[go: up one dir, main page]

CN103311543A - Anode material hydroxyl iron phosphate for lithium ion batteries and preparation method thereof - Google Patents

Anode material hydroxyl iron phosphate for lithium ion batteries and preparation method thereof Download PDF

Info

Publication number
CN103311543A
CN103311543A CN2013101759950A CN201310175995A CN103311543A CN 103311543 A CN103311543 A CN 103311543A CN 2013101759950 A CN2013101759950 A CN 2013101759950A CN 201310175995 A CN201310175995 A CN 201310175995A CN 103311543 A CN103311543 A CN 103311543A
Authority
CN
China
Prior art keywords
lithium
ion battery
hydrothermal
lithium ion
hydroxyphosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101759950A
Other languages
Chinese (zh)
Inventor
张俊喜
张世明
徐硕炯
原徐杰
谈天
任平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN2013101759950A priority Critical patent/CN103311543A/en
Publication of CN103311543A publication Critical patent/CN103311543A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种锂离子电池正极材料羟基磷酸铁及其制备方法。所述锂离子电池所用的正极材料羟基磷酸铁,其分子式为Fe1.5(PO4)(OH),采用水热合成法制备,即通过调节不同的水热温度和pH获得具有不同形貌、不同电化学性能的Fe1.5(PO4)(OH)正极材料。特别是水热温度为150℃,pH值为2.5时合成所得的Fe1.5(PO4)(OH)正极材料在充放电倍率为0.1C和0.3C时,其首次放电比容量分别为176mAh/g,154mAh/g;60个循环以后比容量分别保持在165mAh/g,150mAh/g。其制备方法具有过程简单、操作方便,适于规模化生产等特点。

Figure 201310175995

The invention discloses a lithium ion battery cathode material hydroxy iron phosphate and a preparation method thereof. The anode material iron hydroxyphosphate used in the lithium-ion battery has a molecular formula of Fe 1.5 (PO 4 )(OH), which is prepared by a hydrothermal synthesis method, that is, by adjusting different hydrothermal temperatures and pHs to obtain different shapes and different Fe 1.5 (PO 4 )(OH) cathode material with electrochemical performance. Especially when the hydrothermal temperature is 150°C and the pH value is 2.5, the Fe 1.5 (PO 4 )(OH) positive electrode material synthesized at the charge and discharge rate of 0.1C and 0.3C has a specific capacity of 176mAh/g for the first time. , 154mAh/g; after 60 cycles, the specific capacity remained at 165mAh/g and 150mAh/g respectively. The preparation method has the characteristics of simple process, convenient operation, suitable for large-scale production and the like.

Figure 201310175995

Description

锂离子电池正极材料羟基磷酸铁及其制备方法Lithium-ion battery cathode material iron hydroxyphosphate and preparation method thereof

技术领域 technical field

    本发明涉及一种锂离子电池正极材料羟基磷酸铁及其制备方法。 The present invention relates to a lithium-ion battery cathode material, ferric hydroxyphosphate, and a preparation method thereof.

背景技术 Background technique

自1997年Goodenough[1]等报道了LiFePO4的可逆嵌脱锂特性以来,铁基锂离子电池正极材料以其原料来源更广泛、价格更低廉且无环境污染,环境友好、热稳定性好等优势受到了研究者的极大关注,是下一代锂离子蓄电池正极材料最有竞争力的者之一。 Since Goodenough [1] reported the reversible intercalation and delithiation characteristics of LiFePO 4 in 1997, iron-based lithium-ion battery cathode materials have wider sources of raw materials, lower prices, no environmental pollution, environmental friendliness, and good thermal stability. The advantages have attracted great attention of researchers, and it is one of the most competitive anode materials for next-generation lithium-ion batteries.

铁基锂离子电池正极材料实际上包括两种类型,一类是以LiFePO4为主要代表的含锂离子的正极材料,另一类则是不含锂离子的正极材料。以FePO4为例,在LiFePO4充电过程中,锂离子和相应的电子从材料中脱出,从而在材料中形成新的FePO4相,并形成相界面。在放电过程中,锂离子和相应的电子嵌入到材料中,从而在FePO4相外面形成新的LiFePO4相。因此,FePO4也可以作为锂离子电池正极材料[2,3]。 There are actually two types of cathode materials for iron-based lithium-ion batteries, one is lithium-ion-containing cathode materials represented by LiFePO 4 , and the other is lithium-ion-free cathode materials. Taking FePO4 as an example, during the LiFePO4 charging process, lithium ions and corresponding electrons are extracted from the material, thereby forming a new FePO4 phase in the material and forming a phase interface. During discharge, lithium ions and corresponding electrons intercalate into the material, thereby forming a new LiFePO 4 phase outside the FePO 4 phase. Therefore, FePO 4 can also be used as a cathode material for lithium-ion batteries [2,3].

羟基磷酸铁是广泛存在于自然界中的一种矿物质,已经被很多矿物学家广泛研究。Gheithi命名四方晶系的化合物Fe2-y(PO4)(OH)3y-2为“lipscombite” [4]。Whittinghan等人[5]报道了Fe2-yy(PO4)(OH)3y-2(H2O)3y-2 (□代表Fe空位)的合成、晶体结构、电化学性能以及磁性。 Ferric hydroxyphosphate is a mineral that widely exists in nature and has been extensively studied by many mineralogists. Gheithi named the tetragonal compound Fe 2-y (PO4)(OH) 3y-2 as "lipscombite" [4]. Whittinghan et al. [5] reported the synthesis, crystal structure, electrochemical properties and magnetic properties of Fe 2-yy (PO4) (OH) 3y-2 (H 2 O) 3y-2 (□ represents Fe vacancy).

羟基磷酸铁材料作为锂离子电池的正极材料有诸多优点:(1)合成工艺更简单,由于合成中没有Fe(II)组分,不需要气氛保护,省去了相应的设备和成本投入;(2)羟基磷酸铁材料的合成为二元合成体系,更方便合成条件的控制和优化;(3)由于采用Fe(III)化合物为原料,使合成原料来源更广。所有这些优点可使得羟基磷酸铁材料更具低成本、规模化生产的优势,可望成为LiFePO4锂离子电池正极材料的后起之秀。 Hydroxy iron phosphate material has many advantages as the cathode material of lithium-ion batteries: (1) The synthesis process is simpler, because there is no Fe(II) component in the synthesis, no atmosphere protection is required, and corresponding equipment and cost investment are saved; ( 2) The synthesis of iron hydroxyphosphate materials is a binary synthesis system, which is more convenient to control and optimize the synthesis conditions; (3) Since Fe(III) compounds are used as raw materials, the sources of synthetic raw materials are wider. All these advantages can make the iron hydroxyphosphate material have the advantages of low cost and large-scale production, and it is expected to become a rising star of LiFePO 4 lithium ion battery cathode material.

但目前尚未有关于分子式为Fe1.5(PO4)(OH)羟基磷酸铁材料的报道。 However, there is no report on iron hydroxyphosphate materials with the molecular formula Fe 1.5 (PO 4 )(OH) at present.

参考文献references

[1]、A. Padhi, K. Nanjundaswamy, J.B. Goodenough, Journal of the Electrochemical Society, 144 (1997) 1188-1194. [1], A. Padhi, K. Nanjundaswamy, J.B. Goodenough, Journal of the Electrochemical Society, 144 (1997) 1188-1194.

[2]、J. Allen, T. Jow, J. Wolfenstine, Journal of Solid State Electrochemistry, 12 (2008) 1031-1033. [2], J. Allen, T. Jow, J. Wolfenstine, Journal of Solid State Electrochemistry, 12 (2008) 1031-1033.

[3]、P. Reale, B. Scrosati, C. Delacourt, C. Wurm, M. Morcrette, C. Masquelier, Chemistry of materials, 15 (2003) 5051-5058. [3], P. Reale, B. Scrosati, C. Delacourt, C. Wurm, M. Morcrette, C. Masquelier, Chemistry of materials, 15 (2003) 5051-5058.

[4]、M. Lindberg, C. Christ, Acta Crystallographica, 12 (1959) 695-697. [4], M. Lindberg, C. Christ, Acta Crystallographica, 12 (1959) 695-697.

[5]、Y. Song, P.Y. Zavalij, N.A. Chernova, M.S. Whittingham, Chemistry of materials, 17 (2005) 1139-1147。 [5], Y. Song, P.Y. Zavalij, N.A. Chernova, M.S. Whittingham, Chemistry of materials, 17 (2005) 1139-1147.

发明内容 Contents of the invention

本发明的目的之一是提供一种分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料。 One of the objectives of the present invention is to provide a positive electrode material for a lithium-ion battery with a molecular formula of Fe 1.5 (PO 4 )(OH).

本发明目的之二是提供上述的一种分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料的制备方法。 The second object of the present invention is to provide a method for preparing the above-mentioned anode material for hydroxyiron phosphate lithium ion battery whose molecular formula is Fe 1.5 (PO 4 )(OH).

本发明的技术方案Technical scheme of the present invention

一种锂离子电池正极材料羟基磷酸铁,采用水热合成法制备,其分子式为Fe1.5(PO4)(OH); A lithium-ion battery cathode material, ferric hydroxyphosphate, is prepared by hydrothermal synthesis, and its molecular formula is Fe 1.5 (PO 4 )(OH);

所述的分子式为Fe1.5(PO4)(OH)的羟基磷酸铁是由FeO6八面体分别沿 [1 0 0] 和 [0 1 0]晶向分享共面而形成的层状链和通过FeO4 四面体分别与相邻的两个FeO6八面体分享一个顶点而将两个相邻的层状链连接起来层棒状晶体结构。 The described ferric hydroxyphosphate with the molecular formula Fe 1.5 (PO 4 )(OH) is a layered chain formed by sharing coplanar surfaces of FeO 6 octahedrons along the [1 0 0] and [0 1 0] crystal directions respectively and through The FeO 4 tetrahedron shares a vertex with two adjacent FeO 6 octahedrons respectively and connects the two adjacent layered chains in a layered rod-like crystal structure.

上述的一种锂离子电池正极材料,即分子式为Fe1.5(PO4)(OH)的羟基磷酸铁的合成方法,具体包括如下步骤: The above-mentioned anode material for a lithium ion battery, i.e. a method for synthesizing iron hydroxyphosphate with a molecular formula of Fe 1.5 (PO 4 ) (OH), specifically comprises the following steps:

(1)、在0.02mol/L 的Fe(NO33·9H2O水溶液中加入表面活化剂十二烷基苯磺酸钠0.0002mol/L,然后将0.02mol/L的NH4H2PO4水溶液倒入其中得到混合溶液,电磁搅拌均匀,用浓度为15%的氨水调节为pH为1.5~4.5,然后转移到水热反应釜中,控制温度为150~200℃进行水热反应24h得反应液; (1) Add the surfactant sodium dodecylbenzenesulfonate 0.0002mol/L to the 0.02mol/L Fe(NO 3 ) 3 ·9H 2 O aqueous solution, and then add 0.02mol/L NH 4 H 2 Pour the PO 4 aqueous solution into it to obtain a mixed solution, stir it uniformly with electromagnetic stirring, adjust the pH to 1.5-4.5 with 15% ammonia water, then transfer it to a hydrothermal reaction kettle, and control the temperature at 150-200°C for hydrothermal reaction for 24 hours get the reaction solution;

所述的混合溶液中0.02mol/L的Fe(NO33·9H2O水溶液、0.02mol/L的NH4H2PO4水溶液和表面活化剂十二烷基苯磺酸钠的量按Fe3+、PO4 3-和表面活化剂十二烷基苯磺酸钠的摩尔比计算,即Fe3+:PO4 3-:表面活化剂十二烷基苯磺酸钠为1:1:0.01; The amount of 0.02mol/L Fe(NO 3 ) 3 ·9H 2 O aqueous solution, 0.02mol/L NH 4 H 2 PO 4 aqueous solution and surfactant sodium dodecylbenzenesulfonate in the mixed solution is as follows: Calculate the molar ratio of Fe 3+ , PO 4 3- and surfactant sodium dodecylbenzene sulfonate, that is, Fe 3+ : PO 4 3- : surfactant sodium dodecylbenzene sulfonate is 1:1 : 0.01;

(2)、将步骤(1)所得的反应液通过离心分离,所得的滤饼加入无水乙醇清洗,最终所得的滤饼进行热处理得到分子式为Fe1.5(PO4)(OH)的锂离子电池正极材料羟基磷酸铁; (2) Centrifuge the reaction solution obtained in step (1), add absolute ethanol to the obtained filter cake, and heat-treat the final obtained filter cake to obtain a lithium-ion battery with the molecular formula Fe 1.5 (PO 4 )(OH) Positive electrode material iron hydroxyphosphate;

所述的热处理,即将滤饼置于石英管中,在管式炉中依次以120℃烧结1h,160℃烧结1h,400℃烧结3h,且每次升温过程控制升温速度为3℃/min; The heat treatment is to place the filter cake in a quartz tube, sinter in a tube furnace at 120°C for 1 hour, 160°C for 1 hour, and 400°C for 3 hours, and control the heating rate to 3°C/min during each heating process;

所述的热处理过程在鼓入空气的环境下进行。 The heat treatment process is carried out under the environment of blowing air.

本发明的有益效果 Beneficial effects of the present invention

本发明所提出的一种分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料。通过实验检测发现具有比铁基锂离子电池正极材料FePO4更高的比容量和比功率,特别是水热温度为150℃,pH值为2.5时合成所得的Fe1.5(PO4)(OH)正极材料在充放电倍率为0.1C,0.3C时,其首次放电比容量分别为176mAh/g,154mAh/g;60个循环以后比容量分别保持在165mAh/g,150mAh/g。因此本发明的一种分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料可以进一步提高锂离子电池的性能,使得锂离子电池在大型储能电池的应用成为可能。 The present invention proposes a positive electrode material for a lithium iron phosphate lithium ion battery with a molecular formula of Fe 1.5 (PO 4 )(OH). Through experimental detection, it is found that it has higher specific capacity and specific power than FePO 4 , the positive electrode material of iron-based lithium-ion batteries, especially Fe 1.5 (PO 4 )(OH) synthesized when the hydrothermal temperature is 150°C and the pH value is 2.5. When the charge and discharge rate of the positive electrode material is 0.1C and 0.3C, the first discharge specific capacity is 176mAh/g and 154mAh/g respectively; after 60 cycles, the specific capacity remains at 165mAh/g and 150mAh/g respectively. Therefore, a lithium iron phosphate lithium ion battery cathode material with a molecular formula of Fe 1.5 (PO 4 )(OH) in the present invention can further improve the performance of the lithium ion battery, making it possible for the lithium ion battery to be used in large-scale energy storage batteries.

进一步,本发明的分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料的制备,由于采用水热合成方法,因此具有制备过程简单、操作方便,适于规模化生产等特点。 Further, the preparation of the anode material of the hydroxyiron phosphate lithium ion battery whose molecular formula is Fe 1.5 (PO 4 ) (OH) of the present invention adopts the hydrothermal synthesis method, so the preparation process is simple, the operation is convenient, and it is suitable for large-scale production, etc. features.

附图说明 Description of drawings

图1、实施例1、2、3及4即pH值为2.5、水热温度分别为150℃、170℃、180℃和200℃下所得的Fe1.5(PO4)(OH)及标准的Fe1.5(PO4)(OH)的XRD图谱,其中A为标准的Fe1.5(PO4)(OH),B为150℃下所得的Fe1.5(PO4)(OH),C为170℃下所得的Fe1.5(PO4)(OH),D为180℃下所得的Fe1.5(PO4)(OH),E为200℃下所得的Fe1.5(PO4)(OH); Figure 1, Examples 1, 2, 3 and 4, that is, Fe 1.5 (PO 4 )(OH) and standard Fe obtained under the pH value of 2.5 and hydrothermal temperature of 150°C, 170°C, 180°C and 200°C respectively XRD pattern of 1.5 (PO 4 )(OH), where A is standard Fe 1.5 (PO 4 )(OH), B is Fe 1.5 (PO 4 )(OH) obtained at 150°C, and C is obtained at 170°C Fe 1.5 (PO 4 )(OH), D is Fe 1.5 (PO 4 )(OH) obtained at 180°C, E is Fe 1.5 (PO 4 )(OH) obtained at 200°C;

图2、实施例5、3、6、7即水热温度为180℃,pH值分别为1.5、2.5、3.5、4.5的条件下合成的Fe1.5(PO4)(OH)的XRD图谱,其中A为标准的Fe1.5(PO4)(OH),B为pH值为1.5下所得的Fe1.5(PO4)(OH),C为pH值为2.5下所得的Fe1.5(PO4)(OH),D为1 pH值为3.5下所得的Fe1.5(PO4)(OH),E为pH值为4.5下所得的Fe1.5(PO4)(OH); Fig. 2, Examples 5, 3, 6, and 7, that is, the hydrothermal temperature is 180°C, and the pH value is respectively 1.5, 2.5, 3.5, and 4.5 The XRD patterns of Fe 1.5 (PO 4 ) (OH) synthesized under the conditions, wherein A is the standard Fe 1.5 (PO 4 ) (OH), B is the Fe 1.5 (PO 4 ) (OH) obtained at a pH of 1.5, and C is the Fe 1.5 (PO 4 ) (OH) obtained at a pH of 2.5 ), D is the Fe 1.5 (PO 4 ) (OH) obtained at a pH value of 3.5, and E is the Fe 1.5 (PO 4 ) (OH) obtained at a pH value of 4.5;

图3、200℃水热条件合成的Fe1.5(PO4)(OH)的XRD图谱,其中A为标准的Fe1.5(PO4)(OH),B为200℃下所得的Fe1.5(PO4)(OH); Figure 3. XRD patterns of Fe 1.5 (PO 4 )(OH) synthesized under hydrothermal conditions at 200°C, where A is standard Fe 1.5 (PO 4 )(OH), and B is Fe 1.5 (PO 4 ) obtained at 200°C )(OH);

图4A、Fe1.5(PO4)(OH)样品沿[1 0 0]晶向的晶体结构图; Figure 4A, the crystal structure diagram of Fe 1.5 (PO 4 )(OH) sample along the [1 0 0] crystal direction;

图4B、Fe1.5(PO4)(OH)样品沿[0 1 0]晶向的晶体结构图; Figure 4B, the crystal structure diagram of Fe 1.5 (PO 4 )(OH) sample along the [0 1 0] crystal direction;

图5A1和图5A2、实施例1即pH值为2.5、水热温度为150℃下所得的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图; Figure 5A1 and Figure 5A2, the SEM images of Fe 1.5 (PO 4 )(OH) obtained under different magnifications in Example 1, that is, the pH value is 2.5, and the hydrothermal temperature is 150°C;

图5B1和图5B2、实施例2即pH值为2.5、水热温度为170℃下所得的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图, Figure 5B1 and Figure 5B2, the SEM images of Fe 1.5 (PO 4 )(OH) obtained under different magnifications in Example 2, namely, the pH value is 2.5, and the hydrothermal temperature is 170°C.

图5C1、图5C2和图5C3、实施例3即pH值为2.5、水热温度为180℃下所得的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图, Figure 5C1, Figure 5C2 and Figure 5C3, the SEM images of Fe 1.5 (PO 4 )(OH) obtained under different magnifications in Example 3, that is, the pH value is 2.5, and the hydrothermal temperature is 180°C.

图5D1和图5D2、实施例4即pH值为2.5、水热温度为200℃下所得的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图, Figure 5D1 and Figure 5D2, the SEM images of Fe 1.5 (PO 4 )(OH) obtained under different magnifications in Example 4, that is, the pH value is 2.5, and the hydrothermal temperature is 200°C.

图6A1和图6A2、实施例5即水热温度为180℃,pH值为1.5条件下合成Fe1.5(PO4)(OH)的在不同放大倍数下的SEM图谱; Figure 6A1 and Figure 6A2, Example 5, namely, the SEM spectra of Fe 1.5 (PO 4 )(OH) synthesized at different magnifications under the condition of hydrothermal temperature of 180°C and pH value of 1.5;

图6B1,图6B2和图6B3、实施例3即水热温度为180℃,pH值为2.5条件下合成在不同放大倍数下的Fe1.5(PO4)(OH)的SEM图谱; Fig. 6B1, Fig. 6B2 and Fig. 6B3, Example 3, that is, the SEM spectra of Fe 1.5 (PO 4 )(OH) synthesized at different magnifications under the condition of hydrothermal temperature of 180°C and pH value of 2.5;

图6C1、图6C2和图6C3、实施例6即水热温度为180℃,pH值为3.5条件下合成在不同放大倍数下的Fe1.5(PO4)(OH)的SEM图谱; Figure 6C1, Figure 6C2 and Figure 6C3, and Example 6 are the SEM spectra of Fe 1.5 (PO 4 )(OH) synthesized at different magnifications under the condition of hydrothermal temperature of 180°C and pH value of 3.5;

图6D1和图6D2、实施例7即水热温度为180℃,pH值为4.5的条件下合成的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图谱; Figure 6D1 and Figure 6D2, Example 7, namely, the SEM spectra of Fe 1.5 (PO 4 )(OH) synthesized under the conditions of hydrothermal temperature of 180°C and pH value of 4.5 at different magnifications;

图7、实施例1、2、3及4即pH值为2.5、水热温度分别为150℃、170℃、180℃和200℃下所得的Fe1.5(PO4)(OH)在0.1C时的首次充放电曲线; Fig. 7, Examples 1, 2, 3 and 4, that is, the pH value is 2.5, and the hydrothermal temperature is 150°C, 170°C, 180°C and 200°C respectively, Fe 1.5 (PO 4 )(OH) at 0.1C The first charge and discharge curve;

图8、实施例5、3、6、7即水热温度为180℃,pH值分别为1.5、2.5、3.5、4.5的条件下合成的Fe1.5(PO4)(OH)在0.1C时的首次充放电曲线; Figure 8, Examples 5, 3, 6, and 7, that is, the hydrothermal temperature is 180 ° C, and the pH value is 1.5, 2.5, 3.5, and 4.5, respectively. Synthesized Fe 1.5 (PO 4 ) (OH) at 0.1 ° C The first charge and discharge curve;

图9、实施例1、2、3及4即pH值为2.5、水热温度分别为150℃、170℃、180℃和200℃下所得的Fe1.5(PO4)(OH)在0.1C和0.3C时的循环性能曲线; Figure 9, Examples 1, 2, 3 and 4, that is, the pH value is 2.5, and the hydrothermal temperature is 150 ° C, 170 ° C, 180 ° C and 200 ° C respectively Fe 1.5 (PO 4 ) (OH) at 0.1 C and Cycle performance curve at 0.3C;

图10、实施例5、3、6、7即水热温度为180℃,pH值分别为1.5、2.5、3.5、4.5的条件下合成的Fe1.5(PO4)(OH)在0.1C和0.3C时的循环性能曲线。 Figure 10, Examples 5, 3, 6, and 7, that is, Fe 1.5 (PO 4 ) (OH) synthesized under the conditions of hydrothermal temperature of 180°C and pH values of 1.5, 2.5, 3.5, and 4.5 at 0.1C and 0.3 The cycle performance curve at C.

具体实施方式 Detailed ways

下面通过具体实施例并结合附图对本发明进一步阐述,但并不限制本发明。 The present invention will be further described below through specific embodiments in conjunction with the accompanying drawings, but the present invention is not limited.

正极材料的制备及电池的组装Preparation of cathode materials and assembly of batteries

正极材料的制备Preparation of cathode material

本发明采用CR2016型扣式电池测试材料的电化学性能。 The present invention adopts CR2016 button battery to test the electrochemical performance of the material.

按照质量比计算,即分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料:导电剂为75:17的比例混合后用行星球磨机球磨,加入适量酒精在转速为500rad/min球磨2h,然后放入120℃烘箱中干燥12h; Calculated according to the mass ratio, that is, the positive electrode material of the lithium iron phosphate lithium ion battery with the molecular formula Fe 1.5 (PO 4 )(OH): the conductive agent is mixed at a ratio of 75:17, then ball milled with a planetary ball mill, and an appropriate amount of alcohol is added at a speed of 500 rad/ min ball milling for 2 hours, and then dried in an oven at 120°C for 12 hours;

其中导电剂为炭黑:石墨按6:4的质量比配置。 The conductive agent is carbon black:graphite configured in a mass ratio of 6:4.

准确称取0.0150g球磨好的分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料与导电剂混合材料置于玛瑙研钵中,用微升注射器吸取粘结剂即聚四氟乙烯乳液加入其中,并加入无水乙醇稀释后研磨至干,使分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料与粘结剂充分均匀混合得到浆料; Accurately weigh 0.0150g of the ball-milled lithium iron phosphate lithium ion battery positive electrode material with the molecular formula Fe 1.5 (PO 4 )(OH) and the conductive agent mixture, put it in an agate mortar, absorb the binder with a microliter syringe, and then polymerize. Tetrafluoroethylene emulsion is added thereinto, diluted with absolute ethanol and then ground to dryness, so that the positive electrode material of lithium iron phosphate lithium ion battery with the molecular formula Fe 1.5 (PO 4 )(OH) and the binder are fully and uniformly mixed to obtain a slurry;

其中,羟基磷酸铁与导电剂混合材料:聚四氟乙烯乳液按质量比为92:8加入,无水乙醇加入量按质量比计算,即粘结剂:无水乙醇为1:100的比例。 Among them, the mixed material of ferric hydroxyphosphate and conductive agent: polytetrafluoroethylene emulsion is added at a mass ratio of 92:8, and the amount of absolute ethanol is calculated at a mass ratio, that is, the ratio of binder: absolute ethanol is 1:100.

将上述研磨后所得的浆料均匀地涂于不锈钢网上,放入120℃烘箱中干燥4h后在压力为2Mpa下压实,持续3min,然后放入120℃烘箱中再干燥4h,即得到羟基磷酸铁正极片,准备组装电池。 Apply the above-mentioned slurry obtained after grinding evenly on a stainless steel mesh, put it in a 120°C oven to dry for 4 hours, then compact it under a pressure of 2Mpa for 3 minutes, then put it in a 120°C oven and dry it for 4 hours to obtain hydroxyphosphoric acid Iron positive sheet, ready to assemble the battery.

电池的组装battery assembly

以金属锂为负极,以上述所得的羟基磷酸铁正极片为正极,以多孔聚丙烯隔膜Celgard2400为隔膜,电解液为:DMC:EMC:EC(1:1:1)(W/W)LiPF6浓度1.0M(张家港市国泰华荣化工新材料有限公司),正负极电池壳为LIR2016组装成扣式电池,组装过程在充满保护气氛(Ar气)的手套箱(德国M. Braun公司O2<0.1ppm,H2O<0.1ppm)手套箱中完成。 Lithium metal is used as the negative electrode, the iron hydroxyphosphate positive electrode sheet obtained above is used as the positive electrode, the porous polypropylene diaphragm Celgard2400 is used as the diaphragm, and the electrolyte is: DMC:EMC:EC(1:1:1)(W/W)LiPF 6 The concentration is 1.0M (Zhangjiagang Guotai Huarong Chemical New Material Co., Ltd.), the positive and negative battery shells are LIR2016 and assembled into button batteries. The assembly process is carried out in a glove box filled with protective atmosphere (Ar gas) (M. <0.1ppm, H 2 O<0.1ppm) in a glove box.

电池组装完毕后放入干燥器中静止3h以上再进行电化学测试。 After the battery is assembled, put it in a desiccator and let it rest for more than 3 hours before performing the electrochemical test.

材料的物理表征Physical Characterization of Materials

    采用德国(Bruker,D8 Advance)XRD粉末衍射仪对本发明所得的分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料进行物相分析,测试条件:Cu=1.54056?,电压40KV,电流200mA,步长0.02°,扫描速度5°/min,扫描范围10°~90°。 A German (Bruker, D8 Advance) XRD powder diffractometer was used to analyze the phase of the anode material of lithium iron phosphate lithium ion battery with the molecular formula Fe 1.5 (PO 4 )(OH) obtained in the present invention. The test conditions: Cu =1.54056?, The voltage is 40KV, the current is 200mA, the step size is 0.02°, the scanning speed is 5°/min, and the scanning range is 10°~90°.

采用日本SU70场发射扫描电镜FE-SEM观察本发明所得的分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料的形貌及大小。 The morphology and size of the lithium iron phosphate lithium ion battery cathode material with the molecular formula Fe 1.5 (PO 4 )(OH) obtained in the present invention were observed by using a Japanese SU70 field emission scanning electron microscope FE-SEM.

恒流充放电测试Constant current charge and discharge test

本发明所得的分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料的恒流充放电性能测试在具有程序控制的电化学测试设备中进行,本发明采用的是LAND电池测试系统CT2001A。 The obtained molecular formula of the present invention is Fe 1.5 (PO 4 ) (OH) The constant current charge and discharge performance test of the lithium iron phosphate lithium ion battery positive electrode material is carried out in the electrochemical test equipment with program control, and what the present invention uses is a LAND battery Test system CT2001A.

电池的充放电测试条件是在室温(25℃)下进行的,充放电倍率为0.1C和0.3C,测试电压范围为2.0~4.0V。 The charge and discharge test conditions of the battery are carried out at room temperature (25°C), the charge and discharge rates are 0.1C and 0.3C, and the test voltage range is 2.0-4.0V.

实施例1Example 1

一种分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料的合成方法,具体包括如下步骤: A method for synthesizing the anode material of a lithium iron phosphate lithium ion battery with a molecular formula of Fe 1.5 (PO 4 ) (OH), specifically comprising the following steps:

(1)、在50ml的0.02 mol/L 的Fe(NO33·9H2O水溶液中加入0.348g表面活化剂十二烷基苯磺酸钠,然后将50ml的0.02mol/L的NH4H2PO4水溶液倒入其中得到混合溶液,电磁搅拌均匀,用浓度为15%的氨水调节为pH为2.5,然后将转移到水热反应釜中,控制温度为150℃进行水热合成反应24h得反应液; (1) Add 0.348g of surfactant sodium dodecylbenzenesulfonate to 50 ml of 0.02 mol/L Fe(NO 3 ) 3 ·9H 2 O aqueous solution, and then add 50 ml of 0.02 mol/L NH Pour the 4 H 2 PO 4 aqueous solution into it to obtain a mixed solution, stir it evenly, adjust the pH to 2.5 with 15% ammonia water, then transfer it to a hydrothermal reaction kettle, and control the temperature at 150°C for hydrothermal synthesis reaction 24h to get the reaction solution;

(2)、将步骤(1)所得的反应液转移到离心管中,控制转速为5000rpm离心10min,然后将上层清夜倒掉,加入无水乙醇清洗,过滤、重复上述的无水乙醇清洗、过滤过程3次,所得的滤饼置于石英管中,在通空气的条件下,在管式炉中依次以120℃烧结1h,160℃烧结1h,400℃烧结3h,且每次升温过程控制升温速度为3℃/min,在空气条件下,进行热处理可去除硝铵类杂质及结晶水,得到分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料。 (2) Transfer the reaction solution obtained in step (1) to a centrifuge tube, centrifuge at a controlled speed of 5000 rpm for 10 minutes, then pour off the upper clear layer, add absolute ethanol to wash, filter, repeat the above-mentioned absolute ethanol washing, Filtration process 3 times, the obtained filter cake is placed in a quartz tube, and under the condition of ventilation, it is sintered at 120°C for 1h, 160°C for 1h, and 400°C for 3h in a tube furnace, and the heating process is controlled each time. The heating rate is 3°C/min. Under air conditions, heat treatment can remove ammonium nitrate impurities and crystal water, and obtain the positive electrode material of lithium iron phosphate lithium ion battery with the molecular formula of Fe 1.5 (PO 4 )(OH).

实施例2Example 2

一种分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料的合成方法,具体包括如下步骤: A method for synthesizing the anode material of a lithium iron phosphate lithium ion battery with a molecular formula of Fe 1.5 (PO 4 ) (OH), specifically comprising the following steps:

(1)、在50ml的0.02mol/L 的Fe(NO33·9H2O水溶液中加入0.348g表面活化剂十二烷基苯磺酸钠,然后将50ml的0.02mol/L 的NH4H2PO4水溶液倒入其中得到混合溶液,电磁搅拌均匀,用浓度为15%的氨水调节为pH为2.5,然后转移到水热反应釜中,控制温度为170℃进行水热合成反应24h得反应液; (1) Add 0.348g of surfactant sodium dodecylbenzenesulfonate to 50ml of 0.02mol/L Fe(NO 3 ) 3 ·9H 2 O aqueous solution, then add 50ml of 0.02mol/L NH 4 Pour the H 2 PO 4 aqueous solution into it to obtain a mixed solution, stir it uniformly with electromagnetic, adjust the pH to 2.5 with 15% ammonia water, then transfer it to a hydrothermal reaction kettle, and control the temperature at 170°C for hydrothermal synthesis reaction for 24 hours to obtain The reaction solution;

(2)、将步骤(1)所得的反应液转移到离心管中,控制转速为5000rpm离心10min,然后将上层清夜倒掉,加入无水乙醇清洗、过滤,重复上述的无水乙醇清洗、过滤过程3次,所得的滤饼置于石英管中,在通空气的条件下,在管式炉中依次以120℃烧结1h,160℃烧结1h,400℃烧结3h,且每次升温过程控制升温速度为3℃/min,在空气条件下,进行热处理可去除硝铵类杂质及结晶水,得到分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料。 (2) Transfer the reaction solution obtained in step (1) to a centrifuge tube, centrifuge at a controlled speed of 5000rpm for 10 minutes, then pour off the upper clear layer, add absolute ethanol to wash and filter, and repeat the above-mentioned absolute ethanol wash and filter Process 3 times, the obtained filter cake is placed in a quartz tube, and under the condition of ventilation, it is sintered in a tube furnace at 120°C for 1h, 160°C for 1h, and 400°C for 3h, and the temperature rise is controlled during each heating process The speed is 3°C/min, and under air conditions, heat treatment can remove ammonium nitrate impurities and crystal water, and obtain the positive electrode material of lithium iron phosphate lithium ion battery with the molecular formula of Fe 1.5 (PO 4 )(OH).

实施例3Example 3

一种分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料的合成方法,具体包括如下步骤: A method for synthesizing the anode material of a lithium iron phosphate lithium ion battery with a molecular formula of Fe 1.5 (PO 4 ) (OH), specifically comprising the following steps:

(1)、在50ml的0.02mol/L 的Fe(NO33·9H2O水溶液中加入0.348g表面活化剂十二烷基苯磺酸钠,然后将50ml的0.02mol/L 的NH4H2PO4水溶液倒入其中得到混合溶液,电磁搅拌均匀,用浓度为15%的氨水调节为pH为2.5,然后转移到水热反应釜中,控制温度为180℃进行水热合成反应24h得反应液; (1) Add 0.348g of surfactant sodium dodecylbenzenesulfonate to 50ml of 0.02mol/L Fe(NO 3 ) 3 ·9H 2 O aqueous solution, then add 50ml of 0.02mol/L NH 4 Pour the H 2 PO 4 aqueous solution into it to obtain a mixed solution, stir it uniformly with electromagnetic, adjust the pH to 2.5 with 15% ammonia water, then transfer it to a hydrothermal reaction kettle, and control the temperature at 180°C for hydrothermal synthesis reaction for 24 hours to obtain The reaction solution;

(2)、将步骤(1)所得的反应液转移到离心管中,控制转速为5000rpm离心10min,然后将上层清夜倒掉,加入无水乙醇清洗、过滤,重复上述的无水乙醇清洗、过滤过程3次,所得的滤饼置于石英管中,在通空气的条件下,在管式炉中依次以120℃烧结1h,160℃烧结1h,400℃烧结3h,且每次升温过程控制升温速度为3℃/min,在空气条件下,进行热处理可去除硝铵类杂质及结晶水,得到分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料。 (2) Transfer the reaction solution obtained in step (1) to a centrifuge tube, centrifuge at a controlled speed of 5000rpm for 10 minutes, then pour off the upper clear layer, add absolute ethanol to wash and filter, and repeat the above-mentioned absolute ethanol wash and filter Process 3 times, the obtained filter cake is placed in a quartz tube, and under the condition of ventilation, it is sintered in a tube furnace at 120°C for 1h, 160°C for 1h, and 400°C for 3h, and the temperature rise is controlled during each heating process The speed is 3°C/min, and under air conditions, heat treatment can remove ammonium nitrate impurities and crystal water, and obtain the positive electrode material of lithium iron phosphate lithium ion battery with the molecular formula of Fe 1.5 (PO 4 )(OH).

实施例4Example 4

一种分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料的合成方法,具体包括如下步骤: A method for synthesizing the anode material of a lithium iron phosphate lithium ion battery with a molecular formula of Fe 1.5 (PO 4 ) (OH), specifically comprising the following steps:

(1)、在50ml的0.02mol/L 的Fe(NO33·9H2O水溶液中加入0.348g表面活化剂十二烷基苯磺酸钠,然后将50ml的0.02mol/L 的NH4H2PO4水溶液倒入其中得到混合溶液,电磁搅拌均匀,用浓度为15%的氨水调节为pH为2.5,然后转移到水热反应釜中,控制温度为200℃进行水热合成反应24h得反应液; (1) Add 0.348g of surfactant sodium dodecylbenzenesulfonate to 50ml of 0.02mol/L Fe(NO 3 ) 3 ·9H 2 O aqueous solution, then add 50ml of 0.02mol/L NH 4 Pour the H 2 PO 4 aqueous solution into it to obtain a mixed solution, stir it uniformly with electromagnetic, adjust the pH to 2.5 with 15% ammonia water, then transfer it to a hydrothermal reaction kettle, and control the temperature at 200°C for hydrothermal synthesis reaction for 24 hours to obtain The reaction solution;

(2)、将步骤(1)所得的反应液转移到离心管中,控制转速为5000rpm离心10min,然后将上层清夜倒掉,加入无水乙醇清洗、过滤,重复上述的无水乙醇清洗、过滤过程3次,所得的滤饼置于石英管中,在通空气的条件下,在管式炉中依次以120℃烧结1h,160℃烧结1h,400℃烧结3h,且每次升温过程控制升温速度为3℃/min,在空气条件下,进行热处理可去除硝铵类杂质及结晶水,得到分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料。 (2) Transfer the reaction solution obtained in step (1) to a centrifuge tube, centrifuge at a controlled speed of 5000rpm for 10 minutes, then pour off the upper clear layer, add absolute ethanol to wash and filter, and repeat the above-mentioned absolute ethanol wash and filter Process 3 times, the obtained filter cake is placed in a quartz tube, and under the condition of ventilation, it is sintered in a tube furnace at 120°C for 1h, 160°C for 1h, and 400°C for 3h, and the temperature rise is controlled during each heating process The speed is 3°C/min, and under air conditions, heat treatment can remove ammonium nitrate impurities and crystal water, and obtain the positive electrode material of lithium iron phosphate lithium ion battery with the molecular formula of Fe 1.5 (PO 4 )(OH).

实施例5Example 5

一种分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料的合成方法,具体包括如下步骤: A method for synthesizing the anode material of a lithium iron phosphate lithium ion battery with a molecular formula of Fe 1.5 (PO 4 ) (OH), specifically comprising the following steps:

(1)、在50ml的0.02mol/L 的Fe(NO33·9H2O水溶液中加入0.348g表面活化剂十二烷基苯磺酸钠,然后将50ml的0.02mol/L 的NH4H2PO4水溶液倒入其中得到混合溶液,电磁搅拌均匀,用浓度为15%的氨水调节为pH为1.5,然后将反应物转移到水热反应釜中,控制温度为180℃进行水热合成反应24h得反应液; (1) Add 0.348g of surfactant sodium dodecylbenzenesulfonate to 50ml of 0.02mol/L Fe(NO 3 ) 3 ·9H 2 O aqueous solution, then add 50ml of 0.02mol/L NH 4 Pour the H 2 PO 4 aqueous solution into it to obtain a mixed solution, stir it uniformly with electromagnetic, adjust the pH to 1.5 with 15% ammonia water, then transfer the reactant to a hydrothermal reaction kettle, and control the temperature at 180°C for hydrothermal synthesis React 24h to get the reaction solution;

(2)、将步骤(1)所得的反应液转移到离心管中,控制转速为5000rpm离心10min,然后将上层清夜倒掉,加入无水乙醇清洗、过滤,重复上述的无水乙醇清洗、过滤过程3次,所得的滤饼置于石英管中,在通空气的条件下,在管式炉中依次以120℃烧结1h,160℃烧结1h,400℃烧结3h,且每次升温过程控制升温速度为3℃/min,在空气条件下,进行热处理可去除硝铵类杂质及结晶水,得到分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料。 (2) Transfer the reaction solution obtained in step (1) to a centrifuge tube, centrifuge at a controlled speed of 5000rpm for 10 minutes, then pour off the upper clear layer, add absolute ethanol to wash and filter, and repeat the above-mentioned absolute ethanol wash and filter Process 3 times, the obtained filter cake is placed in a quartz tube, and under the condition of ventilation, it is sintered in a tube furnace at 120°C for 1h, 160°C for 1h, and 400°C for 3h, and the temperature rise is controlled during each heating process The speed is 3°C/min, and under air conditions, heat treatment can remove ammonium nitrate impurities and crystal water, and obtain the positive electrode material of lithium iron phosphate lithium ion battery with the molecular formula of Fe 1.5 (PO 4 )(OH).

实施例6Example 6

一种分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料的合成方法,具体包括如下步骤: A method for synthesizing the anode material of a lithium iron phosphate lithium ion battery with a molecular formula of Fe 1.5 (PO 4 ) (OH), specifically comprising the following steps:

(1)、在50ml的0.02mol/L 的Fe(NO33·9H2O水溶液中加入0.348g表面活化剂十二烷基苯磺酸钠,然后将50ml的0.02mol/L 的NH4H2PO4水溶液倒入其中得到混合溶液,电磁搅拌均匀,用浓度为15%的氨水调节为pH为3.5,然后转移到水热反应釜中,控制温度为180℃进行水热合成反应24h得反应液; (1) Add 0.348g of surfactant sodium dodecylbenzenesulfonate to 50ml of 0.02mol/L Fe(NO 3 ) 3 ·9H 2 O aqueous solution, then add 50ml of 0.02mol/L NH 4 Pour the H 2 PO 4 aqueous solution into it to obtain a mixed solution, stir it uniformly with electromagnetic, adjust the pH to 3.5 with 15% ammonia water, then transfer it to a hydrothermal reaction kettle, and control the temperature at 180°C for hydrothermal synthesis reaction for 24 hours to obtain The reaction solution;

(2)、将步骤(1)所得的反应液转移到离心管中,控制转速为5000rpm离心10min,然后将上层清夜倒掉,加入无水乙醇清洗、过滤,重复上述的无水乙醇清洗、过滤过程3次,所得的滤饼置于石英管中,在通空气的条件下,在管式炉中依次以120℃烧结1h,160℃烧结1h,400℃烧结3h,且每次升温过程控制升温速度为3℃/min,在空气条件下,进行热处理可去除硝铵类杂质及结晶水,得到分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料。 (2) Transfer the reaction solution obtained in step (1) to a centrifuge tube, centrifuge at a controlled speed of 5000rpm for 10 minutes, then pour off the upper clear layer, add absolute ethanol to wash and filter, and repeat the above-mentioned absolute ethanol wash and filter Process 3 times, the obtained filter cake is placed in a quartz tube, and under the condition of ventilation, it is sintered in a tube furnace at 120°C for 1h, 160°C for 1h, and 400°C for 3h, and the temperature rise is controlled during each heating process The speed is 3°C/min, and under air conditions, heat treatment can remove ammonium nitrate impurities and crystal water, and obtain the positive electrode material of lithium iron phosphate lithium ion battery with the molecular formula of Fe 1.5 (PO 4 )(OH).

实施例7Example 7

一种分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料的合成方法,具体包括如下步骤: A method for synthesizing the anode material of a lithium iron phosphate lithium ion battery with a molecular formula of Fe 1.5 (PO 4 ) (OH), specifically comprising the following steps:

(1)、在50ml的0.02mol/L 的Fe(NO33·9H2O水溶液中加入0.348g表面活化剂十二烷基苯磺酸钠,然后将50ml的0.02mol/L 的NH4H2PO4水溶液倒入其中得到混合溶液,电磁搅拌均匀,用浓度为15%的氨水调节为pH为4.5,然后转移到水热反应釜中,控制温度为180℃进行水热合成反应24h得反应液; (1) Add 0.348g of surfactant sodium dodecylbenzenesulfonate to 50ml of 0.02mol/L Fe(NO 3 ) 3 ·9H 2 O aqueous solution, then add 50ml of 0.02mol/L NH 4 Pour the H 2 PO 4 aqueous solution into it to obtain a mixed solution, stir it uniformly with electromagnetic, adjust the pH to 4.5 with 15% ammonia water, then transfer it to a hydrothermal reaction kettle, and control the temperature at 180°C for hydrothermal synthesis reaction for 24 hours to obtain The reaction solution;

(2)、将步骤(1)所得的反应液转移到离心管中,控制转速为5000rpm离心10min,然后将上层清夜倒掉,加入无水乙醇清洗、过滤,重复上述的无水乙醇清洗、过滤过程3次,所得的滤饼置于石英管中,在通空气的条件下,在管式炉中依次以120℃烧结1h,160℃烧结1h,400℃烧结3h,且每次升温过程控制升温速度为3℃/min,在空气条件下,进行热处理可去除硝铵类杂质及结晶水,得到分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料。 (2) Transfer the reaction solution obtained in step (1) to a centrifuge tube, centrifuge at a controlled speed of 5000rpm for 10 minutes, then pour off the upper clear layer, add absolute ethanol to wash and filter, and repeat the above-mentioned absolute ethanol wash and filter Process 3 times, the obtained filter cake is placed in a quartz tube, and under the condition of ventilation, it is sintered in a tube furnace at 120°C for 1h, 160°C for 1h, and 400°C for 3h, and the temperature rise is controlled during each heating process The speed is 3°C/min, and under air conditions, heat treatment can remove ammonium nitrate impurities and crystal water, and obtain the positive electrode material of lithium iron phosphate lithium ion battery with the molecular formula of Fe 1.5 (PO 4 )(OH).

对本发明所得的FeTo the Fe obtained by the present invention 1.51.5 (PO(PO 44 )(OH) 的XRD进行表征)(OH) XRD for characterization

采用德国(Bruker,D8 Advance)XRD粉末衍射仪对上述实施例1~7所得的分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料分别进行物相分析,分析过程所采用的测试条件:Cu=1.54056?,电压40KV,电流200mA,步长0.02°,扫描速度5°/min,扫描范围10°~90°。 The phase analysis of the lithium iron phosphate lithium ion battery cathode materials with the molecular formula Fe 1.5 (PO 4 )(OH) obtained in the above-mentioned Examples 1 to 7 was carried out by using an XRD powder diffractometer in Germany (Bruker, D8 Advance). The test conditions used: Cu =1.54056?, voltage 40KV, current 200mA, step size 0.02°, scanning speed 5°/min, scanning range 10°~90°.

图1分别是实施例1、2、3及4,即pH值为2.5、水热温度分别为150℃、170℃、180℃和200℃下所得的Fe1.5(PO4)(OH)的XRD 图谱,图2分别是实施例5、3、6、7即水热温度为180℃,pH值分别为1.5、2.5、3.5、4.5的条件下合成的Fe1.5(PO4)(OH) 的XRD 图谱。对照JCPDS卡可知,各条件下合成的Fe1.5(PO4)(OH)的各主要衍射峰与Fe1.5(PO4)(OH)的标准图谱峰相对应,说明其具有较高的纯度和结晶性,晶胞参数为 a=5.28?, c=12.83?。 Figure 1 is the XRD of Fe 1.5 (PO 4 )(OH) obtained in Examples 1, 2, 3 and 4 respectively, that is, the pH value is 2.5, and the hydrothermal temperature is 150°C, 170°C, 180°C and 200°C respectively Spectrum, Figure 2 is the XRD of Fe 1.5 (PO 4 )(OH) synthesized under the conditions of Examples 5, 3, 6, and 7 respectively, that is, the hydrothermal temperature is 180°C and the pH value is 1.5, 2.5, 3.5, and 4.5. Atlas. According to the JCPDS card, the main diffraction peaks of Fe 1.5 (PO 4 ) (OH) synthesized under various conditions correspond to the standard spectrum peaks of Fe 1.5 (PO 4 ) (OH), indicating that it has high purity and crystallinity. properties, the unit cell parameters are a=5.28?, c=12.83?.

从图1可以看出,(1 0 3)晶面的峰强度随着水热温度的升高而升高,说明其结晶性也随着水热的温度升高而升高。然而,(4 0 0)晶面的峰强度开始时随着水热温度的升高而升高,当水热温度达到200℃时,其峰值又减小。这可能是由于晶体沿(4 0 0)晶面的生长开始是随着水热温度的升高而增加,而当温度进一步升高时,(4 0 0)晶面的生长被抑制。 It can be seen from Figure 1 that the peak intensity of the (1 0 3) crystal plane increases with the increase of hydrothermal temperature, indicating that its crystallinity also increases with the increase of hydrothermal temperature. However, the peak intensity of the (4 0 0) crystal plane initially increases with the increase of hydrothermal temperature, and its peak decreases again when the hydrothermal temperature reaches 200 °C. This may be due to the fact that the growth of crystals along the (4 0 0) crystal plane initially increases with the increase of hydrothermal temperature, and when the temperature further increases, the growth of the (4 0 0) crystal plane is inhibited.

从图2可以看出,(1 0 3)晶面的峰强度随着pH值的升高而升高,说明其结晶性也随着pH值升高而升高。然而,(4 0 0)晶面的峰强度开始时随着pH值的升高而升高,pH值达到4.5时,其峰值又减小。这可能是由于晶体沿(4 0 0)晶面的生长开始是随着pH值的升高而增加的,而当pH值进一步增加时,(4 0 0)晶面的生长被抑制。 It can be seen from Figure 2 that the peak intensity of the (1 0 3) crystal plane increases with the increase of pH value, indicating that its crystallinity also increases with the increase of pH value. However, the peak intensity of the (4 0 0) crystal plane initially increased with the increase of pH value, and its peak value decreased when the pH value reached 4.5. This may be due to the fact that the growth of crystals along the (4 0 0) crystal plane starts to increase with the increase of pH value, and when the pH value further increases, the growth of (4 0 0) crystal plane is inhibited.

图3是实施例4在水热温度为200℃条件下合成的Fe1.5(PO4)(OH)的XRD 图谱。从图3可以看出,其主要成分仍然是Fe1.5(PO4)(OH)。然而,XRD图谱上显示,其存在其它杂相。这是由于水热温度过高,使得Fe1.5(PO4)(OH)发生了晶型及结构的转变。 Fig. 3 is the XRD spectrum of Fe 1.5 (PO 4 )(OH) synthesized in Example 4 under the condition of hydrothermal temperature of 200°C. It can be seen from Figure 3 that its main component is still Fe 1.5 (PO 4 )(OH). However, the XRD pattern shows that there are other impurity phases. This is because the hydrothermal temperature is too high, so that Fe 1.5 (PO 4 ) (OH) undergoes crystal form and structure transformation.

通过materials studio5.0获得Fe1.5(PO4)(OH)样品多角度的晶体结构图如图4A,图4B所示。 The multi-angle crystal structure diagram of Fe 1.5 (PO 4 )(OH) sample obtained by materials studio5.0 is shown in Fig. 4A and Fig. 4B.

图4A、图4B分别是Fe1.5(PO4)(OH)沿[1 0 0] 和 [0 1 0]晶向的晶体结构图。从图4A、图4B中可以看出本发明所得的分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料是由 FeO6八面体分别沿 [1 0 0] 和 [0 1 0]晶向分享共面而形成的层状链和通过FeO4 四面体分别与相邻的两个 FeO6八面体分享一个顶点而将两个相邻的层状链连接起来层棒状晶体结构。 Figure 4A and Figure 4B are the crystal structure diagrams of Fe 1.5 (PO 4 )(OH) along the [1 0 0] and [0 1 0] crystal directions, respectively. It can be seen from Fig. 4A and Fig. 4B that the anode material of lithium iron phosphate lithium ion battery with the molecular formula Fe 1.5 (PO 4 ) (OH) obtained in the present invention is composed of FeO 6 octahedra along [1 0 0] and [0 1 0] Layered chains formed by sharing coplanar crystal directions and two adjacent layered chains connected by FeO 4 tetrahedron sharing a vertex with adjacent two FeO 6 octahedrons respectively. .

对本发明所得的FeTo the Fe obtained by the present invention 1.51.5 (PO(PO 44 )(OH)的SEM 进行表征)(OH) SEM for characterization

采用日本SU70场发射扫描电镜FE-SEM观察实施例1~7所得的Fe 1.5 (PO 4 )(OH)样品的形貌及大小 The morphology and size of the Fe 1.5 (PO 4 ) (OH) samples obtained in Examples 1 to 7 were observed using a Japanese SU70 field emission scanning electron microscope FE-SEM

图5A1、图5A2是实施例1即pH值为2.5、水热温度为150℃下所得的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图,从图5A1可知,当水热温度为150℃,其颗粒形貌为球形,且颗粒大小分布均匀,从图5A2可以看出,颗粒表面相对粗糙,可以看出是由无数的纳米颗粒二次团聚而成的,形状规则,粒径大小为1μm左右。 Fig. 5A1 and Fig. 5A2 are SEM images of Fe 1.5 (PO 4 ) (OH) obtained under different magnifications in Example 1, that is, the pH value is 2.5 and the hydrothermal temperature is 150°C. It can be seen from Fig. 5A1 that when hydrothermal The temperature is 150°C, the shape of the particles is spherical, and the particle size distribution is uniform. It can be seen from Figure 5A2 that the surface of the particles is relatively rough, and it can be seen that it is formed by the secondary aggregation of numerous nanoparticles. The diameter is about 1 μm.

图5B1、图5B2是实施例2即pH值为2.5、水热温度为170℃下所得的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图,从图5B1可以看出,其形貌为立方块状,其颗粒大小分布均匀,从图5B2可以看出,颗粒表面光滑,形状规则,粒径大小为4μm左右。 Figure 5B1 and Figure 5B2 are the SEM images of Fe 1.5 (PO 4 )(OH) obtained under different magnifications in Example 2, that is, the pH value is 2.5 and the hydrothermal temperature is 170°C. It can be seen from Figure 5B1 that the The morphology is cube-like, and the particle size distribution is uniform. It can be seen from Figure 5B2 that the particle surface is smooth, the shape is regular, and the particle size is about 4 μm.

图5C1、图5C2、图5C3是实施例3即pH值为2.5、水热温度为180℃下所得的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图,从图5C1可以看出,其颗粒大小分布均匀,从图5C2和图5C3可以看出,颗粒主要有两种类似形貌,一种是由六个具有四棱的臂连接而成的树枝状结构,另一种是由多于六个具有四棱的臂组成的枝状结构,颗粒表面光滑致密,形状规则,粒径大小为10μm左右。 Figure 5C1, Figure 5C2, and Figure 5C3 are SEM images of Fe 1.5 (PO 4 )(OH) obtained under different magnifications in Example 3, that is, the pH value is 2.5 and the hydrothermal temperature is 180°C. It can be seen from Figure 5C1 It can be seen from Figure 5C2 and Figure 5C3 that the particles have two similar shapes, one is a dendritic structure connected by six arms with four edges, and the other is a A dendritic structure composed of more than six arms with four edges, the surface of the particles is smooth and compact, regular in shape, and the particle size is about 10 μm.

图5D1、图5D2是实施例4即pH值为2.5、水热温度为200℃下所得的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图,从图5D1可以看出其颗粒形貌为十字叉状,颗粒大小分布均匀,从图5D2可以看出,其是由4个长约5μm,直径约2μm的臂组成的十字叉,中间空心,表面致密光滑,不规则,颗粒大小约为12μm。 Figure 5D1 and Figure 5D2 are SEM images of Fe 1.5 (PO 4 )(OH) obtained in Example 4 at a pH value of 2.5 and a hydrothermal temperature of 200°C at different magnifications, and its particles can be seen from Figure 5D1 The shape is cross-shaped, and the particle size distribution is uniform. From Figure 5D2, it can be seen that it is a cross composed of four arms with a length of about 5 μm and a diameter of about 2 μm. The middle is hollow, and the surface is dense and smooth. About 12 μm.

图6A1、图6A2是实施例5即水热温度为180℃,pH值为1.5条件下合成的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图谱,从图6A1可知,pH值为1.5时,其颗粒形貌为球形,且颗粒大小分布均匀,从图6A2可以看出,颗粒表面相对粗糙,其是由无数的纳米颗粒二次团聚而成的,形状规则,粒径大小为4μm左右。 Figure 6A1 and Figure 6A2 are the SEM spectra of Fe 1.5 (PO 4 )(OH) synthesized under different magnifications in Example 5, that is, the hydrothermal temperature is 180°C and the pH value is 1.5. It can be seen from Figure 6A1 that the pH value When the particle size is 1.5, the particle shape is spherical, and the particle size distribution is uniform. It can be seen from Figure 6A2 that the particle surface is relatively rough, which is formed by secondary agglomeration of countless nanoparticles, with regular shape and particle size of About 4μm.

图6B1、图6B2,图6B3是实施例3即水热温度为180℃,pH值为2.5条件下合成的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图谱,从图6B1可以看出,其颗粒大小分布均匀,从图6B2可以看出,颗粒主要有两种类似形貌,一种是由六个具有四棱的臂连接而成的枝状结构,图6B3是由多于六个具有四棱的臂组成的枝状结构,颗粒表面光滑致密,形状规则,粒径大小为10μm左右。 Figure 6B1, Figure 6B2, and Figure 6B3 are the SEM spectra of Fe 1.5 (PO 4 )(OH) synthesized under different magnifications in Example 3, that is, the hydrothermal temperature is 180°C and the pH value is 2.5, and it can be seen from Figure 6B1 It can be seen that the particle size distribution is uniform. It can be seen from Figure 6B2 that the particles mainly have two similar shapes, one is a dendritic structure connected by six arms with four edges, and Figure 6B3 is composed of more than It is a dendritic structure composed of six four-sided arms. The surface of the particles is smooth and dense, regular in shape, and the particle size is about 10 μm.

图6C1、图6C2、图6C3是实施例6即水热温度为180℃,pH值为3.5条件下合成的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图谱,从图6C1可知,其颗粒大小分布均匀,从图6C2可以看出,其臂的数量增加,颗粒更大,为15μm左右,从图6C3可以看出表面更为致密。 Figure 6C1, Figure 6C2, and Figure 6C3 are the SEM spectra of Fe 1.5 (PO 4 )(OH) synthesized in Example 6 under the condition of hydrothermal temperature of 180°C and pH value of 3.5 at different magnifications, as can be seen from Figure 6C1 , the particle size distribution is uniform, as can be seen from Figure 6C2, the number of arms increases, and the particles are larger, about 15 μm. It can be seen from Figure 6C3 that the surface is denser.

图6D1、图6D2是实施例7即水热温度为180℃,pH值为4.5的条件下合成的Fe1.5(PO4)(OH)在不同放大倍数下的SEM图谱,从图6D1可以得出,其颗粒形貌是由4只长约15μm,直径约4μm带锯齿状的臂组成的枝叶状结构,从图6D2可以看出,其表面致密,不规则,其臂的侧面长出大量的枝,形成锯齿状的臂,颗粒大小约为30μm,其枝叶状臂数量相对pH为2.5,3.5时减少,这可能是由于pH继续升高到4.5时,抑制了晶体在(4 0 0)晶面的生长所致,结论可由图2可证实。 Figure 6D1 and Figure 6D2 are the SEM spectra of Fe 1.5 (PO 4 )(OH) synthesized in Example 7 under the conditions of hydrothermal temperature of 180°C and pH value of 4.5 at different magnifications. It can be drawn from Figure 6D1 , its particle morphology is a leafy structure composed of four serrated arms with a length of about 15 μm and a diameter of about 4 μm. It can be seen from Figure 6D2 that the surface is dense and irregular, and a large number of branches grow on the side of the arms , forming jagged arms, the particle size is about 30 μm, and the number of leaf-like arms is relative to pH 2.5, which decreases at 3.5, which may be due to the fact that when the pH continues to rise to 4.5, the crystals are inhibited on the (4 0 0) crystal plane Due to the growth, the conclusion can be confirmed by Figure 2.

综上所述不同的pH值对Fe1.5(PO4)(OH)正极材料的颗粒形貌和大小有重大的影响。 In summary, different pH values have a significant impact on the particle morphology and size of Fe 1.5 (PO 4 ) (OH) cathode materials.

图7是实施例1、2、3及4即pH值为2.5、水热温度分别为150℃、170℃、180℃和200℃下所得的Fe1.5(PO4)(OH)在0.1C时的首次充放电曲线图。从图7可以看出,实施例1、2、3及4所得的Fe1.5(PO4)(OH)Fe1.5(PO4)(OH)正极材料都具有平稳的充放电平台。实施例1即水热温度为150℃,颗粒形貌为球形,粒径大小为1μm的正极材料具有优越的电化学性能,其首次放电比容量达176mAh/g,而在相同的倍率下,实施例2即水热温度为170℃(立方块状,4μm),实施例3即水热温度为180℃(树枝状,10μm),实施例4即水热温度为200℃(十字叉状,12μm)的首次放电比容量分别为156mAh/g,142mAh/g和135mAh/g。此外,200℃时放电比容量较小,其原因除颗粒形貌和大小之外,还可能是由于存在其他非活性的杂相,其结论可由图3所证实。 Fig. 7 is the Fe 1.5 (PO 4 ) (OH) obtained under the conditions of Examples 1, 2, 3 and 4, that is, the pH value is 2.5, and the hydrothermal temperature is 150°C, 170°C, 180°C and 200°C respectively at 0.1C The first charge and discharge curve. It can be seen from FIG. 7 that the Fe 1.5 (PO 4 )(OH)Fe 1.5 (PO 4 )(OH) cathode materials obtained in Examples 1, 2, 3 and 4 all have a stable charge-discharge platform. Example 1, that is, the hydrothermal temperature is 150°C, the particle shape is spherical, and the positive electrode material with a particle size of 1 μm has excellent electrochemical performance, and its first discharge specific capacity reaches 176mAh/g, and under the same rate, the implementation In Example 2, the hydrothermal temperature is 170°C (cubic, 4 μm), in Example 3, the hydrothermal temperature is 180°C (dendritic, 10 μm), in Example 4, the hydrothermal temperature is 200°C (cross-shaped, 12 μm) ) of the first discharge specific capacity were 156mAh/g, 142mAh/g and 135mAh/g. In addition, the discharge specific capacity is small at 200°C, which may be due to the existence of other inactive impurity phases in addition to the particle shape and size. The conclusion can be confirmed by Figure 3.

图8是实施例5、3、6、7即水热温度为180℃,pH值分别为1.5、2.5、3.5、4.5的条件下合成的Fe1.5(PO4)(OH)在0.1C时的首次充放电曲线图。从图8中可以看出,实施例5即pH值为1.5时,颗粒形貌为球形,粒径大小为4μm的正极材料具有优越的电化学性能,其首次放电比容量达154mAh/g,而在相同的倍率下,实施例3即pH为2.5(树枝状,10μm),实施例6即pH3.5(树枝状,15μm),实施例7即pH4.5(树枝叶状,30μm)的首次放电比容量分别为135mAh/g, 120mAh/g,100mAh/g。 Figure 8 is the temperature of Fe 1.5 (PO 4 )(OH) synthesized under the conditions of Examples 5, 3, 6, and 7, that is, the hydrothermal temperature is 180°C, and the pH value is 1.5, 2.5, 3.5, and 4.5 at 0.1°C. The first charge and discharge curve. As can be seen from Figure 8, in Example 5, that is, when the pH value is 1.5, the particle morphology is spherical, and the positive electrode material with a particle size of 4 μm has excellent electrochemical performance, and its initial discharge specific capacity reaches 154mAh/g, while Under the same magnification, Example 3 is pH 2.5 (dendritic, 10 μm), Example 6 is pH 3.5 (dendritic, 15 μm), and Example 7 is pH 4.5 (dendritic, 30 μm). The specific discharge capacities are 135mAh/g, 120mAh/g, and 100mAh/g respectively.

结果表明,实施例1即水热温度为150℃,pH值分别为2.5条件下所得的球形形貌和小尺寸颗粒的分子式为Fe1.5(PO4)(OH)的锂离子电池正极材料具有优越的充放电性能,这是由于球形颗粒和小尺寸颗粒材料具有较大的比表面积,为电化学反应提供了较大的反应界面。此外,球形颗粒和小尺寸可以缩短锂离子的扩散途径,有利于提高了锂离子在正极材料中的扩散动力学性能。 The results show that embodiment 1, that is, the hydrothermal temperature is 150 ° C, and the pH value is 2.5. The spherical shape and the molecular formula of the small-sized particles obtained under the conditions are respectively Fe 1.5 (PO 4 ) (OH) Lithium-ion battery cathode material has superior Excellent charge and discharge performance, this is due to the larger specific surface area of spherical particles and small-sized particle materials, which provide a larger reaction interface for electrochemical reactions. In addition, the spherical particles and small size can shorten the diffusion path of lithium ions, which is beneficial to improve the diffusion kinetics of lithium ions in cathode materials.

对本发明所得的FeTo the Fe obtained by the present invention 1.51.5 (PO(PO 44 )(OH)锂离子电池正极材料的循环性能测试)(OH) Cycle Performance Test of Lithium-ion Battery Cathode Materials

采用LAND电池测试系统CT2001A对实施例1~7所得的Fe 1.5 (PO 4 )(OH) 锂离子电池正极材料组装而成的电池进行充放电测试,电池的充放电测试是在室温(25℃)下进行的,充放电倍率为0.1C和0.3C,测试电压范围为2.0~4.0V,结果见图9、图10。 Use the LAND battery test system CT2001A to conduct charge and discharge tests on the batteries assembled from the Fe 1.5 (PO 4 )(OH) lithium ion battery cathode materials obtained in Examples 1 to 7. The charge and discharge tests of the batteries are at room temperature (25°C) The charge and discharge rates are 0.1C and 0.3C, and the test voltage range is 2.0-4.0V. The results are shown in Figure 9 and Figure 10.

图9是实施例1、2、3及4即pH值为2.5、水热温度分别为150℃、170℃、180℃和200℃下所得的Fe1.5(PO4)(OH)在0.1C和0.3C时的循环性能曲线图,从图9可以看出,实施例1即pH值为2.5、水热温度为150℃时合成的Fe1.5(PO4)(OH)样品在放电倍率为0.1C时,首次放电比容量为176mAh/g,60个循环之后,其放电比容量仍然保持在165mAh/g;在放电倍率为0.3C时,首次放电比容量为159mAh/g,40次循环之后仍然保持在150mAh/g。其它水热温度时,其循环性能和倍率性能也较好。 Fig. 9 is the Fe 1.5 (PO 4 ) (OH) obtained at 0.1C and The cycle performance curve at 0.3C, as can be seen from Figure 9, the Fe 1.5 (PO 4 )(OH) sample synthesized at the discharge rate of 0.1C When the discharge rate is 0.3C, the first discharge specific capacity is 176mAh/g, and after 60 cycles, the discharge specific capacity is still maintained at 165mAh/g; when the discharge rate is 0.3C, the first discharge specific capacity is 159mAh/g, and it still remains after 40 cycles. At 150mAh/g. At other hydrothermal temperatures, its cycle performance and rate performance are also better.

图10是实施例5、3、6、7即水热温度为180℃,pH值分别为1.5、2.5、3.5、4.5的条件下合成的Fe1.5(PO4)(OH)在0.1C和0.3C时的循环性能曲线图,从图10可以看出,实施例5即pH值为1.5时合成的Fe1.5(PO4)(OH)样品在放电倍率为0.1C时,首次放电比容量为154mAh/g,60个循环之后,其放电比容量仍然保持在150mAh/g;在放电倍率为0.3C时,首次放电比容量为142mAh/g,20次循环之后仍然保持在135mAh/g。其它pH条件下,其循环性能和倍率性能也较好。由此表明本发明的分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料具有良好的循环性能和倍率性能。 Figure 10 shows the Fe 1.5 (PO 4 )(OH) synthesized under the conditions of Examples 5, 3, 6, and 7, that is, the hydrothermal temperature is 180°C and the pH value is 1.5, 2.5, 3.5, and 4.5 at 0.1°C and 0.3°C respectively. The cycle performance curve at C, as can be seen from Figure 10, the Fe 1.5 (PO 4 ) (OH) sample synthesized when the pH value of Example 5 is 1.5, when the discharge rate is 0.1C, the first discharge specific capacity is 154mAh /g, after 60 cycles, its discharge specific capacity still remains at 150mAh/g; when the discharge rate is 0.3C, the first discharge specific capacity is 142mAh/g, and after 20 cycles it still remains at 135mAh/g. Under other pH conditions, its cycle performance and rate performance are also good. This shows that the anode material of lithium iron phosphate lithium ion battery with the molecular formula Fe 1.5 (PO 4 )(OH) of the present invention has good cycle performance and rate performance.

综上所述,本发明通过水热合成法获得分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料,通过调节水热合成温度和pH值可以得到各种特殊形貌的锂离子电池正极材料。特别是球形形貌和小尺寸颗粒的Fe1.5(PO4)(OH)锂离子电池正极材料具有优越的充放电性能,这是由于球形颗粒和小颗粒材料具有较大的比表面积,为电化学反应提供了较大的反应界面,此外,球形颗粒和小尺寸可以缩短锂离子的扩散途径,有利于提高锂离子在正极材料中的扩散动力学性能。 In summary, the present invention obtains the anode material of hydroxyiron phosphate lithium ion battery with molecular formula Fe 1.5 (PO 4 )(OH) by hydrothermal synthesis method, and various special shapes can be obtained by adjusting the hydrothermal synthesis temperature and pH value cathode material for lithium-ion batteries. In particular, Fe 1.5 (PO 4 ) (OH) lithium-ion battery anode materials with spherical morphology and small-sized particles have superior charge and discharge performance, which is due to the large specific surface area of spherical particles and small particle materials, which is an electrochemical The reaction provides a larger reaction interface. In addition, the spherical particles and small size can shorten the diffusion pathway of lithium ions, which is beneficial to improve the diffusion kinetics of lithium ions in cathode materials.

循环性能测试证实,分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料具有良好的循环性能和倍率性能。因此,本发明的分子式为Fe1.5(PO4)(OH)的羟基磷酸铁锂离子电池正极材料是一种具有优越电化学性能的新型锂离子电池正极材料,具有可观的应用前景。 The cycle performance test confirmed that the lithium iron phosphate lithium ion battery cathode material with the molecular formula Fe 1.5 (PO 4 )(OH) has good cycle performance and rate performance. Therefore, the hydroxyiron phosphate lithium ion battery anode material with the molecular formula Fe 1.5 (PO 4 )(OH) of the present invention is a novel lithium ion battery anode material with superior electrochemical performance and has considerable application prospects.

上述内容仅为本发明构思下的基本说明,而依据本发明的技术方案所作的任何等效变换,均应属于本发明的保护范围。 The above content is only a basic description of the concept of the present invention, and any equivalent transformation made according to the technical solution of the present invention shall belong to the protection scope of the present invention.

Claims (4)

1.一种锂离子电池正极材料羟基磷酸铁,其特征在于所述的锂离子电池正极材料为分子式为Fe1.5(PO4)(OH)的羟基磷酸铁,采用水热合成法制备。 1. An anode material for a lithium ion battery, iron hydroxyphosphate, is characterized in that the anode material for a lithium ion battery is iron hydroxyphosphate with a molecular formula of Fe 1.5 (PO 4 ) (OH), prepared by a hydrothermal synthesis method. 2.如权利要求1所述的一种锂离子电池正极材料羟基磷酸铁的合成方法,其特征在于具体包括如下步骤: 2. the synthetic method of a kind of lithium-ion battery cathode material iron hydroxyphosphate as claimed in claim 1, is characterized in that specifically comprising the steps: (1)、在0.02mol/L的Fe(NO33·9H2O水溶液中加入表面活化剂十二烷基苯磺酸钠,然后将0.02mol/L的NH4H2PO4水溶液倒入其中得到混合溶液,搅拌均匀,用浓度为15%的氨水调节为pH为1.5~4.5,然后转入到水热反应釜中,控制温度为150~200℃进行水热合成反应24h得到反应液; (1) Add surfactant sodium dodecylbenzenesulfonate to 0.02mol/L Fe(NO 3 ) 3 ·9H 2 O aqueous solution, then pour 0.02mol/L NH 4 H 2 PO 4 aqueous solution Put it into it to get a mixed solution, stir evenly, adjust the pH to 1.5-4.5 with 15% ammonia water, then transfer it to a hydrothermal reaction kettle, control the temperature at 150-200°C for hydrothermal synthesis reaction for 24 hours to obtain a reaction solution ; 所述的混合溶液中0.02mol/L的Fe(NO33·9H2O水溶液、0.02mol/L的NH4H2PO4水溶液和表面活化剂十二烷基苯磺酸钠的量按Fe3+、PO4 3-和表面活化剂十二烷基苯磺酸钠的摩尔比计算,即Fe3+:PO4 3-:表面活化剂十二烷基苯磺酸钠为1:1:0.01; The amount of 0.02mol/L Fe(NO 3 ) 3 ·9H 2 O aqueous solution, 0.02mol/L NH 4 H 2 PO 4 aqueous solution and surfactant sodium dodecylbenzenesulfonate in the mixed solution is as follows: Calculate the molar ratio of Fe 3+ , PO 4 3- and surfactant sodium dodecylbenzene sulfonate, that is, Fe 3+ : PO 4 3- : surfactant sodium dodecylbenzene sulfonate is 1:1 : 0.01; (2)、将步骤(1)所得的反应液通过离心分离并加入无水乙醇清洗,最终将所得的滤饼在空气存在的条件下进行热处理,得到锂离子电池正极材料羟基磷酸铁。 (2) The reaction liquid obtained in step (1) is separated by centrifugation and washed by adding absolute ethanol, and finally the obtained filter cake is heat-treated in the presence of air to obtain ferric hydroxyphosphate, a positive electrode material for lithium-ion batteries. 3.如权利要求2所述的一种锂离子电池正极材料羟基磷酸铁的合成方法,其特征在于步骤(1)中所述的水热合成温度为150℃,pH值为2.5。 3 . The method for synthesizing ferric hydroxyphosphate, a cathode material for lithium-ion batteries, according to claim 2 , wherein the hydrothermal synthesis temperature in step (1) is 150° C., and the pH value is 2.5. 4.如权利要求3所述的一种锂离子电池正极材料羟基磷酸铁的合成方法,其特征在于步骤(2)中所述的热处理,即将滤饼置于石英管中,在管式炉中,在空气存在的条件下依次以120℃烧结1h,160℃烧结1h,400℃烧结3h,且每次升温过程控制升温速度为3℃/min。 4. A method for synthesizing iron hydroxyphosphate, a positive electrode material for lithium-ion batteries, as claimed in claim 3, characterized in that the heat treatment described in step (2) is to place the filter cake in a quartz tube and heat it in a tube furnace , in the presence of air, sequentially sintering at 120°C for 1h, 160°C for 1h, and 400°C for 3h, and control the heating rate at 3°C/min during each heating process.
CN2013101759950A 2012-12-10 2013-05-14 Anode material hydroxyl iron phosphate for lithium ion batteries and preparation method thereof Pending CN103311543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101759950A CN103311543A (en) 2012-12-10 2013-05-14 Anode material hydroxyl iron phosphate for lithium ion batteries and preparation method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210524637 2012-12-10
CN201210524637.1 2012-12-10
CN2013101759950A CN103311543A (en) 2012-12-10 2013-05-14 Anode material hydroxyl iron phosphate for lithium ion batteries and preparation method thereof

Publications (1)

Publication Number Publication Date
CN103311543A true CN103311543A (en) 2013-09-18

Family

ID=49136521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101759950A Pending CN103311543A (en) 2012-12-10 2013-05-14 Anode material hydroxyl iron phosphate for lithium ion batteries and preparation method thereof

Country Status (1)

Country Link
CN (1) CN103311543A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024073A (en) * 2015-08-10 2015-11-04 河南理工大学 Lithium-ion battery cathode material iron hydroxyphosphate and preparation method thereof
CN105236375A (en) * 2015-09-17 2016-01-13 上海第二工业大学 Method for preparing hydrated hydroxyl ferric phosphates by utilizing waste phosphatization slag for extraction
CN105406035A (en) * 2015-10-30 2016-03-16 上海应用技术学院 Preparation method for regular octahedron-shaped iron phosphate/graphene oxide precursor
CN105417517A (en) * 2015-11-03 2016-03-23 山东精工电子科技有限公司 Tremelliform ferric phosphate and preparation method therefor
CN105470504A (en) * 2014-09-29 2016-04-06 住友大阪水泥股份有限公司 Cathode material, method for producing cathode materials, cathode, and lithium ion battery
CN106340645A (en) * 2016-09-08 2017-01-18 西北工业大学 Preparation method of hydroxyl iron phosphate-based battery material with novel morphology
CN106517130A (en) * 2016-12-27 2017-03-22 合肥学院 Method for preparing hydroxyl iron phosphate micro-nano powder material by using phosphorus-rich biomass
CN106848280A (en) * 2017-01-17 2017-06-13 陕西科技大学 A kind of preparation method of the hollow octahedra anode material for lithium-ion batteries of graphene-supported di iron
CN109494367A (en) * 2018-11-28 2019-03-19 河南科技学院 Di iron lithium/grapheme composite positive electrode material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403501A (en) * 2011-11-24 2012-04-04 上海电力学院 Spherical FePO of lithium ion battery anode material4Preparation method of (1)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403501A (en) * 2011-11-24 2012-04-04 上海电力学院 Spherical FePO of lithium ion battery anode material4Preparation method of (1)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王忠丽: "铁基磷酸盐正极材料的研究", 《中国博士学位论文全文数据库工程科技II辑》, no. 8, 15 August 2009 (2009-08-15), pages 042 - 35 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470504A (en) * 2014-09-29 2016-04-06 住友大阪水泥股份有限公司 Cathode material, method for producing cathode materials, cathode, and lithium ion battery
CN105024073B (en) * 2015-08-10 2017-08-25 河南理工大学 Lithium ion battery anode material hydroxyl ferric phosphate and preparation method thereof
CN105024073A (en) * 2015-08-10 2015-11-04 河南理工大学 Lithium-ion battery cathode material iron hydroxyphosphate and preparation method thereof
CN105236375A (en) * 2015-09-17 2016-01-13 上海第二工业大学 Method for preparing hydrated hydroxyl ferric phosphates by utilizing waste phosphatization slag for extraction
CN105406035A (en) * 2015-10-30 2016-03-16 上海应用技术学院 Preparation method for regular octahedron-shaped iron phosphate/graphene oxide precursor
CN105406035B (en) * 2015-10-30 2018-03-13 上海应用技术学院 A kind of preparation method of regular octahedron type ferric phosphate/graphene oxide presoma
CN105417517B (en) * 2015-11-03 2018-01-02 山东精工电子科技有限公司 A kind of tremelliform ferric phosphate and preparation method thereof
CN105417517A (en) * 2015-11-03 2016-03-23 山东精工电子科技有限公司 Tremelliform ferric phosphate and preparation method therefor
CN106340645A (en) * 2016-09-08 2017-01-18 西北工业大学 Preparation method of hydroxyl iron phosphate-based battery material with novel morphology
CN106517130A (en) * 2016-12-27 2017-03-22 合肥学院 Method for preparing hydroxyl iron phosphate micro-nano powder material by using phosphorus-rich biomass
CN106848280A (en) * 2017-01-17 2017-06-13 陕西科技大学 A kind of preparation method of the hollow octahedra anode material for lithium-ion batteries of graphene-supported di iron
CN106848280B (en) * 2017-01-17 2019-05-21 陕西科技大学 A kind of preparation method of the hollow octahedra anode material for lithium-ion batteries of graphene-supported di iron
CN109494367A (en) * 2018-11-28 2019-03-19 河南科技学院 Di iron lithium/grapheme composite positive electrode material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN103311543A (en) Anode material hydroxyl iron phosphate for lithium ion batteries and preparation method thereof
CN106876705B (en) Preparation method of in-situ synthesized carbon/carbon nanotube coated lithium iron phosphate composite material
Pan et al. Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode
KR20220092556A (en) Anode active material for battery and manufacturing method thereof, battery negative electrode, battery
CN105206809B (en) C3N 4-carbon-coated lithium iron phosphate composite cathode material and preparation method thereof
CN103956485B (en) Lithium iron phosphate electrode material of a kind of three-dimensional hierarchical structure and preparation method thereof
CN101114709A (en) Lithium ion battery composite anode material LiFePO4-Li3V2(PO4)3/C and method for making same
CN111377426B (en) Preparation method of anhydrous iron phosphate nanoparticles
CN108390057A (en) The preparation method of additive Mn lithium iron phosphate electrode material
CN111106335A (en) Preparation method of lithium ion battery composite negative electrode material
CN106602038B (en) A kind of hot method of colloidal sol secondary solvent prepares grain rod mixing pattern phosphoric acid vanadium lithium/carbon composite anode material and preparation method thereof
CN111029560A (en) Spinel structure positive active material doped with sodium ions in gradient manner and preparation method thereof
CN114864896A (en) In-situ carbon-coated nano lithium iron phosphate cathode material and preparation method thereof
CN102120610A (en) Lithium ion battery cathode material as well as preparation method and application thereof
CN102522551A (en) Preparation method for LiFePO4 (lithium iron phosphate) superfine powder serving as power battery anode materials
CN103413918B (en) A kind of synthetic method of anode material for lithium ion battery cobalt phosphate lithium
CN105244500A (en) Preparation method and application of a b-axis LiFePO4/C nanosheet material
CN103413940B (en) A kind of synthetic method of positive material nano lithium manganese phosphate of lithium ion battery
CN102569791B (en) A kind of LiFePO4 with flower-like structure and preparation method thereof
CN107317030A (en) A kind of carbon coating cobalt phosphate lithium iron phosphate compound anode material of lithium and preparation method and application
CN106450186A (en) Preparation method for lithium manganese silicate/carbon composite material used as positive electrode material of lithium ion battery, and positive electrode slurry and application
CN110289399A (en) Negative electrode material and preparation method thereof, lithium ion battery
Guo et al. Enhanced electrochemical performance of Li2ZrO3 coated LiFePO4 as cathode material for lithium ion batteries
CN102544483B (en) A kind of anode composite material of lithium ion battery and preparation method thereof
CN118439579A (en) Preparation method of sodium iron pyrophosphate and application of sodium iron pyrophosphate in sodium ion battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130918