CN103308178B - A kind of asymmetric correction method of un-cooled infrared focal plane array - Google Patents
A kind of asymmetric correction method of un-cooled infrared focal plane array Download PDFInfo
- Publication number
- CN103308178B CN103308178B CN201310216422.8A CN201310216422A CN103308178B CN 103308178 B CN103308178 B CN 103308178B CN 201310216422 A CN201310216422 A CN 201310216422A CN 103308178 B CN103308178 B CN 103308178B
- Authority
- CN
- China
- Prior art keywords
- temperature
- focal plane
- infrared
- plane array
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012937 correction Methods 0.000 title claims abstract description 128
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000003331 infrared imaging Methods 0.000 claims abstract description 53
- 239000000758 substrate Substances 0.000 claims abstract description 43
- 238000003384 imaging method Methods 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000001931 thermography Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
本发明实施例公开了一种非制冷红外焦平面阵列的非均匀性校正方法,包括计算红外焦平面阵列在至少两个标定工作温度下的校正参数并将其存储在存储器中;测量红外焦平面阵列的衬底温度;根据衬底温度,从存储器中获取与衬底温度相对应的当前校正参数;用当前校正参数校正红外图像。本发明的方法中由于储存了红外焦平面阵列在各个标定工作温度下的校正参数,当红外焦平面阵列工作时,不需要对红外焦平面阵列进行一点校正,直接从系统存储器中读取与红外焦平面阵列当前工作温度相对应的校正参数,从而保证了红外成像系统实现不间断的对红外目标实时成像。
The embodiment of the present invention discloses a non-uniformity correction method of an uncooled infrared focal plane array, which includes calculating correction parameters of the infrared focal plane array at at least two calibrated operating temperatures and storing them in a memory; measuring the infrared focal plane The substrate temperature of the array; according to the substrate temperature, the current correction parameter corresponding to the substrate temperature is obtained from the memory; and the infrared image is corrected with the current correction parameter. In the method of the present invention, since the correction parameters of the infrared focal plane array are stored at each calibration working temperature, when the infrared focal plane array is working, it is not necessary to perform a little correction on the infrared focal plane array, and the infrared focal plane array is directly read from the system memory. The correction parameters corresponding to the current working temperature of the focal plane array ensure that the infrared imaging system realizes uninterrupted real-time imaging of infrared targets.
Description
技术领域 technical field
本发明涉及红外成像系统领域,尤其是涉及一种非制冷红外焦平面阵列的非均匀性校正方法。 The invention relates to the field of infrared imaging systems, in particular to a method for correcting non-uniformity of an uncooled infrared focal plane array.
背景技术 Background technique
红外焦平面阵列是20世纪70年代末80年代初,在国防应用以及其它战略与战术应用的推动下发展起来的。它是获取景物红外热辐射信息的重要光电器件。红外焦平面阵列是红外成像技术的核心部件,广泛用于军事、工业、农业、医疗、森林防火等各个领域的成像。 Infrared focal plane arrays were developed in the late 1970s and early 1980s, driven by defense applications and other strategic and tactical applications. It is an important optoelectronic device to obtain the infrared thermal radiation information of the scene. Infrared focal plane array is the core component of infrared imaging technology, widely used in military, industrial, agricultural, medical, forest fire prevention and other fields of imaging.
红外成像系统是红外热成像系统的重要组成部分。目前各种红外成像系统已经广泛应用到通信、医疗、军事、工业等领域。 Infrared imaging system is an important part of infrared thermal imaging system. At present, various infrared imaging systems have been widely used in communication, medical, military, industrial and other fields.
红外焦平面阵列属于第二代红外成像器件,是现代红外成像系统的核心,具有结构简单、工作稳定、噪声等效温差小、灵敏度高等优点。 Infrared focal plane array belongs to the second-generation infrared imaging device and is the core of modern infrared imaging system. It has the advantages of simple structure, stable operation, small noise equivalent temperature difference, and high sensitivity.
红外系统在理想情况下,红外焦平面阵列受均匀辐射,输出幅度应该完全一样。但实际上,由于制作器件的半导体材料不均匀(杂质浓度、晶体缺陷、内部结构的不均匀性等)、掩膜误差、缺陷、工艺条件等因素的影响,受均匀辐射的情况下,其输出幅度并不相同,这就是红外焦平面阵列响应的非均匀性。 In an infrared system, under ideal conditions, the infrared focal plane array is irradiated uniformly, and the output amplitude should be exactly the same. But in fact, due to the inhomogeneity of semiconductor materials for making devices (impurity concentration, crystal defects, inhomogeneity of internal structure, etc.), mask errors, defects, process conditions and other factors, under the condition of uniform radiation, its output The magnitudes are not the same, which is the non-uniformity of the IRFPA response.
造成红外非均匀性的原因有很多,其中主要是热像探测元自身的非均匀性,另外红外焦平面阵列的外界输入也会造成对非均匀性的影响。如探测器的偏置电压、偏置电流的不同,也会造成输出的不均匀性,主要表现为固定加性噪声。但是由于受到制作材料以及制作工艺的限制,红外焦平面阵列各个像元的响应特性无法做到完全一致。 There are many reasons for the infrared non-uniformity, the main one is the non-uniformity of the thermal imaging detector itself, and the external input of the infrared focal plane array will also affect the non-uniformity. For example, the difference in the bias voltage and bias current of the detector will also cause the non-uniformity of the output, which is mainly manifested as fixed additive noise. However, due to limitations of manufacturing materials and manufacturing processes, the response characteristics of each pixel of the infrared focal plane array cannot be completely consistent.
红外焦平面阵列的这种非均匀性会严重影响红外成像系统的探测灵敏度和空间分辨率。因此,在实际使用中都需要对红外焦平面阵列做非均匀性校正。 The non-uniformity of the infrared focal plane array will seriously affect the detection sensitivity and spatial resolution of the infrared imaging system. Therefore, it is necessary to perform non-uniformity correction on the infrared focal plane array in practical use.
目前,常用的红外非均匀性校正技术有很多种,如基于定标的一点校正、两点校正非均匀算法、基于场景的时域高通滤波法、自适应的人工神经网络法和均值滤波算法等等。但是目前还没有找到一种适应性较强的算法,各种非均匀性算法都有它的不足。 At present, there are many commonly used infrared non-uniformity correction techniques, such as calibration-based one-point correction, two-point correction non-uniformity algorithm, scene-based time-domain high-pass filter method, adaptive artificial neural network method and mean value filter algorithm, etc. Wait. But at present, no algorithm with strong adaptability has been found, and all kinds of non-uniformity algorithms have their deficiencies.
现有技术中,目前广泛被应用于实践的是一点定标算法和两点定标算法。 In the prior art, the one-point calibration algorithm and the two-point calibration algorithm are widely used in practice.
两点校正算法考虑了探测器的增益不均匀性和偏置不均匀性,在通常情况下,当入射红外辐射为零的时候,探测器的响应输出不为零。两点校正法将所有探测单元的响应特性曲线通过旋转平移,变换为同一条响应特性曲线。经过校正后,在均匀的辐射输入情况下,各个探测单元的输出电信号相同,从而消除红外图像的非均匀性噪声。但是进行红外图像的两点校正需要进行温度定标。 The two-point correction algorithm takes into account the gain non-uniformity and bias non-uniformity of the detector. In general, when the incident infrared radiation is zero, the response output of the detector is not zero. The two-point correction method transforms the response characteristic curves of all detection units into the same response characteristic curve through rotation and translation. After correction, in the case of uniform radiation input, the output electrical signals of each detection unit are the same, thereby eliminating the non-uniform noise of the infrared image. However, the two-point calibration of infrared images requires temperature calibration.
一点校正算法是最早的非均匀性校正算法,针对增益系数不均匀性和偏置系数不均匀性的两种情况,一点校正法也可以分为两种,分为增益系数不均匀的校正和偏置不均匀的校正,但是一次只能满足一种校正。 One-point correction algorithm is the earliest non-uniformity correction algorithm. For the two situations of gain coefficient non-uniformity and bias coefficient non-uniformity, one-point correction method can also be divided into two types, which are divided into correction of non-uniform gain coefficient and bias correction. Uneven corrections can be set, but only one correction can be satisfied at a time.
采用对偏置的不均匀性校正,一点校正的原理是假定探测器光敏元的输出信号与目标的辐射通量呈线性关系,一点校正算法就是在均匀光辐射下,把各个像元的输出信号校正为一致,即在某一光辐照度下,把不同的像元的输出信号校正为某一信号,这个信号可以是此条件下的最大值或者是其它某一个值,一般取平均值。 Using bias inhomogeneity correction, the principle of one-point correction is to assume that the output signal of the photosensitive element of the detector is linearly related to the radiant flux of the target, and the one-point correction algorithm is to convert the output signal of each pixel under uniform light radiation The correction is consistent, that is, under a certain light irradiance, the output signals of different pixels are corrected to a certain signal. This signal can be the maximum value or some other value under this condition, and the average value is generally taken.
一点校正的实质只是对器件的暗电流作了补偿,并没有对增益作出校正。 The essence of one-point correction is only to compensate the dark current of the device, but not to correct the gain.
在焦平面阵列的实际工作中,探测器光敏元的输出信号与目标的辐射通量之间呈非线性关系,增益和偏置也会随着环境温度的变化而产生非线性变化,导致红外焦平面阵列的红外非均匀性。两点校正方法是将红外焦平面阵列的工作温度区间按温度的上升梯度划分成各个小的温度区间。在一个小的温度区间内,假定探测器光敏元的输出信号与目标的辐射通量呈线性关系,然后利用两点校正的算法计算出这个小的温度区间内的偏置参数。 In the actual work of the focal plane array, there is a nonlinear relationship between the output signal of the photosensitive element of the detector and the radiant flux of the target, and the gain and bias will also change nonlinearly with the change of the ambient temperature, resulting in infrared focus Infrared non-uniformity of planar arrays. The two-point correction method is to divide the working temperature range of the infrared focal plane array into small temperature ranges according to the rising gradient of the temperature. In a small temperature range, it is assumed that the output signal of the photosensitive element of the detector has a linear relationship with the radiant flux of the target, and then the bias parameter in this small temperature range is calculated by using a two-point correction algorithm.
随着市场的需求和技术的进步,目前红外成像系统普遍采用了无TEC的封装形式,无TEC封装形式的红外成像系统除了需要进行传统的两点校正以外,在实际的使用过程中,由于随着使用的时间以及环境温度的变化以及红外成像系统焦平面阵列本身的温度发生的变化,会产生温漂,因此需要进行频繁的快门修正以消除红外焦平面阵列的红外非均匀性的影响。 With the demand of the market and the advancement of technology, the infrared imaging system generally adopts the packaging form without TEC at present. In addition to the traditional two-point calibration, the infrared imaging system without the TEC packaging form needs to be corrected in practice. With the use of time and changes in ambient temperature and the temperature of the focal plane array of the infrared imaging system itself, temperature drift will occur. Therefore, frequent shutter corrections are required to eliminate the influence of infrared non-uniformity of the infrared focal plane array.
在宽温度范围下,如果利用一点校正算法来消除红外焦平面阵列的红外非均匀性,需要在一点校正的时候给红外成像系统焦平面阵列选取均匀的辐照度,这种方法使得在红外成像系统的实际使用过程中,必须暂时中断红外成像系统对红外目标的信息获取。这种频繁的快门修正严重影响了红外成像系统对红外目标的连续观测。 In a wide temperature range, if a one-point correction algorithm is used to eliminate the infrared non-uniformity of the infrared focal plane array, it is necessary to select a uniform irradiance for the focal plane array of the infrared imaging system during one-point correction. This method makes the infrared imaging During the actual use of the system, the information acquisition of the infrared target by the infrared imaging system must be temporarily interrupted. This frequent shutter correction seriously affects the continuous observation of infrared targets by infrared imaging systems.
发明内容 Contents of the invention
本发明的目的之一是提供一种能够更新红外成像系统的校正参数而不需要中断红外成像系统的非制冷红外焦平面阵列的非均匀性校正方法。 One of the objects of the present invention is to provide a non-uniformity correction method capable of updating correction parameters of an infrared imaging system without interrupting an uncooled infrared focal plane array of the infrared imaging system.
本发明实施例公开的技术方案包括: The technical solutions disclosed in the embodiments of the present invention include:
提供了一种非制冷红外焦平面阵列的非均匀性校正方法,其特征在于,包括:步骤A:计算红外焦平面阵列在至少两个标定工作温度下的校正参数,并将所述校正参数存储在存储器中;步骤B:测量所述红外焦平面阵列的衬底温度;步骤C:根据所述衬底温度,从所述存储器中获取与所述衬底温度相对应的当前校正参数;步骤D:用所述红外焦平面阵列对目标物体进行红外成像,获取红外图像;步骤E:用所述当前校正参数对所述红外图像进行校正。 A method for correcting non-uniformity of an uncooled infrared focal plane array is provided, comprising: step A: calculating correction parameters of the infrared focal plane array at at least two calibrated operating temperatures, and storing the correction parameters In the memory; step B: measure the substrate temperature of the infrared focal plane array; step C: according to the substrate temperature, obtain the current correction parameter corresponding to the substrate temperature from the memory; step D : using the infrared focal plane array to perform infrared imaging on a target object to obtain an infrared image; Step E: correcting the infrared image using the current correction parameters.
进一步地,所述步骤A包括:将红外成像系统放置在恒温箱中;调节所述恒温箱的温度到第一标定工作温度并保持在所述第一标定工作温度;用两点校正法计算所述红外成像系统的所述红外焦平面阵列在所述第一标定工作温度下的第一校正参数;将所述第一校正参数存储在所述存储器中;调节所述恒温箱的温度到第二标定工作温度并保持在所述第二标定工作温度;用两点校正法计算所述红外焦平面阵列在所述第二标定工作温度下的第二校正参数;将所述第二校正参数存储在所述存储器中。 Further, the step A includes: placing the infrared imaging system in an incubator; adjusting the temperature of the incubator to the first calibrated working temperature and keeping it at the first calibrated working temperature; The first correction parameter of the infrared focal plane array of the infrared imaging system at the first calibration working temperature; the first correction parameter is stored in the memory; the temperature of the thermostat is adjusted to the second Calibrate the working temperature and keep it at the second calibrated working temperature; use the two-point correction method to calculate the second correction parameter of the infrared focal plane array at the second calibrated working temperature; store the second correction parameter in in the memory.
进一步地,所述步骤A还包括:调节所述恒温箱的温度到第三标定工作温度并保持在所述第三标定工作温度;用两点校正法计算所述红外焦平面阵列在所述第三标定工作温度下的第三校正参数;将所述第三校正参数存储在所述存储器中。 Further, the step A also includes: adjusting the temperature of the thermostat to the third calibrated working temperature and keeping it at the third calibrated working temperature; Third calibration parameters at the calibrated working temperature; storing the third calibration parameters in the memory.
进一步地,所述步骤C包括:比较所述衬底温度与所述至少两个标定工作温度,获得与所述衬底温度相等或者与所述衬底温度之间的差值最小的标定工作温度作为对应工作温度;在所述存储器中读取所述对应工作温度下的校正参数,以所述对应工作温度下的校正参数为所述当前校正参数。 Further, the step C includes: comparing the substrate temperature with the at least two calibrated operating temperatures, and obtaining the calibrated operating temperature that is equal to the substrate temperature or has the smallest difference with the substrate temperature As the corresponding working temperature; reading the correction parameter at the corresponding working temperature from the memory, and using the correction parameter at the corresponding working temperature as the current correction parameter.
进一步地,所述步骤C包括:比较所述衬底温度与所述至少两个标定工作温度所属的小温度区间,判断所述衬底温度所属的小温度区间;以所述衬底温度所属的小温度区间的校正参数为所述当前校正参数。 Further, the step C includes: comparing the substrate temperature with the small temperature range to which the at least two calibrated working temperatures belong, and judging the small temperature range to which the substrate temperature belongs; The correction parameter in the small temperature range is the current correction parameter.
进一步地,所述校正参数包括偏置参数和/或增益参数。 Further, the correction parameters include offset parameters and/or gain parameters.
本发明的实施例的方法中,由于储存了红外焦平面阵列在各个标定工作温度点下的校正参数,当红外焦平面阵列工作时,不需要对红外焦平面阵列进行一点校正,直接从系统存储器中读取与红外焦平面阵列当前工作温度相对应的校正参数,从而保证了红外成像系统实现不间断的对红外目标实时成像。 In the method of the embodiment of the present invention, since the correction parameters of the infrared focal plane array are stored at each calibration operating temperature point, when the infrared focal plane array is working, it is not necessary to perform a little correction on the infrared focal plane array, directly from the system memory The correction parameters corresponding to the current working temperature of the infrared focal plane array are read in the middle, thus ensuring the uninterrupted real-time imaging of the infrared target by the infrared imaging system.
附图说明 Description of drawings
图1是本发明一个实施例的一种非制冷红外焦平面阵列的非均匀性校正方法的流程示意图。 Fig. 1 is a schematic flowchart of a method for correcting non-uniformity of an uncooled infrared focal plane array according to an embodiment of the present invention.
图2是本发明一个实施例中的标定并且存储校正参数的步骤的流程示意图。 Fig. 2 is a schematic flowchart of the steps of calibrating and storing correction parameters in one embodiment of the present invention.
具体实施方式 detailed description
下面将参考附图详细说明本发明的实施例。 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图1是本发明一个实施例的一种非制冷红外焦平面阵列的非均匀性校正方法的流程示意图。如图1所示,本实施例中,非制冷红外焦平面阵列的非均匀性校正方法包括步骤10、步骤12、步骤14和步骤16。下面将结合附图对方法中的各个步骤进行详细说明。 Fig. 1 is a schematic flowchart of a method for correcting non-uniformity of an uncooled infrared focal plane array according to an embodiment of the present invention. As shown in FIG. 1 , in this embodiment, the non-uniformity correction method of the uncooled infrared focal plane array includes step 10 , step 12 , step 14 and step 16 . Each step in the method will be described in detail below with reference to the accompanying drawings.
步骤10:标定并且存储校正参数。 Step 10: Calibrate and store the correction parameters.
本发明的实施例中,首先对红外成像系统的红外焦平面阵列进行标定,获得该红外焦平面阵列在各个标定工作温度下的校正参数,然后将这些校正参数存储在红外成像系统的存储器中,以供后续红外成像过程中,按需要调用。例如,后续的红外成像过程中,当出现温漂的时候,从存储器中读取相应工作温度下的当前校正参数并用该当前校正参数对红外图像进行校正来补偿温度的漂移。 In the embodiment of the present invention, firstly, the infrared focal plane array of the infrared imaging system is calibrated, the correction parameters of the infrared focal plane array at each calibration working temperature are obtained, and then these correction parameters are stored in the memory of the infrared imaging system, It can be called as needed during the subsequent infrared imaging process. For example, in the subsequent infrared imaging process, when a temperature drift occurs, the current correction parameters at the corresponding working temperature are read from the memory and the infrared image is corrected with the current correction parameters to compensate for the temperature drift.
红外焦平面阵列的工作温度有一定的区间范围,如果对工作温度区间范围中的每个温度点都进行标定,工作量将非常庞大,并且需要存储的校正参数的数据量也将非常大,因此对每个温度点都进行标定非常困难。 The working temperature of the infrared focal plane array has a certain range. If each temperature point in the working temperature range is calibrated, the workload will be very large, and the data volume of the correction parameters that needs to be stored will also be very large. Therefore, It is very difficult to calibrate each temperature point.
因此,本发明的实施例中,可以在红外焦平面阵列的工作温度区间内选择一些标定工作温度(至少两个标定工作温度)进行标定,获得这些标定工作温度(至少两个标定工作温度)下的校正参数。 Therefore, in the embodiment of the present invention, some calibration working temperatures (at least two calibration working temperatures) can be selected for calibration in the working temperature range of the infrared focal plane array, and the following calibration working temperatures (at least two calibration working temperatures) can be obtained. correction parameters.
本发明的一些实施例中,可以将红外焦平面阵列的工作温度区间按温度上升的梯度划分成各个小的温度区间。根据红外成像系统的温度传感器的灵敏度和红外焦平面阵列的材料特性,为每一个小温度区间选取合适的温度范围。在同一个小的温度区间内,使用相同的校正参数。不同的小温度区间,校正参数不同。这样,对于每个小温度区间,只需标定其中一个温度点处的校正参数作为整个小温度区间的校正参数即可,即,此时,前述选择的用来标定的标定工作温度分别属于这些小温度区间中的一个温度。这里,小温度区间的选择和小温度区域中用于标定的温度的选择均可以根据实际情况灵活选择,本发明不做特殊的限制。 In some embodiments of the present invention, the working temperature range of the infrared focal plane array can be divided into various small temperature ranges according to the gradient of temperature rise. According to the sensitivity of the temperature sensor of the infrared imaging system and the material properties of the infrared focal plane array, an appropriate temperature range is selected for each small temperature interval. Within the same small temperature interval, the same calibration parameters are used. Different small temperature ranges have different calibration parameters. In this way, for each small temperature interval, it is only necessary to calibrate the correction parameter at one of the temperature points as the correction parameter for the entire small temperature interval. A temperature in the temperature range. Here, the selection of the small temperature range and the selection of the temperature used for calibration in the small temperature range can be flexibly selected according to the actual situation, and the present invention does not make any special limitation.
这些实施例中,红外成像系统的存储器中相应地也存储每个小温度区域的相关信息,例如每个小温度区间的端点的温度值等等。 In these embodiments, the memory of the infrared imaging system correspondingly also stores relevant information of each small temperature region, such as the temperature value of the endpoint of each small temperature interval, and the like.
本发明的另一些实施例中,前述选择的用来标定的标定工作温度是在红外焦平面阵列的工作温度区间根据实际情况的需要选择的一些温度点。两个选定的标定工作温度之间的其余温度点使用距离它最近的标定工作温度的校正参数即可。这里,标定工作温度的选择可以根据实际情况灵活选择,本发明不做特殊限制。各个标定工作温度之间的间距(即两个标定工作温度之间温度的差)可以是相同的(即选择的标定工作温度在红外焦平面阵列的工作温度区间中均匀分布),也可以是不同的(即选择的标定工作温度在红外焦平面阵列的工作温度区间中非均匀分布)。 In some other embodiments of the present invention, the previously selected calibration working temperature for calibration is some temperature points selected according to actual needs in the working temperature range of the infrared focal plane array. For the rest of the temperature points between the two selected calibrated working temperatures, the calibration parameters of the nearest calibrated working temperature can be used. Here, the selection of the calibrated working temperature can be flexibly selected according to the actual situation, and there is no special limitation in the present invention. The spacing between each calibrated operating temperature (i.e. the temperature difference between two calibrated operating temperatures) can be the same (i.e. the selected calibrated operating temperature is uniformly distributed in the operating temperature range of the infrared focal plane array), or it can be different (that is, the selected calibration operating temperature is non-uniformly distributed in the operating temperature range of the infrared focal plane array).
因此,在步骤10中,计算红外焦平面阵列在至少两个标定工作温度下的校正参数,并且将计算出的校正参数存储在红外成像系统的存储器中。 Therefore, in step 10, the correction parameters of the infrared focal plane array at at least two calibrated working temperatures are calculated, and the calculated correction parameters are stored in the memory of the infrared imaging system.
本发明的一个实施例中,标定并存储校正参数的流程可以如图2所示。 In an embodiment of the present invention, the process of calibrating and storing the correction parameters may be as shown in FIG. 2 .
首先,在步骤101中,将红外成像系统放置于恒温箱中,也就是说,对红外成像系统的红外焦平面阵列的标定过程将在恒温箱中进行。 First, in step 101, the infrared imaging system is placed in an incubator, that is, the calibration process of the infrared focal plane array of the infrared imaging system will be performed in the incubator.
然后,在步骤102中,调节恒温箱的温度,将恒温箱的温度调节到一个标定工作温度,并保持在这个标定工作温度。 Then, in step 102, adjust the temperature of the thermostat, adjust the temperature of the thermostat to a calibrated working temperature, and keep it at the calibrated working temperature.
随后,在步骤106中,计算在当前的标定工作温度下红外焦平面阵列的校正参数。这里,计算一定温度下红外焦平面阵列的校正参数的方法可以使用任何适合的方法,例如,可以使用两点校正方法。这些方法可以是本领域内常用的方法,在此不再详述。 Subsequently, in step 106, the correction parameters of the infrared focal plane array at the current calibrated working temperature are calculated. Here, any suitable method can be used for the method of calculating the correction parameters of the infrared focal plane array at a certain temperature, for example, a two-point correction method can be used. These methods may be methods commonly used in the art, and will not be described in detail here.
然后,将步骤106中计算获得的该标定工作温度下的校正参数存储在红外成像系统的存储器中。计算获得的校正参数可以存储在红外成像系统中的任何适合的存储器中。 Then, the correction parameters at the calibrated working temperature calculated and obtained in step 106 are stored in the memory of the infrared imaging system. The calculated correction parameters can be stored in any suitable memory in the infrared imaging system.
这样,即完成了一个标定工作温度下的校正参数的标定和存储。 In this way, the calibration and storage of the calibration parameters at a calibration working temperature are completed.
这一个标定工作温度下的校正参数的标定和存储完成之后,在步骤110中,判断是否所有需要标定的标定工作温度都已经标定完成。这里,如前文所述,需要标定的标定工作温度可以根据实际情况灵活选择。 After the calibration and storage of the correction parameters at this one calibration working temperature is completed, in step 110, it is judged whether all calibration working temperatures that need to be calibrated have been calibrated. Here, as mentioned above, the calibration working temperature that needs to be calibrated can be flexibly selected according to the actual situation.
如果步骤110中判断所有需要标定的标定工作温度还没有标定完成,则调节恒温箱的温度到下一个标定工作温度,并保持在这个标定工作温度,然后执行上述的步骤106、108和110。 If it is judged in step 110 that all the calibration working temperatures that need to be calibrated have not been calibrated, then adjust the temperature of the thermostat to the next calibration working temperature, and keep it at this calibration working temperature, then perform above-mentioned steps 106, 108 and 110.
如果步骤110中判断所有需要标定的标定工作温度都已经标定完成,则标定并且存储校正参数步骤(即步骤10)结束。 If it is determined in step 110 that all calibration working temperatures that need to be calibrated have been calibrated, the step of calibrating and storing the correction parameters (ie, step 10 ) ends.
例如,一个实施例中,步骤10可以包括下列步骤: For example, in one embodiment, step 10 may include the following steps:
将红外成像系统放置在恒温箱中; Place the infrared imaging system in an incubator;
调节恒温箱的温度到第一标定工作温度并保持在第一标定工作温度; Adjust the temperature of the thermostat to the first calibrated working temperature and keep it at the first calibrated working temperature;
用两点校正法计算红外成像系统的红外焦平面阵列在第一标定工作温度下的第一校正参数; Calculating the first correction parameter of the infrared focal plane array of the infrared imaging system at the first calibration working temperature by using a two-point correction method;
将第一校正参数存储在存储器中; storing the first correction parameter in memory;
调节恒温箱的温度到第二标定工作温度并保持在第二标定工作温度; Adjust the temperature of the thermostat to the second calibrated working temperature and keep it at the second calibrated working temperature;
用两点校正法计算红外焦平面阵列在第二标定工作温度下的第二校正参数; Using the two-point correction method to calculate the second correction parameter of the infrared focal plane array at the second calibration working temperature;
将第二校正参数存储在存储器中。 The second correction parameters are stored in memory.
上述实施例中,还可以包括: In the above embodiment, it may also include:
调节恒温箱的温度到第三标定工作温度并保持在第三标定工作温度; Adjust the temperature of the thermostat to the third calibrated working temperature and keep it at the third calibrated working temperature;
用两点校正法计算红外焦平面阵列在第三标定工作温度下的第三校正参数; Using the two-point correction method to calculate the third correction parameter of the infrared focal plane array at the third calibration working temperature;
将第三校正参数存储在存储器中。 A third correction parameter is stored in memory.
容易理解,类似地,上述实施例还可以包括在第四标定工作温度、第五标定工作温度、第六标定工作温度等等的多个标定工作温度下的类似的步骤。 It is easy to understand that, similarly, the above-mentioned embodiments may also include similar steps at the fourth, fifth, sixth and so on.
本发明的实施例中,在存储计算获得的各个标定工作温度下的校正参数时,可以按照任何适合的方式或者数据结构存储。例如,可以将存储器根据选取的标定工作温度的多少划分为多个存储空间,每个存储空间根据红外焦平面阵列的规格选取合适的大小,每一个存储空间对应红外焦平面阵列的一个标定工作温度,并且存储对应的该标定工作温度下按照前述步骤计算出的校正,在一个存储空间内,校正参数可以按照红外焦平面阵列像元位置的分布依次存储。 In the embodiment of the present invention, when storing the calculated correction parameters at each calibrated working temperature, it may be stored in any suitable manner or data structure. For example, the memory can be divided into multiple storage spaces according to the selected calibrated working temperature, and each storage space is selected according to the specification of the infrared focal plane array. The appropriate size, each storage space corresponds to a calibrated working temperature of the infrared focal plane array , and store the correction calculated according to the preceding steps at the corresponding calibrated working temperature, and in a storage space, the correction parameters can be stored sequentially according to the distribution of the pixel positions of the infrared focal plane array.
本发明的实施例中,前述的校正参数可以是任何适合于对红外成像系统的红外焦平面阵列的非均匀性进行校正的参数。例如,一个实施例中,这里的校正参数可以是偏置参数和/或增益参数。偏置参数和/或增益参数的概念是本领域内非均匀校正中的常用概念,在此不再详述。 In the embodiment of the present invention, the aforementioned correction parameters may be any parameters suitable for correcting the non-uniformity of the infrared focal plane array of the infrared imaging system. For example, in an embodiment, the correction parameter here may be an offset parameter and/or a gain parameter. The concept of the offset parameter and/or the gain parameter is a commonly used concept in non-uniformity correction in the art, and will not be described in detail here.
步骤12:测量红外焦平面阵列的衬底温度。 Step 12: Measure the substrate temperature of the infrared focal plane array.
红外焦平面阵列的衬底温度表示了红外焦平面阵列的当前的工作温度。本发明的实施例中,在步骤12中,测量红外焦平面阵列的衬底温度。这个测量可以通过温度传感器实现。温度传感器将红外焦平面阵列的衬底的温度转换为电信号,并经过模数转换,转换成数字信号,然后发送到红外成像系统的控制器。 The substrate temperature of the infrared focal plane array indicates the current operating temperature of the infrared focal plane array. In an embodiment of the present invention, in step 12, the substrate temperature of the infrared focal plane array is measured. This measurement can be achieved with a temperature sensor. The temperature sensor converts the temperature of the substrate of the infrared focal plane array into an electrical signal, and after analog-to-digital conversion, converts it into a digital signal, and then sends it to the controller of the infrared imaging system.
例如,一个实施例中,温度传感器可以包括热敏电阻。热敏电阻的阻值可以随温度的改变而改变,当红外焦平面阵列的衬底温度发生变化,热敏电阻的阻值大小也跟随者发生改变,使得温度传感器输出的电压VTEMP发生变化。VTEMP和红外焦平面阵列的衬底温度的呈线性关系: For example, in one embodiment, the temperature sensor may include a thermistor. The resistance value of the thermistor can change with the change of temperature. When the substrate temperature of the infrared focal plane array changes, the resistance value of the thermistor also changes accordingly, so that the voltage VTEMP output by the temperature sensor changes. The linear relationship between VTEMP and the substrate temperature of the infrared focal plane array:
VTEMP=A×T+B。 VTEMP=A×T+B.
其中,T是红外焦平面阵列的衬底温度,A和B是常数系数,由红外成像系统的温度传感器的特性决定。 Among them, T is the substrate temperature of the infrared focal plane array, and A and B are constant coefficients, which are determined by the characteristics of the temperature sensor of the infrared imaging system.
步骤14:获得与衬底温度对应的当前校正参数。 Step 14: Obtain the current calibration parameters corresponding to the substrate temperature.
测量获得衬底温度之后,可根据该衬底温度,从前文所述的存储器中获取红外焦平面阵列的与该衬底温度对应的当前校正参数。 After the substrate temperature is obtained by measurement, the current calibration parameters of the infrared focal plane array corresponding to the substrate temperature can be obtained from the aforementioned memory according to the substrate temperature.
如前文所述,一些实施例中,存储器中存储了多个标定工作温度下的校正参数,并且其中每个标定工作温度下的校正参数是一个小温度区间内红外焦平面阵列的校正参数。因此,在步骤14中,获得了衬底温度后,判断该衬底温度属于哪个小温度区间,然后,以其所属的小温度区间的校正参数作为与该衬底温度相对应的当前校正参数。这里,与衬底温度“相对应”的当前校正参数是指在该衬底温度下红外焦平面阵列的当前校正参数。 As mentioned above, in some embodiments, multiple correction parameters at the calibrated working temperature are stored in the memory, and each correction parameter at the calibrated working temperature is a correction parameter of the infrared focal plane array in a small temperature range. Therefore, in step 14, after the substrate temperature is obtained, it is judged which small temperature range the substrate temperature belongs to, and then the correction parameter of the small temperature range it belongs to is used as the current correction parameter corresponding to the substrate temperature. Here, the current calibration parameter "corresponding" to the substrate temperature refers to the current calibration parameter of the infrared focal plane array at the substrate temperature.
例如,这些实施例中,可以通过比较衬底温度和红外成像系统的存储器中存储的各个小温度区间的端点的温度值而确定该衬底温度属于哪个小温度区间。 For example, in these embodiments, it may be determined which small temperature interval the substrate temperature belongs to by comparing the substrate temperature with the temperature values at the endpoints of each small temperature interval stored in the memory of the infrared imaging system.
如前文所述,每个小温度区间的校正参数在步骤10中已经标定和存储,因此,此时,判断处了测量获得的衬底温度属于哪个小温度区间之后,可以直接从存储器中读出其所属的小温度区间的校正参数。 As mentioned above, the correction parameters of each small temperature interval have been calibrated and stored in step 10. Therefore, at this time, after judging which small temperature interval the measured substrate temperature belongs to, it can be directly read from the memory. The correction parameters of the small temperature range to which it belongs.
或者,如前文所述,另外的一些实施例中,存储器存储了多个标定工作温度下的校正参数,并且两个标定工作温度之间的其余温度点的校正参数可以使用距离它最近的标定工作温度的校正参数。因此,此时,可以比较衬底温度与步骤10中的至少两个标定工作温度,获得与衬底温度相等或者与衬底温度之间的差值最小的标定工作温度作为对应工作温度;然后在存储器中读取该对应工作温度下的校正参数,以该对应工作温度下的校正参数为当前校正参数。 Or, as mentioned above, in some other embodiments, the memory stores the correction parameters at multiple calibration working temperatures, and the calibration parameters at the remaining temperature points between the two calibration working temperatures can use the calibration work closest to it. Correction parameter for temperature. Therefore, at this time, the substrate temperature can be compared with at least two calibrated operating temperatures in step 10, and the calibrated operating temperature that is equal to the substrate temperature or has the smallest difference with the substrate temperature is obtained as the corresponding operating temperature; The correction parameter at the corresponding working temperature is read from the memory, and the correction parameter at the corresponding working temperature is used as the current correction parameter.
步骤16:红外成像获得红外图像,并用当前校正参数校正红外图像。 Step 16: Infrared imaging Obtain an infrared image, and correct the infrared image with the current correction parameters.
获得了当前衬底温度下的当前校正参数之后,用红外成像系统(或者说用红外焦平面阵列)对目标物体进行正常的红外成像,获得红外图像。用红外成像系统或者红外焦平面阵列对目标物体进行红外成像获得红外图像的具体步骤可以与本领域内常用的步骤相同,在此不再详述。 After obtaining the current calibration parameters at the current substrate temperature, use the infrared imaging system (or infrared focal plane array) to perform normal infrared imaging on the target object to obtain an infrared image. The specific steps of using an infrared imaging system or an infrared focal plane array to perform infrared imaging on a target object to obtain an infrared image may be the same as commonly used steps in the art, and will not be described in detail here.
获得红外图像之后,即可用步骤14中获得的当前校正参数对获得的红外图像进行校正。 After the infrared image is obtained, the current correction parameters obtained in step 14 can be used to correct the obtained infrared image.
例如,一个实施例中,当前校正参数包括当前偏置参数O和当前增益参数G,则可以按照公式V’(i,j)=G(i,j)×V(i,j)+O(i,j)计算校正结果,生成校正后的红外图像。其中V’(i,j)是校正后的红外图像中像素点(i,j)处的电压值,V(i,j)校正前的红外图像中像素点(i,j)处的电压值,G(i,j)是当前增益参数在像素点(i,j)处的值,O(i,j)是当前偏置参数在像素点(i,j)处的值,这里(i,j)是指红外焦平面阵列中的像素点,其中i为小于等于红外焦平面阵列的行数的自然数,j为小于等于红外焦平面阵列的列数的自然数。 For example, in one embodiment, the current correction parameters include the current offset parameter O and the current gain parameter G, then the formula V'(i,j)=G(i,j)×V(i,j)+O( i, j) Calculate the correction result and generate the corrected infrared image. Where V'(i,j) is the voltage value at the pixel point (i,j) in the corrected infrared image, and V(i,j) is the voltage value at the pixel point (i,j) in the infrared image before correction , G(i,j) is the value of the current gain parameter at the pixel point (i,j), O(i,j) is the value of the current bias parameter at the pixel point (i,j), where (i, j) refers to the pixels in the infrared focal plane array, where i is a natural number less than or equal to the number of rows of the infrared focal plane array, and j is a natural number less than or equal to the number of columns of the infrared focal plane array.
这样,本发明的实施例中,在进行正常的红外成像的过程中,可以实时监测红外焦平面阵列的衬底温度,并实时地根据衬底温度从存储器中读取相应的校正参数并对所成的红外图像进行非均匀性校正。 In this way, in the embodiment of the present invention, during the normal infrared imaging process, the substrate temperature of the infrared focal plane array can be monitored in real time, and the corresponding correction parameters can be read from the memory according to the substrate temperature in real time and corrected. The resulting infrared image is corrected for non-uniformity.
本发明的实施例中的方法可以用任何适合的软件或者硬件实例。例如,一个实施例中,可以用FPGA校正电路实现,FPGA校正电路具有设计简单、容易实现等优点。 The methods in the embodiments of the present invention can be implemented by any suitable software or hardware. For example, in one embodiment, it can be implemented with an FPGA correction circuit, and the FPGA correction circuit has the advantages of simple design and easy implementation.
例如,将红外焦平面阵列在各个标定工作温度下的校正参数按照红外焦平面阵列的标定工作温度的递增和像元数的递增依次储存在FLASH芯片中。当红外成像系统工作时,红外成像系统的温度传感器采集红外焦平面阵列衬底的温度信息,转换成输出电压,经过A/D转换器件完成数模转换后输入给FPGA,FPGA根据输入的信息选择相对应的校正参数。红外目标物体经过红外成像系统识别,红外成像系统采集和输出相关的信息,输出的信息经过信号加强后送至A/D转换器件,完成数模转换后输入给FPGA,经过校正程序的运行和图像增强后输出,数据经过D/A转换器件,转换成模拟信号后经过放大器输入到终端显示设备。 For example, the correction parameters of the infrared focal plane array at each calibrated working temperature are sequentially stored in the FLASH chip according to the increment of the calibrated working temperature and the increment of the number of pixels of the infrared focal plane array. When the infrared imaging system is working, the temperature sensor of the infrared imaging system collects the temperature information of the infrared focal plane array substrate, converts it into an output voltage, and inputs it to the FPGA after the digital-to-analog conversion is completed by the A/D conversion device. Corresponding calibration parameters. The infrared target object is identified by the infrared imaging system. The infrared imaging system collects and outputs relevant information. The output information is sent to the A/D conversion device after signal enhancement. After the digital-to-analog conversion is completed, it is input to the FPGA. After the enhancement, the data is converted into an analog signal through the D/A conversion device and then input to the terminal display device through the amplifier.
本发明的实施例中,针对一点校正的时候需要选取辐照度、重新计算校正参数的问题,将红外焦平面阵列在各个标定工作温度下的校正参数储存在系统存储器中,当红外焦平面阵列在工作出现温漂时,从系统存储器中读取与红外焦平面阵列当前工作温度相对应的校正参数,然后利用该读取的校正参数进行来校正补偿温度的漂移。 In the embodiment of the present invention, for the problem of selecting irradiance and recalculating the correction parameters when one point is corrected, the correction parameters of the infrared focal plane array at each calibration working temperature are stored in the system memory, when the infrared focal plane array When temperature drift occurs during work, the correction parameters corresponding to the current working temperature of the infrared focal plane array are read from the system memory, and then the read correction parameters are used to correct and compensate for temperature drift.
红外焦平面阵列在进行一点校正的时候需要再次选取辐照度,这样会短暂中断红外成像系统对红外目标的成像,而本发明的方法中由于储存了红外焦平面阵列在各个标定工作温度下的校正参数,当红外焦平面阵列工作时,不需要对红外焦平面阵列进行一点校正,直接从系统存储器中读取与红外焦平面阵列当前工作温度相对应的校正参数,从而保证了红外成像系统实现不间断的对红外目标实时成像。 The infrared focal plane array needs to select the irradiance again when performing a point correction, which will temporarily interrupt the imaging of the infrared target by the infrared imaging system, and in the method of the present invention, since the infrared focal plane array is stored at each calibration working temperature Correction parameters, when the infrared focal plane array is working, there is no need to correct the infrared focal plane array, and the correction parameters corresponding to the current operating temperature of the infrared focal plane array are directly read from the system memory, thus ensuring the realization of the infrared imaging system Uninterrupted real-time imaging of infrared targets.
以上通过具体的实施例对本发明进行了说明,但本发明并不限于这些具体的实施例。本领域技术人员应该明白,还可以对本发明做各种修改、等同替换、变化等等,这些变换只要未背离本发明的精神,都应在本发明的保护范围之内。此外,以上多处所述的“一个实施例”表示不同的实施例,当然也可以将其全部或部分结合在一个实施例中。 The present invention has been described above through specific examples, but the present invention is not limited to these specific examples. Those skilled in the art should understand that various modifications, equivalent replacements, changes, etc. can also be made to the present invention. As long as these changes do not deviate from the spirit of the present invention, they should all be within the protection scope of the present invention. In addition, "one embodiment" described in many places above represents different embodiments, and of course all or part of them may be combined in one embodiment.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310216422.8A CN103308178B (en) | 2013-06-04 | 2013-06-04 | A kind of asymmetric correction method of un-cooled infrared focal plane array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310216422.8A CN103308178B (en) | 2013-06-04 | 2013-06-04 | A kind of asymmetric correction method of un-cooled infrared focal plane array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103308178A CN103308178A (en) | 2013-09-18 |
CN103308178B true CN103308178B (en) | 2016-02-03 |
Family
ID=49133653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310216422.8A Expired - Fee Related CN103308178B (en) | 2013-06-04 | 2013-06-04 | A kind of asymmetric correction method of un-cooled infrared focal plane array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103308178B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103528694B (en) * | 2013-09-24 | 2016-03-02 | 电子科技大学 | A kind of method of temperature of infrared heat image instrument measuring target object |
CN103868601B (en) * | 2014-03-26 | 2016-08-17 | 西安电子科技大学 | The bilateral full variational regularization bearing calibration of the non-homogeneous response of IRFPA detector |
CN104181613B (en) * | 2014-08-13 | 2017-02-15 | 中国人民解放军理工大学 | Foundation infrared ceilometer on-site calibration method |
CN104251741B (en) * | 2014-09-18 | 2017-07-18 | 电子科技大学 | A kind of self adaptation infrared focal plane array reading circuit |
CN104406697B (en) * | 2014-11-24 | 2017-06-06 | 浙江大立科技股份有限公司 | Infrared focal plane array bearing calibration |
CN104867122B (en) * | 2015-05-29 | 2017-08-01 | 北京理工大学 | A Cascade Processing Method of Infrared Adaptive Non-uniformity Correction and Detail Enhancement |
CN104964746B (en) * | 2015-06-17 | 2018-04-10 | 北京空间机电研究所 | Based on uncooled infrared imaging system and asymmetric correction method without shutter |
CN105423494B (en) * | 2015-12-11 | 2018-05-01 | 四川长虹电器股份有限公司 | A kind of bearing calibration and air-conditioning equipment |
CN105737990B (en) * | 2016-02-24 | 2018-09-07 | 华中科技大学 | A kind of Infrared Image Non-uniformity Correction method and system based on detector temperature |
CN106290178A (en) * | 2016-09-08 | 2017-01-04 | 电子科技大学 | A kind of Nonuniformity Correction system and method for Terahertz detector array |
CN106644091A (en) * | 2016-12-30 | 2017-05-10 | 电子科技大学 | Infrared heat thermal imaging movement calibration device and calibration method therefor |
CN107084797B (en) * | 2017-03-30 | 2019-06-18 | 智来光电科技(苏州)有限公司 | Domestic infrared detector simulation output self-adapting adjusting apparatus and its method of adjustment |
CN107421643B (en) * | 2017-07-19 | 2019-10-18 | 沈阳上博智像科技有限公司 | Infrared image correction method and device |
CN107976255B (en) * | 2017-11-24 | 2020-05-15 | 烟台艾睿光电科技有限公司 | Method and device for correcting non-uniformity correction coefficient of infrared detector |
CN110487412B (en) * | 2019-08-14 | 2020-09-01 | 北京环境特性研究所 | Infrared hyperspectral image non-uniformity correction method and device and computer equipment |
CN110536085B (en) * | 2019-08-20 | 2022-03-11 | 北京安酷智芯科技有限公司 | Reading circuit and image correction method |
CN110855915B (en) * | 2019-11-29 | 2020-12-08 | 中国科学院长春光学精密机械与物理研究所 | CCD camera response non-uniformity correction method and device for dark current compensation |
CN111562012B (en) * | 2020-05-22 | 2021-09-03 | 烟台艾睿光电科技有限公司 | Infrared image non-uniformity correction method and system |
CN112003617B (en) * | 2020-08-28 | 2022-11-08 | 电子科技大学 | A kind of analog-to-digital conversion device and method with substrate temperature compensation for infrared focal plane |
CN112146785B (en) * | 2020-09-25 | 2022-08-19 | 无锡艾立德智能科技有限公司 | Substrate temperature measuring method of photoelectric focal plane |
CN113436088B (en) * | 2021-06-09 | 2022-07-26 | 浙江兆晟科技股份有限公司 | Real-time suppression method and system for thermal window effect of infrared image |
CN114140345A (en) * | 2021-11-05 | 2022-03-04 | 中国安全生产科学研究院 | A kind of non-uniformity correction method and device based on infrared image |
CN116952391A (en) * | 2023-09-08 | 2023-10-27 | 陕西德鑫智能科技有限公司 | Non-uniformity correction method and system for unmanned aerial vehicle acquired image |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1811360A (en) * | 2006-02-24 | 2006-08-02 | 昆明物理研究所 | Adaptive non-uniform correcting method for stare infrared focal plane detector |
CN102564598A (en) * | 2012-01-06 | 2012-07-11 | 电子科技大学 | Method for calibrating and correcting temperature measurement of infrared probe as well as corresponding temperature measuring method |
CN102768071A (en) * | 2012-07-06 | 2012-11-07 | 武汉高德红外股份有限公司 | Non-refrigerant thermal imager shutter-free nonuniformity correcting device based on template method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL173418A (en) * | 2006-01-29 | 2013-10-31 | Rafael Advanced Defense Sys | Non-uniformity correction of images generated by focal plane arrays of photodetectors |
-
2013
- 2013-06-04 CN CN201310216422.8A patent/CN103308178B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1811360A (en) * | 2006-02-24 | 2006-08-02 | 昆明物理研究所 | Adaptive non-uniform correcting method for stare infrared focal plane detector |
CN102564598A (en) * | 2012-01-06 | 2012-07-11 | 电子科技大学 | Method for calibrating and correcting temperature measurement of infrared probe as well as corresponding temperature measuring method |
CN102768071A (en) * | 2012-07-06 | 2012-11-07 | 武汉高德红外股份有限公司 | Non-refrigerant thermal imager shutter-free nonuniformity correcting device based on template method |
Also Published As
Publication number | Publication date |
---|---|
CN103308178A (en) | 2013-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103308178B (en) | A kind of asymmetric correction method of un-cooled infrared focal plane array | |
CN103528690B (en) | A kind of non-uniform correction method of thermal infrared imager | |
CN106679817B (en) | A method of for Calibration of Infrared Thermal Imager | |
CN103528694B (en) | A kind of method of temperature of infrared heat image instrument measuring target object | |
US9332197B2 (en) | Infrared sensor control architecture | |
JP6540519B2 (en) | Infrared imaging device | |
CN103335722B (en) | Thermal infrared imager bearing calibration | |
CN110855915B (en) | CCD camera response non-uniformity correction method and device for dark current compensation | |
CN107421643A (en) | The bearing calibration of infrared image and device | |
CN103292908A (en) | Method and apparatus for correcting drift of a detector comprising an array of resistive bolometers | |
CN104251742A (en) | Two-point linear and target and environment-based binary non-linear infrared detector heterogeneity correction method | |
JP2010071987A (en) | Device for infrared radiation detection equipped with resistance type imaging bolometer, system equipped with array of such bolometer, and reading method of imaging bolometer integrated into such system | |
Ochs et al. | High dynamic range infrared thermography by pixelwise radiometric self calibration | |
CN105841821B (en) | The Nonuniformity Correction devices and methods therefor without baffle based on calibration | |
CN111256835A (en) | Temperature measurement thermal infrared imager calibration method and device of hyper-parameter polynomial physical model | |
CN110926617B (en) | Vacuum temperature field measuring device and method | |
JP7143558B2 (en) | Infrared imaging device and program used therefor | |
CN114878003A (en) | Infrared temperature measurement method based on response rate correction | |
CN111024237A (en) | Non-contact wide-temperature-difference infrared temperature measuring method | |
CN105869129A (en) | Residual heterogeneous noise elimination method for aiming at thermal infrared image after heterogeneous correction | |
JP2016133305A (en) | Infrared detector | |
CN109084899B (en) | Infrared focal plane detector non-uniform body output correction method and device | |
JP2017090457A (en) | Pixel non-uniformity correction | |
Huawei et al. | An adaptive two-point non-uniformity correction algorithm based on shutter and its implementation | |
CN111595458B (en) | Thermal infrared imager radiometric calibration method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160203 |
|
CF01 | Termination of patent right due to non-payment of annual fee |