[go: up one dir, main page]

CN103326974B - A kind of Adaptive Transmission model selection system and method thereof of vehicle communication Access Network - Google Patents

A kind of Adaptive Transmission model selection system and method thereof of vehicle communication Access Network Download PDF

Info

Publication number
CN103326974B
CN103326974B CN201310219115.5A CN201310219115A CN103326974B CN 103326974 B CN103326974 B CN 103326974B CN 201310219115 A CN201310219115 A CN 201310219115A CN 103326974 B CN103326974 B CN 103326974B
Authority
CN
China
Prior art keywords
transmission mode
information
module
service flow
information service
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310219115.5A
Other languages
Chinese (zh)
Other versions
CN103326974A (en
Inventor
陈婷
赵祥模
代亮
张立成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Dima Technology Co ltd
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201310219115.5A priority Critical patent/CN103326974B/en
Publication of CN103326974A publication Critical patent/CN103326974A/en
Application granted granted Critical
Publication of CN103326974B publication Critical patent/CN103326974B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种车辆通信接入网的自适应传输模式选择系统及其方法,该系统包括:I/B处的车辆信息服务流产生模块、车辆信息服务流分类映射模块、分组递交模块、自适应传输模式选择模块、OFDMA无线资源配置模块、帧发送/接收模块、接入信道/行驶状态/所处地理区域信息探测模块,以及SV处的车辆信息服务流产生模块、车辆信息服务流分类映射模块、分组递交模块、自适应传输模式选择模块、OFDMA无线资源配置模块、帧发送/接收模块、接入信道/行驶状态/所处地理区域信息反馈模块。本发明引入OFDMA和AMC技术,能在ITS信息服务流传输有效性和系统传输高效性之间做出权衡,从而在满足各类ITS信息服务流QoS要求的同时获得尽可能高的系统平均有效数据传输速率。

The invention discloses an adaptive transmission mode selection system of a vehicle communication access network and a method thereof. The system comprises: a vehicle information service flow generating module at an I/B, a vehicle information service flow classification and mapping module, a packet delivery module, Adaptive transmission mode selection module, OFDMA wireless resource configuration module, frame sending/receiving module, access channel/driving state/geographic area information detection module, and vehicle information service flow generation module at SV, vehicle information service flow classification Mapping module, packet submission module, adaptive transmission mode selection module, OFDMA wireless resource configuration module, frame sending/receiving module, access channel/driving status/location information feedback module. The present invention introduces OFDMA and AMC technology, and can make a trade-off between the effectiveness of ITS information service flow transmission and system transmission efficiency, so as to obtain the highest possible average effective data of the system while meeting the QoS requirements of various ITS information service flows Transmission rate.

Description

一种车辆通信接入网的自适应传输模式选择系统及其方法An adaptive transmission mode selection system and method for vehicle communication access network

技术领域technical field

本发明属于车辆通信技术领域,涉及一种车辆的通信方法,尤其是一种车辆通信接入网的自适应传输模式选择系统及其方法。The invention belongs to the technical field of vehicle communication, and relates to a vehicle communication method, in particular to a vehicle communication access network adaptive transmission mode selection system and its method.

背景技术Background technique

车辆通信接入网作为智能交通系统(IntelligentTransportationSystem,ITS)重要子系统之一,是保障信息服务平台与ITS车载终端之间通信渠道顺畅,实现ITS对监管车辆进行安全预警、高效引导,并为乘客提供专业多媒体与移动互联网应用服务的关键所在。目标分组差错率则体现了ITS传输信息服务流的可靠性要求,是衡量车辆通信接入网服务质量(QualityofService,QoS)的关键参数。ITS信息服务流按照应用类型可划分为三类,分别是:①安全预警:通过主动预警的方式有效避免和减少交通事故,需要将此类信息服务流快速、可靠的下达至监管车辆车载终端处;②行车引导:通过主动引导或自主查询的方式辅助驾驶,提高道路通行效率;③多媒体应用:按需向车载终端提供各种多媒体应用服务从而丰富用户驾乘体验。表1列出了各类ITS信息服务流的应用实例及相应目标分组差错率要求,可以看到,与生命和财产安全密切相关的安全预警类信息服务通常极为重要,车辆通信接入网需保证其具有较高的传输可靠性,而多媒体应用类信息服务作为车辆行驶过程中的附加服务,通常允许传输时具有较高的分组差错率。As one of the important subsystems of the Intelligent Transportation System (ITS), the vehicle communication access network is to ensure the smooth communication channel between the information service platform and the ITS vehicle terminal, and to realize the safety warning and efficient guidance of the ITS for the supervised vehicles, and provide services for passengers. The key to providing professional multimedia and mobile Internet application services. The target packet error rate reflects the reliability requirements of the ITS transmission information service flow, and is a key parameter to measure the quality of service (Quality of Service, QoS) of the vehicle communication access network. ITS information service flow can be divided into three categories according to application types, namely: ①Safety early warning: to effectively avoid and reduce traffic accidents through active early warning, it is necessary to quickly and reliably send such information service flow to the vehicle terminal of the supervision vehicle ; ②Driving Guidance: Assist driving through active guidance or independent inquiry to improve road traffic efficiency; ③Multimedia application: Provide various multimedia application services to the vehicle terminal on demand to enrich the user's driving experience. Table 1 lists the application examples of various ITS information service flows and the corresponding target packet error rate requirements. It can be seen that safety warning information services that are closely related to life and property safety are usually extremely important, and the vehicle communication access network needs to ensure It has high transmission reliability, and multimedia application information service, as an additional service during vehicle driving, usually allows high packet error rate during transmission.

表1:ITS信息服务流应用实例及相应目标分组差错率Table 1: Application examples of ITS information service flow and corresponding target packet error rate

当前的车辆通信接入网多采用GPRS或WiFi方式向众多ITS用户车辆(SubscriberVehicle,SV)提供到达基础设施/基站(Infrastructure/BaseStation,I/B)的“最后一公里”无线接入服务,这些通信方式并未考虑不同应用级信息服务流各自的传输可靠性要求,且通常采用固定的调制编码模式进行数据传输,故接入速率不高,无法满足乘客日益增长的安全优先的信息服务多样化诉求。此外,ITS车载终端通常集成了高精度全球卫星定位系统/地理信息系统(GlobalPositioningSystem/GeographicInformationSystem,GPS/GIS)模块,能够获取丰富的外部信息,例如,行驶速度,行驶方向,自身位置信息,所处区域地理信息等,然而,当前的车辆通信接入网并未考虑利用这些信息来辅助改善各类信息服务流的QoS性能。因此,ITS信息服务流应用类型的多样性和车辆通信接入网行业的专用性为下一代车辆通信接入网的设计带来了挑战和机遇。The current vehicle communication access network mostly uses GPRS or WiFi to provide many ITS user vehicles (Subscriber Vehicle, SV) with the "last mile" wireless access service to the infrastructure/base station (Infrastructure/BaseStation, I/B). The communication method does not consider the transmission reliability requirements of different application-level information service streams, and usually uses a fixed modulation and coding mode for data transmission, so the access rate is not high, and it cannot meet the growing diversification of information services that prioritize safety for passengers appeal. In addition, the ITS vehicle-mounted terminal usually integrates a high-precision Global Positioning System/Geographic Information System (GPS/GIS) module, which can obtain a wealth of external information, such as driving speed, driving direction, own position information, where Regional geographic information, etc. However, the current vehicle communication access network does not consider using this information to help improve the QoS performance of various information service flows. Therefore, the diversity of ITS information service flow application types and the specificity of the vehicle communication access network industry have brought challenges and opportunities to the design of the next generation vehicle communication access network.

发明内容Contents of the invention

本发明的目的在于克服现有技术的缺陷,提供一种车辆通信接入网的自适应传输模式选择系统及其方法,其将正交频分多址接入(OrthogonalFrequencyDivisionMultipleAccess,OFDMA)和自适应调制编码(AdaptiveModulationandCoding,AMC)技术引入车辆通信接入网物理层(PHY层),传输模式的切换不仅取决于接入信道状况信息,还与车辆行驶状态信息、所处地理区域信息以及各类ITS信息服务流的目标分组差错率限定密切相关,能够在保证各类ITS信息服务流传输质量的同时,获得更高的系统平均有效数据传输速率。The purpose of the present invention is to overcome the defects of the prior art and provide an adaptive transmission mode selection system and method for vehicle communication access network, which combines Orthogonal Frequency Division Multiple Access (OFDMA) and adaptive modulation Coding (Adaptive Modulation and Coding, AMC) technology is introduced into the physical layer (PHY layer) of the vehicle communication access network. The switching of the transmission mode depends not only on the status information of the access channel, but also on the status information of the vehicle, the geographical area information and various ITS information. The target packet error rate limit of the service flow is closely related, which can obtain a higher average effective data transmission rate of the system while ensuring the transmission quality of various ITS information service flows.

本发明的目的是通过以下技术方案来解决的:The purpose of the present invention is solved by the following technical solutions:

这种车辆通信接入网的自适应传输模式选择系统,包括:I/B处的车辆信息服务流产生模块、车辆信息服务流分类映射模块、分组递交模块、自适应传输模式选择模块、OFDMA无线资源配置模块、帧发送/接收模块、接入信道/行驶状态/所处地理区域信息探测模块,以及SV处的车辆信息服务流产生模块、车辆信息服务流分类映射模块、分组递交模块、自适应传输模式选择模块、OFDMA无线资源配置模块、帧发送/接收模块、接入信道/行驶状态/所处地理区域信息反馈模块;所述I/B处的接入信道/行驶状态/所处地理区域信息探测模块向I/B服务区域内所有请求获得ITS信息服务流的SV周期地广播综合信息请求信令INF-REQ,位于各个SV处的接入信道/行驶状态/所处地理区域信息反馈模块收到该信令后,立即回送综合信息响应信令INF-RSP,并遵循随机退后机制将探测到的综合信息由综合信息应答信令INF-ACK反馈至I/B处,再由综合信息消息信令INF-MES送达自适应传输模式选择模块;I/B处车辆信息服务流产生模块和分组递交模块向自适应传输模式选择模块周期地发送TPER-MES信令和DE-MES信令,TPER-MES信令承载了待传应用级信息服务流的目标分组差错率限定信息,DE-MES信令承载了递交分组的类型信息;I/B处的自适应传输模式选择模块根据INF-MES、TPER-MES和DE-MES信令上承载的信息生成调制编码模式选择信令MC-MES,其上承载了SV在OFDMA各个子信道传输数据流时应当采用的自适应传输模式选择信息,该信息将通过信令MC-MES向I/B处OFDMA无线资源配置模块周期发送;各类ITS数据流分组通过I/B处的OFDMA无线资源配置模块递交至帧发送/接收模块后,连同内嵌在控制域内的自适应传输模式选择信息一起被封装成帧,再向SV发送;位于SV处的自适应传输模式控制模块从帧发送/接收模块处提取出相应的自适应传输模式选择信息,并通过生成相应的MC-MES信令来辅助SV处的OFDMA无线资源配置模块对数据流进行解调解码,最终完成数据流到应用级信息服务流的递交。The adaptive transmission mode selection system of the vehicle communication access network includes: a vehicle information service flow generation module at the I/B, a vehicle information service flow classification mapping module, a packet delivery module, an adaptive transmission mode selection module, an OFDMA wireless Resource configuration module, frame sending/receiving module, access channel/driving state/location information detection module, and vehicle information service flow generation module at SV, vehicle information service flow classification mapping module, packet delivery module, self-adaptive Transmission mode selection module, OFDMA wireless resource configuration module, frame sending/receiving module, access channel/driving state/geographical area information feedback module; access channel/driving state/geographical area at the I/B The information detection module periodically broadcasts the comprehensive information request signaling INF-REQ to all SVs in the I/B service area requesting to obtain the ITS information service flow, and the access channel/driving status/geographical area information feedback module located at each SV After receiving the signaling, it immediately returns the integrated information response signaling INF-RSP, and follows the random back-off mechanism to feed back the detected integrated information to the I/B from the integrated information response signaling INF-ACK, and then the integrated information The message signaling INF-MES is delivered to the adaptive transmission mode selection module; the vehicle information service flow generation module and packet delivery module at I/B periodically send TPER-MES signaling and DE-MES signaling to the adaptive transmission mode selection module , the TPER-MES signaling carries the target packet error rate limit information of the application-level information service flow to be transmitted, and the DE-MES signaling carries the type information of the submitted packet; the adaptive transmission mode selection module at the I/B is based on the INF- The information carried on the MES, TPER-MES and DE-MES signaling generates the modulation and coding mode selection signaling MC-MES, which carries the adaptive transmission mode selection information that the SV should adopt when transmitting data streams on each OFDMA sub-channel, The information will be periodically sent to the OFDMA wireless resource configuration module at I/B through signaling MC-MES; various ITS data flow packets are submitted to the frame sending/receiving module through the OFDMA wireless resource configuration module at I/B, together with the internal The adaptive transmission mode selection information embedded in the control field is encapsulated into a frame, and then sent to the SV; the adaptive transmission mode control module located at the SV extracts the corresponding adaptive transmission mode selection information from the frame sending/receiving module, And by generating corresponding MC-MES signaling to assist the OFDMA wireless resource configuration module at the SV to demodulate and decode the data stream, and finally complete the delivery of the data stream to the application-level information service stream.

上述综合信息为接入信道信息、行驶状态信息和所处地理区域信息。The above comprehensive information is access channel information, driving status information and geographical area information.

本发明还提出一种基于上述系统的车辆通信接入网的自适应传输模式选择方法,包括以下步骤:The present invention also proposes a method for selecting an adaptive transmission mode of a vehicle communication access network based on the above system, comprising the following steps:

1)多级调制编码传输模式切换阈值的确定1) Determination of switching threshold of multi-level modulation coding transmission mode

以信号噪声比作为衡量SV接入信道状况的参数指标,将整个信号噪声比区间分割成不重复且连续的调制编码传输模式切换区间,相应的调制编码传输模式切换阈值为:Taking the signal-to-noise ratio as a parameter index to measure the status of the SV access channel, the entire signal-to-noise ratio interval is divided into non-repetitive and continuous modulation, coding, and transmission mode switching intervals. The corresponding modulation, coding, and transmission mode switching thresholds are:

其中,t为ITS信息服务流应用类型,l为调制编码传输模式等级,表2给出了车辆通信接入网可选用的6级调制编码传输模式;Among them, t is the application type of ITS information service flow, l is the modulation and coding transmission mode level, and Table 2 shows the optional 6-level modulation and coding transmission mode for the vehicle communication access network;

表2:6级调制编码传输模式Table 2: 6-level modulation and coding transmission mode

调制编码传输模式等级lModulation coding transmission mode level l 调制方式Modulation 编码速率Rc Coding rate Rc 数据传输速率Rl(bit/symbol)Data transfer rate R l (bit/symbol) 11 BPSKBPSK 1/21/2 0.50.5 22 QPSKQPSK 1/21/2 1.01.0 33 QPSKQPSK 3/43/4 1.51.5 44 16QAM16QAM 9/169/16 2.252.25 55 16QAM16QAM 3/43/4 3.03.0 66 64QAM64QAM 3/43/4 4.54.5

I/B根据TPER-MES信令上承载的目标分组差错率信息,确定多级调制编码传输模式切换阈值;The I/B determines the switching threshold of the multi-level modulation and coding transmission mode according to the target packet error rate information carried on the TPER-MES signaling;

2)调制编码传输模式等级L的初始化2) Initialization of modulation coding transmission mode level L

系统传输应用类型为t的ITS信息服务流时,I/B根据INF-ACK信令上承载的SV初始瞬时接入信道状态信息γ′和多级调制编码传输模式切换阈值来初始化应用类型为t的ITS信息服务流调制编码传输模式等级L,令L=l′,满足 When the system transmits the ITS information service flow with the application type t, the I/B initializes the application type t according to the SV initial instantaneous access channel state information γ′ carried on the INF-ACK signaling and the multi-level modulation and coding transmission mode switching threshold The ITS information service flow modulation and coding transmission mode level L, let L=l′, satisfy

3)是否启动自适应传输模式选择进程的判定3) Determine whether to start the adaptive transmission mode selection process

I/B遵循退后时间间隔为(0,CW-1)的随机退后机制,根据INF-ACK反馈信令上承载的SV所处地理区域信息和的SV行驶状态信息开启自适应传输模式判定进程,如果SV处于特殊地理区域,或者SV行驶速率超过60km/h,表明系统不适合启动自适应传输模式选择进程,将保持当前调制编码传输模式等级不变;否则,启动自适应传输模式选择进程并进入步骤4);I/B follows the random backoff mechanism with a backoff time interval of (0, C W -1), and starts the adaptive transmission mode according to the geographical area information of the SV and the SV driving state information carried on the INF-ACK feedback signaling Judgment process, if the SV is in a special geographical area, or the driving speed of the SV exceeds 60km/h, it indicates that the system is not suitable for starting the adaptive transmission mode selection process, and the current modulation and coding transmission mode level will remain unchanged; otherwise, start the adaptive transmission mode selection process and go to step 4);

4)自适应传输模式等级的确定4) Determination of the level of adaptive transmission mode

I/B按照OFDMA帧周期根据INF-ACK反馈信令上承载的SV瞬时接入信道状态信息γ进行判定,如果则更新传输该条信息服务流所采用的调制编码传输模式等级L,令L=l′′;I/B judges according to the OFDMA frame cycle according to the SV instantaneous access channel state information γ carried on the INF-ACK feedback signaling, if Then update the modulation and coding transmission mode level L used to transmit the information service flow, let L=l'';

5)不断重复步骤3)和步骤4)直至该条ITS信息服务流数据分组全部发送完毕。5) Repeat step 3) and step 4) until all data packets of the ITS information service flow are sent.

进一步,以上步骤3)中,所述特殊地理区域是指:具有恶劣气象环境、复杂道路环境或桥梁隧道环境的区域。Further, in the above step 3), the special geographical area refers to an area with severe weather environment, complex road environment or bridge tunnel environment.

进一步,以上步骤3)中,所述随机退后机制中的倍增规则满足CW,new=2mCW,old,其中,CW,new为实施一次随机退后机制后的时间窗口新值,CW,old为实施该次随机退后机制前的时间窗口旧值。Further, in the above step 3), the multiplication rule in the random back-off mechanism satisfies C W,new =2 m C W,old , where C W,new is the new value of the time window after implementing the random back-off mechanism once , C W,old is the old value of the time window before the random backoff mechanism is implemented.

进一步,以上步骤4)中,当时,信道经历深度衰落,I/B将不再发送该条ITS信息服务流的数据分组。Further, in the above step 4), when When the channel experiences deep fading, I/B will no longer send the data packets of this ITS information service flow.

进一步,以上步骤1)中,I/B根据TPER-MES信令上承载的目标分组差错率信息,确定多级调制编码传输模式切换阈值,具体为:Further, in the above step 1), the I/B determines the multi-level modulation and coding transmission mode switching threshold according to the target packet error rate information carried on the TPER-MES signaling, specifically:

当ITS信息服务流应用类型为t时,第l级调制编码传输模式切换阈值可由下式来获得:When the application type of ITS information service flow is t, the level-l modulation and coding transmission mode switching threshold It can be obtained by the following formula:

∀ t ∈ { 1,2,3 } ∀ l ∈ { 1,2,3,4,5,6 } ∀ t ∈ { 1,2,3 } and ∀ l ∈ { 1,2,3,4,5,6 }

其中,al和gl为曲线拟合系数,ζTPER,t表示应用类型为t的ITS信息服务流所需的目标分组差错率。假定系统满足以下条件:Among them, a l and g l are curve fitting coefficients, ζ TPER,t represents the target packet error rate required by the ITS information service flow of application type t. Assume that the system meets the following conditions:

I/B传输各类ITS信息服务流的功率恒定;SV的接入信道/行驶状态/所处地理区域信息反馈模块能够获得无差错综合信息,并将其无差错、无时延的反馈至I/B的接入信道/行驶状态/所处地理区域信息探测模块处;基于循环冗余校验的分组差错率检测是完美的,忽略分组序列号及CRC校验带来的冗余,不考虑MAC层ARQ技术,并忽略其对分组差错率的影响;SV接入信道为慢变化平坦衰落信道,信道状况在一帧内保持不变,但能在两帧之间发生改变,封装在一帧内的ITS信息服务流应用类型相同,多级调制编码传输模式的选定都是在每帧基础上进行的;选取Nakagami-m模型对慢变化平坦衰落信道建模,SV接入信道状况瞬时SNRγ的概率密度函数服从伽玛分布,则当I/B采用第l级调制编码传输模式发送类型为t的ITS信息服务流时,该信息服务流的分组差错率满足下式:The power of I/B transmission of various ITS information service streams is constant; the SV's access channel/driving status/geographical area information feedback module can obtain error-free comprehensive information, and feed it back to I without error and delay /B's access channel/driving status/at the geographical area information detection module; the packet error rate detection based on the cyclic redundancy check is perfect, ignoring the redundancy caused by the packet sequence number and CRC check, and not considering MAC layer ARQ technology, and ignore its impact on the packet error rate; SV access channel is a slow-varying flat fading channel, the channel status remains unchanged within one frame, but can change between two frames, encapsulated in one frame The application types of the ITS information service flow in the network are the same, and the selection of the multi-level modulation and coding transmission mode is carried out on the basis of each frame; the Nakagami-m model is selected to model the slow-varying flat fading channel, and the instantaneous SNRγ of the SV access channel condition The probability density function of the ITS obeys the Gamma distribution, then when the I/B uses the l-level modulation and coding transmission mode to send the ITS information service flow of type t, the packet error rate of the information service flow satisfies the following formula:

∀ t ∈ { 1,2,3 } ∀ l ∈ { 1,2,3,4,5,6 } ∀ t ∈ { 1,2,3 } and ∀ l ∈ { 1,2,3,4,5,6 }

则曲线拟合系数al、gl和γl按照表3取值:Then the curve fitting coefficients a l , g l and γ l are taken according to Table 3:

表3:6级调制编码传输模式分组差错率曲线拟合参数Table 3: Packet Error Rate Curve Fitting Parameters for 6-level Modulation and Coding Transmission Mode

与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

本发明提出一种适用于下一代车辆通信接入网的自适应传输模式选择系统及其方法,与已有系统及其方法相比,本发明使得自适应传输模式的选择不仅取决于车辆接入信道状况信息,还与车辆行驶状态信息,车辆所处地理区域信息以及各类ITS信息服务流的目标分组差错率限定信息密切相关,可在各类ITS信息服务流传输有效性和系统传输高效性之间做出很好的权衡,从而在满足各类ITS信息服务流QoS要求的同时获得尽可能高的系统平均有效数据传输速率。The present invention proposes an adaptive transmission mode selection system and its method suitable for the next generation vehicle communication access network. Compared with the existing system and its method, the present invention makes the selection of the adaptive transmission mode not only depend on the Channel status information is also closely related to vehicle driving status information, geographical area information of the vehicle, and target packet error rate limit information of various ITS information service flows, which can be used in various ITS information service flow transmission effectiveness and system transmission efficiency Make a good trade-off between them, so as to obtain the highest possible average effective data transmission rate of the system while meeting the QoS requirements of various ITS information service flows.

本发明可根据ITS信息服务流的应用类型自适应地调整相应的SNR切换阈值,而现有技术仅能使用预先确定好且恒定不变的SNR切换阈值。假定I/B到SV的ITS信息服务流有三类,目标分组差错率分别为ζTPER,1=10-6、ζTPER,2=10-5和ξTPER,3=10-2,产生概率均为1/3。根据表4可知:采用本发明提供的技术,三类ITS信息服务流的SNR切换阈值均不同;采用现有技术,第Ⅰ组SNR切换阈值可由曲线拟合参数γl来获得,第Ⅱ组SNR切换阈值与本发明第1类ITS信息服务流的SNR切换阈值相同,旨在使所有ITS信息服务流的传输品质满足最严格的可靠性限定。The present invention can adaptively adjust the corresponding SNR switching threshold according to the application type of the ITS information service flow, while the prior art can only use a predetermined and constant SNR switching threshold. Assume that there are three types of ITS information service flows from I/B to SV, and the target packet error rates are ζ TPER,1 =10 -6 , ζ TPER,2 =10 -5 and ξ TPER,3 =10 -2 , and the generation probabilities are is 1/3. According to Table 4, it can be seen that: using the technology provided by the present invention, the SNR switching thresholds of the three types of ITS information service flows are all different; using the existing technology, the SNR switching threshold of the first group can be obtained by the curve fitting parameter γ l , and the SNR of the second group The switching threshold is the same as the SNR switching threshold of the first type of ITS information service flow in the present invention, and aims to make the transmission quality of all ITS information service flows meet the strictest reliability limit.

表4:ITS信息服务流调制编码模式切换阈值(dB)Table 4: ITS information service stream modulation and coding mode switching threshold (dB)

附图说明Description of drawings

图1是自适应传输模式选择方法的系统基本实施架构图;Fig. 1 is a system basic implementation architecture diagram of an adaptive transmission mode selection method;

图2是ITS信息服务流封装成帧过程图;Fig. 2 is a process diagram of encapsulation and framing of ITS information service flow;

图3是车辆通信接入网自适应传输模式选择方法图;Fig. 3 is a diagram of a method for selecting an adaptive transmission mode of a vehicle communication access network;

图4是第1类ITS信息服务流分组差错率性能比较图;Fig. 4 is a performance comparison diagram of the packet error rate of the first class ITS information service flow;

图5是第2类ITS信息服务流分组差错率性能比较图;Fig. 5 is a performance comparison diagram of the packet error rate of the second type ITS information service flow;

图6是第3类ITS信息服务流分组差错率性能比较图;Fig. 6 is a performance comparison diagram of the packet error rate of the third type ITS information service flow;

图7是系统平均有效数据传输速率性能比较图。Figure 7 is a performance comparison diagram of the average effective data transmission rate of the system.

具体实施方式detailed description

下面结合附图对本发明做进一步详细描述:The present invention is described in further detail below in conjunction with accompanying drawing:

参见图1,本发明首先提出一种车辆通信接入网的自适应传输模式选择系统,该系统包括:I/B处的车辆信息服务流产生模块、车辆信息服务流分类映射模块、分组递交模块、自适应传输模式选择模块、OFDMA无线资源配置模块、帧发送/接收模块、接入信道/行驶状态/所处地理区域信息探测模块,以及SV处的车辆信息服务流产生模块、车辆信息服务流分类映射模块、分组递交模块、自适应传输模式选择模块、OFDMA无线资源配置模块、帧发送/接收模块、接入信道/行驶状态/所处地理区域信息反馈模块。Referring to Fig. 1, the present invention first proposes an adaptive transmission mode selection system of a vehicle communication access network, the system includes: a vehicle information service flow generation module at the I/B place, a vehicle information service flow classification mapping module, and a packet delivery module , Adaptive transmission mode selection module, OFDMA wireless resource configuration module, frame sending/receiving module, access channel/driving state/geographic area information detection module, and vehicle information service flow generation module at SV, vehicle information service flow Classification mapping module, packet submission module, adaptive transmission mode selection module, OFDMA wireless resource configuration module, frame sending/receiving module, access channel/driving status/location information feedback module.

以下行链路(I/B到SV)为例,自适应传输模式选择系统在表5所列各信令承载信息的支持下,运作过程如下:I/B处的接入信道/行驶状态/所处地理区域信息探测模块向I/B服务区域内所有请求获得ITS信息服务流的SV周期地广播综合信息请求信令INF-REQ,位于各个SV处的接入信道/行驶状态/所处地理区域信息反馈模块收到该信令后,立即回送综合信息响应信令INF-RSP,并遵循随机退后机制将探测到的综合信息由综合信息应答信令INF-ACK反馈至I/B处,再由综合信息消息信令INF-MES送达自适应传输模式选择模块;I/B处车辆信息服务流产生模块和分组递交模块向自适应传输模式选择模块周期地发送TPER-MES信令和DE-MES信令,TPER-MES信令承载了待传应用级信息服务流的目标分组差错率限定信息,DE-MES信令承载了递交分组的类型信息;I/B处的自适应传输模式选择模块按照预先定义的自适应传输模式选择算法,根据INF-MES、TPER-MES和DE-MES信令上承载的信息生成调制编码模式选择信令MC-MES,其上承载了SV在OFDMA各个子信道传输数据流时应当采用的自适应传输模式选择信息,该信息将通过信令MC-MES向I/B处OFDMA无线资源配置模块周期发送;各类ITS数据流分组通过I/B处的OFDMA无线资源配置模块递交至帧发送/接收模块后,连同内嵌在控制域内的自适应传输模式选择信息一起被封装成帧,再向SV发送;位于SV处的自适应传输模式控制模块从帧发送/接收模块处提取出相应的自适应传输模式选择信息,并通过生成相应的MC-MES信令来辅助SV处的OFDMA无线资源配置模块对数据流进行解调解码,最终完成数据流到应用级信息服务流的递交。具体数据流封装成帧过程如图2所示。Taking the downlink (I/B to SV) as an example, the adaptive transmission mode selection system is supported by the signaling bearer information listed in Table 5, and the operation process is as follows: access channel at I/B/driving state/ The geographical area information detection module periodically broadcasts the comprehensive information request signaling INF-REQ to all SVs in the I/B service area requesting to obtain ITS information service flow, and the access channel/driving state/geographic location located at each SV After the regional information feedback module receives the signaling, it immediately returns the comprehensive information response signaling INF-RSP, and follows the random back-off mechanism to feed back the detected comprehensive information from the comprehensive information response signaling INF-ACK to the I/B. Then the comprehensive information message signaling INF-MES is delivered to the adaptive transmission mode selection module; the vehicle information service flow generation module and packet delivery module at I/B periodically send TPER-MES signaling and DE to the adaptive transmission mode selection module - MES signaling, TPER-MES signaling carries the target packet error rate limit information of the application-level information service flow to be transmitted, and DE-MES signaling carries the type information of the delivered packet; adaptive transmission mode selection at I/B According to the predefined adaptive transmission mode selection algorithm, the module generates the modulation and coding mode selection signaling MC-MES according to the information carried on the INF-MES, TPER-MES and DE-MES signaling, which carries the SV in each OFDMA sub-signal The adaptive transmission mode selection information that should be adopted when the channel transmits data streams, the information will be periodically sent to the OFDMA wireless resource configuration module at I/B through signaling MC-MES; various ITS data streams are grouped through OFDMA at I/B After the wireless resource configuration module submits it to the frame sending/receiving module, it is encapsulated into a frame together with the adaptive transmission mode selection information embedded in the control field, and then sent to the SV; the adaptive transmission mode control module located at the SV transmits from the frame The /receiving module extracts the corresponding adaptive transmission mode selection information, and assists the OFDMA wireless resource configuration module at the SV to demodulate and decode the data stream by generating corresponding MC-MES signaling, and finally completes the data stream to the application level Delivery of information service streams. The specific data stream encapsulation and framing process is shown in Figure 2.

表5:信令说明Table 5: Signaling description

信令名称Signaling name 信令说明Signaling description INF-REQINF-REQ 综合信息请求信令Integrated Information Request Signaling INF-RSPINF-RSP 综合信息响应信令Integrated Information Response Signaling INF-ACKINF-ACK 综合信息应答信令Integrated Information Response Signaling INF-MESINF-MES 综合(接入信道/行驶状态/所处地理区域)信息消息信令Comprehensive (access channel/driving status/geographical area) information message signaling TPER-MESTPER-MES 目标分组差错率消息信令Target packet error rate message signaling DE-MESDE-MES 递交分组类型消息信令Commit Packet Type Message Signaling MC-MESMC-MES 调制编码模式选择信令Modulation and coding mode selection signaling

自适应传输模式选择方法执行的自适应传输模式选择算法具有开放性,可根据实际应用场景进行选择。已有自适应传输模式选择算法采用系统预先定义好的基于信道状况的传输模式切换区间,未考虑不同ITS信息服务流各自的可靠性需求,也未考虑ITS车载终端获取的外部辅助信息对系统平均有效数据传输速率的贡献,故本发明基于上述系统基本实施架构提出一种车辆通信接入网的自适应传输模式选择方法,如图3所示,具体包括以下步骤:The adaptive transmission mode selection algorithm implemented by the adaptive transmission mode selection method is open, and can be selected according to actual application scenarios. The existing adaptive transmission mode selection algorithm adopts the system’s pre-defined transmission mode switching interval based on channel conditions, without considering the reliability requirements of different ITS information service flows, and without considering the impact of external auxiliary information obtained by ITS vehicle terminals on the system average. The contribution of the effective data transmission rate, so the present invention proposes a method for selecting an adaptive transmission mode of the vehicle communication access network based on the basic implementation framework of the above-mentioned system, as shown in Figure 3, specifically including the following steps:

1)多级调制编码传输模式切换阈值的确定1) Determination of switching threshold of multi-level modulation coding transmission mode

I/B根据TPER-MES信令上承载的目标分组差错率信息,确定多级调制编码传输模式切换阈值。以信号噪声比作为衡量SV接入信道状况的参数指标,将整个信号噪声比区间分割成不重复且连续的调制编码传输模式切换区间,相应的调制编码传输模式切换阈值为:The I/B determines the switching threshold of the multi-level modulation and coding transmission mode according to the target packet error rate information carried on the TPER-MES signaling. Taking the signal-to-noise ratio as a parameter index to measure the status of the SV access channel, the entire signal-to-noise ratio interval is divided into non-repetitive and continuous modulation, coding, and transmission mode switching intervals. The corresponding modulation, coding, and transmission mode switching thresholds are:

其中,t为ITS信息服务流应用类型,l为调制编码传输模式等级,表2给出了车辆通信接入网可选用的6级调制编码传输模式;Among them, t is the application type of ITS information service flow, l is the modulation and coding transmission mode level, and Table 2 shows the optional 6-level modulation and coding transmission mode for the vehicle communication access network;

2)调制编码传输模式等级L的初始化2) Initialization of modulation coding transmission mode level L

系统传输应用类型为t的ITS信息服务流时,I/B根据INF-ACK信令上承载的SV初始瞬时接入信道状态信息γ′和多级调制编码传输模式切换阈值来初始化应用类型为t的ITS信息服务流调制编码传输模式等级L,令L=l′,满足 When the system transmits the ITS information service flow with the application type t, the I/B initializes the application type t according to the SV initial instantaneous access channel state information γ′ carried on the INF-ACK signaling and the multi-level modulation and coding transmission mode switching threshold The ITS information service flow modulation and coding transmission mode level L, let L=l′, satisfy

3)是否启动自适应传输模式选择进程的判定3) Determine whether to start the adaptive transmission mode selection process

I/B遵循退后时间间隔为(0,CW-1)的随机退后机制,根据INF-ACK反馈信令上承载的SV所处地理区域信息和的SV行驶状态信息开启自适应传输模式判定进程,如果SV处于特殊地理区域,例如,恶劣气象环境、复杂道路环境、桥梁隧道环境等,或者SV行驶速率超过60km/h,表明系统不适合启动自适应传输模式选择进程,将保持当前调制编码传输模式等级不变,从而避免因信道条件变化太快而导致参数调整速度无法跟上信道变化速度;否则,启动自适应传输模式选择进程并进入步骤4);其中,随机退后机制的倍增规则满足CW,new=2mCW,old,其中,CW,new为实施一次随机退后机制后的时间窗口新值,CW,old为实施本次随机退后机制前的时间窗口旧值;I/B follows the random backoff mechanism with a backoff time interval of (0, C W -1), and starts the adaptive transmission mode according to the geographical area information of the SV and the SV driving state information carried on the INF-ACK feedback signaling Judgment process, if the SV is in a special geographical area, such as severe weather environment, complex road environment, bridge tunnel environment, etc., or the driving speed of the SV exceeds 60km/h, it indicates that the system is not suitable for starting the adaptive transmission mode selection process, and the current modulation will be maintained The coding transmission mode level remains unchanged, so as to avoid the parameter adjustment speed unable to keep up with the channel change speed due to the channel condition changing too fast; otherwise, start the adaptive transmission mode selection process and enter step 4); among them, the random backoff mechanism multiplies The rule satisfies C W,new = 2 m C W,old , where C W,new is the new value of the time window after implementing a random back-off mechanism, and C W,old is the time window before this random back-off mechanism is implemented old value;

4)自适应传输模式等级的确定4) Determination of the level of adaptive transmission mode

I/B按照OFDMA帧周期根据INF-ACK反馈信令上承载的SV瞬时接入信道状态信息γ进行判定,如果则更新传输该条信息服务流所采用的调制编码传输模式等级L,令L=l′′;值得注意的是,当时,信道经历深度衰落,此时,I/B将不发送ITS信息服务流;I/B judges according to the OFDMA frame cycle according to the SV instantaneous access channel state information γ carried on the INF-ACK feedback signaling, if Then update the modulation and coding transmission mode level L used to transmit the information service flow, let L=l''; it is worth noting that when When , the channel experiences deep fading, at this time, I/B will not send ITS information service flow;

5)不断重复步骤3)和步骤4)直至该条ITS信息服务流数据分组全部发送完毕。5) Repeat step 3) and step 4) until all data packets of the ITS information service flow are sent.

以下给出本发明提供的自适应传输模式选择方法步骤3)中的多级调制编码传输模式切换阈值确定过程:The process of determining the multi-level modulation and coding transmission mode switching threshold in step 3) of the adaptive transmission mode selection method provided by the present invention is given below:

假定系统满足以下条件:I/B传输各类ITS信息服务流的功率恒定;SV的接入信道/行驶状态/所处地理区域信息反馈模块能够获得完美的综合信息,并将其无差错、无时延的反馈至I/B的接入信道/行驶状态/所处地理区域信息探测模块处;基于循环冗余校验的分组差错率检测是完美的,忽略分组序列号及CRC校验带来的冗余,不考虑MAC层ARQ技术,并忽略其对分组差错率的影响;SV接入信道为慢变化平坦衰落信道,信道状况在一帧内保持不变,但可在两帧之间发生改变,封装在一帧内的ITS信息服务流应用类型相同,多级调制编码传输模式的选定都是在每帧基础上进行的。选取Nakagami-m模型对慢变化平坦衰落信道建模,则SV接入信道状况瞬时SNRγ的概率密度函数服从伽玛分布,满足(1)式:It is assumed that the system satisfies the following conditions: the power of I/B transmission of various ITS information service streams is constant; the information feedback module of SV’s access channel/driving status/geographical area can obtain perfect comprehensive information, and send it error-free and error-free The delay is fed back to the I/B access channel/driving status/geographical area information detection module; the packet error rate detection based on the cyclic redundancy check is perfect, ignoring the packet sequence number and CRC check The redundancy of the MAC layer, regardless of the ARQ technology of the MAC layer, and its impact on the packet error rate; the SV access channel is a slow-varying flat fading channel, and the channel status remains unchanged within one frame, but can occur between two frames Change, the application type of the ITS information service flow encapsulated in one frame is the same, and the selection of the multi-level modulation and coding transmission mode is carried out on the basis of each frame. The Nakagami-m model is selected to model the slow-varying flat fading channel, then the probability density function of the instantaneous SNRγ of the SV access channel condition obeys the gamma distribution, and satisfies the formula (1):

pp γγ (( γγ )) == mm mm γγ mm -- 11 γγ ‾‾ mm ΓΓ (( mm )) expexp (( -- mγmγ γγ ‾‾ )) ,, γγ ≥&Greater Equal; 00 -- -- -- (( 11 ))

其中,为SNR平均值,Γ(m)为伽马函数且有如下定义:in, is the average SNR, Γ(m) is the gamma function and has the following definition:

ΓΓ (( mm )) == ∫∫ 00 ∞∞ ee -- tt tt mm -- 11 dtdt -- -- -- (( 22 ))

根据衰落参数m取值不同,Nakagami-m模型可表示多类多径信道:m=1时,为瑞利衰落信道;m>1时,莱斯因子K和m之间存在一一映射关系,可近似为莱斯衰落信道。According to the different values of the fading parameter m, the Nakagami-m model can represent multiple types of multipath channels: when m=1, it is a Rayleigh fading channel; when m>1, there is a one-to-one mapping relationship between the Rice factor K and m, It can be approximated as a Rician fading channel.

当I/B采用第l级调制编码传输模式发送类型为t的ITS信息服务流时,该信息服务流的分组差错率满足(3)式:When the I/B uses the l-level modulation and coding transmission mode to send the ITS information service flow of type t, the packet error rate of the information service flow satisfies the formula (3):

∀ t ∈ { 1,2,3 } ∀ l ∈ { 1,2,3,4,5,6 } (3)其中,al、gl和γl均为曲线拟合系数,参见表3。 ∀ t ∈ { 1,2,3 } and ∀ l ∈ { 1,2,3,4,5,6 } (3) Among them, a l , g l and γ l are curve fitting coefficients, see Table 3.

当ITS信息服务流应用类型为t时,第l级调制编码传输模式切换阈值可通过变换(3)式来获得:When the application type of ITS information service flow is t, the level-l modulation and coding transmission mode switching threshold It can be obtained by transforming (3):

∀ t ∈ { 1,2,3 } ∀ l ∈ { 1,2,3,4,5,6 } (4)其中,ζTPER,t表示应用类型为t的ITS信息服务流所需的目标误分组差错率。目标分组差错率ζTPER,t是保证ITS信息服务流QoS的关键参数,t不同,表征其可靠性限定的ζTPER,t也不同,如表1所示。 ∀ t ∈ { 1,2,3 } and ∀ l ∈ { 1,2,3,4,5,6 } (4) Among them, ζ TPER,t represents the target packet error rate required by the ITS information service flow of application type t. The target packet error rate ζ TPER,t is a key parameter to ensure the QoS of ITS information service flow, and t is different, and the ζ TPER,t representing its reliability limit is also different, as shown in Table 1.

对本发明提供的自适应传输模式选择方法进行性能分析,I/B采用第l级调制编码传输模式向SV发送应用类型为t的ITS信息服务流的概率为:Carry out performance analysis to the self-adaptive transmission mode selection method that the present invention provides, I/B adopts the 1st order modulation coding transmission mode to send to SV the probability that application type is the ITS information service stream of t:

p ( l | t ) = ∫ γ t , l γ t , l + 1 p γ ( γ ) dγ = ∫ γ t , l γ t , l + 1 m m γ m - 1 γ ‾ m Γ ( m ) exp ( - mγ γ ‾ ) dγ (5) p ( l | t ) = ∫ γ t , l γ t , l + 1 p γ ( γ ) dγ = ∫ γ t , l γ t , l + 1 m m γ m - 1 γ ‾ m Γ ( m ) exp ( - mγ γ ‾ ) dγ (5)

== PP (( mγmγ tt ,, ll ++ 11 γγ ‾‾ ,, mm )) -- PP (( mγmγ tt ,, ll γγ ‾‾ ,, mm ))

其中,P(x,m)为不完全伽玛函数,由下式定义:Among them, P(x,m) is an incomplete gamma function, defined by the following formula:

PP (( xx ,, mm )) == 11 ΓΓ (( mm )) ∫∫ 00 xx ee -- tt tt mm -- 11 dtdt -- -- -- (( 66 ))

I/B采用第l级调制编码传输模式向SV发送应用类型为t的ITS信息服务流的平均分组差错率可根据(1)式、(3)式和(4)式获得:The average packet error rate of I/B using the l-level modulation and coding transmission mode to send the ITS information service flow with the application type t to the SV It can be obtained according to (1), (3) and (4):

ζ ‾ t , l = ∫ γ t , l γ t , l + 1 ζ t , l ( γ ) p γ ( γ ) dγ = ∫ γ t , l γ t , l + 1 a l exp ( - g l γ ) m m γ m - 1 γ ‾ m Γ ( m ) exp ( - mγ γ ‾ ) dγ (7) ζ ‾ t , l = ∫ γ t , l γ t , l + 1 ζ t , l ( γ ) p γ ( γ ) dγ = ∫ γ t , l γ t , l + 1 a l exp ( - g l γ ) m m γ m - 1 γ ‾ m Γ ( m ) exp ( - mγ γ ‾ ) dγ (7)

== aa ll (( bb ll )) mm (( mm γγ ‾‾ )) mm [[ PP (( bb ll γγ tt ,, ll ++ 11 ,, mm )) -- PP (( bb ll γγ tt ,, ll ,, mm )) ]]

其中, b l = m / γ ‾ + g l . in, b l = m / γ ‾ + g l .

I/B采用第l级调制编码传输模式向SV传输应用类型为t的ITS信息服务流的平均有效数据传输速率(bit/symbol)为:The average effective data transmission rate of I/B using the l-level modulation and coding transmission mode to transmit the ITS information service flow of application type t to SV (bit/symbol) is:

RR ‾‾ tt ,, ll == RR ll (( 11 -- ζζ ‾‾ tt ,, ll )) -- -- -- (( 88 ))

其中,Rl为采用第l级调制编码传输模式的数据传输速率,如表2所示:Among them, R 1 is the data transmission rate using the l-level modulation and coding transmission mode, as shown in Table 2:

根据(5)式、(7)式和(8)式可得,系统选定多级调制编码传输模式的平均有效数据传输速率(bit/symbol)为:According to formulas (5), (7) and (8), the average effective data transmission rate of the selected multi-level modulation and coding transmission mode of the system can be obtained (bit/symbol) is:

RR ‾‾ EFFEFF == ΣΣ tt == 11 33 ΣΣ ll == 11 66 pp (( tt ,, ll )) RR ‾‾ tt ,, ll == ΣΣ tt == 11 33 pp (( tt )) ΣΣ ll == 11 66 pp (( ll || tt )) RR ll (( 11 -- ζζ ‾‾ tt ,, ll )) -- -- -- (( 99 ))

系统平均分组差错率为:System Average Packet Error Rate for:

ζζ ‾‾ EFFEFF == ΣΣ tt == 11 33 ΣΣ ll == 11 66 pp (( tt ,, ll )) RR ll ζζ ‾‾ tt ,, ll ΣΣ tt == 11 33 ΣΣ ll == 11 66 pp (( tt ,, ll )) RR ll == ΣΣ tt == 11 33 pp (( tt )) ΣΣ ll == 11 66 pp (( ll || tt )) RR ll ζζ ‾‾ tt ,, ll ΣΣ tt == 11 33 pp (( tt )) ΣΣ ll == 11 66 pp (( ll || tt )) RR ll -- -- -- (( 1010 ))

其中,p(t,l)表示ITS信息服务流调制编码传输模式等级为l且应用类型为t的概率,p(t)为I/B向SV传输应用类型为t的ITS信息服务流的概率。Among them, p(t,l) represents the probability of ITS information service flow modulation and coding transmission mode level l and application type t, p(t) is the probability of I/B transmitting ITS information service flow of application type t to SV .

假定I/B到SV的ITS信息服务流有三类,目标分组差错率分别为ζTPER,1=10-6、ζTPER,2=10-5和ξTPER,3=10-2,产生概率均为13。根据表4可知:采用本发明提供的技术,三类ITS信息服务流的SNR切换阈值均不同;采用现有技术,第Ⅰ组SNR切换阈值可由曲线拟合参数γl来获得,第Ⅱ组SNR切换阈值与本发明第1类ITS信息服务流的SNR切换阈值相同,旨在使所有ITS信息服务流的传输品质满足最严格的可靠性限定。Assume that there are three types of ITS information service flows from I/B to SV, and the target packet error rates are ζ TPER,1 =10 -6 , ζ TPER,2 =10 -5 and ξ TPER,3 =10 -2 , and the generation probabilities are for 13. According to Table 4, it can be seen that: using the technology provided by the present invention, the SNR switching thresholds of the three types of ITS information service flows are all different; using the existing technology, the SNR switching threshold of the first group can be obtained by the curve fitting parameter γ l , and the SNR of the second group The switching threshold is the same as the SNR switching threshold of the first type of ITS information service flow in the present invention, and aims to make the transmission quality of all ITS information service flows meet the strictest reliability limit.

图4、图5、图6分别比较了慢变化平坦衰落信道下,采用已有技术和本发明提供的技术的三类ITS信息服务流的平均分组差错率性能。可以看到,采用本发明提供的技术的自适应SNR阈值切换区间和已有技术的第Ⅱ种固定SNR阈值切换区间时,三类ITS信息服务流均能满足各自的目标分组差错率限定,而采用已有技术第Ⅰ种固定SNR阈值切换区间时,三类ITS信息服务流很难满足相应的QoS要求,只有当信道状况非常好时,方可实现这一目标,例如,m=1时,当信号状况大于28dB时,可靠性要求最低的第3类ITS信息服务流在信道状况大于28dB时,才能满足其目标分组差错率小于10-2这一限定值。图7比较了慢平坦衰落信道下,采用已有技术和本发明提供的技术时的系统平均有效数据传输速率。可以看到,系统平均有效数据传输速率均随m值的增加而增加,与采用已有技术第Ⅱ种固定SNR阈值切换区间相比,采用本发明提供的技术的自适应SNR阈值切换区间时,系统将获得更高的平均有效数据传输速率。Figure 4, Figure 5, and Figure 6 respectively compare the average packet error rate performance of the three types of ITS information service flows using the prior art and the technology provided by the present invention under slow-varying flat fading channels. It can be seen that when using the adaptive SNR threshold switching interval of the technology provided by the present invention and the second fixed SNR threshold switching interval of the prior art, the three types of ITS information service flows can all meet the respective target packet error rate restrictions, and When using the first fixed SNR threshold switching interval in the prior art, it is difficult for the three types of ITS information service flows to meet the corresponding QoS requirements. This goal can only be achieved when the channel condition is very good. For example, when m=1, When the signal condition is greater than 28dB, the Class 3 ITS information service flow with the lowest reliability requirement can meet the limit value of the target packet error rate of less than 10 -2 when the channel condition is greater than 28dB. Fig. 7 compares the average effective data transmission rate of the system when using the existing technology and the technology provided by the present invention under the slow flat fading channel. It can be seen that the average effective data transmission rate of the system increases with the increase of the m value. Compared with the second fixed SNR threshold switching interval of the prior art, when the adaptive SNR threshold switching interval of the technology provided by the present invention is adopted, The system will achieve a higher average effective data transfer rate.

综上所述,本发明将代表未来通信发展方向的正交频分多址接入(OrthogonalFrequencyDivisionMultipleAccess,OFDMA)和自适应调制编码(AdaptiveModulationandCoding,AMC)技术引入车辆通信接入网物理层(PHY层),能够极大优化系统传输性能,获得更高的数据传输速率。AMC是一种自适应无线传输技术,可根据信道条件动态调整调制模式和编码模式,在信道条件较好时,系统使用高阶调制和高编码速率以使数据传输达到更高的峰值速率,例如,64QAM,5/6码率;在信道条件较差时,系统使用低阶调制和低编码速率以保证数据传输的可靠性,例如,BPSK,1/2码率。OFDMA是一种将正交频分复用(OrthogonalFrequencyDivisionMultiplexing,OFDM)与频分多址接入相结合的多址接入\多路复用技术,包含两种子信道构成方式,其中,分散式适用于监管车辆高速移动的场景,例如,高速公路,通过采用伪随机方式排列子载波来构成子信道,能够获得频率分集增益,有助于消除蜂窝间干扰;连续式适用于监管车辆停止或低速移动的场景,例如,城区街道,通过对连续子载波进行分割来构成子信道,基于连续式子信道采用AMC技术,能够在满足分组差错率限定的同时,获得尽可能高的系统吞吐量。In summary, the present invention introduces Orthogonal Frequency Division Multiple Access (OFDMA) and Adaptive Modulation and Coding (Adaptive Modulation and Coding, AMC) technologies, which represent the future communication development direction, into the physical layer (PHY layer) of the vehicle communication access network. , can greatly optimize system transmission performance and obtain higher data transmission rate. AMC is an adaptive wireless transmission technology that can dynamically adjust the modulation mode and coding mode according to channel conditions. When the channel condition is good, the system uses high-order modulation and high coding rate to achieve a higher peak rate of data transmission, such as , 64QAM, 5/6 code rate; when the channel condition is poor, the system uses low-order modulation and low coding rate to ensure the reliability of data transmission, for example, BPSK, 1/2 code rate. OFDMA is a multiple access/multiplexing technology that combines Orthogonal Frequency Division Multiplexing (OFDM) with frequency division multiple access. Scenarios where supervised vehicles move at high speed, such as highways, sub-channels are formed by arranging subcarriers in a pseudo-random manner, which can obtain frequency diversity gain and help eliminate inter-cell interference; continuous mode is suitable for supervised vehicles that stop or move at a low speed Scenarios, such as urban streets, sub-channels are formed by dividing continuous sub-carriers. Based on continuous sub-channels, AMC technology can be used to obtain the highest possible system throughput while meeting the packet error rate limit.

与已有自适应传输模式选择方法相比,本发明使得自适应传输模式的选择不仅取决于车辆接入信道状况信息,还与车辆行驶状态信息,车辆所处地理区域信息以及各类ITS信息服务流的目标分组差错率限定信息密切相关,从而在各类ITS信息服务流传输有效性和系统传输高效性之间做出很好的权衡,在满足各类ITS信息服务流QoS要求的同时获得尽可能高的系统平均有效数据传输速率。Compared with the existing adaptive transmission mode selection method, the present invention makes the selection of the adaptive transmission mode not only depend on the status information of the vehicle access channel, but also on the vehicle driving status information, the geographical area information of the vehicle and various ITS information services The target packet error rate limit information of the flow is closely related, so that a good balance can be made between the effectiveness of various ITS information service flow transmission and the system transmission efficiency, and the QoS requirements of various ITS information service flows can be obtained while meeting the QoS requirements of various ITS information service flows. Potentially high system average effective data transfer rate.

Claims (8)

1.一种车辆通信接入网的自适应传输模式选择系统,其特征在于,包括:I/B处的车辆信息服务流产生模块、车辆信息服务流分类映射模块、分组递交模块、自适应传输模式选择模块、OFDMA无线资源配置模块、帧发送/接收模块、接入信道/行驶状态/所处地理区域信息探测模块,以及SV处的车辆信息服务流产生模块、车辆信息服务流分类映射模块、分组递交模块、自适应传输模式选择模块、OFDMA无线资源配置模块、帧发送/接收模块、接入信道/行驶状态/所处地理区域信息反馈模块;1. an adaptive transmission mode selection system of vehicle communication access network, it is characterized in that, comprises: the vehicle information service flow generation module at I/B place, vehicle information service flow classification mapping module, packet delivery module, adaptive transmission Mode selection module, OFDMA wireless resource configuration module, frame sending/receiving module, access channel/driving state/location information detection module, vehicle information service flow generation module at SV, vehicle information service flow classification and mapping module, Packet submission module, adaptive transmission mode selection module, OFDMA wireless resource configuration module, frame sending/receiving module, access channel/driving status/location information feedback module; 所述I/B处的接入信道/行驶状态/所处地理区域信息探测模块向I/B服务区域内所有请求获得ITS信息服务流的SV周期地广播综合信息请求信令INF-REQ,位于各个SV处的接入信道/行驶状态/所处地理区域信息反馈模块收到该信令后,立即回送综合信息响应信令INF-RSP,并遵循随机退后机制将探测到的综合信息由综合信息应答信令INF-ACK反馈至I/B处,再由综合信息消息信令INF-MES送达I/B处的自适应传输模式选择模块;I/B处车辆信息服务流产生模块向I/B处的自适应传输模式选择模块周期地发送TPER-MES信令,I/B处的分组递交模块向I/B处的自适应传输模式选择模块周期地发送DE-MES信令,TPER-MES信令承载了待传应用级信息服务流的目标分组差错率限定信息,DE-MES信令承载了递交分组的类型信息;I/B处的自适应传输模式选择模块根据INF-MES、TPER-MES和DE-MES信令上承载的信息生成调制编码模式选择信令MC-MES,所述MC-MES上承载了SV在OFDMA各个子信道传输数据流时应当采用的自适应传输模式选择信息,该自适应传输模式选择信息将通过信令MC-MES向I/B处OFDMA无线资源配置模块周期发送;各类ITS数据流分组通过I/B处的OFDMA无线资源配置模块递交至I/B处的帧发送/接收模块后,连同内嵌在控制域内的自适应传输模式选择信息一起被封装成帧,再向SV发送;位于SV处的自适应传输模式选择模块从SV处的帧发送/接收模块处提取出相应的自适应传输模式选择信息,并通过生成相应的MC-MES信令来辅助SV处的OFDMA无线资源配置模块对数据流进行解调解码,最终完成数据流到应用级信息服务流的递交;所述I/B是基础设施/基站,所述SV是用户车辆,所述ITS是智能交通系统。The access channel/driving state/geographical area information detection module at the I/B periodically broadcasts the comprehensive information request signaling INF-REQ to all SVs in the I/B service area requesting to obtain the ITS information service flow, located at After receiving the signaling, the access channel/driving state/geographical area information feedback module at each SV immediately returns the comprehensive information response signaling INF-RSP, and follows the random back-off mechanism to transfer the detected comprehensive information from the comprehensive The information response signaling INF-ACK is fed back to I/B, and then the integrated information message signaling INF-MES is delivered to the adaptive transmission mode selection module at I/B; the vehicle information service flow generation module at I/B sends I/B The adaptive transmission mode selection module at /B periodically sends TPER-MES signaling, and the packet delivery module at I/B periodically sends DE-MES signaling to the adaptive transmission mode selection module at I/B, and TPER- The MES signaling carries the target packet error rate limit information of the application-level information service flow to be transmitted, and the DE-MES signaling carries the type information of the submitted packet; the adaptive transmission mode selection module at the I/B is based on INF-MES, TPER - The information carried on the MES and DE-MES signaling generates the modulation and coding mode selection signaling MC-MES, and the MC-MES carries the adaptive transmission mode selection information that the SV should adopt when transmitting data streams in each sub-channel of OFDMA , the adaptive transmission mode selection information will be periodically sent to the OFDMA wireless resource configuration module at I/B through signaling MC-MES; various ITS data flow packets will be submitted to I/B through the OFDMA wireless resource configuration module at I/B After the frame sending/receiving module at the SV, together with the adaptive transmission mode selection information embedded in the control field, it is encapsulated into a frame, and then sent to the SV; the adaptive transmission mode selection module at the SV sends/ The receiving module extracts the corresponding adaptive transmission mode selection information, and assists the OFDMA wireless resource configuration module at the SV to demodulate and decode the data stream by generating corresponding MC-MES signaling, and finally completes the data stream to the application level information Delivery of service flow; the I/B is the infrastructure/base station, the SV is the user vehicle, and the ITS is the intelligent transportation system. 2.根据权利要求1所述的车辆通信接入网的自适应传输模式选择系统,其特征在于,所述综合信息为接入信道状态信息、行驶状态信息和所处地理区域信息。2 . The adaptive transmission mode selection system of the vehicle communication access network according to claim 1 , wherein the comprehensive information is access channel state information, driving state information and geographical area information. 3 . 3.一种基于权利要求1所述系统的车辆通信接入网的自适应传输模式选择方法,其特征在于,包括以下步骤:3. An adaptive transmission mode selection method based on the vehicle communication access network of the system according to claim 1, characterized in that, comprising the following steps: 1)多级调制编码传输模式切换阈值的确定1) Determination of the switching threshold of multi-level modulation and coding transmission mode 以信号噪声比作为衡量SV接入信道状况的参数指标,将整个信号噪声比区间分割成不重复且连续的调制编码传输模式切换区间,相应的调制编码传输模式切换阈值为:Taking the signal-to-noise ratio as a parameter index to measure the status of the SV access channel, the entire signal-to-noise ratio interval is divided into non-repetitive and continuous modulation, coding, and transmission mode switching intervals. The corresponding modulation, coding, and transmission mode switching thresholds are: 且l∈{1,2,3,4,5,6}} And l∈{1,2,3,4,5,6}} 其中,t为ITS信息服务流应用类型,l为调制编码传输模式等级,Among them, t is the application type of ITS information service flow, l is the level of modulation and coding transmission mode, 为当ITS信息服务流应用类型为t时,第l级调制编码传输模式切换阈值;I/B根据TPER-MES信令上承载的目标分组差错率限定信息,确定多级调制编码传输模式切换阈值; is when the application type of the ITS information service flow is t, the first-level modulation and coding transmission mode switching threshold; I/B determines the multi-level modulation and coding transmission mode switching threshold according to the target packet error rate limit information carried on the TPER-MES signaling ; 2)调制编码传输模式等级L的初始化2) Initialization of modulation coding transmission mode level L 系统传输应用类型为t的ITS信息服务流时,I/B根据INF-ACK信令上承载的SV初始瞬时接入信道状态信息γ′和多级调制编码传输模式切换阈值来初始化应用类型为t的ITS信息服务流调制编码传输模式等级L,令L=l′,满足 When the system transmits the ITS information service flow with the application type t, the I/B initializes the application type t according to the SV initial instantaneous access channel state information γ′ carried on the INF-ACK signaling and the multi-level modulation and coding transmission mode switching threshold The ITS information service flow modulation and coding transmission mode level L, let L=l′, satisfy 为ITS信息服务流应用类型为t时的第l′级调制编码传输模式切换阈值; When the application type of the ITS information service flow is t, the switching threshold of the l′-level modulation and coding transmission mode; 为ITS信息服务流应用类型为t时的第l′+1级调制编码传输模式切换阈值;3)是否启动自适应传输模式选择进程的判定 When the application type of the ITS information service flow is t, the l′+1th level modulation and coding transmission mode switching threshold; 3) Whether to start the judgment of the adaptive transmission mode selection process I/B遵循退后时间间隔为(0,CW-1)的随机退后机制,所述CW为时间窗口,根据INF-ACK反馈信令上承载的SV所处地理区域信息和SV行驶状态信息开启自适应传输模式判定进程,如果SV处于特殊地理区域,或者SV行驶速率超过60km/h,表明系统不适合启动自适应传输模式选择进程,将保持当前调制编码传输模式等级不变;否则,启动自适应传输模式选择进程并进入步骤4);I/B follows a random backoff mechanism with a backoff time interval of (0, C W -1), where C W is a time window. According to the geographical area information of the SV carried in the INF-ACK feedback signaling and the SV travel The status information starts the adaptive transmission mode determination process. If the SV is in a special geographical area, or the SV travel speed exceeds 60km/h, it indicates that the system is not suitable for starting the adaptive transmission mode selection process, and the current modulation and coding transmission mode level will remain unchanged; otherwise , start the adaptive transmission mode selection process and enter step 4); 4)自适应传输模式等级的确定4) Determination of the level of adaptive transmission mode I/B按照OFDMA帧周期根据INF-ACK反馈信令上承载的SV瞬时接入信道状态信息γ进行判定,如果则更新传输该条信息服务流所采用的调制编码传输模式等级L,令L=l″;I/B judges according to the OFDMA frame cycle according to the SV instantaneous access channel state information γ carried on the INF-ACK feedback signaling, if Then update the modulation and coding transmission mode level L adopted to transmit the information service flow, so that L=1"; 5)不断重复步骤3)和步骤4)直至该条ITS信息服务流数据分组全部发送完毕。5) Step 3) and step 4) are repeated continuously until all data packets of the ITS information service flow are sent. 4.根据权利要求3所述的车辆通信接入网的自适应传输模式选择方法,其特征在于,步骤3)中,所述特殊地理区域是指:具有恶劣气象环境、复杂道路环境或桥梁隧道环境的区域。4. The adaptive transmission mode selection method of the vehicle communication access network according to claim 3, characterized in that, in step 3), the special geographical area refers to: a bad weather environment, a complex road environment or a bridge tunnel area of the environment. 5.根据权利要求3所述的车辆通信接入网的自适应传输模式选择方法,其特征在于,步骤3)中,所述随机退后机制中的倍增规则满足CW,new=2mCW,old,其中,CW,new为实施一次随机退后机制后的时间窗口CW的新值,CW,old为实施该次随机退后机制前的时间窗口旧值,m为衰落参数。5. The adaptive transmission mode selection method of the vehicle communication access network according to claim 3, characterized in that, in step 3), the multiplication rule in the random back-off mechanism satisfies C W,new =2 m C W,old , where C W,new is the new value of the time window C W after a random backoff mechanism is implemented, C W,old is the old value of the time window before the random backoff mechanism is implemented, and m is the fading parameter . 6.根据权利要求3所述的车辆通信接入网的自适应传输模式选择方法,其特征在于,步骤4)中,当时,信道经历深度衰落,I/B将不再发送该条ITS信息服务流的数据分组。6. The adaptive transmission mode selection method of the vehicle communication access network according to claim 3, characterized in that, in step 4), when When the channel experiences deep fading, I/B will no longer send the data packets of this ITS information service flow. 7.根据权利要求3所述的车辆通信接入网的自适应传输模式选择方法,其特征在于,步骤1)中,I/B根据TPER-MES信令上承载的目标分组差错率限定信息,确定多级调制编码传输模式切换阈值,具体为:7. the adaptive transmission mode selection method of vehicle communication access network according to claim 3, it is characterized in that, in step 1), I/B limits information according to the target packet error rate carried on the TPER-MES signaling, Determine the switching threshold of the multi-level modulation coding transmission mode, specifically: 当ITS信息服务流应用类型为t时,第l级调制编码传输模式切换阈值可由下式来获得:When the application type of ITS information service flow is t, the level-l modulation and coding transmission mode switching threshold It can be obtained by the following formula: ∀ t ∈ { 1 , 2 , 3 } ∀ l ∈ { 1 , 2 , 3 , 4 , 5 , 6 } ∀ t ∈ { 1 , 2 , 3 } and ∀ l ∈ { 1 , 2 , 3 , 4 , 5 , 6 } 其中,al和gl为曲线拟合系数,ζTPER,t表示应用类型为t的ITS信息服务流所需的目标分组差错率。Among them, a l and g l are curve fitting coefficients, ζ TPER,t represents the target packet error rate required by the ITS information service flow of application type t. 8.根据权利要求7所述的车辆通信接入网的自适应传输模式选择方法,其特征在于,假定系统满足以下条件:8. The adaptive transmission mode selection method of the vehicle communication access network according to claim 7, characterized in that, it is assumed that the system satisfies the following conditions: I/B传输各类ITS信息服务流的功率恒定;SV的接入信道/行驶状态/所处地理区域信息反馈模块能够获得无差错综合信息,并将其无差错、无时延的反馈至I/B的接入信道/行驶状态/所处地理区域信息探测模块处;基于循环冗余校验的分组差错率检测是完美的,忽略分组序列号及CRC校验带来的冗余,不考虑MAC层ARQ技术,并忽略其对分组差错率的影响;SV接入信道为慢变化平坦衰落信道,信道状况在一帧内保持不变,但能在两帧之间发生改变,封装在一帧内的ITS信息服务流应用类型相同,多级调制编码传输模式的选定都是在每帧基础上进行的;选取Nakagami-m模型对慢变化平坦衰落信道建模,SV接入信道状况瞬时SNRγ的概率密度函数服从伽玛分布,则当I/B采用第l级调制编码传输模式发送类型为t的ITS信息服务流时,该信息服务流的分组差错率ζt,l(γ)满足下式:The power of I/B transmission of various ITS information service streams is constant; the SV's access channel/driving status/geographical area information feedback module can obtain error-free comprehensive information, and feed it back to I without error and delay /B's access channel/driving status/at the geographical area information detection module; the packet error rate detection based on the cyclic redundancy check is perfect, ignoring the redundancy caused by the packet sequence number and CRC check, and not considering MAC layer ARQ technology, and ignore its impact on the packet error rate; SV access channel is a slow-varying flat fading channel, the channel status remains unchanged within one frame, but can change between two frames, encapsulated in one frame The application types of the ITS information service flow in the network are the same, and the selection of the multi-level modulation and coding transmission mode is carried out on the basis of each frame; the Nakagami-m model is selected to model the slow-varying flat fading channel, and the instantaneous SNRγ of the SV access channel condition The probability density function of the ITS obeys the Gamma distribution, then when the I/B uses the l-level modulation and coding transmission mode to send the ITS information service flow of type t, the packet error rate ζ t,l (γ) of the information service flow satisfies the following Mode: ∀ t ∈ { 1 , 2 , 3 } ∀ l ∈ { 1 , 2 , 3 , 4 , 5 , 6 } ∀ t ∈ { 1 , 2 , 3 } and ∀ l ∈ { 1 , 2 , 3 , 4 , 5 , 6 } 则曲线拟合系数al、gl和γl按照下表取值:Then the curve fitting coefficients a l , g l and γ l are taken according to the following table: 表6级调制编码传输模式分组差错率曲线拟合参数Table 6 Modulation coding transmission mode packet error rate curve fitting parameters 调制编码传输模式等级lModulation coding transmission mode level l al a l gl g l γl(dB)γ l (dB) 11 274.7229274.7229 7.99327.9932 -1.5331-1.5331 22 90.251490.2514 3.49983.4998 1.09421.0942 33 67.618167.6181 1.68831.6883 3.97223.9722 44 50.122250.1222 0.66440.6644 7.70217.7021 55 53.398753.3987 0.37560.3756 10.248810.2488 66 35.350835.3508 0.09000.0900 15.978415.9784
CN201310219115.5A 2013-06-04 2013-06-04 A kind of Adaptive Transmission model selection system and method thereof of vehicle communication Access Network Active CN103326974B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310219115.5A CN103326974B (en) 2013-06-04 2013-06-04 A kind of Adaptive Transmission model selection system and method thereof of vehicle communication Access Network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310219115.5A CN103326974B (en) 2013-06-04 2013-06-04 A kind of Adaptive Transmission model selection system and method thereof of vehicle communication Access Network

Publications (2)

Publication Number Publication Date
CN103326974A CN103326974A (en) 2013-09-25
CN103326974B true CN103326974B (en) 2016-05-11

Family

ID=49195511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310219115.5A Active CN103326974B (en) 2013-06-04 2013-06-04 A kind of Adaptive Transmission model selection system and method thereof of vehicle communication Access Network

Country Status (1)

Country Link
CN (1) CN103326974B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313989B (en) * 2019-12-04 2021-07-16 大连理工大学 A Reliability Analysis Method of In-vehicle Network Based on Signal-to-Noise and Interference Ratio

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116031A (en) * 1993-10-20 1996-01-31 Ntt移动通信网株式会社 mobile communication system
CN1216959A (en) * 1996-04-19 1999-05-19 瑞士西门子有限公司 Selective data transmission process and device for communication systems used in traffic engineering

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030039226A1 (en) * 2001-08-24 2003-02-27 Kwak Joseph A. Physical layer automatic repeat request (ARQ)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116031A (en) * 1993-10-20 1996-01-31 Ntt移动通信网株式会社 mobile communication system
CN1216959A (en) * 1996-04-19 1999-05-19 瑞士西门子有限公司 Selective data transmission process and device for communication systems used in traffic engineering

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《AMC-Aware QoS Proposal for OFDMA-Based IEEE802.16 WiMAX Systems》;Tarhini C.等;《IEEE.2007 IEEE Global Telecommunications Conference》;20071130;全文 *
《WiMAX中基于跨层设计的SNR阈值区间可变式自适应调制编码机制》;陈婷等;《中国通信》;20100430;第7卷(第2期);全文 *

Also Published As

Publication number Publication date
CN103326974A (en) 2013-09-25

Similar Documents

Publication Publication Date Title
Mannoni et al. A comparison of the V2X communication systems: ITS-G5 and C-V2X
CN101507170B (en) CDMA wireless communication systems
CN103826307B (en) Wireless transmit/receive unit and method in wireless transmit/receive unit
CN102256333B (en) Data relay transmission method in vehicle Ad hoc network
Math et al. Data Rate based Congestion Control in V2V communication for traffic safety applications
CN102118692B (en) Information retransmitting method for improving multicast efficiency of cellular system
CN110460953B (en) A vehicle networking back-off method and device based on the sender's packet loss distinction mechanism
WO2019206328A1 (en) Method and device for configuring transmission parameters
CN103929777B (en) Vehicle network data distribution jamming control method based on congestion game
Mosavat-Jahromi et al. Distributed and adaptive reservation MAC protocol for beaconing in vehicular networks
Triwinarko et al. PHY layer enhancements for next generation V2X communication
Feukeu et al. Dynamic broadcast storm mitigation approach for VANETs
Roux et al. System level analysis for ITS-G5 and LTE-V2X performance comparison
Zhou et al. AFLAS: An adaptive frame length aggregation scheme for vehicular networks
CN109005524A (en) RSU switching method for Internet of Vehicles based on throughput comparison
Lin et al. Adaptive network coding for broadband wireless access networks
Mosavat-Jahromi et al. NC–MAC: A distributed MAC protocol for reliable beacon broadcasting in V2X
Hu et al. A LTE-Cellular-based V2X solution to future vehicular network
Dong et al. Dynamic manager selection assisted resource allocation in URLLC with finite block length for 5G-V2X platoons
Dong et al. Manager selection and resource allocation for 5G-V2X platoon systems with finite blocklength
CN103326974B (en) A kind of Adaptive Transmission model selection system and method thereof of vehicle communication Access Network
Bayu et al. Performance of C-V2X communications for high density traffic highway scenarios
Djilali et al. Performances evaluation study of VANET communication technologies for smart and autonomous vehicles
CN110086569B (en) Internet of vehicles variable frame communication method, terminal and system
US10785062B2 (en) Method and apparatus for state feedback decoder based channel estimation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230710

Address after: Room 1210, IoT Technology Park Building, No. 38 Guangdong Road, Gulou District, Nanjing, Jiangsu Province, 210003

Patentee after: Nanjing Dima Technology Co.,Ltd.

Address before: 710064, No. 33, middle south 2nd Ring Road, Yanta District, Shaanxi, Xi'an

Patentee before: CHANG'AN University

TR01 Transfer of patent right