CN103324112A - Control method of free fall optimal braking time point of heavy hook - Google Patents
Control method of free fall optimal braking time point of heavy hook Download PDFInfo
- Publication number
- CN103324112A CN103324112A CN2013102821944A CN201310282194A CN103324112A CN 103324112 A CN103324112 A CN 103324112A CN 2013102821944 A CN2013102821944 A CN 2013102821944A CN 201310282194 A CN201310282194 A CN 201310282194A CN 103324112 A CN103324112 A CN 103324112A
- Authority
- CN
- China
- Prior art keywords
- heavy hook
- time point
- heavy
- hook
- falling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Earth Drilling (AREA)
Abstract
本发明涉及一种重钩自由下落最优制动时间点的控制方法,本方法是通过测定重钩的重力、体积,泥浆液密度,泥浆阻尼系数等参量,将测定的参数及钻进深度,输入到计算机中,同时将与控制重钩自由下落最优制动时间点相关的计算公式输入到计算机中,通过在计算机中编制控制重钩自由下落最优制动时间点的流程软件,由计算机软件快速计算,优化确定一个最优的制动时间点来保证重钩下落总时长最短。本发明适用于不同深度钻进,下放重钩效率高。
The invention relates to a control method for the optimal braking time point of the free fall of the heavy hook. The method is to measure the gravity, volume, mud liquid density, mud damping coefficient and other parameters of the heavy hook, and the measured parameters and drilling depth, Input it into the computer, and at the same time input the calculation formula related to the optimal braking time point of the free fall of the heavy hook into the computer. The software quickly calculates and optimizes to determine an optimal braking time point to ensure that the total time of the heavy hook falling is the shortest. The invention is suitable for drilling at different depths and has high efficiency in lowering the heavy hook.
Description
技术领域 technical field
本发明涉及一种重钩自由下落最优制动时间点的控制方法,具体地说是一种通过测定重钩在钻杆和泥浆液中运动时所受阻力的阻尼系数,及针对不同钻进深度,确定重钩从自由下放到开始制动的时间点及下放总时长的控制方法。The invention relates to a control method for the optimal braking time point of the free fall of the heavy hook, specifically a method for measuring the resistance damping coefficient of the heavy hook when it moves in the drill pipe and mud fluid, and for different drilling methods. Depth, to determine the control method for the time point from free release of the heavy hook to the start of braking and the total time of release.
背景技术 Background technique
金刚石绳索取芯钻进技术由于其钻进效率高、钻头寿命长、勘探周期短,被广泛应用在地质取芯找矿施工中,特别是深孔和复杂地层取芯钻探施工。Due to its high drilling efficiency, long bit life and short exploration period, diamond wireline core drilling technology is widely used in geological coring and prospecting construction, especially in deep hole and complex formation core drilling construction.
传统捞取岩心钻具的操作,从开始下放重钩到绞车制动这段时间凭经验而定,钻进深度不同,制动时间也不同,这对工作人员要求很高;重钩在泥浆中运动时,其所受的阻力与泥浆阻尼系数有关;泥浆液的阻尼系数与泥浆的密度、粘度,重钩的形状等参数有关,目前泥浆的阻尼系数在绳索取芯中还没有权威描述,因此重钩下放速度控制起来也依靠经验;如果控制不好,下放速度过大会对岩心筒造成冲击而破坏岩心筒,速度太小不能和岩心筒有效连接,影响钻井效率。目前,国内也公开了一些对重钩自由下落速度的控制技术,如恒功率自动调速收放绞车、测井绞车电传动控制系统,自由下落式卷扬机的速度控制方法及实施该方法的装置,这些技术的不足之处是:借助安装相关的装置或控制部件达到控制重钩的下落速度。在速度的控制中如果用相关装置或控制部件则使整套装备的性价比比较低。The operation of traditional fishing core drilling tools, from the start of lowering the heavy hook to the braking of the drawworks, depends on experience. The drilling depth is different, and the braking time is also different, which requires a lot of staff; the heavy hook moves in the mud , the resistance it suffers is related to the mud damping coefficient; the damping coefficient of the mud liquid is related to the density, viscosity of the mud, the shape of the heavy hook and other parameters. At present, there is no authoritative description of the damping coefficient of the mud in rope coring. The control of the lowering speed of the hook also depends on experience; if the control is not good, the lowering speed will cause impact on the core barrel and damage the core barrel, and the lower speed will not be effectively connected with the core barrel, which will affect the drilling efficiency. At present, some control technologies for the free-fall speed of heavy hooks have been disclosed in China, such as constant power automatic speed-adjusting retractable winches, electric drive control systems for well logging winches, speed control methods for free-fall hoists and devices for implementing the methods, The weak point of these technologies is: reach the falling speed of controlling heavy hook by means of installing relevant devices or control parts. In speed control, if related devices or control components are used, the cost performance of the whole set of equipment will be relatively low.
发明内容 Contents of the invention
本发明的目的是为解决现有技术的不足,而提供一种重钩自由下落最优制动时间点的控制方法,本方法不需要安装复杂的装置或控制部件,而是通过测定重钩在钻杆和泥浆液中运动时所受阻力的阻尼系数,及针对不同钻进深度,经过计算机编程,优化确定重钩自由下落最优制动时间点的控制方法。The purpose of the present invention is to solve the deficiencies of the prior art, and provide a control method for the optimal braking time point of the free fall of the heavy hook. This method does not need to install complicated devices or control components, but by measuring the The damping coefficient of the resistance encountered by the drill pipe and the mud fluid when moving, and the control method for determining the optimal braking time point of the free fall of the heavy hook through computer programming for different drilling depths.
为实现上述目的,本发明采用的技术方案是:提供一种重钩自由下落最优制动时间点的控制方法,按如下步骤操作:In order to achieve the above object, the technical solution adopted by the present invention is to provide a control method for the optimal braking time point of the free fall of the heavy hook, which is operated according to the following steps:
步骤1、测定重钩的重力、体积及泥浆液密度参量;
步骤2、在钻进现场测定泥浆阻尼系数,测定中使用的设备包括:绞车、张力传感器、固定轮系、钢丝绳、导向轮和重钩,所述的绞车通过钢丝绳顺序连接固定轮系、导向轮和重钩,固定轮系上安装有张力传感器;通过绞车输出两组重钩不同的下落速度,由张力传感器测出连接在重钩上的钢丝绳的张力,根据重钩所受的浮力、阻力、制动力和重力四力平衡,测得重钩在泥浆中所受阻力的阻尼系数,并记录数据;
步骤3、测定钻进深度,钻进深度使用标号法,对每一根下放的钻杆进行标号,通过当前下放钻杆的编号,计算钻进的深度;
步骤4、将上述步骤测量的参数输入到计算机中,同时将与控制重钩自由下落最优制动时间点相关的计算公式输入到计算机中,在计算机中编制重钩自由下落的控制流程,通过计算机流程软件快速计算确定重钩从自由下放到开始制动的最优时间点、制动力的值及下放总时长;所述的计算公式包括方程式⑦为
方程式⑧为
方程式⑨为
式中:m为重钩质量,V为下落速度,V1为制动前的速度,V2为制动后的速度, g为重力加速度,t为下落时间,k为泥浆阻尼系数,F为浮力,T为制动力,H为钻进深度。In the formula: m is the weight of the heavy hook, V is the falling speed, V1 is the speed before braking, V2 is the speed after braking, g is the acceleration of gravity, t is the falling time, k is the mud damping coefficient, F is Buoyancy, T is the braking force, and H is the drilling depth.
所述的在计算机中编制重钩自由下落的控制流程为:The described control process of programming heavy hook free fall in computer is:
在程序中先预设重钩下落总时长t3为1000s;循环次数为n,设初值为n=0;设制动时间点初值t1=0s;In the program, the total time t3 of the heavy hook falling is preset as 1000s; the number of cycles is n, and the initial value is set to n=0; the initial value of the braking time point is set to t1 =0s;
判断循环次数n是否小于程序中设定的最长循环次数,若否,则结束循环;Determine whether the number of cycles n is less than the longest number of cycles set in the program, if not, end the cycle;
若是,则输出满足方程式⑦、⑧和⑨的计算的下落总时间t2;If so, then output the total time t 2 of falling that satisfies the calculation of
判断计算的下落总时间t2数值是否大于循环次数n的数值,若否,则结束循环;Judging whether the total time t value of the calculation is greater than the value of the number of cycles n, if not, then end the cycle;
若是,则判断计算的下落总时间t2是否小于预设下落总时长t3,若否,则循环次数n加1重新循环;If yes, then judge whether the calculated total falling time t 2 is less than the preset total falling time t 3 , if not, add 1 to the number of cycles n to re-circulate;
若是,则把计算的下落总时间t2赋给预设下落总时长t3,循环次数n的数值赋给最优制动时间点t1,然后循环次数n加1重新循环;最终显示最优制动时间点t1。If so, assign the calculated total falling time t 2 to the preset total falling duration t 3 , assign the value of the number of cycles n to the optimal braking time point t 1 , and then add 1 to the number of cycles n to recycle; finally, the optimal Braking time point t 1 .
所述的计算机流程软件确定了开始制动的制动力的大小,在实际制动操作中应把计算机确定的制动力稍微调小,以确保重钩安全下落到井底。The computer process software determines the magnitude of the braking force at the start of braking, and the braking force determined by the computer should be slightly reduced in the actual braking operation to ensure that the heavy hook falls safely to the bottom of the well.
本发明的重钩自由下落最优制动时间点的控制方法与现有技术相比具有如下优点:Compared with the prior art, the control method for the optimal braking time point of the free fall of the heavy hook has the following advantages:
1.本发明的方法中泥浆阻尼系数是由钻进现场测量得到的,不是通过泥浆阻尼系数公式计算出,故本发明的泥浆阻尼系数更具有实用价值。1. In the method of the present invention, the mud damping coefficient is obtained by drilling on-site measurement, not calculated by the mud damping coefficient formula, so the mud damping coefficient of the present invention has more practical value.
2.本发明的方法不同于一般钻进作业凭经验下放重钩,而是通过计算机流程软件快速计算确定出最优制动时间点,然后人为地控制下放重钩的过程。本发明的方法可用于不同深度钻进,实现安全下放重钩,可节约工时和减小重钩下放速度过大对孔底钻具造成冲击的影响。2. The method of the present invention is different from lowering the heavy hook by experience in general drilling operations, but the optimal braking time point is determined through the computer flow software to quickly calculate, and then the process of lowering the heavy hook is artificially controlled. The method of the invention can be used for drilling at different depths to realize the safe lowering of the heavy hook, which can save man-hours and reduce the impact of the heavy hook lowering speed on the bottom-hole drilling tool.
3.本发明的方法不同于现有技术中借助安装相关的装置或控制部件实现对重钩自由下落的控制,因此本发明的方法简单,投资少,效果明显。3. The method of the present invention is different from the control of the free fall of the heavy hook by means of installation related devices or control components in the prior art, so the method of the present invention is simple, less investment and obvious effect.
附图说明 Description of drawings
图1为本发明重钩自由下落最优制动时间点的控制方法中测试泥浆阻尼系数原理图。Fig. 1 is a principle diagram of testing the mud damping coefficient in the control method of the optimal braking time point of the free fall of the heavy hook in the present invention.
图2为本发明中编制的重钩自由下落最优制动时间点的控制流程图。Fig. 2 is a control flow chart of the optimal braking time point for the free fall of the heavy hook compiled in the present invention.
图3为本发明测试100米钻井下放重钩的速度、加速度随位移、时间变化的曲线图。Fig. 3 is the graph that the present invention tests 100 meters of drilling down the heavy hook speed, the acceleration change with displacement, time.
图4为本发明测试1000米钻井下放重钩的速度、加速度随位移、时间变化的曲线图。Fig. 4 is a graph showing the variation of the speed and acceleration of the heavy hook in the 1000-meter well drilling with displacement and time according to the present invention.
上述图中: 1-绞车;2-张力传感器;3-固定轮系;4-钢丝绳;5-导向轮;6-井壁;7-泥浆;8-重钩;t1 -最优制动时间点;t2 -下落总时间;n- 循环次数;t3-最优总时长。 In the above figure: 1-winch; 2 - tension sensor; 3-fixed wheel train; 4-wire rope; 5-guiding wheel; 6-well wall; 7-mud; 8-heavy hook; point; t 2 - the total time of falling; n - the number of cycles; t 3 - the optimal total time.
具体实施方式 Detailed ways
下面结合附图和具体实施例对本发明的内容作进一步详细描述。The content of the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例1:提供一种重钩自由下落最优制动时间点的控制方法,按如下步骤操作:Embodiment 1: Provide a control method for the optimal braking time point of the free fall of the heavy hook, and operate according to the following steps:
步骤1、为了确定重钩自由下落最优制动时间点,还需要先测定重钩的重力mg、体积V,泥浆液密度ρ参量。
步骤2、在钻进现场测定泥浆阻尼系数,如图1所示,测定所用的设备包括:绞车1、张力传感器2、固定轮系3、钢丝绳4、导向轮5和重钩8。绞车1通过钢丝绳4顺序与固定轮系3、导向轮5和重钩8连接,固定轮系3上安装张力传感器2,井壁6内有泥浆7,重钩8在泥浆7中往井底下落。
本发明中泥浆阻尼系数测定的原理是:重钩8在泥浆7中下落,最终速度是匀速的,这时重钩8受力平衡;实际上泥浆阻尼系数与很多因素有关,如泥浆的粘度、密度、重物的形状等等,这使得对泥浆阻尼系数直接测定比较困难。在本方法中不考虑泥浆阻尼系数与其他因素有关,但可以确定重钩8在泥浆中运动与其速度有以下关系;The principle that mud damping coefficient is measured among the present invention is:
f =kvx ①f =
公式①中f为重钩在泥浆运动中受到的阻力,k为泥浆阻尼系数,v为重钩下落速度,x为速度上的幂指数。In
重钩8在泥浆中下落作匀速运动时,重钩8所受的重力mg,阻力f ,浮力F,制动力T,四个力平衡:When the
mg=f+F+T②mg=f+F+T②
其中F=ρgV排,f=kvx, ρ-泥浆液密度,—重力加速度,V排为重钩排水的体积。Where F=ρgV row , f=kv x , ρ-mud liquid density, —gravitational acceleration, row V is the volume of heavy hook drainage.
通过给定重钩两种不同下落速度, 就可分别测得对应钢丝绳的张力,就可以得到泥浆的阻尼系数。By setting two different falling speeds of the heavy hook, the tension of the corresponding wire rope can be measured respectively, and the damping coefficient of the mud can be obtained.
根据公式②则有:
联立方程组求解可得:The simultaneous equations can be solved to get:
根据公式③和④计算出泥浆的阻尼系数。为了使测量得到的泥浆阻尼系数更可靠,通过多次测量求平均值,则有:Calculate the damping coefficient of the mud according to
步骤3、测定钻进深度,在实际工程施工中,钻进深度使用标号法。对每一根下放的钻杆进行标号,只要读出当前要下放钻杆的编号,根据下面公式⑥即可获得钻进的深度。
H=l×n- l′× (n- l) ⑥H=l×n- l′× (n- l) ⑥
上式中:H为钻进深度(米),l为单根钻杆长度(米),n为当前下放钻杆标号,l′为钻杆旋合长度(米)。In the above formula: H is the drilling depth (m), l is the length of a single drill pipe (m), n is the label of the currently lowered drill pipe, and l′ is the screwing length of the drill pipe (m).
步骤4、将上述1~3步骤测量的参数输入到计算机中,同时将与控制重钩自由下落最优制动时间点相关的计算公式输入到计算机中,在计算机中编制重钩自由下落的控制流程,通过计算机流程软件快速计算确定重钩从自由下放到开始制动的最优时间点、制动力的值及下放总时长;由于重钩下落分为自由下落和制动两个阶段。在自由下落阶段,重钩在自身重力和泥浆阻力及浮力作用下,做加速度减小的加速运动,直至重钩匀速下落;制动阶段重钩在重力,泥浆阻力,浮力和制动力的作用下,做加速度减小的减速运动,直至重钩匀速下落。
在自由下落阶段,根据牛顿第二定律有:In the free fall phase, according to Newton's second law:
整理变形可得:Arranging the deformation can be obtained:
在制动阶段,根据牛顿第二定律有:In the braking phase, according to Newton's second law:
整理变形可得:Arranging the deformation can be obtained:
重钩在整个下落过程深度是已知的,v1是重钩在自由下落阶段的速度,v2是重钩在制动阶段的速度,从下放重钩到制动这段时间设为最优制动时间点t1,重钩下落到岩心筒底端的时间为下落总时间t2,则有以下这个关系:The depth of the heavy hook during the entire falling process is known, v 1 is the speed of the heavy hook in the free fall phase, v 2 is the speed of the heavy hook in the braking phase, and the time from lowering the heavy hook to braking is set to be optimal At the braking time point t 1 , the time for the heavy hook to fall to the bottom of the core barrel is the total time t 2 of the fall, and the relationship is as follows:
由于重钩在下落阶段,有公式⑦、⑧和⑨三个方程的约束,所以经过计算机多次n加1循环计算,给出了一系列制动时间点t1值,就可以得到一系列下落总时间t2值,从这一系列下落总时间t2值中选择出最小的下落总时间t2值对应的制动时间点t1值,就是重钩自由下落过程中最优的制动时间点。Since the heavy hook is in the falling stage, there are constraints of the three equations of
本发明中的重钩自由下落最优制动时间点的控制流程,参见图2,先预设重钩下落总时长t3=1000s,设初值循环次数n=0,设初值最优制动时间点t1=0s;判断循环次数n是否小于1000,若否,则结束循环,若是,则输出满足方程式⑦、⑧和⑨的计算的下落总时间t2;判断计算的下落总时间t2的数值是否大于循环次数n的数值,若否,则结束循环;若是,则判断计算的下落总时间t2是否小于预设下落总时长t3,若否,则循环次数n加1重新循环;若是,则把下落总时间t2赋给预设下落总时长t3,循环次数n的数值赋给最优制动时间点t1,然后循环次数n加1重新循环;所以经过计算机多次n加1循环计算,给出了一系列制动时间点t1值,就可以得到一系列计算的下落总时间t2值,从这一系列下落总时间t2值中选择出最小的下落总时间t2值对应的制动时间点t1值,就是重钩自由下落过程中最优的制动时间点。计算机显示最终最优制动时间点t1。 The control flow of the optimal braking time point of the free fall of the heavy hook in the present invention is shown in Fig. 2. First, the total time length of the heavy hook falling is preset t 3 =1000s, the number of cycles of the initial value is set to n=0, and the initial value is set to be optimal. Moving time point t 1 =0s; Judging whether the number of cycles n is less than 1000, if not, then ending the cycle, if so, then output the total falling time t 2 that satisfies the calculation of
本发明模拟钻进100米和钻进1000米情况下,编程程序显示重钩自由下落的速度和加速度随时间和位移变化的曲线如图3和4所示,计算机显示钻进100米,最优制动时间是16秒和钻进1000米最优制动时间是161秒。The present invention simulates drilling 100 meters and
实际工作时,把步骤1~3测得的数据输入到程序中,计算机就会很快显示出重钩下放的最优制动时间点;然后下放重钩并计时,达到最优制动时间点时,通过绞车输出制动力,直至重钩平稳的下放到井底。确定放好重钩后,绞车反转,提升钻具。In actual work, input the data measured in
重钩下放到井底要有一定的速度限制,不可过大亦不可过小,为了安全起见,可根据计算机流程确定的最优制动力的值,在实际操作时把制动力的值稍微调大一点,以确保重钩安全下落到井底。When the heavy hook is lowered to the bottom of the well, there must be a certain speed limit, neither too large nor too small. For the sake of safety, the value of the optimal braking force can be determined according to the computer process, and the value of the braking force can be slightly increased during actual operation. One point to ensure that the heavy hook falls safely to the bottom of the well.
本发明的方法不需要安装复杂的装置或控制部件,只需通过计算机流程软件快速计算确定出最优制动时间点。本方法可用于不同深度钻进,实现安全下放重钩,可节约工时和减小重钩下放速度过大对孔底钻具造成冲击影响。The method of the present invention does not need to install complicated devices or control components, and only needs to quickly calculate and determine the optimal braking time point through computer flow software. The method can be used for drilling at different depths to realize safe lowering of the heavy hook, which can save man-hours and reduce the impact of the excessive speed of lowering the heavy hook on the bottom-hole drilling tool.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310282194.4A CN103324112B (en) | 2013-07-05 | 2013-07-05 | Control method of free fall optimal braking time point of heavy hook |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310282194.4A CN103324112B (en) | 2013-07-05 | 2013-07-05 | Control method of free fall optimal braking time point of heavy hook |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103324112A true CN103324112A (en) | 2013-09-25 |
CN103324112B CN103324112B (en) | 2015-03-18 |
Family
ID=49192926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310282194.4A Expired - Fee Related CN103324112B (en) | 2013-07-05 | 2013-07-05 | Control method of free fall optimal braking time point of heavy hook |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103324112B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106370376A (en) * | 2016-08-29 | 2017-02-01 | 芜湖新泉汽车饰件系统有限公司 | Automobile instrument board impact resistance test device |
CN111427264A (en) * | 2020-03-15 | 2020-07-17 | 中国地质大学(武汉) | Neural self-adaptive fixed time control method of complex teleoperation technology |
CN112836406A (en) * | 2021-01-13 | 2021-05-25 | 中国地质大学(武汉) | Drilling process weight-on-bit modeling method considering uncertain damping coefficient |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090187320A1 (en) * | 2008-01-17 | 2009-07-23 | Gm Global Technology Operations, Inc. | Method and apparatus for predicting braking system friction |
CN101592925A (en) * | 2009-06-23 | 2009-12-02 | 中国海洋石油总公司 | A method for controlling the reasonable mud entry depth of the riser under the offshore drilling method |
CN201501743U (en) * | 2009-09-21 | 2010-06-09 | 宝山钢铁股份有限公司 | Control device for crane anti-skid hook |
-
2013
- 2013-07-05 CN CN201310282194.4A patent/CN103324112B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090187320A1 (en) * | 2008-01-17 | 2009-07-23 | Gm Global Technology Operations, Inc. | Method and apparatus for predicting braking system friction |
CN101592925A (en) * | 2009-06-23 | 2009-12-02 | 中国海洋石油总公司 | A method for controlling the reasonable mud entry depth of the riser under the offshore drilling method |
CN201501743U (en) * | 2009-09-21 | 2010-06-09 | 宝山钢铁股份有限公司 | Control device for crane anti-skid hook |
Non-Patent Citations (1)
Title |
---|
栗伟: "提升机制动系统监视装置的设计研究", 《煤矿机电》, no. 1, 15 February 2010 (2010-02-15) * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106370376A (en) * | 2016-08-29 | 2017-02-01 | 芜湖新泉汽车饰件系统有限公司 | Automobile instrument board impact resistance test device |
CN111427264A (en) * | 2020-03-15 | 2020-07-17 | 中国地质大学(武汉) | Neural self-adaptive fixed time control method of complex teleoperation technology |
CN111427264B (en) * | 2020-03-15 | 2021-12-14 | 中国地质大学(武汉) | A Neural Adaptive Fixed Time Control Method for Complex Telemanipulation Technology |
CN112836406A (en) * | 2021-01-13 | 2021-05-25 | 中国地质大学(武汉) | Drilling process weight-on-bit modeling method considering uncertain damping coefficient |
CN112836406B (en) * | 2021-01-13 | 2022-06-14 | 中国地质大学(武汉) | A WOB Modeling Method Considering Uncertain Damping Coefficients During Drilling |
Also Published As
Publication number | Publication date |
---|---|
CN103324112B (en) | 2015-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203502017U (en) | Full-automatic sliding type inclinometry system | |
CN104295288B (en) | petroleum drilling well depth measuring system and method | |
CN106644564B (en) | Deep-sea sediment gravity column sampling test bench and operation method | |
CN103324112B (en) | Control method of free fall optimal braking time point of heavy hook | |
CN102852511A (en) | Intelligent drilling control system and method for petroleum drilling machine | |
CN105675328A (en) | Test method for simulating mechanical properties of riser in deepwater drilling condition | |
CN202017480U (en) | Pipe tripping comprehensive monitor operating system | |
CN110441545A (en) | Direction of groundwater flow, flow velocity, sampling tester in karst hole drilling | |
CN112539052A (en) | Control device, method, medium and equipment for optimizing dropping speed of drilling tool | |
CN201607212U (en) | Drill hook displacement detection device | |
CN204344008U (en) | On a kind of oil-well rig tourist bus anti-on touch down and pound device | |
CN203672862U (en) | Self-moving type distribution and compaction device for similar simulation tests | |
CN104964836A (en) | Model test apparatus and method of simulating shield tunnel anti-buoyancy | |
CN104089773A (en) | Device and method for testing efficiency of transmission system of hose-reeling irrigation machine | |
CN204310610U (en) | A kind of cable pulling device based on servo control unit | |
CN204175287U (en) | Oil drilling well depth survey system | |
CN104614194A (en) | Indoor lunar rover-lunar soil interaction test equipment | |
CN104763409B (en) | A kind of oil downhole flow measurement apparatus and measuring method | |
CN111119805A (en) | Automatic oil well swabbing method, device and system | |
CN212620661U (en) | Blast hole aperture verifying attachment | |
CN103541728A (en) | Well leakage speed measuring device used for well drilling | |
CN204174601U (en) | A kind of portable soil property measuring instrument | |
CN102182441B (en) | Method for locating underground non-cable test system | |
CN204691760U (en) | A kind of coal bed gas open hole well sand face sniffer based on using screw pump mining | |
CN215865405U (en) | A device for observing the water level in a borehole |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150318 Termination date: 20180705 |