9263964B1 (en) 2013-03-14 2016-02-16 Philips International, B.V. Systems and methods for low-power lamp compatibility with an electronic transformer
US10187934B2 (en) 2013-03-14 2019-01-22 Philips Lighting Holding B.V. Controlled electronic system power dissipation via an auxiliary-power dissipation circuit
US9282598B2 (en) 2013-03-15 2016-03-08 Koninklijke Philips N.V. System and method for learning dimmer characteristics
WO2014186371A1 (en) 2013-05-13 2014-11-20 Cirrus Logic, Inc. Stabilization circuit for low-voltage lighting
TW201448663A (en) * 2013-05-23 2014-12-16 Zentr Mikroelekt Dresden Gmbh Assembly and a method for activating leds
US9466443B2 (en) 2013-07-24 2016-10-11 Express Imaging Systems, Llc Photocontrol for luminaire consumes very low power
US9635723B2 (en) 2013-08-30 2017-04-25 Philips Lighting Holding B.V. Systems and methods for low-power lamp compatibility with a trailing-edge dimmer and an electronic transformer
US9414449B2 (en) 2013-11-18 2016-08-09 Express Imaging Systems, Llc High efficiency power controller for luminaire
DE102013114761B3 (en) * 2013-12-23 2014-12-24 Insta Elektro Gmbh Circuit for operating a lamp-operated lamp unit and method for operating such a lamp unit
WO2015116812A1 (en) 2014-01-30 2015-08-06 Express Imaging Systems, Llc Ambient light control in solid state lamps and luminaires
US9621062B2 (en) 2014-03-07 2017-04-11 Philips Lighting Holding B.V. Dimmer output emulation with non-zero glue voltage
US9277611B2 (en) 2014-03-17 2016-03-01 Terralux, Inc. LED driver with high dimming compatibility without the use of bleeders
US9385598B2 (en) 2014-06-12 2016-07-05 Koninklijke Philips N.V. Boost converter stage switch controller
WO2016016797A2 (en) * 2014-07-31 2016-02-04 Hau King Kuen Phase cut dimming control and protection
US10477636B1 (en) 2014-10-28 2019-11-12 Ecosense Lighting Inc. Lighting systems having multiple light sources
US11306897B2 (en) 2015-02-09 2022-04-19 Ecosense Lighting Inc. Lighting systems generating partially-collimated light emissions
US9869450B2 (en) 2015-02-09 2018-01-16 Ecosense Lighting Inc. Lighting systems having a truncated parabolic- or hyperbolic-conical light reflector, or a total internal reflection lens; and having another light reflector
US9746159B1 (en) 2015-03-03 2017-08-29 Ecosense Lighting Inc. Lighting system having a sealing system
US9651227B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Low-profile lighting system having pivotable lighting enclosure
US9568665B2 (en) 2015-03-03 2017-02-14 Ecosense Lighting Inc. Lighting systems including lens modules for selectable light distribution
US9651216B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Lighting systems including asymmetric lens modules for selectable light distribution
US9462662B1 (en) 2015-03-24 2016-10-04 Express Imaging Systems, Llc Low power photocontrol for luminaire
WO2016184729A1 (en) * 2015-05-18 2016-11-24 Philips Lighting Holding B.V. Deep dimming of lighting device with trailing edge phase-cut dimmer
USD785218S1 (en) 2015-07-06 2017-04-25 Ecosense Lighting Inc. LED luminaire having a mounting system
USD782093S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
USD782094S1 (en) 2015-07-20 2017-03-21 Ecosense Lighting Inc. LED luminaire having a mounting system
US9651232B1 (en) 2015-08-03 2017-05-16 Ecosense Lighting Inc. Lighting system having a mounting device
US9538612B1 (en) 2015-09-03 2017-01-03 Express Imaging Systems, Llc Low power photocontrol for luminaire
US9924582B2 (en) 2016-04-26 2018-03-20 Express Imaging Systems, Llc Luminaire dimming module uses 3 contact NEMA photocontrol socket
US9985429B2 (en) 2016-09-21 2018-05-29 Express Imaging Systems, Llc Inrush current limiter circuit
US10230296B2 (en) 2016-09-21 2019-03-12 Express Imaging Systems, Llc Output ripple reduction for power converters
WO2018132110A1 (en) 2017-01-15 2018-07-19 Ecosense Lighting Inc. Lighting systems, and systems for determining periodic values of a phase angle of a waveform power input
US10904992B2 (en) 2017-04-03 2021-01-26 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US11375599B2 (en) 2017-04-03 2022-06-28 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US9900949B1 (en) 2017-08-04 2018-02-20 Ledvance Llc Solid-state light source dimming system and techniques
US10483850B1 (en) 2017-09-18 2019-11-19 Ecosense Lighting Inc. Universal input-voltage-compatible switched-mode power supply
US11234304B2 (en) 2019-05-24 2022-01-25 Express Imaging Systems, Llc Photocontroller to control operation of a luminaire having a dimming line
US11317497B2 (en) 2019-06-20 2022-04-26 Express Imaging Systems, Llc Photocontroller and/or lamp with photocontrols to control operation of lamp
US11212887B2 (en) 2019-11-04 2021-12-28 Express Imaging Systems, Llc Light having selectively adjustable sets of solid state light sources, circuit and method of operation thereof, to provide variable output characteristics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145782A (en) * 1997-07-28 1999-02-16 Matsushita Electric Works Ltd Dimmer monitor control system
CN101010649A (en) * 2004-06-30 2007-08-01 Tir系统有限公司 Switched constant current driving and control circuit
CN101513122A (en) * 2006-09-04 2009-08-19 路创电子公司 Variable load circuits for use with lighting control devices
KR101021780B1 (en) * 2008-10-20 2011-03-17 박채원 Light Emitting Diode AC Phase Control Driver

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523128A (en) 1982-12-10 1985-06-11 Honeywell Inc. Remote control of dimmable electronic gas discharge lamp ballasts
US5319301A (en) 1984-08-15 1994-06-07 Michael Callahan Inductorless controlled transition and other light dimmers
US5321350A (en) 1989-03-07 1994-06-14 Peter Haas Fundamental frequency and period detector
US5055746A (en) 1990-08-13 1991-10-08 Electronic Ballast Technology, Incorporated Remote control of fluorescent lamp ballast using power flow interruption coding with means to maintain filament voltage substantially constant as the lamp voltage decreases
FR2671930B1 (en) 1991-01-21 1993-04-16 Legrand Sa CURRENT DIMMER FOR POWER LOAD, WITH REDUCED FILTER LOSSES.
US5430635A (en) 1993-12-06 1995-07-04 Bertonee, Inc. High power factor electronic transformer system for gaseous discharge tubes
US5691605A (en) 1995-03-31 1997-11-25 Philips Electronics North America Electronic ballast with interface circuitry for multiple dimming inputs
US5770928A (en) 1995-11-02 1998-06-23 Nsi Corporation Dimming control system with distributed command processing
US6043635A (en) 1996-05-17 2000-03-28 Echelon Corporation Switched leg power supply
DE19632282A1 (en) 1996-08-09 1998-02-19 Holzer Walter Prof Dr H C Ing Process and device for controlling the brightness of fluorescent lamps
US6111368A (en) 1997-09-26 2000-08-29 Lutron Electronics Co., Inc. System for preventing oscillations in a fluorescent lamp ballast
US6091205A (en) 1997-10-02 2000-07-18 Lutron Electronics Co., Inc. Phase controlled dimming system with active filter for preventing flickering and undesired intensity changes
US6046550A (en) 1998-06-22 2000-04-04 Lutron Electronics Co., Inc. Multi-zone lighting control system
US6433525B2 (en) 2000-05-03 2002-08-13 Intersil Americas Inc. Dc to DC converter method and circuitry
US6531831B2 (en) 2000-05-12 2003-03-11 O2Micro International Limited Integrated circuit for lamp heating and dimming control
DE60101978T2 (en) 2000-06-15 2004-12-23 City University Of Hong Kong Dimmable ECG
US7038399B2 (en) 2001-03-13 2006-05-02 Color Kinetics Incorporated Methods and apparatus for providing power to lighting devices
US6510995B2 (en) 2001-03-16 2003-01-28 Koninklijke Philips Electronics N.V. RGB LED based light driver using microprocessor controlled AC distributed power system
US6900599B2 (en) 2001-03-22 2005-05-31 International Rectifier Corporation Electronic dimming ballast for cold cathode fluorescent lamp
US6407514B1 (en) 2001-03-29 2002-06-18 General Electric Company Non-synchronous control of self-oscillating resonant converters
US6577512B2 (en) 2001-05-25 2003-06-10 Koninklijke Philips Electronics N.V. Power supply for LEDs
JP3741035B2 (en) 2001-11-29 2006-02-01 サンケン電気株式会社 Switching power supply
IL147578A (en) 2002-01-10 2006-06-11 Lightech Electronics Ind Ltd Lamp transformer for use with an electronic dimmer and method for use thereof for reducing acoustic noise
KR100481444B1 (en) 2002-03-18 2005-04-11 원 호 이 Dimming system of the discharge lamp for energy saving
US6940733B2 (en) 2002-08-22 2005-09-06 Supertex, Inc. Optimal control of wide conversion ratio switching converters
JP4433677B2 (en) 2003-02-14 2010-03-17 パナソニック電工株式会社 Electrodeless discharge lamp lighting device
US6865093B2 (en) 2003-05-27 2005-03-08 Power Integrations, Inc. Electronic circuit control element with tap element
US7733678B1 (en) 2004-03-19 2010-06-08 Marvell International Ltd. Power factor correction boost converter with continuous, discontinuous, or critical mode selection
WO2005115058A1 (en) 2004-05-19 2005-12-01 Goeken Group Corp. Dimming circuit for led lighting device with means for holding triac in conduction
US20060022648A1 (en) 2004-08-02 2006-02-02 Green Power Technologies Ltd. Method and control circuitry for improved-performance switch-mode converters
US7812576B2 (en) 2004-09-24 2010-10-12 Marvell World Trade Ltd. Power factor control systems and methods
US7180250B1 (en) 2005-01-25 2007-02-20 Henry Michael Gannon Triac-based, low voltage AC dimmer
JP5069129B2 (en) 2005-01-28 2012-11-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Circuit apparatus and method for operating a high pressure gas discharge lamp
US7081722B1 (en) 2005-02-04 2006-07-25 Kimlong Huynh Light emitting diode multiphase driver circuit and method
US7102902B1 (en) 2005-02-17 2006-09-05 Ledtronics, Inc. Dimmer circuit for LED
US7184937B1 (en) 2005-07-14 2007-02-27 The United States Of America As Represented By The Secretary Of The Army Signal repetition-rate and frequency-drift estimator using proportional-delayed zero-crossing techniques
CN100576965C (en) 2005-11-11 2009-12-30 王际 Led drive circuit and control method
KR101588044B1 (en) 2005-12-20 2016-01-25 코닌클리케 필립스 엔.브이. Method and apparatus for controlling current supplied to electronic devices
US8441210B2 (en) 2006-01-20 2013-05-14 Point Somee Limited Liability Company Adaptive current regulation for solid state lighting
US8558470B2 (en) 2006-01-20 2013-10-15 Point Somee Limited Liability Company Adaptive current regulation for solid state lighting
US7902769B2 (en) 2006-01-20 2011-03-08 Exclara, Inc. Current regulator for modulating brightness levels of solid state lighting
US7656103B2 (en) 2006-01-20 2010-02-02 Exclara, Inc. Impedance matching circuit for current regulation of solid state lighting
US20080018261A1 (en) 2006-05-01 2008-01-24 Kastner Mark A LED power supply with options for dimming
US7443146B2 (en) 2006-05-23 2008-10-28 Intersil Americas Inc. Auxiliary turn-on mechanism for reducing conduction loss in body-diode of low side MOSFET of coupled-inductor DC-DC converter
JP4661736B2 (en) 2006-08-28 2011-03-30 パナソニック電工株式会社 Dimmer
US7864546B2 (en) 2007-02-13 2011-01-04 Akros Silicon Inc. DC-DC converter with communication across an isolation pathway
US7928662B2 (en) 2006-12-18 2011-04-19 Microsemi Corp.—Analog Mixed Signal Group Ltd. Voltage range extender mechanism
US7288902B1 (en) 2007-03-12 2007-10-30 Cirrus Logic, Inc. Color variations in a dimmable lighting device with stable color temperature light sources
US7804256B2 (en) 2007-03-12 2010-09-28 Cirrus Logic, Inc. Power control system for current regulated light sources
US7667408B2 (en) 2007-03-12 2010-02-23 Cirrus Logic, Inc. Lighting system with lighting dimmer output mapping
US7554473B2 (en) 2007-05-02 2009-06-30 Cirrus Logic, Inc. Control system using a nonlinear delta-sigma modulator with nonlinear process modeling
JP5169170B2 (en) 2007-11-26 2013-03-27 株式会社リコー Step-down switching regulator
GB0800755D0 (en) 2008-01-16 2008-02-27 Melexis Nv Improvements in and relating to low power lighting
JP2009170240A (en) 2008-01-16 2009-07-30 Sharp Corp LED dimmer
US8040070B2 (en) 2008-01-23 2011-10-18 Cree, Inc. Frequency converted dimming signal generation
US8274241B2 (en) 2008-02-06 2012-09-25 C. Crane Company, Inc. Light emitting diode lighting device
US8102167B2 (en) 2008-03-25 2012-01-24 Microsemi Corporation Phase-cut dimming circuit
US7759881B1 (en) 2008-03-31 2010-07-20 Cirrus Logic, Inc. LED lighting system with a multiple mode current control dimming strategy
WO2009140525A1 (en) * 2008-05-15 2009-11-19 Marko Cencur Method for dimming non-linear loads using an ac phase control scheme and a universal dimmer using the method
US8212492B2 (en) 2008-06-13 2012-07-03 Queen's University At Kingston Electronic ballast with high power factor
US8125798B2 (en) 2008-07-01 2012-02-28 Active-Semi, Inc. Constant current and voltage controller in a three-pin package operating in critical conduction mode
US7936132B2 (en) 2008-07-16 2011-05-03 Iwatt Inc. LED lamp
US8212491B2 (en) 2008-07-25 2012-07-03 Cirrus Logic, Inc. Switching power converter control with triac-based leading edge dimmer compatibility
US8487546B2 (en) 2008-08-29 2013-07-16 Cirrus Logic, Inc. LED lighting system with accurate current control
US8228002B2 (en) 2008-09-05 2012-07-24 Lutron Electronics Co., Inc. Hybrid light source
JP5211959B2 (en) 2008-09-12 2013-06-12 株式会社リコー DC-DC converter
CN101686587B (en) 2008-09-25 2015-01-28 皇家飞利浦电子股份有限公司 Drive for providing variable power for LED array
US9167641B2 (en) 2008-11-28 2015-10-20 Lightech Electronic Industries Ltd. Phase controlled dimming LED driver system and method thereof
US8288954B2 (en) 2008-12-07 2012-10-16 Cirrus Logic, Inc. Primary-side based control of secondary-side current for a transformer
CN101505568B (en) 2009-03-12 2012-10-03 深圳市众明半导体照明有限公司 LED light modulating apparatus suitable for light modulator
US8310171B2 (en) 2009-03-13 2012-11-13 Led Specialists Inc. Line voltage dimmable constant current LED driver
EP2257124B1 (en) 2009-05-29 2018-01-24 Silergy Corp. Circuit for connecting a low current lighting circuit to a dimmer
US8222832B2 (en) 2009-07-14 2012-07-17 Iwatt Inc. Adaptive dimmer detection and control for LED lamp
US8390214B2 (en) 2009-08-19 2013-03-05 Albeo Technologies, Inc. LED-based lighting power supplies with power factor correction and dimming control
US8492988B2 (en) 2009-10-07 2013-07-23 Lutron Electronics Co., Inc. Configurable load control device for light-emitting diode light sources
US8531138B2 (en) 2009-10-14 2013-09-10 National Semiconductor Corporation Dimmer decoder with improved efficiency for use with LED drivers
US8203277B2 (en) 2009-10-26 2012-06-19 Light-Based Technologies Incorporated Efficient electrically isolated light sources
US8686668B2 (en) 2009-10-26 2014-04-01 Koninklijke Philips N.V. Current offset circuits for phase-cut power control
CN102577624B (en) 2009-10-26 2015-01-07 皇家飞利浦有限公司 Holding current circuits for phase-cut power control and method for maintaining holding current circuit
US9301348B2 (en) 2009-11-05 2016-03-29 Eldolab Holding B.V. LED driver for powering an LED unit from a electronic transformer
WO2011084525A1 (en) 2009-12-16 2011-07-14 Exclara, Inc. Adaptive current regulation for solid state lighting
TWI434611B (en) 2010-02-25 2014-04-11 Richtek Technology Corp Led array control circuit with voltage adjustment function and driver circuit and method for the same
JP5031865B2 (en) 2010-03-23 2012-09-26 シャープ株式会社 LED drive circuit, LED illumination lamp, LED illumination device, and LED illumination system
CN102238774B (en) 2010-04-30 2016-06-01 奥斯兰姆有限公司 Angle of flow acquisition methods and device, and LED driving method and device
CN101835314B (en) 2010-05-19 2013-12-04 成都芯源系统有限公司 LED drive circuit with dimming function and lamp
US8508147B2 (en) 2010-06-01 2013-08-13 United Power Research Technology Corp. Dimmer circuit applicable for LED device and control method thereof
US8729811B2 (en) 2010-07-30 2014-05-20 Cirrus Logic, Inc. Dimming multiple lighting devices by alternating energy transfer from a magnetic storage element
US8536799B1 (en) 2010-07-30 2013-09-17 Cirrus Logic, Inc. Dimmer detection
WO2012016197A1 (en) 2010-07-30 2012-02-02 Cirrus Logic, Inc. Powering high-efficiency lighting devices from a triac-based dimmer
US8569972B2 (en) 2010-08-17 2013-10-29 Cirrus Logic, Inc. Dimmer output emulation
US8610365B2 (en) 2010-11-04 2013-12-17 Cirrus Logic, Inc. Switching power converter input voltage approximate zero crossing determination
CN103314639B (en) 2010-08-24 2016-10-12 皇家飞利浦有限公司 Prevent the apparatus and method that dimmer resets in advance
US8531131B2 (en) 2010-09-22 2013-09-10 Osram Sylvania Inc. Auto-sensing switching regulator to drive a light source through a current regulator
WO2012061454A2 (en) * 2010-11-04 2012-05-10 Cirrus Logic, Inc. Duty factor probing of a triac-based dimmer
EP2681969B1 (en) 2010-11-16 2019-01-09 Philips Lighting Holding B.V. Trailing edge dimmer compatibility with dimmer high resistance prediction
JP5666268B2 (en) 2010-11-26 2015-02-12 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit and operation method thereof
JP5834236B2 (en) 2011-05-12 2015-12-16 パナソニックIpマネジメント株式会社 Solid light source lighting device and lighting apparatus using the same
US9060397B2 (en) 2011-07-15 2015-06-16 General Electric Company High voltage LED and driver
EP2792059B1 (en) 2011-12-14 2020-07-15 Signify Holding B.V. Isolation of secondary transformer winding current during auxiliary power supply generation
US9167664B2 (en) * 2012-07-03 2015-10-20 Cirrus Logic, Inc. Systems and methods for low-power lamp compatibility with a trailing-edge dimmer and an electronic transformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145782A (en) * 1997-07-28 1999-02-16 Matsushita Electric Works Ltd Dimmer monitor control system
CN101010649A (en) * 2004-06-30 2007-08-01 Tir系统有限公司 Switched constant current driving and control circuit
CN101513122A (en) * 2006-09-04 2009-08-19 路创电子公司 Variable load circuits for use with lighting control devices
KR101021780B1 (en) * 2008-10-20 2011-03-17 박채원 Light Emitting Diode AC Phase Control Driver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106538054A (en) * 2014-04-17 2017-03-22 飞利浦照明控股有限公司 Systems and methods for minimizing power dissipation in a low-power lamp coupled to a trailing-edge dimmer
CN108351676A (en) * 2015-10-20 2018-07-31 高通股份有限公司 Source voltage is adjusted based on operation voltage responsive
US11533043B2 (en) * 2020-12-17 2022-12-20 Huazhong University Of Science And Technology Method for impedance prediction of a voltage source converter under variable operating points

Also Published As

Publication number Publication date
PL2681969T3 (en) 2019-11-29
EP2681969A1 (en) 2014-01-08
US20120119669A1 (en) 2012-05-17
DK2681969T3 (en) 2019-03-25
US9155163B2 (en) 2015-10-06
ES2718100T3 (en) 2019-06-27
US8547034B2 (en) 2013-10-01
US20130342123A1 (en) 2013-12-26
WO2012128794A1 (en) 2012-09-27
CN103329617B (en) 2016-04-06
EP2681969B1 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
CN103329617A (en) Compatible with trailing edge dimmers with dimmer high impedance prediction
TWI508625B (en) Switching power converter control apparatus and method, and power control/lighting system
TWI492659B (en) A novel control scheme to achieve low brightness for dimmable led driver
KR101306538B1 (en) A cascade boost and inverting buck converter with independent control
CN104066253B (en) Use dimming control system and the method for TRIAC dimmer
US8698407B1 (en) Highly integrated non-inductive LED driver
US9167662B2 (en) Mixed load current compensation for LED lighting
CN102413600B (en) Light emitting device and control method thereof
US20140077721A1 (en) Powering high-efficiency lighting devices from a triac-based dimmer
US9232581B2 (en) Output current compensation for jitter in input voltage for dimmable LED lamps
US9184661B2 (en) Power conversion with controlled capacitance charging including attach state control
US8569964B2 (en) Control circuit of light-emitting element
JPWO2011065047A1 (en) LED drive power supply device and LED illumination device
TWI580303B (en) Led driver system with dimmer detection
CN106464126A (en) Primary side controlled led driver with ripple cancellation
WO2011159813A1 (en) Dimmable offline led driver
CN105554973A (en) Accurate Mains Time-Base for LED Light Driver
TWI459854B (en) A white LED (WLED) drive circuit and driving method for three - terminal controllable silicon dimmer
US9596729B1 (en) Dimmable switching mode LED driving circuit without phase angle measurement
ES2681994B1 (en) DETACHABLE SYSTEM OF ASSEMBLY AND UNION OF PARTS FOR CONFORMATION OF STRUCTURES AND PARTS OF THE SAME
CN102907178A (en) Dimmer conduction angle detection circuit and system incorporating it
ES1231613U (en) FIXING ELEMENT TO THE PLATFORM FOR POSITIONING THE FEET IN A SKATEBOARD (Machine-translation by Google Translate, not legally binding)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160304

Address after: The city of Eindhoven in Holland

Applicant after: Koninkl Philips Electronics NV

Address before: American Texas

Applicant before: Cirrus Logic, Inc.

Applicant before: Melanson John L

Applicant before: King Eric J

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170322

Address after: The city of Eindhoven in Holland

Patentee after: KONINKL PHILIPS NV

Address before: The city of Eindhoven in Holland

Patentee before: Koninkl Philips Electronics NV

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Eindhoven

Patentee after: Signify Holdings Ltd.

Address before: The city of Eindhoven in Holland

Patentee before: PHILIPS LIGHTING HOLDING B.V.