[go: up one dir, main page]

CN103310038A - Virtual machine actual electricity simulation system and method for rotary guiding executing mechanism - Google Patents

Virtual machine actual electricity simulation system and method for rotary guiding executing mechanism Download PDF

Info

Publication number
CN103310038A
CN103310038A CN2013101934822A CN201310193482A CN103310038A CN 103310038 A CN103310038 A CN 103310038A CN 2013101934822 A CN2013101934822 A CN 2013101934822A CN 201310193482 A CN201310193482 A CN 201310193482A CN 103310038 A CN103310038 A CN 103310038A
Authority
CN
China
Prior art keywords
actuator
module
rotary steerable
simulation
data acquisition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101934822A
Other languages
Chinese (zh)
Inventor
牛文铁
李远志
李洪涛
李帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN2013101934822A priority Critical patent/CN103310038A/en
Publication of CN103310038A publication Critical patent/CN103310038A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

本发明公开了一种旋转导向执行机构的虚机实电仿真系统,包括工控机、电控装置、测量装置和旋转导向执行机构;工控机包括导向仿真器、数据采集模块和接口通信模块,电控装置包括运动控制卡和数据采集卡,测量装置包括传感器组,旋转导向执行机构包括电机模块和执行机构模块,导向仿真器,用于完成所述旋转导向执行机构导向钻进的仿真;本发明还公开了一种旋转导向执行机构的虚机实电仿真方法,以LabVIEW软件为主体,联合SolidWorks软件和MatLab软件实现仿真。本发明利用虚拟现实技术在统一的虚拟环境中完成旋转导向执行机构的设计、分析、调试和模拟仿真,缩短了产品的开发周期,可应用于各种旋转导向执行机构。

Figure 201310193482

The invention discloses a virtual machine real electric simulation system of a rotary steering actuator, which includes an industrial computer, an electric control device, a measuring device and a rotary steering actuator; the industrial computer includes a steering emulator, a data acquisition module and an interface communication module, and The control device includes a motion control card and a data acquisition card, the measuring device includes a sensor group, the rotary steering actuator includes a motor module and an actuator module, and a guiding simulator is used to complete the simulation of the directional drilling of the rotary steering actuator; the present invention Also disclosed is a virtual machine real electrical simulation method for a rotary steerable actuator, which takes LabVIEW software as the main body and combines SolidWorks software and MatLab software to realize the simulation. The invention utilizes the virtual reality technology to complete the design, analysis, debugging and simulation of the rotary steering actuator in a unified virtual environment, shortens the product development cycle, and can be applied to various rotary steering actuators.

Figure 201310193482

Description

一种旋转导向执行机构的虚机实电仿真系统及仿真方法A Virtual Machine Real Electric Simulation System and Simulation Method for a Rotary Steerable Actuator

技术领域technical field

本发明涉及仿真系统及仿真方法,特别是一种旋转导向执行机构的虚机实电仿真系统及仿真方法。The invention relates to a simulation system and a simulation method, in particular to a virtual-machine-real-electric simulation system and a simulation method of a rotary steering actuator.

背景技术Background technique

目前,旋转导向钻井系统由于其突出的优点受到人们越来越多的关注,并广泛应用于复杂井、超深井和三维多目标井等高难度井的开采。然而集机、电、液于一体的高科技的旋转导向钻井技术目前仍被国外几大石油公司所垄断,出于对技术的保护,几大石油公司只是提供设备及技术的租赁服务,并不出售相关的设备及技术。国外石油公司对旋转导向钻井技术收取的高额租金及国内对旋转导向系统的迫切需求,不断促进国内自主创新的旋转导向系统的研究与开发。At present, the rotary steerable drilling system has attracted more and more attention due to its outstanding advantages, and is widely used in the production of complex wells, ultra-deep wells and three-dimensional multi-target wells and other difficult wells. However, the high-tech rotary steerable drilling technology integrating machinery, electricity and hydraulics is still monopolized by several major foreign oil companies. To protect the technology, these major oil companies only provide equipment and technology leasing services, not Sell related equipment and technology. The high rents charged by foreign oil companies for rotary steerable drilling technology and the urgent domestic demand for rotary steerable systems have continuously promoted the research and development of domestic independent innovative rotary steerable systems.

旋转导向钻井系统的研究是一项投入资金大、对软硬件要求高、研究周期长并集机、电、液于一体的高难度系统工程,其中旋转导向执行机构研究开发是整个系统研究开发的关键与核心。传统的旋转导向执行机构研究思路是在确定导向原理和初步的运动学、动力学分析的基础上,立即进行样机的试制,然后通过实验验证原理以及设计分析的正确性,其主要缺陷有:设计及分析阶段的交互性与可视化能力差;设计及分析阶段的工作不能为实验阶段提供指导,不同阶段之间的延展性差;重复设计、分析、样机试制的工作,研究开发周期长,投入大,工程应用能力差。The research on the rotary steerable drilling system is a difficult system engineering with large investment, high requirements on software and hardware, long research period and integration of mechanical, electrical and hydraulic. The research and development of the rotary steerable actuator is the research and development of the whole system. key and core. The traditional research idea of the rotary steerable actuator is to immediately carry out the trial production of the prototype on the basis of determining the guiding principle and preliminary kinematics and dynamics analysis, and then verify the correctness of the principle and design analysis through experiments. The main defects are: design The interaction and visualization capabilities in the analysis stage are poor; the work in the design and analysis stage cannot provide guidance for the experimental stage, and the scalability between different stages is poor; repeated design, analysis, and prototype trial production work, the research and development cycle is long, and the investment is large. Poor engineering application ability.

发明内容Contents of the invention

本发明为解决公知技术中存在的技术问题而提供一种通过对旋转导向执行机构进行分析、模拟仿真和调试来缩短研发周期和降低研发成本的旋转导向执行机构的虚机实电仿真系统及仿真方法。In order to solve the technical problems in the known technology, the present invention provides a virtual machine real-electric simulation system and simulation of a rotary-steering actuator that shortens the research and development period and reduces the research and development cost by analyzing, simulating, and debugging the rotary-steering actuator. method.

本发明为解决公知技术中存在的技术问题所采取的技术方案是:一种旋转导向执行机构的虚机实电仿真系统,包括工控机、电控装置、测量装置和旋转导向执行机构;所述工控机包括导向仿真器、数据采集模块和接口通信模块,所述电控装置包括运动控制卡和数据采集卡,所述测量装置包括传感器组,所述旋转导向执行机构包括电机模块和执行机构模块,其中:The technical solution adopted by the present invention to solve the technical problems existing in the known technology is: a virtual machine real electric simulation system of a rotary steering actuator, including an industrial computer, an electric control device, a measuring device and a rotary steering actuator; The industrial computer includes a guide emulator, a data acquisition module and an interface communication module, the electric control device includes a motion control card and a data acquisition card, the measurement device includes a sensor group, and the rotary guide actuator includes a motor module and an actuator module ,in:

所述接口通信模块,用于完成所述工控机与所述电控装置之间的数据通信;The interface communication module is used to complete the data communication between the industrial computer and the electronic control device;

所述传感器组,用于实时采集所述旋转导向执行机构的状态信号,并将采集到的信号发送至所述数据采集卡;The sensor group is used to collect the status signal of the rotary steerable actuator in real time, and send the collected signal to the data acquisition card;

所述数据采集卡,用于将所述传感器组上传的模拟量信号转换成数字量信号,并通过所述接口通信模块发送信号至所述数据采集模块;The data acquisition card is used to convert the analog signal uploaded by the sensor group into a digital signal, and send the signal to the data acquisition module through the interface communication module;

所述数据采集模块,用于接收并处理来自所述数据采集卡的信号,并发送数字信号至所述导向仿真器;The data acquisition module is used to receive and process signals from the data acquisition card, and send digital signals to the guidance emulator;

所述导向仿真器,用于完成所述旋转导向执行机构导向钻进的仿真,其接收来自所述数据采集模块的信号,按照预定的算法计算处理后显示井眼轨迹信息,同时通过所述接口通信模块向所述运动控制卡发送控制信号;The steering simulator is used to complete the simulation of the steering drilling of the rotary steerable actuator. It receives the signal from the data acquisition module, calculates and processes it according to a predetermined algorithm, and displays the wellbore trajectory information. At the same time, through the interface The communication module sends a control signal to the motion control card;

所述运动控制卡,用于驱动所述电机模块工作;The motion control card is used to drive the motor module to work;

所述电机模块,包括两个伺服电机,用于驱动所述执行机构模块工作;The motor module includes two servo motors for driving the actuator module to work;

所述执行机构模块,用于使旋转导向执行机构内的心轴发生偏置,实现导向钻进。The actuator module is used to offset the mandrel in the rotary steerable actuator to realize steerable drilling.

进一步地,所述旋转导向执行机构为静态偏置指向式旋转导向执行机构。Further, the rotary steerable actuator is a static bias pointing rotary steerable actuator.

进一步地,所述运动控制卡为多轴可编程运动控制卡,并与LabVIEW实现数据交互。Further, the motion control card is a multi-axis programmable motion control card, and realizes data interaction with LabVIEW.

进一步地,所述执行机构模块包括一套少齿差行星轮系,所述少齿差行星轮系在所述的两个伺服电机的驱动下实现行星轮的自转和公转,从而带动心轴运动,使心轴发生偏置。Further, the actuator module includes a set of a planetary gear train with a small tooth difference, and the planetary gear train with a small tooth difference is driven by the two servo motors to realize the rotation and revolution of the planetary gear, thereby driving the spindle to move , to offset the mandrel.

本发明还提供了一种旋转导向执行机构的虚机实电仿真方法,包括如下步骤:The present invention also provides a virtual machine real electric simulation method of a rotary steerable actuator, comprising the following steps:

1)分析旋转导向执行机构的工作原理,确定参数之间的关系,采用MATLAB软件建立相应的数学模型;1) Analyze the working principle of the rotary steerable actuator, determine the relationship between the parameters, and use MATLAB software to establish the corresponding mathematical model;

2)采用SolidWorks软件建立旋转导向执行机构的三维模型;2) Using SolidWorks software to establish a three-dimensional model of the rotary steerable actuator;

3)采用LabVIEW软件,将步骤1)所得的数学模型和步骤2)所得的三维模型进行关联,建立所述导向仿真器的虚拟动态仿真模型;3) adopt LabVIEW software, the mathematical model of step 1) gained and the three-dimensional model of step 2) gained are correlated, set up the virtual dynamic simulation model of described guide emulator;

4)对所述导向仿真器进行虚机实电仿真调试并修正。4) Perform virtual machine real electrical simulation debugging and correction on the guide emulator.

其中步骤1)具体包括如下步骤:Wherein step 1) specifically comprises the following steps:

11)采用MATLAB软件建立数学模型,包括旋转导向执行机构心轴偏心位移矢量与实钻井眼轨迹的井斜角和方位角之间关系的数学模型,旋转导向执行机构心轴偏心位移矢量与所述两个伺服电机的转角之间关系的数学模型,理想井眼轨迹与实钻井眼轨迹之间的偏差和旋转导向执行机构心轴偏心位移矢量之间关系的数学模型;11) Use MATLAB software to establish a mathematical model, including the mathematical model of the relationship between the eccentric displacement vector of the spindle of the rotary steerable actuator and the inclination angle and azimuth angle of the actual drilling trajectory. The eccentric displacement vector of the spindle of the rotary steerable actuator is related to the A mathematical model of the relationship between the rotation angles of the two servo motors, a mathematical model of the relationship between the deviation between the ideal wellbore trajectory and the actual drilled wellbore trajectory, and the eccentric displacement vector of the spindle of the rotary steerable actuator;

12)将井眼轨迹的坐标值、井斜角和方位角输入导向钻井数据库,计算出轨迹参数对应的旋转导向执行机构的造斜率和工具面角;12) Input the coordinate value, inclination angle and azimuth angle of the wellbore trajectory into the steerable drilling database, and calculate the build-up rate and tool face angle of the rotary steerable actuator corresponding to the trajectory parameters;

13)根据导向原理和结构参数计算出旋转导向执行机构内心轴的偏置幅值和偏置相位;13) Calculate the offset amplitude and offset phase of the inner shaft of the rotary steerable actuator according to the guiding principle and structural parameters;

14)根据预设的旋转导向执行机构心轴偏置幅值和偏置相位与所述少齿差行星轮系内行星轮的公转角和自转角的数学函数关系,计算出所述行星轮的自转角和公转角;14) According to the mathematical functional relationship between the preset rotary steerable actuator spindle offset amplitude and offset phase and the revolution angle and rotation angle of the planetary gears in the planetary gear train with small tooth difference, calculate the rotation and revolution angles;

15)根据所述少齿差行星轮系的传动比计算出所述两个伺服电机的转角。15) Calculate the rotation angles of the two servo motors according to the transmission ratio of the planetary gear train with small tooth difference.

其中步骤2)具体包括如下步骤:Wherein step 2) specifically comprises the following steps:

21)在SolidWorks软件中建立各个零部件的3D模型;21) Establish the 3D model of each component in SolidWorks software;

22)对零部件进行装配,生成装配体模型;22) Assemble the parts and generate the assembly model;

23)对装配体进行干涉检查,若存在干涉现象,则重新进行装配体模型的生成;若不存在干涉现象,则将3D装配体模型添加到SolidWorks Motion模块;23) Check the assembly for interference. If there is interference, regenerate the assembly model; if there is no interference, add the 3D assembly model to the SolidWorks Motion module;

24)在SolidWorks Motion模块中对装配体模型定义马达和传感器。24) Define motors and sensors to the assembly model in the SolidWorks Motion module.

其中步骤3)具体包括如下步骤:Wherein step 3) specifically comprises the following steps:

31)MATLAB软件计算得到的控制参数以TXT文本格式保存,并被LabVIEW软件读取;31) The control parameters calculated by MATLAB software are saved in TXT text format and read by LabVIEW software;

32)LabVIEW软件根据读取的控制参数,驱动SolidWorks软件Motion模块中的3D装配模型运动,实现模拟仿真;32) LabVIEW software drives the motion of the 3D assembly model in the Motion module of SolidWorks software according to the read control parameters to realize the simulation;

33)SolidWorks Motion中的虚拟传感器实时监测3D装配体模型的运动情况,并将监测数据传输到LabVIEW软件前面板;33) The virtual sensor in SolidWorks Motion monitors the movement of the 3D assembly model in real time, and transmits the monitoring data to the front panel of LabVIEW software;

34)LabVIEW软件将模拟仿真的结果进行相关分析以TXT文本格式保存,并被MATLAB软件读取,从而在MATLAB软件中绘制出模拟仿真过程中旋转导向执行机构的模拟井眼轨迹。34) LabVIEW software saves the simulation results in TXT text format for correlation analysis, and is read by MATLAB software, so that the simulated wellbore trajectory of the rotary steerable actuator during the simulation process is drawn in the MATLAB software.

其中步骤4)具体包括如下步骤:Wherein step 4) specifically comprises the following steps:

41)所述导向仿真器在进行虚拟仿真的同时,经所述接口通信模块向所述运动控制卡发送与虚拟仿真一致的电机驱动控制指令;41) The guide emulator sends a motor drive control command consistent with the virtual simulation to the motion control card through the interface communication module while performing the virtual simulation;

42)所述运动控制卡接收电机驱动控制指令,驱动所述电机模块实现给定的转动,使所述执行机构模块动作;42) The motion control card receives a motor drive control command, drives the motor module to achieve a given rotation, and makes the actuator module act;

43)所述执行机构模块在所述电机模块的驱动下,实现所述行星轮的自转和公转,从而使心轴发生偏置;43) The actuator module is driven by the motor module to realize the rotation and revolution of the planetary gear, so that the mandrel is biased;

44)所述传感器组实时采集旋转导向执行机构的状态信号,并将采集到的信号传输至所述数据采集卡;44) The sensor group collects the status signal of the rotary steerable actuator in real time, and transmits the collected signal to the data acquisition card;

45)所述数据采集卡将接收的模拟量信号转换成数字量信号,并将数字量信号通过所述接口通信模块传输至所述数据采集模块;45) The data acquisition card converts the received analog signal into a digital signal, and transmits the digital signal to the data acquisition module through the interface communication module;

46)所述数据采集模块将接收到的信号处理后传输至所述导向仿真器;46) The data acquisition module processes the received signal and transmits it to the guidance simulator;

47)所述导向仿真器将接收到旋转导向执行机构的实际工作状态信号,与虚拟模型信号比较,修正仿真模型。47) The steering simulator will receive the actual working status signal of the rotary steering actuator, compare it with the virtual model signal, and correct the simulation model.

本发明具有的优点和积极效果是:把旋转导向执行机构的设计、分析、调试和实验集成到一个统一的虚拟环境中,利用计算机完成系统的设计,并开发出基于MATLAB软件、LabVIEW软件和SolidWorks软件的联合导向仿真器,对旋转导向执行机构进行分析、模拟仿真和调试;同时,所开发的导向仿真器可以直接驱动真实的机械系统,使真实机械系统的运转情况与仿真模型保持一致,两者取得同样的控制效果;同时利用虚拟现实技术在统一的虚拟环境中完成旋转导向执行机构的设计、分析、调试和模拟仿真,在整个过程具有较好的交互性和较强的可视化能力,并可以为实验阶段提供指导,不同阶段之间的延展性强,同时整个过程不需要进行样机的试制,就可以进行各种分析验证以及调试工作,并不受场所的影响,通过把设计、分析、调试和模拟仿真结合起来,缩短了产品的开发周期;在实验阶段,所开发的导向仿真器可以直接驱动真实机械体统的运转,避免了对真实机械系统实验的额外驱动配置和编程,同时,在真实机械系统运转过程中,虚拟的模型仿真同步进行并保持一致,实现虚机实电的完美结合,通过比较两者之间的运动情况,对虚拟模型和真实机械系统进行适当的调试;该发明可以应用于其他旋转导向执行机构,如推靠式旋转导向执行机构的设计、分析、调试和实验。The advantages and positive effects of the present invention are: the design, analysis, debugging and experiment of the rotary steering actuator are integrated into a unified virtual environment, the computer is used to complete the design of the system, and a system based on MATLAB software, LabVIEW software and SolidWorks is developed. The joint guidance simulator of the software analyzes, simulates and debugs the rotary-steering actuator; at the same time, the developed guidance simulator can directly drive the real mechanical system, so that the operation of the real mechanical system is consistent with the simulation model. At the same time, the design, analysis, debugging and simulation of the rotary steerable actuator are completed in a unified virtual environment by using virtual reality technology, which has better interactivity and strong visualization ability in the whole process, and It can provide guidance for the experimental stage, and the scalability between different stages is strong. At the same time, the whole process does not need to carry out prototype trial production, and various analysis verification and debugging work can be carried out, and it is not affected by the site. By combining design, analysis, The combination of debugging and simulation shortens the product development cycle; in the experimental stage, the developed guidance simulator can directly drive the operation of the real mechanical system, avoiding additional drive configuration and programming for real mechanical system experiments. During the operation of the real mechanical system, the virtual model simulation is carried out synchronously and kept consistent, realizing the perfect combination of virtual machine and real electricity, and by comparing the movement between the two, the virtual model and the real mechanical system are properly debugged; the invention It can be applied to other rotary steerable actuators, such as the design, analysis, debugging and experiment of push-on rotary steerable actuators.

附图说明Description of drawings

图1为本发明旋转导向执行机构的虚机实电仿真系统的结构框图;Fig. 1 is the structural block diagram of the virtual machine real electric simulation system of the rotary steerable actuator of the present invention;

图2为本发明旋转导向执行机构的虚机实电仿真方法的工作流程图。Fig. 2 is a working flow chart of the virtual machine real electric simulation method of the rotary steerable actuator of the present invention.

图3为本发明旋转导向执行机构的虚机实电仿真方法的软件实现流程图。Fig. 3 is a software implementation flowchart of the virtual machine real electric simulation method of the rotary steerable actuator of the present invention.

具体实施方式Detailed ways

为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:In order to further understand the invention content, characteristics and effects of the present invention, the following examples are given, and detailed descriptions are as follows in conjunction with the accompanying drawings:

请参阅图1,本发明的实施例之一提供了一种旋转导向执行机构的虚机实电仿真系统,包括工控机、电控装置、测量装置和旋转导向执行机构;所述工控机包括导向仿真器、数据采集模块和接口通信模块,所述电控装置包括运动控制卡和数据采集卡,所述测量装置包括传感器组,所述旋转导向执行机构包括电机模块和执行机构模块,其中:Referring to Fig. 1, one of the embodiments of the present invention provides a virtual machine real electric simulation system of a rotary steerable actuator, including an industrial computer, an electric control device, a measuring device and a rotary steerable actuator; the industrial computer includes a guide An emulator, a data acquisition module and an interface communication module, the electric control device includes a motion control card and a data acquisition card, the measurement device includes a sensor group, and the rotary steering actuator includes a motor module and an actuator module, wherein:

所述接口通信模块,用于完成所述工控机与所述电控装置之间的数据通信;The interface communication module is used to complete the data communication between the industrial computer and the electronic control device;

所述传感器组,用于实时采集所述旋转导向执行机构的状态信号,并将采集到的信号发送至所述数据采集卡;The sensor group is used to collect the status signal of the rotary steerable actuator in real time, and send the collected signal to the data acquisition card;

所述数据采集卡,用于将所述传感器组上传的模拟量信号转换成数字量信号,并通过所述接口通信模块发送信号至所述数据采集模块;The data acquisition card is used to convert the analog signal uploaded by the sensor group into a digital signal, and send the signal to the data acquisition module through the interface communication module;

所述数据采集模块,用于接收并处理来自所述数据采集卡的信号,并发送数字信号至所述导向仿真器;The data acquisition module is used to receive and process signals from the data acquisition card, and send digital signals to the guidance emulator;

所述导向仿真器,用于完成所述旋转导向执行机构导向钻进的仿真,其接收来自所述数据采集模块的信号,按照预定的算法计算处理后显示井眼轨迹信息,同时通过所述接口通信模块向所述运动控制卡发送控制信号;The steering simulator is used to complete the simulation of the steering drilling of the rotary steerable actuator. It receives the signal from the data acquisition module, calculates and processes it according to a predetermined algorithm, and displays the wellbore trajectory information. At the same time, through the interface The communication module sends a control signal to the motion control card;

所述运动控制卡,用于驱动所述电机模块工作;The motion control card is used to drive the motor module to work;

所述电机模块,包括两个伺服电机,用于驱动所述执行机构模块工作;The motor module includes two servo motors for driving the actuator module to work;

所述执行机构模块,用于使旋转导向执行机构内的心轴发生偏置,实现导向钻进。The actuator module is used to offset the mandrel in the rotary steerable actuator to realize steerable drilling.

进一步地,所述旋转导向执行机构可为静态偏置指向式旋转导向执行机构。Further, the rotary steerable actuator may be a static bias pointing rotary steerable actuator.

优选的,所述运动控制卡可为多轴可编程运动控制卡,并可以与LabVIEW实现数据交互。Preferably, the motion control card can be a multi-axis programmable motion control card, and can realize data interaction with LabVIEW.

优选的,所述导向执行模块可包括一套少齿差行星轮系,所述少齿差行星轮系在所述的两个伺服电机的驱动下实现内行星轮的自转和公转,从而带动心轴运动,使心轴发生偏置。所述的两个伺服电机可选直流伺服电机。Preferably, the guide execution module may include a set of planetary gear trains with few tooth differences, and the planetary gear trains with few tooth differences are driven by the two servo motors to realize the rotation and revolution of the inner planetary gears, thereby driving the Shaft movement, offsetting the mandrel. The two servo motors described above can be optional DC servo motors.

其中所述导向仿真器以LabVIEW软件为主体,借助LabVIEW SoftMotion模块,联合SolidWorks软件和MATLAB软件而开发。Wherein said guiding simulator takes LabVIEW software as the main body, and is developed in conjunction with SolidWorks software and MATLAB software by means of LabVIEW SoftMotion module.

请参考图2和图3,本发明的另一个实施例提供了一种旋转导向执行机构的虚机实电仿真方法,包括如下步骤:Please refer to Fig. 2 and Fig. 3, another embodiment of the present invention provides a virtual machine real electric simulation method of a rotary steerable actuator, including the following steps:

1)分析旋转导向执行机构的工作原理,确定参数之间的关系,采用MATLAB软件建立相应的数学模型;1) Analyze the working principle of the rotary steerable actuator, determine the relationship between the parameters, and use MATLAB software to establish the corresponding mathematical model;

2)采用SolidWorks软件建立旋转导向执行机构的三维模型;2) Using SolidWorks software to establish a three-dimensional model of the rotary steerable actuator;

3)采用LabVIEW软件,将步骤1)所得的数学模型和步骤2)所得的三维模型进行关联,建立所述导向仿真器的虚拟动态仿真模型;3) adopt LabVIEW software, the mathematical model of step 1) gained and the three-dimensional model of step 2) gained are correlated, set up the virtual dynamic simulation model of described guide emulator;

4)对所述导向仿真器进行虚机实电仿真调试并修正。4) Perform virtual machine real electrical simulation debugging and correction on the guide emulator.

其中步骤1)具体包括如下步骤:Wherein step 1) specifically comprises the following steps:

11)采用MATLAB软件建立数学模型,包括旋转导向执行机构心轴偏心位移矢量与实钻井眼轨迹的井斜角和方位角之间关系的数学模型,旋转导向执行机构心轴偏心位移矢量与所述两个伺服电机的转角之间关系的数学模型,理想井眼轨迹与实钻井眼轨迹之间的偏差和旋转导向执行机构心轴偏心位移矢量之间关系的数学模型;11) Use MATLAB software to establish a mathematical model, including the mathematical model of the relationship between the eccentric displacement vector of the spindle of the rotary steerable actuator and the inclination angle and azimuth angle of the actual drilling trajectory. The eccentric displacement vector of the spindle of the rotary steerable actuator is related to the A mathematical model of the relationship between the rotation angles of the two servo motors, a mathematical model of the relationship between the deviation between the ideal wellbore trajectory and the actual drilled wellbore trajectory, and the eccentric displacement vector of the spindle of the rotary steerable actuator;

12)将井眼轨迹的坐标值、井斜角和方位角输入导向钻井数据库,计算出轨迹参数对应的旋转导向执行机构的造斜率和工具面角;12) Input the coordinate value, inclination angle and azimuth angle of the wellbore trajectory into the steerable drilling database, and calculate the build-up rate and tool face angle of the rotary steerable actuator corresponding to the trajectory parameters;

13)根据导向原理和结构参数计算出旋转导向执行机构内心轴的偏置幅值和偏置相位;13) Calculate the offset amplitude and offset phase of the inner shaft of the rotary steerable actuator according to the guiding principle and structural parameters;

14)根据预设的旋转导向执行机构心轴偏置幅值和偏置相位与所述少齿差行星轮系内行星轮的公转角和自转角的数学函数关系,计算出所述行星轮的自转角和公转角;14) According to the mathematical functional relationship between the preset rotary steerable actuator spindle offset amplitude and offset phase and the revolution angle and rotation angle of the planetary gears in the planetary gear train with small tooth difference, calculate the rotation and revolution angles;

15)根据所述少齿差行星轮系的传动比计算出所述两个伺服电机的转角。15) Calculate the rotation angles of the two servo motors according to the transmission ratio of the planetary gear train with small tooth difference.

其中步骤2)具体包括如下步骤:Wherein step 2) specifically comprises the following steps:

21)在SolidWorks软件中建立各个零部件的3D模型;21) Establish the 3D model of each component in SolidWorks software;

22)对零部件进行装配,生成装配体模型;22) Assemble the parts and generate the assembly model;

23)对装配体进行干涉检查,若存在干涉现象,则重新进行装配体模型的生成;若不存在干涉现象,则将3D装配体模型添加到SolidWorks Motion模块;23) Check the assembly for interference. If there is interference, regenerate the assembly model; if there is no interference, add the 3D assembly model to the SolidWorks Motion module;

24)在SolidWorks Motion模块中对装配体模型定义马达和传感器。24) Define motors and sensors to the assembly model in the SolidWorks Motion module.

其中步骤3)具体包括如下步骤:Wherein step 3) specifically comprises the following steps:

31)MATLAB软件计算得到的控制参数以TXT文本格式保存,并被LabVIEW软件读取;31) The control parameters calculated by MATLAB software are saved in TXT text format and read by LabVIEW software;

32)LabVIEW软件根据读取的控制参数,驱动SolidWorks软件Motion模块中的3D装配模型运动,实现模拟仿真,具体步骤为:32) LabVIEW software drives the motion of the 3D assembly model in the Motion module of SolidWorks software according to the read control parameters to realize the simulation. The specific steps are:

A)在LabVIEW软件平台搭建完成如下项目:创建项目、创建程序框图、创建前面板、定义控制算法、创建执行文件、模拟仿真以及分析等;A) Complete the following projects on the LabVIEW software platform: create a project, create a program block diagram, create a front panel, define a control algorithm, create an execution file, simulate and analyze, etc.;

B)添加SolidWorks模型到LabVIEW项目以及添加LabVIEW算法到LabVIEW项目,B) Add the SolidWorks model to the LabVIEW project and add the LabVIEW algorithm to the LabVIEW project,

C)对SolidWorks与LabVIEW进行关联操作;C) Associate SolidWorks with LabVIEW;

D)创建虚拟运动轴和坐标系;D) Create a virtual motion axis and coordinate system;

E)关联驱动与传感器;E) Associate drive and sensor;

F)确认是否完全配置,如果完全配置,则进行运动资源部署,并在LabVIEW软件平台上创建执行文件,如果不完全配置则在SolidWorks软件平台上定义马达和传感器;F) Confirm whether it is fully configured, if fully configured, deploy motion resources, and create execution files on the LabVIEW software platform, if not fully configured, define motors and sensors on the SolidWorks software platform;

33)SolidWorks Motion中的虚拟传感器实时监测3D装配体模型的运动情况,并将监测数据传输到LabVIEW软件前面板;33) The virtual sensor in SolidWorks Motion monitors the movement of the 3D assembly model in real time, and transmits the monitoring data to the front panel of LabVIEW software;

34)LabVIEW软件将模拟仿真的结果进行相关分析以TXT文本格式保存,并被MATLAB软件读取,从而在MATLAB软件中绘制出模拟仿真过程中旋转导向执行机构的模拟井眼轨迹。34) LabVIEW software saves the simulation results in TXT text format for correlation analysis, and is read by MATLAB software, so that the simulated wellbore trajectory of the rotary steerable actuator during the simulation process is drawn in the MATLAB software.

其中步骤4)具体包括如下步骤:Wherein step 4) specifically comprises the following steps:

41)所述导向仿真器在进行虚拟仿真的同时,经所述接口通信模块向所述运动控制卡发送与虚拟仿真一致的电机驱动控制指令;41) The guide emulator sends a motor drive control command consistent with the virtual simulation to the motion control card through the interface communication module while performing the virtual simulation;

42)所述运动控制卡接收电机驱动控制指令,驱动所述电机模块实现给定的转动,使所述执行机构模块动作;42) The motion control card receives a motor drive control command, drives the motor module to achieve a given rotation, and makes the actuator module act;

43)所述执行机构模块在所述电机模块的驱动下,实现所述行星轮的自转和公转,从而使心轴发生偏置;43) The actuator module is driven by the motor module to realize the rotation and revolution of the planetary gear, so that the mandrel is biased;

44)所述传感器组实时采集旋转导向执行机构的状态信号,并将采集到的信号传输至所述数据采集卡;44) The sensor group collects the status signal of the rotary steerable actuator in real time, and transmits the collected signal to the data acquisition card;

45)所述数据采集卡将接收的模拟量信号转换成数字量信号,并将数字量信号通过所述接口通信模块传输至所述数据采集模块;45) The data acquisition card converts the received analog signal into a digital signal, and transmits the digital signal to the data acquisition module through the interface communication module;

46)所述数据采集模块将接收到的信号处理后传输至所述导向仿真器;46) The data acquisition module processes the received signal and transmits it to the guidance simulator;

47)所述导向仿真器将接收到旋转导向执行机构的实际工作状态信号,与虚拟模型信号比较,修正仿真模型。47) The steering simulator will receive the actual working status signal of the rotary steering actuator, compare it with the virtual model signal, and correct the simulation model.

本发明所述导向仿真器以LabVIEW软件为主体,借助LabVIEW SoftMotion模块,联合SolidWorks软件和MATLAB软件而开发。The guidance emulator of the present invention takes LabVIEW software as the main body, and is developed in conjunction with SolidWorks software and MATLAB software by means of the LabVIEW SoftMotion module.

尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式,这些均属于本发明的保护范围之内。Although the preferred embodiments of the present invention have been described above in conjunction with the accompanying drawings, the present invention is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are only illustrative and not restrictive. Those of ordinary skill in the art Under the enlightenment of the present invention, people can also make many forms without departing from the purpose of the present invention and the scope of protection of the claims, and these all belong to the protection scope of the present invention.

Claims (9)

1.一种旋转导向执行机构的虚机实电仿真系统,其特征在于,包括工控机、电控装置、测量装置和旋转导向执行机构;所述工控机包括导向仿真器、数据采集模块和接口通信模块,所述电控装置包括运动控制卡和数据采集卡,所述测量装置包括传感器组,所述旋转导向执行机构包括电机模块和执行机构模块,其中:1. A virtual machine real electric simulation system of a rotary-steering actuator, characterized in that it comprises an industrial computer, an electric control device, a measuring device and a rotary-steering actuator; the industrial computer includes a guiding emulator, a data acquisition module and an interface Communication module, the electronic control device includes a motion control card and a data acquisition card, the measurement device includes a sensor group, and the rotary steering actuator includes a motor module and an actuator module, wherein: 所述接口通信模块,用于完成所述工控机与所述电控装置之间的数据通信;The interface communication module is used to complete the data communication between the industrial computer and the electronic control device; 所述传感器组,用于实时采集所述旋转导向执行机构的状态信号,并将采集到的信号发送至所述数据采集卡;The sensor group is used to collect the status signal of the rotary steerable actuator in real time, and send the collected signal to the data acquisition card; 所述数据采集卡,用于将所述传感器组上传的模拟量信号转换成数字量信号,并通过所述接口通信模块发送信号至所述数据采集模块;The data acquisition card is used to convert the analog signal uploaded by the sensor group into a digital signal, and send the signal to the data acquisition module through the interface communication module; 所述数据采集模块,用于接收并处理来自所述数据采集卡的信号,并发送数字信号至所述导向仿真器;The data acquisition module is used to receive and process signals from the data acquisition card, and send digital signals to the guidance emulator; 所述导向仿真器,用于完成所述旋转导向执行机构导向钻进的仿真,其接收来自所述数据采集模块的信号,按照预定的算法计算处理后显示井眼轨迹信息,同时通过所述接口通信模块向所述运动控制卡发送控制信号;The steering simulator is used to complete the simulation of the steering drilling of the rotary steerable actuator. It receives the signal from the data acquisition module, calculates and processes it according to a predetermined algorithm, and displays the wellbore trajectory information. At the same time, through the interface The communication module sends a control signal to the motion control card; 所述运动控制卡,用于驱动所述电机模块工作;The motion control card is used to drive the motor module to work; 所述电机模块,包括两个伺服电机,用于驱动所述执行机构模块工作;The motor module includes two servo motors for driving the actuator module to work; 所述执行机构模块,用于使旋转导向执行机构内的心轴发生偏置,实现导向钻进。The actuator module is used to offset the mandrel in the rotary steerable actuator to realize steerable drilling. 2.根据权利要求1所述的旋转导向执行机构的虚机实电仿真系统,其特征在于,所述旋转导向执行机构为静态偏置指向式旋转导向执行机构。2 . The virtual machine real electrical simulation system of the rotary steerable actuator according to claim 1 , wherein the rotary steerable actuator is a static bias pointing type rotary steerable actuator. 3 . 3.根据权利要求1所述的旋转导向执行机构的虚机实电仿真系统,其特征在于,所述运动控制卡为多轴可编程运动控制卡,并与LabVIEW实现数据交互。3. The virtual machine real electrical simulation system of the rotary steerable actuator according to claim 1, wherein the motion control card is a multi-axis programmable motion control card, and realizes data interaction with LabVIEW. 4.根据权利要求1所述的旋转导向执行机构的虚机实电仿真系统,其特征在于,所述执行机构模块包括一套少齿差行星轮系,所述少齿差行星轮系在所述的两个伺服电机的驱动下实现行星轮的自转和公转,从而带动心轴运动,使心轴发生偏置。4. The virtual machine real electric simulation system of the rotary steerable actuator according to claim 1, characterized in that, the actuator module includes a set of planetary gear train with small tooth difference, and the planetary gear train with small tooth difference Driven by the two servo motors described above, the rotation and revolution of the planetary wheels are realized, thereby driving the movement of the mandrel and making the mandrel bias. 5.一种旋转导向执行机构的虚机实电仿真方法,其特征在于,包括如下步骤:5. A virtual machine real electric simulation method of a rotary steerable actuator, characterized in that, comprising the steps: 1)分析旋转导向执行机构的工作原理,确定参数之间的关系,采用MATLAB软件建立相应的数学模型;1) Analyze the working principle of the rotary steerable actuator, determine the relationship between the parameters, and use MATLAB software to establish the corresponding mathematical model; 2)采用SolidWorks软件建立旋转导向执行机构的三维模型;2) Using SolidWorks software to establish a three-dimensional model of the rotary steerable actuator; 3)采用LabVIEW软件,将步骤1)所得的数学模型和步骤2)所得的三维模型进行关联,建立所述导向仿真器的虚拟动态仿真模型;3) adopt LabVIEW software, the mathematical model of step 1) gained and the three-dimensional model of step 2) gained are correlated, set up the virtual dynamic simulation model of described guide emulator; 4)对所述导向仿真器进行虚机实电仿真调试并修正。4) Perform virtual machine real electrical simulation debugging and correction on the guide emulator. 6.根据权利要求5所述的旋转导向执行机构的虚机实电仿真方法,其特征在于,其中步骤1)具体包括如下步骤:6. the virtual machine real electric simulation method of rotary steerable actuator according to claim 5, is characterized in that, wherein step 1) specifically comprises the steps: 11)采用MATLAB软件建立数学模型,包括旋转导向执行机构心轴偏心位移矢量与实钻井眼轨迹的井斜角和方位角之间关系的数学模型,旋转导向执行机构心轴偏心位移矢量与所述两个伺服电机的转角之间关系的数学模型,理想井眼轨迹与实钻井眼轨迹之间的偏差和旋转导向执行机构心轴偏心位移矢量之间关系的数学模型;11) Use MATLAB software to establish a mathematical model, including the mathematical model of the relationship between the eccentric displacement vector of the spindle of the rotary steerable actuator and the inclination angle and azimuth angle of the actual drilling trajectory. The eccentric displacement vector of the spindle of the rotary steerable actuator is related to the A mathematical model of the relationship between the rotation angles of the two servo motors, a mathematical model of the relationship between the deviation between the ideal wellbore trajectory and the actual drilled wellbore trajectory, and the eccentric displacement vector of the spindle of the rotary steerable actuator; 12)将井眼轨迹的坐标值、井斜角和方位角输入导向钻井数据库,计算出轨迹参数对应的旋转导向执行机构的造斜率和工具面角;12) Input the coordinate value, inclination angle and azimuth angle of the wellbore trajectory into the steerable drilling database, and calculate the build-up rate and tool face angle of the rotary steerable actuator corresponding to the trajectory parameters; 13)根据导向原理和结构参数计算出旋转导向执行机构内心轴的偏置幅值和偏置相位;13) Calculate the offset amplitude and offset phase of the inner shaft of the rotary steerable actuator according to the guiding principle and structural parameters; 14)根据预设的旋转导向执行机构心轴偏置幅值和偏置相位与所述少齿差行星轮系内行星轮的公转角和自转角的数学函数关系,计算出所述行星轮的自转角和公转角;14) According to the mathematical functional relationship between the preset rotary steerable actuator spindle offset amplitude and offset phase and the revolution angle and rotation angle of the planetary gears in the planetary gear train with small tooth difference, calculate the rotation and revolution angles; 15)根据所述少齿差行星轮系的传动比计算出所述两个伺服电机的转角。15) Calculate the rotation angles of the two servo motors according to the transmission ratio of the planetary gear train with small tooth difference. 7.根据权利要求5所述的旋转导向执行机构的虚机实电仿真方法,其特征在于,其中步骤2)具体包括如下步骤:7. the virtual machine real electric simulation method of rotary steerable actuator according to claim 5, is characterized in that, wherein step 2) specifically comprises the steps: 21)在SolidWorks软件中建立各个零部件的3D模型;21) Establish the 3D model of each component in SolidWorks software; 22)对零部件进行装配,生成装配体模型;22) Assemble the parts and generate the assembly model; 23)对装配体进行干涉检查,若存在干涉现象,则重新进行装配体模型的生成;若不存在干涉现象,则将3D装配体模型添加到SolidWorks Motion模块;23) Check the assembly for interference. If there is interference, regenerate the assembly model; if there is no interference, add the 3D assembly model to the SolidWorks Motion module; 24)在SolidWorks Motion模块中对装配体模型定义马达和传感器。24) Define motors and sensors to the assembly model in the SolidWorks Motion module. 8.根据权利要求5所述的旋转导向执行机构的虚机实电仿真方法,其特征在于,其中步骤3)具体包括如下步骤:8. the virtual machine real electric simulation method of rotary steerable actuator according to claim 5, is characterized in that, wherein step 3) specifically comprises the steps: 31)MATLAB软件计算得到的控制参数以TXT文本格式保存,并被LabVIEW软件读取;31) The control parameters calculated by MATLAB software are saved in TXT text format and read by LabVIEW software; 32)LabVIEW软件根据读取的控制参数,驱动SolidWorks软件Motion模块中的3D装配模型运动,实现模拟仿真;32) LabVIEW software drives the motion of the 3D assembly model in the Motion module of SolidWorks software according to the read control parameters to realize the simulation; 33)SolidWorks Motion中的虚拟传感器实时监测3D装配体模型的运动情况,并将监测数据传输到LabVIEW软件前面板;33) The virtual sensor in SolidWorks Motion monitors the movement of the 3D assembly model in real time, and transmits the monitoring data to the front panel of LabVIEW software; 34)LabVIEW软件将模拟仿真的结果进行相关分析以TXT文本格式保存,并被MATLAB软件读取,从而在MATLAB软件中绘制出模拟仿真过程中旋转导向执行机构的模拟井眼轨迹。34) LabVIEW software saves the simulation results in TXT text format for correlation analysis, and is read by MATLAB software, so that the simulated wellbore trajectory of the rotary steerable actuator during the simulation process is drawn in the MATLAB software. 9.根据权利要求5所述的旋转导向执行机构的虚机实电仿真方法,其特征在于,其中步骤4)具体包括如下步骤:9. the virtual machine real electric simulation method of rotary steerable actuator according to claim 5, is characterized in that, wherein step 4) specifically comprises the steps: 41)所述导向仿真器在进行虚拟仿真的同时,经所述接口通信模块向所述运动控制卡发送与虚拟仿真一致的电机驱动控制指令;41) The guide emulator sends a motor drive control command consistent with the virtual simulation to the motion control card through the interface communication module while performing the virtual simulation; 42)所述运动控制卡接收电机驱动控制指令,驱动所述电机模块实现给定的转动,使所述执行机构模块动作;42) The motion control card receives a motor drive control command, drives the motor module to achieve a given rotation, and makes the actuator module act; 43)所述执行机构模块在所述电机模块的驱动下,实现所述行星轮的自转和公转,从而使心轴发生偏置;43) The actuator module is driven by the motor module to realize the rotation and revolution of the planetary gear, so that the mandrel is biased; 44)所述传感器组实时采集旋转导向执行机构的状态信号,并将采集到的信号传输至所述数据采集卡;44) The sensor group collects the status signal of the rotary steerable actuator in real time, and transmits the collected signal to the data acquisition card; 45)所述数据采集卡将接收的模拟量信号转换成数字量信号,并将数字量信号通过所述接口通信模块传输至所述数据采集模块;45) The data acquisition card converts the received analog signal into a digital signal, and transmits the digital signal to the data acquisition module through the interface communication module; 46)所述数据采集模块将接收到的信号处理后传输至所述导向仿真器;46) The data acquisition module processes the received signal and transmits it to the guidance simulator; 47)所述导向仿真器将接收到旋转导向执行机构的实际工作状态信号,与虚拟模型信号比较,修正仿真模型。47) The steering simulator will receive the actual working status signal of the rotary steering actuator, compare it with the virtual model signal, and correct the simulation model.
CN2013101934822A 2013-05-22 2013-05-22 Virtual machine actual electricity simulation system and method for rotary guiding executing mechanism Pending CN103310038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101934822A CN103310038A (en) 2013-05-22 2013-05-22 Virtual machine actual electricity simulation system and method for rotary guiding executing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101934822A CN103310038A (en) 2013-05-22 2013-05-22 Virtual machine actual electricity simulation system and method for rotary guiding executing mechanism

Publications (1)

Publication Number Publication Date
CN103310038A true CN103310038A (en) 2013-09-18

Family

ID=49135250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101934822A Pending CN103310038A (en) 2013-05-22 2013-05-22 Virtual machine actual electricity simulation system and method for rotary guiding executing mechanism

Country Status (1)

Country Link
CN (1) CN103310038A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103729887A (en) * 2013-12-25 2014-04-16 湖南三一智能控制设备有限公司 Three-dimensional model dynamic display method and device
CN104931216A (en) * 2015-05-13 2015-09-23 天津大学 Space pendulum shaft radial alternate load loading method
CN106371425A (en) * 2016-10-31 2017-02-01 北京恒泰万博石油技术股份有限公司 Simulation experimental bench and method for control system of rotary steering execution mechanism
CN107070351A (en) * 2016-12-25 2017-08-18 北京工业大学 A kind of Linear motor-driven plunger pump constant flow motion planning and control method
CN108509045A (en) * 2018-03-29 2018-09-07 重庆科技学院 Digital Electronic Technique analogue system based on virtual reality
CN109799730A (en) * 2019-01-25 2019-05-24 东华大学 A kind of electromechanical integration emulation platform and its design method
CN109814478A (en) * 2019-01-14 2019-05-28 浙江工业大学 Virtual Debugging System Based on iOpenWorks
CN110069037A (en) * 2019-03-30 2019-07-30 广东利元亨智能装备股份有限公司 Joint virtual simulation debugging system and method based on intelligent equipment manufacturing
CN112484970A (en) * 2019-09-10 2021-03-12 航天科工惯性技术有限公司 Hydraulic system actuating mechanism simulator
CN117950333A (en) * 2023-12-18 2024-04-30 北京捷杰西科技股份有限公司 Simulation system of drilling platform tubular column automation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1730336A (en) * 2004-08-05 2006-02-08 中国科学院光电技术研究所 Online automatic detection equipment for falling wheels of train wheel pairs
CN101000490A (en) * 2006-01-11 2007-07-18 上海电气集团股份有限公司 Virtual machine real electric emulate system for assembling large industrial machinery
CN101211398A (en) * 2006-12-29 2008-07-02 上海电气集团股份有限公司 Watercraft electrical propulsion dummy emulation method
CN101350146A (en) * 2008-08-26 2009-01-21 东北大学 Visual rapid design and verification control teaching experiment system
CN102278065A (en) * 2011-07-08 2011-12-14 中国石油大学(北京) Rotating steering tool, deflection mechanism thereof and control method for deflection mechanism
CN202788615U (en) * 2012-09-20 2013-03-13 天津大学 Static-orientation rotary-steering drilling tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1730336A (en) * 2004-08-05 2006-02-08 中国科学院光电技术研究所 Online automatic detection equipment for falling wheels of train wheel pairs
CN101000490A (en) * 2006-01-11 2007-07-18 上海电气集团股份有限公司 Virtual machine real electric emulate system for assembling large industrial machinery
CN101211398A (en) * 2006-12-29 2008-07-02 上海电气集团股份有限公司 Watercraft electrical propulsion dummy emulation method
CN101350146A (en) * 2008-08-26 2009-01-21 东北大学 Visual rapid design and verification control teaching experiment system
CN102278065A (en) * 2011-07-08 2011-12-14 中国石油大学(北京) Rotating steering tool, deflection mechanism thereof and control method for deflection mechanism
CN202788615U (en) * 2012-09-20 2013-03-13 天津大学 Static-orientation rotary-steering drilling tool

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DUCKJUNE KIM等: "Development of Dynamics and Control Simulator for Mobile CT Device and Its Implementation", 《2012 UKSIM 14TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM)》 *
边景红: "静态指向式旋转导向钻井系统导向执行机构的设计与研究", 《万方数据》 *
韦宏利等: "基于PMAC与LabVIEW的多轴运动控制系统的开发", 《西安工业大学学报》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103729887A (en) * 2013-12-25 2014-04-16 湖南三一智能控制设备有限公司 Three-dimensional model dynamic display method and device
CN104931216A (en) * 2015-05-13 2015-09-23 天津大学 Space pendulum shaft radial alternate load loading method
CN104931216B (en) * 2015-05-13 2017-06-20 天津大学 A kind of radially alternating load loading method of space balance staff
CN106371425A (en) * 2016-10-31 2017-02-01 北京恒泰万博石油技术股份有限公司 Simulation experimental bench and method for control system of rotary steering execution mechanism
CN106371425B (en) * 2016-10-31 2019-01-18 北京恒泰万博石油技术股份有限公司 A kind of rotary steering control system of actuating mechanism simulated experiment platform and method
CN107070351A (en) * 2016-12-25 2017-08-18 北京工业大学 A kind of Linear motor-driven plunger pump constant flow motion planning and control method
CN108509045A (en) * 2018-03-29 2018-09-07 重庆科技学院 Digital Electronic Technique analogue system based on virtual reality
CN108509045B (en) * 2018-03-29 2021-07-09 重庆科技学院 Simulation system of digital electronic technology based on virtual reality
CN109814478A (en) * 2019-01-14 2019-05-28 浙江工业大学 Virtual Debugging System Based on iOpenWorks
CN109814478B (en) * 2019-01-14 2020-04-24 浙江工业大学 Virtual debugging system based on iOpenWorks
CN109799730A (en) * 2019-01-25 2019-05-24 东华大学 A kind of electromechanical integration emulation platform and its design method
CN110069037A (en) * 2019-03-30 2019-07-30 广东利元亨智能装备股份有限公司 Joint virtual simulation debugging system and method based on intelligent equipment manufacturing
WO2020199629A1 (en) * 2019-03-30 2020-10-08 广东利元亨智能装备股份有限公司 Joint virtual simulation debugging system and method based on intelligent device manufacturing
CN112484970A (en) * 2019-09-10 2021-03-12 航天科工惯性技术有限公司 Hydraulic system actuating mechanism simulator
CN112484970B (en) * 2019-09-10 2023-03-24 航天科工惯性技术有限公司 Hydraulic system actuating mechanism simulator
CN117950333A (en) * 2023-12-18 2024-04-30 北京捷杰西科技股份有限公司 Simulation system of drilling platform tubular column automation system

Similar Documents

Publication Publication Date Title
CN103310038A (en) Virtual machine actual electricity simulation system and method for rotary guiding executing mechanism
EP3002646B1 (en) Virtual design engineering
CN105955230B (en) Real-time monitoring method of intelligent manufacturing workshop based on Unity 3D
CN103471854B (en) A kind of aeromotor complete machine oscillation characteristic analysis method
CN102939592B (en) Be used for the testing arrangement of the control program of testing robot device
CN102426425B (en) Automobile ABS (Antilock Brake System) virtual reality simulation system
CN102968059B (en) aircraft landing gear simulator
CN203148676U (en) Vehicle transmission system testing stand
CN105404744B (en) A kind of space manipulator total state dynamics semi-physical system
CN105487462B (en) A kind of PLC motion-control modules function verification device and verification method
CN103488845B (en) The System and method for that the emulation of a kind of pipeline assembly spatial pose and data export automatically
CN104133379A (en) Simulation method for four-rotor aircraft
CN104766506A (en) Coal mine full-hydraulic directional drilling machine simulation training system
CN114894505A (en) Electric power steering system model and automatic test system and method thereof
CN105405350A (en) Simulation training system based on drilling column conduit integration technology
CN103048952A (en) Verification method, device and system of machine tool machining codes
Du et al. Industrial robot digital twin system motion simulation and collision detection
CN103941594A (en) Electric-hydraulic braking rapid control prototype of electric vehicle
CN113984424A (en) Diagnostic method, apparatus, device and storage medium for electronic cam function application
CN105243681A (en) Construction method and device for three-dimensional dynamic model of power device
CN111880096A (en) A loading test system and test method for a multi-axis electric drive system
CN102354326A (en) 3D Simulation Method for Oil Drilling
CN102650852B (en) Design method for control structure of hardware-in-loop numerical control system
Castañeda et al. A low-cost Matlab-based educational platform for teaching robotics
Hrib et al. Digital Twin and Virtual Reality: A Co-simulation Environment for an Educational Hydraulic Workstation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130918