CN103311107A - Method for making metal silicide and semiconductor structure using same - Google Patents
Method for making metal silicide and semiconductor structure using same Download PDFInfo
- Publication number
- CN103311107A CN103311107A CN2012100615100A CN201210061510A CN103311107A CN 103311107 A CN103311107 A CN 103311107A CN 2012100615100 A CN2012100615100 A CN 2012100615100A CN 201210061510 A CN201210061510 A CN 201210061510A CN 103311107 A CN103311107 A CN 103311107A
- Authority
- CN
- China
- Prior art keywords
- region
- gates
- silicon layer
- layer
- metal silicide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 54
- 239000002184 metal Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 51
- 229910021332 silicide Inorganic materials 0.000 title claims abstract description 47
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 239000004065 semiconductor Substances 0.000 title claims abstract description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 49
- 239000010703 silicon Substances 0.000 claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 20
- 229920005591 polysilicon Polymers 0.000 claims description 20
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 12
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 230000005055 memory storage Effects 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000001953 recrystallisation Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
Images
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
技术领域 technical field
本发明是有关于一种半导体工艺及结构,且特别是有关于一种制作金属硅化物的方法及应用其的半导体结构。The present invention relates to a semiconductor process and structure, and in particular to a method for making metal silicide and a semiconductor structure using the same.
背景技术 Background technique
随着半导体元件集成度的增加,元件中的图案与线宽亦逐渐缩小,因而导致元件中的栅极与导线的接触电阻增高,产生较大的电阻-电容延迟(RC Delay),进而影响元件操作速度。由于金属硅化物的电阻较多晶硅(Polysilicon)低,并且其热稳定性也比一般内联机材料高,因而在栅极上形成金属硅化物,以期能够降低栅极和金属内联机之间的电阻值。With the increase in the integration of semiconductor components, the pattern and line width in the component are gradually reduced, which leads to an increase in the contact resistance between the gate and the wire in the component, resulting in a large resistance-capacitance delay (RC Delay), which affects the component. operating speed. Since the resistance of metal silicide is lower than polysilicon (Polysilicon), and its thermal stability is higher than that of general interconnection materials, metal silicide is formed on the gate in order to reduce the resistance between the gate and the metal interconnection. .
传统形成金属硅化物的过程中,当栅极(例如多晶硅层)形成在半导体晶圆上之后,栅极的硅化工艺包括形成一金属层于多晶硅层上,接着进行退火工艺,以形成金属硅化物于栅极上。In the traditional process of forming metal silicide, when the gate (such as a polysilicon layer) is formed on the semiconductor wafer, the silicidation process of the gate includes forming a metal layer on the polysilicon layer, followed by an annealing process to form a metal silicide on the grid.
在目前周边电路区域的栅极制作上,也需要使用金属硅化物来降低导线与栅极之间的电阻。然而,传统的自对准金属硅化物工艺中,若要在部分介质上形成金属硅化物,则必须经过相当复杂的程序,才能在所需的区域上形成金属硅化物,尤其当存储单元阵列区域与周边电路区域的水平面高度不同时,更加提高工艺执行的难度。在目前讲求高效率的时代中,势必要改善传统的做法,以提高半导体工艺的效率。In current gate fabrication in the peripheral circuit area, metal silicide is also required to reduce the resistance between the wire and the gate. However, in the traditional self-aligned metal silicide process, if metal silicide is to be formed on part of the medium, it must go through quite complicated procedures to form metal silicide on the required area, especially when the memory cell array area When the height of the horizontal plane is different from that of the peripheral circuit area, the difficulty of process execution is further increased. In the current era of high efficiency, it is necessary to improve the traditional method to improve the efficiency of the semiconductor process.
发明内容 Contents of the invention
本发明是有关于一种制作金属硅化物的方法及应用其的半导体结构,是在存储单元阵列区域与周边电路区域上形成水平面高度一致的栅极,以避免位于较低区域的栅极因介电层遮蔽而无法顺利形成金属硅化物。The present invention relates to a method for making metal silicide and a semiconductor structure using the same. It is to form gates with the same horizontal plane height on the memory cell array area and the peripheral circuit area, so as to prevent the gate located in the lower area from being caused by interference. The electrical layer is shielded and the metal silicide cannot be formed smoothly.
根据本发明的一方面,提出一种制作金属硅化物的方法,包括下列步骤。提供一衬底,衬底具有一第一区域与一第二区域。形成一硅层于衬底上。进行一平坦化工艺,以使硅层具有一平坦表面。移除部分硅层,以在第一区域形成多个第一栅极并在第二区域形成多个第二栅极,该多个第一栅极的高度大于该多个第二栅极的高度,且该多个第一栅极与该多个第二栅极具有水平面高度一致的上表面。形成一介电层于衬底上,介电层覆盖该多个第一栅极与该多个第二栅极,并显露出该多个第一栅极与该多个第二栅极的上表面。形成一金属硅化物于该多个第一栅极与该多个第二栅极的上表面。According to one aspect of the present invention, a method for fabricating a metal silicide is proposed, including the following steps. A substrate is provided, and the substrate has a first region and a second region. A silicon layer is formed on the substrate. A planarization process is performed to make the silicon layer have a flat surface. removing part of the silicon layer to form a plurality of first gates in the first region and a plurality of second gates in the second region, the height of the plurality of first gates being greater than the height of the plurality of second gates , and the plurality of first gates and the plurality of second gates have upper surfaces with the same level height. forming a dielectric layer on the substrate, the dielectric layer covers the plurality of first gates and the plurality of second gates, and exposes the upper surfaces of the plurality of first gates and the plurality of second gates surface. A metal silicide is formed on the upper surfaces of the plurality of first gates and the plurality of second gates.
根据本发明的另一方面,提出一种半导体结构,包括一衬底、一硅层、一介电层以及一金属硅化物。衬底具有一第一区域以及一第二区域。硅层具有位于第一区域的多个第一栅极与位于第二区域的多个第二栅极,其中该多个第一栅极的高度大于该多个第二栅极的高度,且该多个第一栅极与该多个第二栅极具有水平面高度一致的上表面。介电层形成于衬底上,且介电层显露出该多个第一栅极与该多个第二栅极的上表面。金属硅化物分别形成于该多个第一栅极与该多个第二栅极的上表面。According to another aspect of the present invention, a semiconductor structure is provided, including a substrate, a silicon layer, a dielectric layer, and a metal silicide. The substrate has a first area and a second area. The silicon layer has a plurality of first gates located in the first region and a plurality of second gates located in the second region, wherein the heights of the plurality of first gates are greater than the heights of the plurality of second gates, and the heights of the plurality of second gates are The plurality of first grids and the plurality of second grids have upper surfaces with the same level height. The dielectric layer is formed on the substrate, and the dielectric layer exposes the upper surfaces of the plurality of first gates and the plurality of second gates. Metal silicides are respectively formed on the upper surfaces of the plurality of first gates and the plurality of second gates.
为了对本发明的上述及其他方面有更佳的了解,下文特举实施例,并配合所附图式,作详细说明如下:In order to have a better understanding of the above and other aspects of the present invention, the following specific examples, together with the accompanying drawings, are described in detail as follows:
附图说明 Description of drawings
图1A~图1F绘示依照本发明一实施例的制作金属硅化物的方法及应用其的半导体结构的示意图。1A-1F are schematic diagrams illustrating a method for fabricating a metal silicide and a semiconductor structure using the same according to an embodiment of the present invention.
图2A~图2F绘示依照本发明一实施例的制作金属硅化物的方法及应用其的半导体结构的示意图。2A-2F are schematic diagrams illustrating a method for fabricating a metal silicide and a semiconductor structure using the method according to an embodiment of the present invention.
【主要元件符号说明】[Description of main component symbols]
100、200:衬底100, 200: Substrate
101、201:第一区域101, 201: the first area
102、202:第二区域102, 202: the second area
103、203:局部内连接区域103, 203: local inner connection area
104:倾斜表面104: sloped surface
110、110a、210、210a:硅层110, 110a, 210, 210a: silicon layer
111、211:平坦表面111, 211: flat surface
120、220:上表面120, 220: upper surface
121、221:第一栅极121, 221: the first grid
122、222:第二栅极122, 222: second grid
123、223:第三栅极123, 223: the third gate
130、230:介电层130, 230: dielectric layer
140、240:金属硅化物140, 240: metal silicide
W、X、X1、Y:高度W, X, X1, Y: Height
212:多晶硅层212: polysilicon layer
214、214a:非晶硅层214, 214a: amorphous silicon layer
具体实施方式 Detailed ways
本发明的制作金属硅化物的方法及应用其的半导体结构,是在衬底上沉积厚度加高的硅层,再利用平坦化工艺进行薄化,以使硅层具有水平面高度一致的平坦表面。此硅层经图案化之后,形成水平面高度一致的第一栅极与第二栅极。因此,在存储单元阵列区域与周边电路区域上的栅极,在后续的热工艺中,均可顺利形成金属硅化物,以降低栅极的片电阻值。The method for making metal silicide and the semiconductor structure using the same of the present invention are to deposit a silicon layer with increased thickness on the substrate, and then use a planarization process to thin it, so that the silicon layer has a flat surface with uniform horizontal plane height. After the silicon layer is patterned, a first gate and a second gate with the same horizontal plane height are formed. Therefore, metal silicide can be smoothly formed on the gates on the memory cell array area and the peripheral circuit area in the subsequent thermal process, so as to reduce the sheet resistance of the gates.
以下是提出各种实施例进行详细说明,实施例仅用以作为范例说明,并非用以限缩本发明欲保护的范围。Various embodiments are presented below for detailed description, and the embodiments are only used as examples for illustration, and are not intended to limit the scope of protection of the present invention.
第一实施例first embodiment
请参照图1A~图1F,其绘示依照本发明一实施例的制作金属硅化物的方法及应用其的半导体结构的示意图。此方法至少包括下列步骤。提供一衬底100,衬底100具有一第一区域101与一第二区域102。形成一硅层110于衬底100上。进行一平坦化工艺,以使硅层110具有一平坦表面111。移除部分硅层110,以在第一区域101形成多个第一栅极121并在第二区域102形成多个第二栅极122。第一栅极121的高度X+Y大于第二栅极122的高度Y,且第一栅极121与第二栅极122具有水平面高度一致的上表面120。形成一介电层130于衬底100上,介电层130覆盖该多个第一栅极121与第二栅极122,并显露出该多个第一栅极121与第二栅极122的上表面120。形成一金属硅化物140于该多个第一栅极121与第二栅极122的上表面120。Please refer to FIG. 1A to FIG. 1F , which are diagrams illustrating a method for fabricating a metal silicide and a semiconductor structure using the method according to an embodiment of the present invention. This method at least includes the following steps. A
在图1A中,衬底100具有一第一区域101以及一第二区域102。硅层110形成于衬底100上,且等厚度地覆盖第一区域101与第二区域102。衬底100的第一区域101与第二区域102相对于衬底100的底面具有不同的高度,使得第一区域101与第二区域102之间明显具有一高度差X。此外,衬底100例如具有一倾斜表面104位于一局部内连接区域103中,使得局部内连接区域103倾斜于第一区域101与第二区域102之间。In FIG. 1A , the
在本实施例中,衬底100为富含硅的半导体衬底,硅层110例如是以化学气相沉积法所形成的多晶硅层,其具有大于预定沉积高度X+Y的高度W,其中X为第一区域101与第二区域102的高度差,Y为第二栅极122的理想高度。第一区域101例如为存储单元阵列区域,第二区域102例如为周边电路区域。在另一实施例中,第一区域101例如为周边电路区域,第二区域102例如为存储单元阵列区域。在存储单元阵列区域中,具有有源元件(例如存储器存储单元),用以储存数据。在周边电路区域中具有逻辑单元(例如晶体管开关),用以读取并计算存储器存储单元中储存的数据。在后续的工艺中,经过平坦化工艺及图案化工艺之后的硅层110可分别作为存储器存储单元的栅极与逻辑单元的栅极。In this embodiment, the
请参照图1B,进行化学机械抛光等平坦化工艺,以使硅层110a具有平坦表面111。此时,薄化后的硅层110a相对于第一区域101的高度为X+Y,而相对于第二区域102的高度为Y。接着,请参照图1C,通过光刻及非等向性刻蚀等工艺移除部分硅层110a,以在第一区域101形成多个第一栅极121并在第二区域102形成多个第二栅极122。第一栅极121的高度为X+Y,而第二栅极122的高度为Y,故第一栅极121的高度大于第二栅极122的高度,且第一栅极121与第二栅极122具有水平面高度一致的上表面120。在图1C的工艺中,更可形成一第三栅极123于局部内连接区域103上,且第一栅极121、第二栅极122与第三栅极123具有水平面高度一致的上表面120。在本实施例中,第一栅极121、第二栅极122与第三栅极123例如为极性相同的晶体管(例如N型金属氧化物半导体晶体管)的栅极,或是与N型金属氧化物半导体晶体管极性相反的P型金属氧化物半导体晶体管的栅极。在一实施例中,第三栅极123亦可被位于第一栅极121与第二栅极122之间的局部内连接线所取代,不限定为晶体管的栅极。Referring to FIG. 1B , a planarization process such as chemical mechanical polishing is performed so that the
请参照图1D及图1E,形成一介电层130于衬底100上,使介电层130填入于相邻二栅极之间的空隙中,并覆盖第一栅极121、第二栅极122与第三栅极123的上表面120。在图1E中,介电层130可通过化学机械抛光等平坦化工艺进行薄化,使得介电层130与栅极121-123的水平面高度一致,并显露出第一栅极121、第二栅极122与第三栅极123的上表面120。Please refer to FIG. 1D and FIG. 1E, forming a
接着,请参照图1F,分别形成一金属硅化物140于第一栅极121、第二栅极122与第三栅极123的上表面120。金属硅化物140是在进行热工艺的过程中,例如摄氏960度,金属层与邻近的薄化的硅层110a高温热熔而使金属粒子与硅晶重新排列而形成的。在图1F中形成自对准金属硅化物140的步骤如下。首先,以化学气相沉积法或物理气相沉积法形成一金属层(未绘示)于薄化的硅层110a与介电层130上。进行一热工艺,例如退火工艺,以使金属层与硅层110a交互反应而形成金属硅化物140。接着,移除未与硅层110a反应的部分金属层。金属硅化物140例如为硅化钨(tungsten silicide)、硅化钼(molybdenum silicide)、硅化钴(cobaltsilicide)、硅化钛(titanium silicide)、硅化镍(nickel silicide)或其他耐火性金属硅化物(refractory metal silicde),以降低第一栅极121、第二栅极122及第三栅极123的片电阻值。Next, referring to FIG. 1F , a metal silicide 140 is respectively formed on the upper surfaces 120 of the
第二实施例second embodiment
请参照图2A~图2F,其绘示依照本发明一实施例的制作金属硅化物的方法及应用其的半导体结构的示意图。本实施例与第一实施例不同之处在于:图2A中形成硅层210与图2B中平坦化硅层210的步骤。至于图2C~图2F中的图案化硅层210a、形成介电层230及平坦化介电层230、形成金属硅化物240等工艺,皆与上述第一实施例的工艺相同,在此不再赘述。Please refer to FIG. 2A to FIG. 2F , which are diagrams illustrating a method for fabricating a metal silicide and a semiconductor structure using the method according to an embodiment of the present invention. The difference between this embodiment and the first embodiment lies in the steps of forming the silicon layer 210 in FIG. 2A and planarizing the silicon layer 210 in FIG. 2B . As for the processes of patterning the
请参照图2A,硅层210包括以化学气相沉积法形成第一高度Y的多晶硅层212以及第二高度X1的非晶硅层214,其中第二高度X1大于(或等于)第一区域201与第二区域202的高度差X,而第一高度Y为第二栅极222的理想高度,因此硅层210具有大于预定沉积高度X+Y的总高度W。2A, the silicon layer 210 includes a
请参照图2B,进行化学机械抛光等平坦化工艺,以使硅层210具有平坦表面211。此时,薄化后的硅层210a相对于第一区域201的高度为X+Y,而相对于第二区域202的高度为Y。在本实施例中,位于第二区域202的非晶硅层214被移除而显露出下方的多晶硅层212,使得图2B中未被移除的非晶硅层214a切齐多晶硅层212,并与多晶硅层212具有水平面高度一致的平坦表面211。由于位于非晶硅层214下方的多晶硅层212可作为刻蚀或化学机械抛光硅层210的中止层,故可精确地控制硅层210刻蚀的深度。Referring to FIG. 2B , a planarization process such as chemical mechanical polishing is performed so that the silicon layer 210 has a planar surface 211 . At this time, the height of the thinned
在后续的图2B中,在形成金属硅化物240之前,非晶硅层214a可通过加热,例如摄氏600度左右,使其再结晶而转换成另一多晶硅层。由于多晶硅层相对于非晶硅层214a具有较佳的电子迁移率,故可提高存储器存储单元的开关能力及逻辑单元的驱动能力。In subsequent FIG. 2B , before forming the metal silicide 240 , the
在本实施例中,由于硅层210a经图案化(参照图2C)之后,第一栅极221、第二栅极222与第三栅极223形成水平面高度一致的上表面220。因此,在第一区域201(例如存储单元阵列区域)、第二区域202(例如周边电路区域)及局部内连接区域203上的栅极,在后续的热工艺中,均可顺利形成金属硅化物240,以降低栅极的片电阻值。In this embodiment, after the
综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视随附的权利要求范围所界定的为准。To sum up, although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210061510.0A CN103311107B (en) | 2012-03-09 | 2012-03-09 | Method for making metal silicide and semiconductor structure using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210061510.0A CN103311107B (en) | 2012-03-09 | 2012-03-09 | Method for making metal silicide and semiconductor structure using same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103311107A true CN103311107A (en) | 2013-09-18 |
CN103311107B CN103311107B (en) | 2016-01-20 |
Family
ID=49136191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210061510.0A Expired - Fee Related CN103311107B (en) | 2012-03-09 | 2012-03-09 | Method for making metal silicide and semiconductor structure using same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103311107B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02172253A (en) * | 1988-12-24 | 1990-07-03 | Mitsubishi Electric Corp | Semiconductor device and its manufacturing method |
US5828120A (en) * | 1996-02-23 | 1998-10-27 | Nippon Steel Corporation | Semiconductor device and production method thereof |
TW424303B (en) * | 1999-06-17 | 2001-03-01 | United Microelectronics Corp | Manufacturing method for dual-gate CMOS device |
US6541357B1 (en) * | 2001-12-04 | 2003-04-01 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
US20100167490A1 (en) * | 2008-12-31 | 2010-07-01 | Jong-Wan Choi | Method of Fabricating Flash Memory Device |
-
2012
- 2012-03-09 CN CN201210061510.0A patent/CN103311107B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02172253A (en) * | 1988-12-24 | 1990-07-03 | Mitsubishi Electric Corp | Semiconductor device and its manufacturing method |
US5828120A (en) * | 1996-02-23 | 1998-10-27 | Nippon Steel Corporation | Semiconductor device and production method thereof |
TW424303B (en) * | 1999-06-17 | 2001-03-01 | United Microelectronics Corp | Manufacturing method for dual-gate CMOS device |
US6541357B1 (en) * | 2001-12-04 | 2003-04-01 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
US20100167490A1 (en) * | 2008-12-31 | 2010-07-01 | Jong-Wan Choi | Method of Fabricating Flash Memory Device |
Also Published As
Publication number | Publication date |
---|---|
CN103311107B (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100573950C (en) | Phase change memory device and method of manufacturing the same | |
CN107799422B (en) | Method of forming semiconductor device | |
CN104681487B (en) | CMP Fabrication Scheme for Split Gate Memory Embedded in HK‑MG Process | |
TW202005031A (en) | Semiconductor device integrating backside power grid and related integrated circuit and fabrication method | |
CN102593000B (en) | Semiconductor device and method for manufacturing the same | |
CN102468221A (en) | Method for Preparing Contact Holes in CMOS Devices Using Gate-last Technology | |
TWI441261B (en) | Semiconductor power device manufacturing method | |
CN106935542A (en) | Semiconductor device and method for manufacturing the same | |
CN114038800A (en) | Method for manufacturing semiconductor structure | |
CN104471703B (en) | Semiconductor constructions, memory cells, memory arrays and methods of forming memory cells | |
CN104733299B (en) | Dissected terrain is into nisiloy and nickel germanium junction structure | |
TWI503983B (en) | Semiconductor device and method of manufacturing same | |
CN113327860B (en) | Manufacturing method of shielded gate trench type MOS device | |
JP2012523129A (en) | Method for manufacturing polysilicon mask using metal catalyst and method for manufacturing semiconductor device using the mask | |
TW201005943A (en) | Transistor with contact over gate active area | |
CN106601687B (en) | A kind of semiconductor device and preparation method thereof, electronic device | |
CN111326509A (en) | Semiconductor device including capacitor, method of manufacturing same, and electronic device | |
CN103311107B (en) | Method for making metal silicide and semiconductor structure using same | |
US8674410B2 (en) | Method of manufacturing metal silicide and semiconductor structure using the same | |
CN103594368B (en) | Semiconductor device and manufacturing method thereof | |
CN102479812A (en) | Semiconductor device and method for manufacturing the same | |
TWI463567B (en) | Method of manufacturing metal silicide and semiconductor structure using the same | |
CN116936475B (en) | Semiconductor device preparation method | |
CN110098149B (en) | Semiconductor device and method of manufacturing the same | |
TWI809613B (en) | Semiconductor device with leakage current guide path and method for fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160120 |
|
CF01 | Termination of patent right due to non-payment of annual fee |