[go: up one dir, main page]

CN103311107A - Method for making metal silicide and semiconductor structure using same - Google Patents

Method for making metal silicide and semiconductor structure using same Download PDF

Info

Publication number
CN103311107A
CN103311107A CN2012100615100A CN201210061510A CN103311107A CN 103311107 A CN103311107 A CN 103311107A CN 2012100615100 A CN2012100615100 A CN 2012100615100A CN 201210061510 A CN201210061510 A CN 201210061510A CN 103311107 A CN103311107 A CN 103311107A
Authority
CN
China
Prior art keywords
region
gates
silicon layer
layer
metal silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100615100A
Other languages
Chinese (zh)
Other versions
CN103311107B (en
Inventor
施彦豪
陈盈佐
蔡世昌
陈俊甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Priority to CN201210061510.0A priority Critical patent/CN103311107B/en
Publication of CN103311107A publication Critical patent/CN103311107A/en
Application granted granted Critical
Publication of CN103311107B publication Critical patent/CN103311107B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

The invention discloses a method for manufacturing metal silicide and a semiconductor structure using the same. The method for manufacturing the metal silicide comprises the following steps: providing a substrate, wherein the substrate is provided with a first area and a second area; forming a silicon layer on the substrate; performing a planarization process to make the silicon layer have a flat surface; removing part of the silicon layer to form a plurality of first gates in the first region and a plurality of second gates in the second region, wherein the heights of the first gates are greater than those of the second gates, and the first gates and the second gates have upper surfaces with the same height in the horizontal plane; forming a dielectric layer on the substrate, wherein the dielectric layer covers the first gates and the second gates and exposes the upper surfaces of the first gates and the second gates; and forming a metal silicide on the upper surfaces of the first gates and the second gates.

Description

制作金属硅化物的方法及应用其的半导体结构Method for making metal silicide and semiconductor structure using same

技术领域 technical field

本发明是有关于一种半导体工艺及结构,且特别是有关于一种制作金属硅化物的方法及应用其的半导体结构。The present invention relates to a semiconductor process and structure, and in particular to a method for making metal silicide and a semiconductor structure using the same.

背景技术 Background technique

随着半导体元件集成度的增加,元件中的图案与线宽亦逐渐缩小,因而导致元件中的栅极与导线的接触电阻增高,产生较大的电阻-电容延迟(RC Delay),进而影响元件操作速度。由于金属硅化物的电阻较多晶硅(Polysilicon)低,并且其热稳定性也比一般内联机材料高,因而在栅极上形成金属硅化物,以期能够降低栅极和金属内联机之间的电阻值。With the increase in the integration of semiconductor components, the pattern and line width in the component are gradually reduced, which leads to an increase in the contact resistance between the gate and the wire in the component, resulting in a large resistance-capacitance delay (RC Delay), which affects the component. operating speed. Since the resistance of metal silicide is lower than polysilicon (Polysilicon), and its thermal stability is higher than that of general interconnection materials, metal silicide is formed on the gate in order to reduce the resistance between the gate and the metal interconnection. .

传统形成金属硅化物的过程中,当栅极(例如多晶硅层)形成在半导体晶圆上之后,栅极的硅化工艺包括形成一金属层于多晶硅层上,接着进行退火工艺,以形成金属硅化物于栅极上。In the traditional process of forming metal silicide, when the gate (such as a polysilicon layer) is formed on the semiconductor wafer, the silicidation process of the gate includes forming a metal layer on the polysilicon layer, followed by an annealing process to form a metal silicide on the grid.

在目前周边电路区域的栅极制作上,也需要使用金属硅化物来降低导线与栅极之间的电阻。然而,传统的自对准金属硅化物工艺中,若要在部分介质上形成金属硅化物,则必须经过相当复杂的程序,才能在所需的区域上形成金属硅化物,尤其当存储单元阵列区域与周边电路区域的水平面高度不同时,更加提高工艺执行的难度。在目前讲求高效率的时代中,势必要改善传统的做法,以提高半导体工艺的效率。In current gate fabrication in the peripheral circuit area, metal silicide is also required to reduce the resistance between the wire and the gate. However, in the traditional self-aligned metal silicide process, if metal silicide is to be formed on part of the medium, it must go through quite complicated procedures to form metal silicide on the required area, especially when the memory cell array area When the height of the horizontal plane is different from that of the peripheral circuit area, the difficulty of process execution is further increased. In the current era of high efficiency, it is necessary to improve the traditional method to improve the efficiency of the semiconductor process.

发明内容 Contents of the invention

本发明是有关于一种制作金属硅化物的方法及应用其的半导体结构,是在存储单元阵列区域与周边电路区域上形成水平面高度一致的栅极,以避免位于较低区域的栅极因介电层遮蔽而无法顺利形成金属硅化物。The present invention relates to a method for making metal silicide and a semiconductor structure using the same. It is to form gates with the same horizontal plane height on the memory cell array area and the peripheral circuit area, so as to prevent the gate located in the lower area from being caused by interference. The electrical layer is shielded and the metal silicide cannot be formed smoothly.

根据本发明的一方面,提出一种制作金属硅化物的方法,包括下列步骤。提供一衬底,衬底具有一第一区域与一第二区域。形成一硅层于衬底上。进行一平坦化工艺,以使硅层具有一平坦表面。移除部分硅层,以在第一区域形成多个第一栅极并在第二区域形成多个第二栅极,该多个第一栅极的高度大于该多个第二栅极的高度,且该多个第一栅极与该多个第二栅极具有水平面高度一致的上表面。形成一介电层于衬底上,介电层覆盖该多个第一栅极与该多个第二栅极,并显露出该多个第一栅极与该多个第二栅极的上表面。形成一金属硅化物于该多个第一栅极与该多个第二栅极的上表面。According to one aspect of the present invention, a method for fabricating a metal silicide is proposed, including the following steps. A substrate is provided, and the substrate has a first region and a second region. A silicon layer is formed on the substrate. A planarization process is performed to make the silicon layer have a flat surface. removing part of the silicon layer to form a plurality of first gates in the first region and a plurality of second gates in the second region, the height of the plurality of first gates being greater than the height of the plurality of second gates , and the plurality of first gates and the plurality of second gates have upper surfaces with the same level height. forming a dielectric layer on the substrate, the dielectric layer covers the plurality of first gates and the plurality of second gates, and exposes the upper surfaces of the plurality of first gates and the plurality of second gates surface. A metal silicide is formed on the upper surfaces of the plurality of first gates and the plurality of second gates.

根据本发明的另一方面,提出一种半导体结构,包括一衬底、一硅层、一介电层以及一金属硅化物。衬底具有一第一区域以及一第二区域。硅层具有位于第一区域的多个第一栅极与位于第二区域的多个第二栅极,其中该多个第一栅极的高度大于该多个第二栅极的高度,且该多个第一栅极与该多个第二栅极具有水平面高度一致的上表面。介电层形成于衬底上,且介电层显露出该多个第一栅极与该多个第二栅极的上表面。金属硅化物分别形成于该多个第一栅极与该多个第二栅极的上表面。According to another aspect of the present invention, a semiconductor structure is provided, including a substrate, a silicon layer, a dielectric layer, and a metal silicide. The substrate has a first area and a second area. The silicon layer has a plurality of first gates located in the first region and a plurality of second gates located in the second region, wherein the heights of the plurality of first gates are greater than the heights of the plurality of second gates, and the heights of the plurality of second gates are The plurality of first grids and the plurality of second grids have upper surfaces with the same level height. The dielectric layer is formed on the substrate, and the dielectric layer exposes the upper surfaces of the plurality of first gates and the plurality of second gates. Metal silicides are respectively formed on the upper surfaces of the plurality of first gates and the plurality of second gates.

为了对本发明的上述及其他方面有更佳的了解,下文特举实施例,并配合所附图式,作详细说明如下:In order to have a better understanding of the above and other aspects of the present invention, the following specific examples, together with the accompanying drawings, are described in detail as follows:

附图说明 Description of drawings

图1A~图1F绘示依照本发明一实施例的制作金属硅化物的方法及应用其的半导体结构的示意图。1A-1F are schematic diagrams illustrating a method for fabricating a metal silicide and a semiconductor structure using the same according to an embodiment of the present invention.

图2A~图2F绘示依照本发明一实施例的制作金属硅化物的方法及应用其的半导体结构的示意图。2A-2F are schematic diagrams illustrating a method for fabricating a metal silicide and a semiconductor structure using the method according to an embodiment of the present invention.

【主要元件符号说明】[Description of main component symbols]

100、200:衬底100, 200: Substrate

101、201:第一区域101, 201: the first area

102、202:第二区域102, 202: the second area

103、203:局部内连接区域103, 203: local inner connection area

104:倾斜表面104: sloped surface

110、110a、210、210a:硅层110, 110a, 210, 210a: silicon layer

111、211:平坦表面111, 211: flat surface

120、220:上表面120, 220: upper surface

121、221:第一栅极121, 221: the first grid

122、222:第二栅极122, 222: second grid

123、223:第三栅极123, 223: the third gate

130、230:介电层130, 230: dielectric layer

140、240:金属硅化物140, 240: metal silicide

W、X、X1、Y:高度W, X, X1, Y: Height

212:多晶硅层212: polysilicon layer

214、214a:非晶硅层214, 214a: amorphous silicon layer

具体实施方式 Detailed ways

本发明的制作金属硅化物的方法及应用其的半导体结构,是在衬底上沉积厚度加高的硅层,再利用平坦化工艺进行薄化,以使硅层具有水平面高度一致的平坦表面。此硅层经图案化之后,形成水平面高度一致的第一栅极与第二栅极。因此,在存储单元阵列区域与周边电路区域上的栅极,在后续的热工艺中,均可顺利形成金属硅化物,以降低栅极的片电阻值。The method for making metal silicide and the semiconductor structure using the same of the present invention are to deposit a silicon layer with increased thickness on the substrate, and then use a planarization process to thin it, so that the silicon layer has a flat surface with uniform horizontal plane height. After the silicon layer is patterned, a first gate and a second gate with the same horizontal plane height are formed. Therefore, metal silicide can be smoothly formed on the gates on the memory cell array area and the peripheral circuit area in the subsequent thermal process, so as to reduce the sheet resistance of the gates.

以下是提出各种实施例进行详细说明,实施例仅用以作为范例说明,并非用以限缩本发明欲保护的范围。Various embodiments are presented below for detailed description, and the embodiments are only used as examples for illustration, and are not intended to limit the scope of protection of the present invention.

第一实施例first embodiment

请参照图1A~图1F,其绘示依照本发明一实施例的制作金属硅化物的方法及应用其的半导体结构的示意图。此方法至少包括下列步骤。提供一衬底100,衬底100具有一第一区域101与一第二区域102。形成一硅层110于衬底100上。进行一平坦化工艺,以使硅层110具有一平坦表面111。移除部分硅层110,以在第一区域101形成多个第一栅极121并在第二区域102形成多个第二栅极122。第一栅极121的高度X+Y大于第二栅极122的高度Y,且第一栅极121与第二栅极122具有水平面高度一致的上表面120。形成一介电层130于衬底100上,介电层130覆盖该多个第一栅极121与第二栅极122,并显露出该多个第一栅极121与第二栅极122的上表面120。形成一金属硅化物140于该多个第一栅极121与第二栅极122的上表面120。Please refer to FIG. 1A to FIG. 1F , which are diagrams illustrating a method for fabricating a metal silicide and a semiconductor structure using the method according to an embodiment of the present invention. This method at least includes the following steps. A substrate 100 is provided, and the substrate 100 has a first region 101 and a second region 102 . A silicon layer 110 is formed on the substrate 100 . A planarization process is performed so that the silicon layer 110 has a flat surface 111 . Part of the silicon layer 110 is removed to form a plurality of first gates 121 in the first region 101 and a plurality of second gates 122 in the second region 102 . The height X+Y of the first gate 121 is greater than the height Y of the second gate 122 , and the first gate 121 and the second gate 122 have an upper surface 120 with the same level. Forming a dielectric layer 130 on the substrate 100, the dielectric layer 130 covers the plurality of first gates 121 and the second gates 122, and exposes the plurality of first gates 121 and the second gates 122 120 on the upper surface. A metal silicide 140 is formed on the upper surfaces 120 of the plurality of first gates 121 and the second gates 122 .

在图1A中,衬底100具有一第一区域101以及一第二区域102。硅层110形成于衬底100上,且等厚度地覆盖第一区域101与第二区域102。衬底100的第一区域101与第二区域102相对于衬底100的底面具有不同的高度,使得第一区域101与第二区域102之间明显具有一高度差X。此外,衬底100例如具有一倾斜表面104位于一局部内连接区域103中,使得局部内连接区域103倾斜于第一区域101与第二区域102之间。In FIG. 1A , the substrate 100 has a first region 101 and a second region 102 . The silicon layer 110 is formed on the substrate 100 and covers the first region 101 and the second region 102 with equal thickness. The first region 101 and the second region 102 of the substrate 100 have different heights relative to the bottom surface of the substrate 100 , so that there is obviously a height difference X between the first region 101 and the second region 102 . In addition, the substrate 100 has, for example, an inclined surface 104 located in a local interconnection region 103 such that the local interconnection region 103 is inclined between the first region 101 and the second region 102 .

在本实施例中,衬底100为富含硅的半导体衬底,硅层110例如是以化学气相沉积法所形成的多晶硅层,其具有大于预定沉积高度X+Y的高度W,其中X为第一区域101与第二区域102的高度差,Y为第二栅极122的理想高度。第一区域101例如为存储单元阵列区域,第二区域102例如为周边电路区域。在另一实施例中,第一区域101例如为周边电路区域,第二区域102例如为存储单元阵列区域。在存储单元阵列区域中,具有有源元件(例如存储器存储单元),用以储存数据。在周边电路区域中具有逻辑单元(例如晶体管开关),用以读取并计算存储器存储单元中储存的数据。在后续的工艺中,经过平坦化工艺及图案化工艺之后的硅层110可分别作为存储器存储单元的栅极与逻辑单元的栅极。In this embodiment, the substrate 100 is a silicon-rich semiconductor substrate, and the silicon layer 110 is, for example, a polysilicon layer formed by chemical vapor deposition, which has a height W greater than a predetermined deposition height X+Y, where X is The height difference between the first region 101 and the second region 102 , Y is the ideal height of the second gate 122 . The first area 101 is, for example, a memory cell array area, and the second area 102 is, for example, a peripheral circuit area. In another embodiment, the first area 101 is, for example, a peripheral circuit area, and the second area 102 is, for example, a memory cell array area. In the area of the memory cell array, there are active elements (such as memory cells) for storing data. There are logic units (such as transistor switches) in the peripheral circuit area to read and calculate the data stored in the memory storage unit. In the subsequent process, the silicon layer 110 after the planarization process and the patterning process can serve as the gate of the memory storage unit and the gate of the logic unit respectively.

请参照图1B,进行化学机械抛光等平坦化工艺,以使硅层110a具有平坦表面111。此时,薄化后的硅层110a相对于第一区域101的高度为X+Y,而相对于第二区域102的高度为Y。接着,请参照图1C,通过光刻及非等向性刻蚀等工艺移除部分硅层110a,以在第一区域101形成多个第一栅极121并在第二区域102形成多个第二栅极122。第一栅极121的高度为X+Y,而第二栅极122的高度为Y,故第一栅极121的高度大于第二栅极122的高度,且第一栅极121与第二栅极122具有水平面高度一致的上表面120。在图1C的工艺中,更可形成一第三栅极123于局部内连接区域103上,且第一栅极121、第二栅极122与第三栅极123具有水平面高度一致的上表面120。在本实施例中,第一栅极121、第二栅极122与第三栅极123例如为极性相同的晶体管(例如N型金属氧化物半导体晶体管)的栅极,或是与N型金属氧化物半导体晶体管极性相反的P型金属氧化物半导体晶体管的栅极。在一实施例中,第三栅极123亦可被位于第一栅极121与第二栅极122之间的局部内连接线所取代,不限定为晶体管的栅极。Referring to FIG. 1B , a planarization process such as chemical mechanical polishing is performed so that the silicon layer 110 a has a planar surface 111 . At this time, the height of the thinned silicon layer 110 a relative to the first region 101 is X+Y, and the height relative to the second region 102 is Y. Next, referring to FIG. 1C , part of the silicon layer 110a is removed by photolithography and anisotropic etching to form a plurality of first gates 121 in the first region 101 and a plurality of first gates 121 in the second region 102. Two gates 122 . The height of the first grid 121 is X+Y, and the height of the second grid 122 is Y, so the height of the first grid 121 is greater than the height of the second grid 122, and the first grid 121 and the second grid The pole 122 has an upper surface 120 with a uniform level. In the process of FIG. 1C, a third gate 123 can be formed on the local interconnection region 103, and the first gate 121, the second gate 122, and the third gate 123 have the upper surface 120 with the same level height. . In this embodiment, the first gate 121, the second gate 122 and the third gate 123 are, for example, the gates of transistors (such as N-type metal-oxide-semiconductor transistors) with the same polarity, or gates connected to N-type metal oxide semiconductor transistors. The oxide semiconductor transistor is the gate of the P-type metal oxide semiconductor transistor with the opposite polarity. In one embodiment, the third gate 123 can also be replaced by a local interconnection line between the first gate 121 and the second gate 122 , not limited to the gate of the transistor.

请参照图1D及图1E,形成一介电层130于衬底100上,使介电层130填入于相邻二栅极之间的空隙中,并覆盖第一栅极121、第二栅极122与第三栅极123的上表面120。在图1E中,介电层130可通过化学机械抛光等平坦化工艺进行薄化,使得介电层130与栅极121-123的水平面高度一致,并显露出第一栅极121、第二栅极122与第三栅极123的上表面120。Please refer to FIG. 1D and FIG. 1E, forming a dielectric layer 130 on the substrate 100, so that the dielectric layer 130 is filled in the gap between the adjacent two grids, and covers the first grid 121, the second grid electrode 122 and the upper surface 120 of the third grid 123 . In FIG. 1E, the dielectric layer 130 can be thinned by a planarization process such as chemical mechanical polishing, so that the dielectric layer 130 is consistent with the level of the gates 121-123, and the first gate 121, the second gate 121, and the second gate are exposed. electrode 122 and the upper surface 120 of the third grid 123 .

接着,请参照图1F,分别形成一金属硅化物140于第一栅极121、第二栅极122与第三栅极123的上表面120。金属硅化物140是在进行热工艺的过程中,例如摄氏960度,金属层与邻近的薄化的硅层110a高温热熔而使金属粒子与硅晶重新排列而形成的。在图1F中形成自对准金属硅化物140的步骤如下。首先,以化学气相沉积法或物理气相沉积法形成一金属层(未绘示)于薄化的硅层110a与介电层130上。进行一热工艺,例如退火工艺,以使金属层与硅层110a交互反应而形成金属硅化物140。接着,移除未与硅层110a反应的部分金属层。金属硅化物140例如为硅化钨(tungsten silicide)、硅化钼(molybdenum silicide)、硅化钴(cobaltsilicide)、硅化钛(titanium silicide)、硅化镍(nickel silicide)或其他耐火性金属硅化物(refractory metal silicde),以降低第一栅极121、第二栅极122及第三栅极123的片电阻值。Next, referring to FIG. 1F , a metal silicide 140 is respectively formed on the upper surfaces 120 of the first gate 121 , the second gate 122 and the third gate 123 . The metal silicide 140 is formed by thermally melting the metal layer and the adjacent thinned silicon layer 110a during a thermal process, such as 960 degrees Celsius, so that the metal particles and silicon crystals are rearranged. The steps of forming salicide 140 in FIG. 1F are as follows. First, a metal layer (not shown) is formed on the thinned silicon layer 110 a and the dielectric layer 130 by chemical vapor deposition or physical vapor deposition. A thermal process, such as an annealing process, is performed to make the metal layer interact with the silicon layer 110 a to form the metal silicide 140 . Next, a portion of the metal layer that has not reacted with the silicon layer 110 a is removed. The metal silicide 140 is, for example, tungsten silicide, molybdenum silicide, cobalt silicide, titanium silicide, nickel silicide or other refractory metal silicides. ) to reduce the sheet resistance values of the first gate 121 , the second gate 122 and the third gate 123 .

第二实施例second embodiment

请参照图2A~图2F,其绘示依照本发明一实施例的制作金属硅化物的方法及应用其的半导体结构的示意图。本实施例与第一实施例不同之处在于:图2A中形成硅层210与图2B中平坦化硅层210的步骤。至于图2C~图2F中的图案化硅层210a、形成介电层230及平坦化介电层230、形成金属硅化物240等工艺,皆与上述第一实施例的工艺相同,在此不再赘述。Please refer to FIG. 2A to FIG. 2F , which are diagrams illustrating a method for fabricating a metal silicide and a semiconductor structure using the method according to an embodiment of the present invention. The difference between this embodiment and the first embodiment lies in the steps of forming the silicon layer 210 in FIG. 2A and planarizing the silicon layer 210 in FIG. 2B . As for the processes of patterning the silicon layer 210a, forming the dielectric layer 230 and planarizing the dielectric layer 230, and forming the metal silicide 240 in FIGS. repeat.

请参照图2A,硅层210包括以化学气相沉积法形成第一高度Y的多晶硅层212以及第二高度X1的非晶硅层214,其中第二高度X1大于(或等于)第一区域201与第二区域202的高度差X,而第一高度Y为第二栅极222的理想高度,因此硅层210具有大于预定沉积高度X+Y的总高度W。2A, the silicon layer 210 includes a polysilicon layer 212 with a first height Y and an amorphous silicon layer 214 with a second height X1 formed by chemical vapor deposition, wherein the second height X1 is greater than (or equal to) the first region 201 and The height difference X of the second region 202, and the first height Y is the ideal height of the second gate 222, so the silicon layer 210 has a total height W greater than the predetermined deposition height X+Y.

请参照图2B,进行化学机械抛光等平坦化工艺,以使硅层210具有平坦表面211。此时,薄化后的硅层210a相对于第一区域201的高度为X+Y,而相对于第二区域202的高度为Y。在本实施例中,位于第二区域202的非晶硅层214被移除而显露出下方的多晶硅层212,使得图2B中未被移除的非晶硅层214a切齐多晶硅层212,并与多晶硅层212具有水平面高度一致的平坦表面211。由于位于非晶硅层214下方的多晶硅层212可作为刻蚀或化学机械抛光硅层210的中止层,故可精确地控制硅层210刻蚀的深度。Referring to FIG. 2B , a planarization process such as chemical mechanical polishing is performed so that the silicon layer 210 has a planar surface 211 . At this time, the height of the thinned silicon layer 210 a relative to the first region 201 is X+Y, and the height relative to the second region 202 is Y. In this embodiment, the amorphous silicon layer 214 located in the second region 202 is removed to expose the underlying polysilicon layer 212, so that the non-removed amorphous silicon layer 214a in FIG. 2B is aligned with the polysilicon layer 212, and The flat surface 211 has the same level as the polysilicon layer 212 . Since the polysilicon layer 212 under the amorphous silicon layer 214 can be used as a stop layer for etching or chemical mechanical polishing of the silicon layer 210 , the etching depth of the silicon layer 210 can be precisely controlled.

在后续的图2B中,在形成金属硅化物240之前,非晶硅层214a可通过加热,例如摄氏600度左右,使其再结晶而转换成另一多晶硅层。由于多晶硅层相对于非晶硅层214a具有较佳的电子迁移率,故可提高存储器存储单元的开关能力及逻辑单元的驱动能力。In subsequent FIG. 2B , before forming the metal silicide 240 , the amorphous silicon layer 214 a can be converted into another polysilicon layer by heating, for example, about 600 degrees Celsius to recrystallize it. Since the polysilicon layer has better electron mobility than the amorphous silicon layer 214a, the switching capability of the memory storage unit and the driving capability of the logic unit can be improved.

在本实施例中,由于硅层210a经图案化(参照图2C)之后,第一栅极221、第二栅极222与第三栅极223形成水平面高度一致的上表面220。因此,在第一区域201(例如存储单元阵列区域)、第二区域202(例如周边电路区域)及局部内连接区域203上的栅极,在后续的热工艺中,均可顺利形成金属硅化物240,以降低栅极的片电阻值。In this embodiment, after the silicon layer 210a is patterned (refer to FIG. 2C ), the first gate 221 , the second gate 222 and the third gate 223 form the upper surface 220 with the same horizontal plane height. Therefore, metal silicide can be formed smoothly in the subsequent thermal process on the gates on the first region 201 (such as the memory cell array region), the second region 202 (such as the peripheral circuit region) and the local internal connection region 203. 240 to reduce the sheet resistance value of the gate.

综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视随附的权利要求范围所界定的为准。To sum up, although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the appended claims.

Claims (10)

1.一种制作金属硅化物的方法,包括:1. A method for making metal silicide, comprising: 提供一衬底,该衬底具有一第一区域与一第二区域;providing a substrate having a first region and a second region; 形成一硅层于该衬底上;forming a silicon layer on the substrate; 进行一平坦化工艺,以使该硅层具有一平坦表面;performing a planarization process so that the silicon layer has a planar surface; 移除部分该硅层,以在该第一区域形成多个第一栅极并在该第二区域形成多个第二栅极,该多个第一栅极的高度大于该多个第二栅极的高度,且该多个第一栅极与该多个第二栅极具有水平面高度一致的上表面;removing part of the silicon layer to form a plurality of first gates in the first region and a plurality of second gates in the second region, the height of the plurality of first gates is greater than that of the plurality of second gates The height of the electrode, and the plurality of first grids and the plurality of second grids have upper surfaces with the same level height; 形成一介电层于该衬底上,该介电层覆盖该多个第一栅极与该多个第二栅极,并显露出该多个第一栅极与该多个第二栅极的上表面;以及forming a dielectric layer on the substrate, the dielectric layer covering the plurality of first gates and the plurality of second gates, and exposing the plurality of first gates and the plurality of second gates the upper surface of the 形成一金属硅化物于该多个第一栅极与该多个第二栅极的上表面。A metal silicide is formed on the upper surfaces of the plurality of first gates and the plurality of second gates. 2.根据权利要求1所述的制作金属硅化物的方法,其中该第一区域与该第二区域分别为存储单元阵列区域以及周边电路区域。2. The method for manufacturing metal silicide according to claim 1, wherein the first region and the second region are respectively a memory cell array region and a peripheral circuit region. 3.根据权利要求1所述的制作金属硅化物的方法,其中该衬底具有一倾斜表面位于一局部内连接区域中,该局部内连接区域位于该第一区域与该第二区域之间,该衬底的该第一区域相对于该第二区域具有一高度差,且该多个第一栅极形成于高度较低的该第一区域上,该多个第二栅极形成于高度较高的该第二区域上。3. The method for fabricating metal silicide according to claim 1, wherein the substrate has an inclined surface located in a local interconnection region, the local interconnection region is located between the first region and the second region, The first region of the substrate has a height difference relative to the second region, and the plurality of first gates are formed on the first region with a lower height, and the plurality of second gates are formed on the lower height high on this second region. 4.根据权利要求1所述的制作金属硅化物的方法,其中形成该硅层及平坦化该硅层的步骤包括:4. The method for making metal silicide according to claim 1, wherein the steps of forming the silicon layer and planarizing the silicon layer comprise: 形成一多晶硅层于该衬底上;forming a polysilicon layer on the substrate; 形成一非晶硅层于该多晶硅层上;以及forming an amorphous silicon layer on the polysilicon layer; and 平坦化该非晶硅层,以使该非晶硅层切齐该多晶硅层,并与该多晶硅层具有一平坦表面。The amorphous silicon layer is planarized so that the amorphous silicon layer is aligned with the polysilicon layer and has a flat surface with the polysilicon layer. 5.根据权利要求4所述的制作金属硅化物的方法,其中平坦化该非晶硅层之后,更包括加热该非晶硅层至再结晶温度以形成另一多晶硅层。5. The method for fabricating a metal silicide as claimed in claim 4, further comprising heating the amorphous silicon layer to a recrystallization temperature to form another polysilicon layer after planarizing the amorphous silicon layer. 6.根据权利要求1所述的制作金属硅化物的方法,其中形成该介电层之后,更包括平坦化该介电层。6. The method for fabricating a metal silicide as claimed in claim 1, further comprising planarizing the dielectric layer after forming the dielectric layer. 7.根据权利要求1所述的制作金属硅化物的方法,其中形成该金属硅化物的步骤包括:7. The method for making a metal silicide according to claim 1, wherein the step of forming the metal silicide comprises: 形成一金属层于该硅层与该介电层上;forming a metal layer on the silicon layer and the dielectric layer; 进行一热工艺,以使该金属层与该硅层反应而形成该金属硅化物;以及performing a thermal process to react the metal layer with the silicon layer to form the metal silicide; and 移除未与该硅层反应的部分该金属层。The portion of the metal layer that has not reacted with the silicon layer is removed. 8.一种半导体结构,包括:8. A semiconductor structure comprising: 一衬底,该衬底具有一第一区域以及一第二区域;a substrate having a first region and a second region; 一硅层,具有位于该第一区域的多个第一栅极与位于该第二区域的多个第二栅极,其中该多个第一栅极的高度大于该多个第二栅极的高度,且该多个第一栅极与该多个第二栅极具有水平面高度一致的上表面;A silicon layer having a plurality of first gates located in the first region and a plurality of second gates located in the second region, wherein the height of the plurality of first gates is greater than that of the plurality of second gates height, and the plurality of first gates and the plurality of second gates have an upper surface with the same horizontal plane height; 一介电层,形成于该衬底上,且该介电层显露出该多个第一栅极与该多个第二栅极的上表面;以及a dielectric layer is formed on the substrate, and the dielectric layer exposes the upper surfaces of the plurality of first gates and the plurality of second gates; and 一金属硅化物,分别形成于该多个第一栅极与该多个第二栅极的上表面。A metal silicide is respectively formed on the upper surfaces of the plurality of first gates and the plurality of second gates. 9.根据权利要求8所述的半导体结构,其中该第一区域与该第二区域分别为存储单元阵列区域与周边电路区域,该硅层为至少一多晶硅层或由一多晶硅层与一非晶硅层组合而成,且该多个第一栅极与该多个第二栅极分别为存储器存储单元的栅极以及逻辑单元的栅极。9. The semiconductor structure according to claim 8, wherein the first region and the second region are respectively a memory cell array region and a peripheral circuit region, and the silicon layer is at least one polysilicon layer or consists of a polysilicon layer and an amorphous The silicon layers are combined, and the plurality of first gates and the plurality of second gates are gates of memory storage units and logic units respectively. 10.根据权利要求8所述的半导体结构,其中该衬底具有一倾斜表面位于一局部内连接区域中,该局部内连接区域位于该第一区域与该第二区域之间,该硅层更包括一第三栅极,位于该局部内连接区域中,该衬底的该第一区域相对于该第二区域具有一高度差,且该多个第一栅极形成于高度较低的该第一区域上,该多个第二栅极形成于高度较高的该第二区域上。10. The semiconductor structure according to claim 8, wherein the substrate has an inclined surface located in a local interconnection region, the local interconnection region is located between the first region and the second region, and the silicon layer is further Including a third gate located in the local interconnection region, the first region of the substrate has a height difference relative to the second region, and the plurality of first gates are formed on the first region with a lower height On a region, the plurality of second gates are formed on the second region with a higher height.
CN201210061510.0A 2012-03-09 2012-03-09 Method for making metal silicide and semiconductor structure using same Expired - Fee Related CN103311107B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210061510.0A CN103311107B (en) 2012-03-09 2012-03-09 Method for making metal silicide and semiconductor structure using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210061510.0A CN103311107B (en) 2012-03-09 2012-03-09 Method for making metal silicide and semiconductor structure using same

Publications (2)

Publication Number Publication Date
CN103311107A true CN103311107A (en) 2013-09-18
CN103311107B CN103311107B (en) 2016-01-20

Family

ID=49136191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210061510.0A Expired - Fee Related CN103311107B (en) 2012-03-09 2012-03-09 Method for making metal silicide and semiconductor structure using same

Country Status (1)

Country Link
CN (1) CN103311107B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172253A (en) * 1988-12-24 1990-07-03 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
US5828120A (en) * 1996-02-23 1998-10-27 Nippon Steel Corporation Semiconductor device and production method thereof
TW424303B (en) * 1999-06-17 2001-03-01 United Microelectronics Corp Manufacturing method for dual-gate CMOS device
US6541357B1 (en) * 2001-12-04 2003-04-01 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US20100167490A1 (en) * 2008-12-31 2010-07-01 Jong-Wan Choi Method of Fabricating Flash Memory Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172253A (en) * 1988-12-24 1990-07-03 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
US5828120A (en) * 1996-02-23 1998-10-27 Nippon Steel Corporation Semiconductor device and production method thereof
TW424303B (en) * 1999-06-17 2001-03-01 United Microelectronics Corp Manufacturing method for dual-gate CMOS device
US6541357B1 (en) * 2001-12-04 2003-04-01 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US20100167490A1 (en) * 2008-12-31 2010-07-01 Jong-Wan Choi Method of Fabricating Flash Memory Device

Also Published As

Publication number Publication date
CN103311107B (en) 2016-01-20

Similar Documents

Publication Publication Date Title
CN100573950C (en) Phase change memory device and method of manufacturing the same
CN107799422B (en) Method of forming semiconductor device
CN104681487B (en) CMP Fabrication Scheme for Split Gate Memory Embedded in HK‑MG Process
TW202005031A (en) Semiconductor device integrating backside power grid and related integrated circuit and fabrication method
CN102593000B (en) Semiconductor device and method for manufacturing the same
CN102468221A (en) Method for Preparing Contact Holes in CMOS Devices Using Gate-last Technology
TWI441261B (en) Semiconductor power device manufacturing method
CN106935542A (en) Semiconductor device and method for manufacturing the same
CN114038800A (en) Method for manufacturing semiconductor structure
CN104471703B (en) Semiconductor constructions, memory cells, memory arrays and methods of forming memory cells
CN104733299B (en) Dissected terrain is into nisiloy and nickel germanium junction structure
TWI503983B (en) Semiconductor device and method of manufacturing same
CN113327860B (en) Manufacturing method of shielded gate trench type MOS device
JP2012523129A (en) Method for manufacturing polysilicon mask using metal catalyst and method for manufacturing semiconductor device using the mask
TW201005943A (en) Transistor with contact over gate active area
CN106601687B (en) A kind of semiconductor device and preparation method thereof, electronic device
CN111326509A (en) Semiconductor device including capacitor, method of manufacturing same, and electronic device
CN103311107B (en) Method for making metal silicide and semiconductor structure using same
US8674410B2 (en) Method of manufacturing metal silicide and semiconductor structure using the same
CN103594368B (en) Semiconductor device and manufacturing method thereof
CN102479812A (en) Semiconductor device and method for manufacturing the same
TWI463567B (en) Method of manufacturing metal silicide and semiconductor structure using the same
CN116936475B (en) Semiconductor device preparation method
CN110098149B (en) Semiconductor device and method of manufacturing the same
TWI809613B (en) Semiconductor device with leakage current guide path and method for fabricating the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

CF01 Termination of patent right due to non-payment of annual fee