CN103303454A - Electric helm gear based on speed ring reversing and control method of electric helm gear - Google Patents
Electric helm gear based on speed ring reversing and control method of electric helm gear Download PDFInfo
- Publication number
- CN103303454A CN103303454A CN2013101627735A CN201310162773A CN103303454A CN 103303454 A CN103303454 A CN 103303454A CN 2013101627735 A CN2013101627735 A CN 2013101627735A CN 201310162773 A CN201310162773 A CN 201310162773A CN 103303454 A CN103303454 A CN 103303454A
- Authority
- CN
- China
- Prior art keywords
- signal
- control
- current
- dsp
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明提供了一种基于速度环换向的电动舵机装置及其控制方法,信号调理电路将舵面偏角给定信号进行电压变换、滤波、限幅处理后经AD转换送入控制器DSP,DSP输出数字控制信号,经数字隔离后送给驱动电路转换成功率控制信号,通过控制主功率电路从而控制无刷直流电动机工作,无刷直流电机通过传动齿轮组带动舵面偏转以跟随舵面偏角给定信号;无刷直流电机的母线电流经电流传感器采样反馈至DSP,与传动齿轮组相连的角度传感器实时反馈舵面当前偏角,传给DSP。本发明有效的加快了无刷直流电动舵机的频响,提高了系统的抗干扰性。
The invention provides an electric steering gear device based on speed loop reversing and its control method. The signal conditioning circuit performs voltage conversion, filtering, and amplitude limiting processing on the given signal of the deflection angle of the steering surface, and then sends it to the controller DSP through AD conversion. , the DSP outputs a digital control signal, which is sent to the drive circuit after digital isolation to convert it into a power control signal. By controlling the main power circuit, the brushless DC motor is controlled to work. The brushless DC motor drives the deflection of the rudder surface through the transmission gear set to follow the rudder surface The deflection angle given signal; the bus current of the brushless DC motor is sampled and fed back to the DSP through the current sensor, and the angle sensor connected to the transmission gear set feeds back the current deflection angle of the steering surface in real time and transmits it to the DSP. The invention effectively speeds up the frequency response of the brushless DC electric steering gear and improves the anti-interference performance of the system.
Description
技术领域technical field
本发明涉及一种数字电动舵机装置和控制方法,尤其是飞行器用的永磁无刷直流电动舵机。The invention relates to a digital electric steering gear device and a control method, in particular to a permanent magnet brushless DC electric steering gear for aircraft.
背景技术Background technique
电动舵机是一种高精度的位置伺服系统,舵机工作原理是接受主控计算机给出的舵面偏角给定信号,舵机控制系统将舵面偏角给定信号和舵面偏角反馈信号经过信号处理和程序调节最终通过输出指令来操纵舵面的偏转,从而改变飞行器的飞行姿势或飞行轨迹,最终确保飞行器在空中按照预定轨迹飞行。电动舵机属于飞行器的前端执行部件,在高速飞行的过程中要直接承受空气摩擦和阻力,工作环境恶劣,在需要承受大负载、高低温、强振动等苛刻条件的前提下还要保证偏转精度和响应速度,这对核心控制算法的要求就提高了。The electric steering gear is a high-precision position servo system. The working principle of the steering gear is to receive the given signal of the rudder surface deflection angle given by the main control computer. After the feedback signal is processed and program adjusted, the deflection of the rudder surface is manipulated by outputting instructions, thereby changing the flight posture or flight trajectory of the aircraft, and finally ensuring that the aircraft flies in the air according to the predetermined trajectory. The electric steering gear is the front-end executive part of the aircraft. During high-speed flight, it must directly bear air friction and resistance, and the working environment is harsh. Under the premise of bearing heavy loads, high and low temperatures, strong vibrations and other harsh conditions, the deflection accuracy must be guaranteed And response speed, the requirements for the core control algorithm are increased.
近年来,随着大功率电力电子技术和稀土永磁电机技术的快速发展,电动舵机技术发展迅速,成效显著,在小功率范围内正在一步步取代传统的液压舵机和气动舵机。公开号为CN102854814A的发明专利《一种数字舵机控制器》就提出了一种基于DSP模块的数字电动舵机方案,但是它只提出了系统的整体结构方案,对于系统的各个功能模块和具体控制方法没有详细给出。发表于《电工技术学报》的文章《一种永磁无刷直流电动舵机四象限控制》提供了一种在PID基础上改进的基于电流滞环控制的电动舵机控制方案,但是这种改进是针对系统输出转矩脉动抑制,对于在复杂工作环境下的偏转精度和响应速度这些电动舵机最重要的性能并没有任何帮助。In recent years, with the rapid development of high-power power electronics technology and rare earth permanent magnet motor technology, electric steering gear technology has developed rapidly and achieved remarkable results. It is gradually replacing traditional hydraulic steering gear and pneumatic steering gear in the small power range. The invention patent "A Digital Steering Gear Controller" with the publication number CN102854814A proposes a digital electric steering gear scheme based on the DSP module, but it only proposes the overall structural scheme of the system. For each functional module of the system and specific The control method is not given in detail. The article "A Permanent Magnet Brushless DC Electric Steering Gear Four-Quadrant Control" published in "Acta Electrotechnical Society" provides an improved electric steering gear control scheme based on current hysteresis control on the basis of PID, but this improvement It is aimed at the suppression of system output torque ripple, and it does not help the most important performance of the electric steering gear, such as deflection accuracy and response speed in a complex working environment.
发明内容Contents of the invention
为了克服现有技术的不足,本发明提供一种基于速度环换向的电动舵机装置,电机响应速度快,抗干扰性强。In order to overcome the deficiencies of the prior art, the present invention provides an electric steering gear device based on speed loop commutation, which has fast motor response speed and strong anti-interference performance.
本发明解决其技术问题所采用的技术方案是:一种基于速度环换向的电动舵机装置,包括信号调理电路、DSP、数字隔离电路、驱动电路、主功率电路、无刷直流电机、传动齿轮组、舵面、电流传感器、位置传感器和通信电路。舵面偏角给定信号以模拟信号的形式送入,信号调理电路将其进行电压变换、滤波、限幅处理后经AD转换送入控制器DSP,DSP输出6路数字控制信号,经数字隔离后送给驱动电路转换成功率控制信号,功率控制信号通过控制主功率电路,从而控制无刷直流电动机工作,无刷直流电机通过传动齿轮组带动舵面偏转以跟随舵面偏角给定信号;无刷直流电机的母线电流经电流传感器采样反馈至DSP,实现电流环闭环控制;与传动齿轮组相连的角度传感器实时反馈舵面当前偏角,传给DSP,形成转速闭环;舵面当前偏角经通信电路传给上位机进行实时监测。The technical solution adopted by the present invention to solve the technical problem is: an electric steering gear device based on speed loop commutation, including signal conditioning circuit, DSP, digital isolation circuit, drive circuit, main power circuit, brushless DC motor, transmission Gear sets, rudder surfaces, current sensors, position sensors and communication circuits. The rudder deflection angle given signal is sent in the form of an analog signal, and the signal conditioning circuit performs voltage conversion, filtering, and limiting processing on it and then sends it to the controller DSP through AD conversion, and the DSP outputs 6 digital control signals, which are digitally isolated Afterwards, it is sent to the drive circuit to convert the power control signal, and the power control signal controls the main power circuit to control the operation of the brushless DC motor. The brushless DC motor drives the deflection of the rudder surface through the transmission gear set to follow the given signal of the deflection angle of the rudder surface; The bus current of the brushless DC motor is sampled and fed back to the DSP by the current sensor to realize the closed-loop control of the current loop; the angle sensor connected to the transmission gear set feeds back the current deflection angle of the rudder surface in real time and transmits it to the DSP to form a closed-loop speed; the current deflection angle of the rudder surface Through the communication circuit, it is transmitted to the upper computer for real-time monitoring.
本发明还提供上述装置的控制方法,包括以下步骤:The present invention also provides a control method for the above device, comprising the following steps:
第一步:将舵面偏角模拟给定信号送给控制板,信号调理电路对其进行前期处理,包括电压变换、滤波和限幅;Step 1: Send the rudder deflection angle analog given signal to the control board, and the signal conditioning circuit performs pre-processing on it, including voltage conversion, filtering and limiting;
第二步:将经过前期处理的舵面偏角模拟给定信号通过AD采样送入控制器DSP为舵面偏角数字给定信号;Step 2: Send the rudder surface deflection angle analog given signal through AD sampling to the controller DSP as the rudder surface deflection digital given signal;
第三步:将速度环计数变量清零,用DSP读取角度传感器信号作为舵面偏角数字反馈信号,用舵面偏角数字给定信号减去舵面偏角数字反馈信号求出位置偏差;Step 3: Clear the count variable of the speed loop, use DSP to read the signal of the angle sensor as the digital feedback signal of the rudder deflection angle, and subtract the digital feedback signal of the rudder surface deflection angle from the digital given signal of the rudder surface deflection angle to obtain the position deviation ;
第四步:进行位置环PID调节,根据位置偏差算出位置环调节输出量,并且将其作为速度环给定,速度环给定有正负;Step 4: Perform position loop PID adjustment, calculate the position loop adjustment output according to the position deviation, and use it as the speed loop setting, the speed loop setting has positive and negative;
第五步:将电流环计数变量清零,利用采集的舵面偏角数字反馈信号计算出舵面转速作为速度反馈,用速度环给定减去速度反馈得到速度偏差;Step 5: Clear the current loop counting variable to zero, use the collected rudder surface angle digital feedback signal to calculate the rudder surface speed as the speed feedback, and subtract the speed feedback from the speed loop setting to get the speed deviation;
第六步:进行速度PID调节,根据速度偏差算出速度调节输出量,并将其作为电流环给定信号,电流环给定信号有正负,记录电流环给定信号的正负号,以决定本控制周期母线反馈电流的方向,将速度环计数变量加1;Step 6: Perform speed PID adjustment, calculate the speed adjustment output according to the speed deviation, and use it as the current loop given signal. The direction of the bus feedback current in this control cycle, add 1 to the count variable of the speed loop;
第七步:判断速度环PID调节次数是否达到设定次数n,n≤10,如果是,则返回第二步,如果否,则继续往下进行第八步控制;Step 7: Determine whether the speed loop PID adjustment times have reached the set number n, n≤10, if yes, return to the second step, if not, continue to the eighth step of control;
第八步:将采集回来的母线反馈电流经过电压变换、滤波和限幅后通过AD采样送入DSP,然后与本控制周期的电流环给定信号的符号相乘,变成矢量,以作为电流环反馈;然后用电流环给定减去电流反馈得到电流偏差;Step 8: After voltage conversion, filtering and limiting, the collected bus feedback current is sent to DSP through AD sampling, and then multiplied by the sign of the given signal of the current loop in this control cycle to become a vector as the current Loop feedback; then subtract the current feedback from the current loop setting to get the current deviation;
第九步:进行电流环PID调节,根据电流偏差算出电流环调节输出量,将电流环计数变量加1;Step 9: Perform current loop PID adjustment, calculate the current loop adjustment output according to the current deviation, and add 1 to the current loop count variable;
第十步:把电流环调节输出量变换成占空比信号,占空比信号有正负;Step 10: Transform the output of the current loop adjustment into a duty ratio signal, and the duty ratio signal has positive and negative values;
第十一步:将占空比信号经过数字隔离后通过驱动电路转换成功率控制信号,送给主功率电路,通过控制主功率电路里的MOSFET的开通和关断以控制舵面按控制规律偏转;Step 11: Convert the duty cycle signal into a power control signal through the drive circuit after digital isolation, and send it to the main power circuit, and control the steering surface to deflect according to the control law by controlling the MOSFET on and off in the main power circuit ;
第十二步:判断电流环PID调节次数是否达到设定次数n,n≤10,如果是,则返回第五步,如果否,则返回第八步继续进行电流环调节。Step 12: Determine whether the number of current loop PID adjustments reaches the set number n, n≤10, if yes, return to
本发明的有益效果是:本发明的上述控制方法通过本控制周期的电流环给定信号正负来决定当前控制周期采集回来的母线电流的正负号,即当需要母线电流为正时就认为反馈电流为正,当需要母线电流为负时就认为反馈电流为负。由于电流环的给定即为速度环的输出,而电流的正负就决定了无刷直流电机的转向,所以这种通过速度环输出方向来决定电机转向的控制方法就称为速度环换向方法。The beneficial effect of the present invention is: the above-mentioned control method of the present invention determines the sign of the bus current collected back in the current control cycle through the sign of the given signal of the current loop in this control cycle, that is, when the bus current is required to be positive, it is considered The feedback current is positive, and the feedback current is considered negative when the required bus current is negative. Since the setting of the current loop is the output of the speed loop, and the positive or negative of the current determines the steering of the brushless DC motor, so this control method that determines the steering of the motor through the output direction of the speed loop is called speed loop commutation method.
将本控制系统应用于电动舵机系统与传统舵机系统相比具有以下优势:(1)电磁力矩方向(即电流方向)始终与电流给定方向保持一致,由此带来的影响是电机转速方向和电磁力矩方向有时会不一致,这就是制动状态,因此在这种情况下,电机工作在四象限状态下,可以有效的提高系统的动态响应速度;(2)由于电流环给定的方向决定了母线反馈电流的方向,所以反馈电流总是能紧密的跟随给定电流,所以当有外界负载施加于舵面上时,控制系统需要电流迅速减小时,反馈电流能迅速降下来,这就提高了系统的抗干扰性,即鲁棒性。Applying this control system to the electric steering gear system has the following advantages compared with the traditional steering gear system: (1) The direction of the electromagnetic torque (that is, the direction of the current) is always consistent with the given direction of the current, and the resulting influence is that the motor speed The direction and the direction of the electromagnetic torque are sometimes inconsistent, which is the braking state. Therefore, in this case, the motor works in a four-quadrant state, which can effectively improve the dynamic response speed of the system; (2) due to the direction given by the current loop Determines the direction of the bus feedback current, so the feedback current can always closely follow the given current, so when an external load is applied to the rudder surface, when the control system requires the current to decrease rapidly, the feedback current can drop rapidly, which is The anti-interference performance of the system is improved, that is, the robustness.
附图说明Description of drawings
图1为无刷直流电动舵机系统结构图;Figure 1 is a structural diagram of the brushless DC electric steering gear system;
图中,1—信号调理电路,2—控制器DSP,3—数字隔离电路,4—驱动电路,5—主功率电路,6—无刷直流电机(BLDCM),7—传动齿轮组,8—舵面,9—电流传感器,10—位置传感器,11—RS422通信。In the figure, 1—signal conditioning circuit, 2—controller DSP, 3—digital isolation circuit, 4—drive circuit, 5—main power circuit, 6—brushless DC motor (BLDCM), 7—transmission gear set, 8— Rudder surface, 9—current sensor, 10—position sensor, 11—RS422 communication.
图2为电动舵机系统控制框图。Figure 2 is a control block diagram of the electric steering gear system.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
本发明的技术方案包括:控制器—DSP、数字隔离电路、驱动电路、主功率电路、无刷直流电机(BLDCM)、传动齿轮组、舵面、电流传感器、位置传感器、422通信电路。舵面偏角给定信号以模拟信号的形式送入,信号调理电路将其进行电压变换、滤波、限幅处理后经AD转换送入控制器DSP,DSP通过控制策略进行调节,输出6路数字控制信号,数字控制信号经数字隔离后送给驱动电路转换成功率控制信号,功率控制信号通过控制主功率电路里的MOSFET的开通关断,从而控制无刷直流电动机(BLDCM)工作,无刷直流电机通过传动齿轮组带动舵面偏转以跟随舵面偏角给定信号。无刷直流电机的母线电流经电流传感器采样,实现电流环闭环控制。与传动齿轮组相连的角度传感器(编码器)实时反馈舵面当前偏角,传给DSP,通过当前偏角计算得到转速形成转速闭环,反馈回来的舵面当前偏角完成舵面位置闭环控制。舵面当前偏角经RS-422传给上位机进行实时监测。The technical solution of the present invention includes: controller-DSP, digital isolation circuit, drive circuit, main power circuit, brushless DC motor (BLDCM), transmission gear set, rudder surface, current sensor, position sensor, 422 communication circuit. The rudder deflection angle given signal is sent in the form of an analog signal, and the signal conditioning circuit performs voltage conversion, filtering, and limiting processing on it and then sends it to the controller DSP through AD conversion. The DSP adjusts through the control strategy and outputs 6 digital channels. Control signal, the digital control signal is digitally isolated and then sent to the drive circuit to convert it into a power control signal. The power control signal controls the operation of the brushless DC motor (BLDCM) by controlling the MOSFET in the main power circuit. The motor drives the deflection of the rudder surface through the transmission gear set to follow the given signal of the deflection angle of the rudder surface. The bus current of the brushless DC motor is sampled by the current sensor to realize the closed-loop control of the current loop. The angle sensor (encoder) connected to the transmission gear set feeds back the current deflection angle of the rudder surface in real time, and transmits it to the DSP. The speed is calculated through the current deflection angle to form a closed-loop speed, and the current deflection angle of the rudder surface fed back completes the closed-loop control of the rudder surface position. The current deflection angle of the rudder surface is transmitted to the host computer via RS-422 for real-time monitoring.
本发明的技术方案中,舵机系统控制方案采用位置-速度-电流三闭环PID控制。In the technical solution of the present invention, the steering gear system control solution adopts position-speed-current three-closed-loop PID control.
系统具体控制方法如下:The specific control method of the system is as follows:
第一步:将舵面偏角模拟给定信号送给控制板,信号调理电路对其进行电压变换、滤波、限幅等前期处理;Step 1: Send the rudder deflection angle analog given signal to the control board, and the signal conditioning circuit performs pre-processing such as voltage conversion, filtering, and clipping;
第二步:将经过前期处理的舵面偏角模拟给定信号通过AD采样送入控制器DSP为舵面偏角数字给定信号;Step 2: Send the rudder surface deflection angle analog given signal through AD sampling to the controller DSP as the rudder surface deflection digital given signal;
第三步:将速度环计数变量清零,用DSP读取角度传感器(数字编码器)信号作为舵面偏角数字反馈信号,用舵面偏角数字给定信号减去舵面偏角数字反馈信号求出位置偏差;Step 3: Clear the count variable of the speed loop, use DSP to read the signal of the angle sensor (digital encoder) as the digital feedback signal of the rudder deflection angle, and subtract the digital feedback of the rudder surface deflection angle from the digital given signal of the rudder surface deflection angle signal to find the position deviation;
第四步:进行位置环PID调节,根据位置偏差算出位置环调节输出量,并且将其作为速度环给定,速度环给定有正负;Step 4: Perform position loop PID adjustment, calculate the position loop adjustment output according to the position deviation, and use it as the speed loop setting, the speed loop setting has positive and negative;
第五步:将电流环计数变量清零,利用之前采集回来的舵面偏角数字反馈信号计算出舵面转速作为速度反馈,用速度环给定减去速度反馈得到速度偏差;Step 5: Clear the counting variable of the current loop to zero, use the digital feedback signal of the rudder deflection angle collected before to calculate the rudder surface speed as the speed feedback, and subtract the speed feedback from the speed loop setting to obtain the speed deviation;
第六步:进行速度PID调节,根据速度偏差算出速度调节输出量,并将其作为电流环给定信号,电流环给定信号有正负,记录电流环给定信号的正负号,以决定本控制周期母线反馈电流的方向,将速度环计数变量加1;Step 6: Perform speed PID adjustment, calculate the speed adjustment output according to the speed deviation, and use it as the current loop given signal. The direction of the bus feedback current in this control cycle, add 1 to the count variable of the speed loop;
第七步:判断速度环PID调节次数是否达到n(n≤10)次,如果是,则返回第二步,如果否,则继续往下进行第八步控制;Step 7: Determine whether the number of speed loop PID adjustments reaches n (n≤10) times, if yes, return to the second step, if not, continue to the eighth step of control;
第八步:将采集回来的母线反馈电流(标量)经过电压变换、滤波、限幅等处理后通过AD采样送入DSP,然后与本控制周期的电流环给定信号的符号相乘,变成矢量,以作为电流环反馈。然后用电流环给定减去电流反馈得到电流偏差。Step 8: After the collected bus feedback current (scalar) is processed by voltage conversion, filtering, and limiting, it is sent to DSP through AD sampling, and then multiplied by the sign of the given signal of the current loop in this control cycle to become vector for current loop feedback. Then subtract the current feedback from the current loop setting to get the current deviation.
第九步:进行电流环PID调节,根据电流偏差算出电流环调节输出量(有正负),将电流环计数变量加1;Step 9: Perform current loop PID adjustment, calculate the current loop adjustment output (positive or negative) according to the current deviation, and add 1 to the current loop count variable;
第十步:把电流环调节输出量变换成占空比信号,占空比信号有正负。Step 10: Transform the output of the current loop regulation into a duty ratio signal, and the duty ratio signal has positive and negative values.
第十一步:将占空比信号经过数字隔离后通过驱动电路转换成功率控制信号,送给主功率电路,通过控制主功率电路里的MOSFET的开通和关断以控制舵面按控制规律偏转;Step 11: Convert the duty cycle signal into a power control signal through the drive circuit after digital isolation, and send it to the main power circuit, and control the steering surface to deflect according to the control law by controlling the MOSFET on and off in the main power circuit ;
第十二步:判断电流环PID调节次数是否达到n(n≤10)次,如果是,则返回第五步,如果否,则返回第八步继续进行电流环调节。Step 12: Determine whether the number of times of current loop PID adjustment reaches n (n≤10), if yes, return to
如图1所示,舵面位置给定以模拟信号送入,通过信号调理电路1调理后经AD转换送入控制器DSP2,DSP实现控制策略控制,输出6路驱动信号,驱动信号经数字隔离电路3、驱动电路4和主功率电路5,控制无刷直流电动机(BLDCM)6工作,无刷直流电机通过传动齿轮组7带动舵面8偏转以跟随舵面位置给定。无刷直流电机的母线电流经电流传感器9采样,实现电流环闭环控制。与传动齿轮组相连的位置传感器(编码器)10实时反馈舵面的当前位置,传给DSP,通过位置信号计算得到转速形成转速闭环,反馈回来的位置信号完成舵面位置闭环控制。舵面位置实际测量值经RS-422通信11传给上位机进行实时监测。As shown in Figure 1, the position of the rudder surface is given by analog signal, which is conditioned by the
如图2所示,本发明采用经典的位置-速度-电流三闭环PID控制,其具体控制过程为:As shown in Figure 2, the present invention adopts the classic position-speed-current three-closed-loop PID control, and its specific control process is:
第一步:将舵面偏角模拟给定信号送给控制板,信号调理电路对其进行电压变换、滤波、限幅等前期处理;Step 1: Send the rudder deflection angle analog given signal to the control board, and the signal conditioning circuit performs pre-processing such as voltage conversion, filtering, and clipping;
第二步:将经过前期处理的舵面偏角模拟给定信号通过AD采样送入控制器DSP为舵面偏角数字给定信号P*;The second step: send the rudder surface deflection angle analog given signal through AD sampling into the controller DSP to be the rudder surface deflection angle digital given signal P * ;
第三步:将速度环计数变量Vcnt清零,用DSP读取角度传感器(数字编码器)信号作为舵面偏角数字反馈信号P,用舵面偏角数字给定信号P*减去舵面偏角数字反馈信号P求出位置偏差ΔP;Step 3: Clear the counting variable Vcnt of the speed loop, use DSP to read the signal of the angle sensor (digital encoder) as the digital feedback signal P of the rudder surface deflection angle, and subtract the rudder surface from the digital given signal P * of the rudder surface deflection angle Calculate the position deviation ΔP by using the deflection angle digital feedback signal P;
第四步:进行位置环PID调节,根据偏差ΔP算出位置环调节量输出,并且将其作为速度环给定V*,V*有正负;Step 4: Perform position loop PID adjustment, calculate the position loop adjustment output according to the deviation ΔP, and use it as the speed loop given V * , V * has positive and negative;
第五步:将电流环计数变量Icnt清零,利用之前采集回来的舵面偏角数字反馈信号计算出舵面转速V作为速度反馈,用速度环给定V*减去速度反馈V得到速度偏差ΔV;Step 5: Clear the current loop count variable Icnt to zero, use the digital feedback signal of the rudder deflection angle collected before to calculate the rudder surface speed V as the speed feedback, and subtract the speed feedback V from the speed loop given V * to get the speed deviation ΔV;
第六步:进行速度环PID调节,根据速度偏差ΔV算出速度调节输出量,并将其作为电流环给定I* (k),I* (k)有正负,将速度环计数变量Vcnt加1;Step 6: Perform speed loop PID adjustment, calculate the speed adjustment output according to the speed deviation ΔV, and use it as the current loop given I * (k) , I * (k) has positive or negative, add the speed loop count
第七步:判断速度环PID调节次数是否达到n(n≤10)次,如果是,则返回第二步,如果否,则继续往下进行第八步控制;Step 7: Determine whether the number of speed loop PID adjustments reaches n (n≤10) times, if yes, return to the second step, if not, continue to the eighth step of control;
第八步:将采集回来的母线电流I0经过信号调理后通过AD送入DSP,然后通过公式计算得到I作为电流反馈,其中I* (k)表示本控制周期的电流环给定,即速度环输出,I* (k)有正负,表示I* (k)的符号。然后用电流给定I*减去电流反馈I得到电流偏差ΔI。Step 8: Send the collected bus current I 0 to DSP through AD after signal conditioning, and then pass the formula Calculate I as current feedback, where I * (k) represents the current loop setting of this control cycle, that is, the speed loop output, I * (k) has positive and negative, Denotes the notation for I * (k) . Then subtract the current feedback I from the given current I * to obtain the current deviation ΔI.
第九步:进行电流环PID调节,根据电流偏差ΔI算出电流调节输出量(有正负),将电流环计数变量Icnt加1;Step 9: Perform current loop PID adjustment, calculate the current adjustment output (positive or negative) according to the current deviation ΔI, and add 1 to the current loop count variable Icnt;
第十步:把电流环调节输出量变换成占空比信号D,D有正负。Step 10: Transform the output of the current loop adjustment into a duty ratio signal D, and D has positive and negative values.
第十一步:将占空比信号经过数字隔离后通过驱动电路转换成功率控制信号,送给主功率电路,通过控制主功率电路里的MOSFET的开通和关断以控制舵面按控制规律偏转;Step 11: Convert the duty cycle signal into a power control signal through the drive circuit after digital isolation, and send it to the main power circuit, and control the steering surface to deflect according to the control law by controlling the MOSFET on and off in the main power circuit ;
第十二步:判断电流环PID调节次数是否达到n(n≤10)次,如果是,则返回第五步,如果否,则返回第八步继续进行电流环调节;Step 12: Determine whether the number of current loop PID adjustments reaches n (n≤10) times, if yes, return to
本发明通过速度环输出的正负来决定母线反馈电流的正负,当需要母线电流为正时就认为反馈电流为正,当需要母线电流为负时就认为反馈电流为负,以实现速度环换向。The present invention determines the positive or negative of the bus feedback current through the positive or negative output of the speed loop. When the bus current is required to be positive, the feedback current is considered to be positive, and when the bus current is required to be negative, the feedback current is considered to be negative, so as to realize the speed loop change direction.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310162773.5A CN103303454B (en) | 2013-05-06 | 2013-05-06 | A kind of electric steering gear device based on speed ring commutation and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310162773.5A CN103303454B (en) | 2013-05-06 | 2013-05-06 | A kind of electric steering gear device based on speed ring commutation and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103303454A true CN103303454A (en) | 2013-09-18 |
CN103303454B CN103303454B (en) | 2016-01-20 |
Family
ID=49129267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310162773.5A Expired - Fee Related CN103303454B (en) | 2013-05-06 | 2013-05-06 | A kind of electric steering gear device based on speed ring commutation and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103303454B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103213666A (en) * | 2013-05-06 | 2013-07-24 | 西北工业大学 | An electric steering gear device and control method based on position loop reversing |
CN103935504A (en) * | 2014-03-14 | 2014-07-23 | 山东省科学院海洋仪器仪表研究所 | Non-mechanical-brake frequency converting control ship steering engine drive device and control method |
CN105783612A (en) * | 2016-03-28 | 2016-07-20 | 北京航天控制仪器研究所 | General miniaturization digital electric steering engine controller and control method thereof |
CN105947165A (en) * | 2016-05-23 | 2016-09-21 | 哈尔滨工程大学 | Ship rudder machine system and rudder steering control method thereof |
CN106143862A (en) * | 2016-05-23 | 2016-11-23 | 哈尔滨工程大学 | A kind of ship steering engine driving means and detecting system thereof |
CN106712597A (en) * | 2017-02-13 | 2017-05-24 | 李淋 | Driving system applied to motion platform |
CN108181853A (en) * | 2018-01-16 | 2018-06-19 | 合肥华宇智航动力能源有限公司 | A kind of yacht steering-engine control system and control method |
CN109760821A (en) * | 2019-03-19 | 2019-05-17 | 深圳市道通智能航空技术有限公司 | A kind of unmanned aerial vehicle (UAV) control device and unmanned plane |
CN109774918A (en) * | 2019-03-19 | 2019-05-21 | 深圳市道通智能航空技术有限公司 | A kind of unmanned aerial vehicle (UAV) control device and unmanned plane |
CN110932612A (en) * | 2019-11-07 | 2020-03-27 | 上海航天控制技术研究所 | Differential high-performance brushless motor driver and driving method |
CN111290262A (en) * | 2020-03-12 | 2020-06-16 | 江苏酷卡德工智能科技有限公司 | Control method and device of electric steering engine |
CN112650111A (en) * | 2020-12-18 | 2021-04-13 | 湖南金翎箭信息技术有限公司 | Steering engine control system |
CN115258134A (en) * | 2022-08-26 | 2022-11-01 | 上海翔骜电子科技有限公司 | Unmanned aerial vehicle electric steering engine system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01289797A (en) * | 1988-05-13 | 1989-11-21 | Furuno Electric Co Ltd | Steering device |
CN202379084U (en) * | 2011-11-25 | 2012-08-15 | 北京自动化控制设备研究所 | Multi-loop control and high-power driving circuit for quick-response electric steering engine |
CN102700706A (en) * | 2012-05-31 | 2012-10-03 | 西北工业大学 | Dual-redundancy actuator system and control method |
CN103213666A (en) * | 2013-05-06 | 2013-07-24 | 西北工业大学 | An electric steering gear device and control method based on position loop reversing |
-
2013
- 2013-05-06 CN CN201310162773.5A patent/CN103303454B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01289797A (en) * | 1988-05-13 | 1989-11-21 | Furuno Electric Co Ltd | Steering device |
CN202379084U (en) * | 2011-11-25 | 2012-08-15 | 北京自动化控制设备研究所 | Multi-loop control and high-power driving circuit for quick-response electric steering engine |
CN102700706A (en) * | 2012-05-31 | 2012-10-03 | 西北工业大学 | Dual-redundancy actuator system and control method |
CN103213666A (en) * | 2013-05-06 | 2013-07-24 | 西北工业大学 | An electric steering gear device and control method based on position loop reversing |
Non-Patent Citations (2)
Title |
---|
吴春等: "永磁同步电动机在电动舵机伺服系统中的应用", 《微特电机》 * |
杨百平等: "无人机舵机控制系统的硬件设计与实现", 《计算机测量与控制》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103213666A (en) * | 2013-05-06 | 2013-07-24 | 西北工业大学 | An electric steering gear device and control method based on position loop reversing |
CN103213666B (en) * | 2013-05-06 | 2015-11-25 | 西北工业大学 | A kind of electric steering gear device of position-based ring commutation and control method |
CN103935504A (en) * | 2014-03-14 | 2014-07-23 | 山东省科学院海洋仪器仪表研究所 | Non-mechanical-brake frequency converting control ship steering engine drive device and control method |
CN103935504B (en) * | 2014-03-14 | 2016-06-29 | 山东省科学院海洋仪器仪表研究所 | A kind of mechanical brake variable-frequency controls ship steering engine driving device and control method |
CN105783612A (en) * | 2016-03-28 | 2016-07-20 | 北京航天控制仪器研究所 | General miniaturization digital electric steering engine controller and control method thereof |
CN105947165A (en) * | 2016-05-23 | 2016-09-21 | 哈尔滨工程大学 | Ship rudder machine system and rudder steering control method thereof |
CN106143862A (en) * | 2016-05-23 | 2016-11-23 | 哈尔滨工程大学 | A kind of ship steering engine driving means and detecting system thereof |
CN106712597A (en) * | 2017-02-13 | 2017-05-24 | 李淋 | Driving system applied to motion platform |
CN108181853A (en) * | 2018-01-16 | 2018-06-19 | 合肥华宇智航动力能源有限公司 | A kind of yacht steering-engine control system and control method |
CN109760821A (en) * | 2019-03-19 | 2019-05-17 | 深圳市道通智能航空技术有限公司 | A kind of unmanned aerial vehicle (UAV) control device and unmanned plane |
CN109774918A (en) * | 2019-03-19 | 2019-05-21 | 深圳市道通智能航空技术有限公司 | A kind of unmanned aerial vehicle (UAV) control device and unmanned plane |
CN109760821B (en) * | 2019-03-19 | 2024-03-29 | 深圳市道通智能航空技术股份有限公司 | Unmanned aerial vehicle controlling means and unmanned aerial vehicle |
CN109774918B (en) * | 2019-03-19 | 2024-03-29 | 深圳市道通智能航空技术股份有限公司 | Unmanned aerial vehicle controlling means and unmanned aerial vehicle |
CN110932612A (en) * | 2019-11-07 | 2020-03-27 | 上海航天控制技术研究所 | Differential high-performance brushless motor driver and driving method |
CN111290262A (en) * | 2020-03-12 | 2020-06-16 | 江苏酷卡德工智能科技有限公司 | Control method and device of electric steering engine |
CN112650111A (en) * | 2020-12-18 | 2021-04-13 | 湖南金翎箭信息技术有限公司 | Steering engine control system |
CN115258134A (en) * | 2022-08-26 | 2022-11-01 | 上海翔骜电子科技有限公司 | Unmanned aerial vehicle electric steering engine system |
Also Published As
Publication number | Publication date |
---|---|
CN103303454B (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103303454B (en) | A kind of electric steering gear device based on speed ring commutation and control method thereof | |
CN103231798B (en) | A kind of control method utilizing digitalized electric steering engine control device | |
CN103213666B (en) | A kind of electric steering gear device of position-based ring commutation and control method | |
CN103281020B (en) | A kind of four-quadrant control device for electric steering engine and method thereof | |
CN102301582B (en) | Valve control device | |
CN104006110B (en) | Rotate flexible, hinged vibration of beam measuring and controlling and method | |
CN105783612B (en) | A kind of general miniaturization digitalized electric steering engine controller and its control method | |
CN101499755B (en) | A PID control method for DC motor speed | |
CN205430104U (en) | Four -channel digit steering engine control system | |
CN106787971A (en) | A kind of bi-motor cooperative control system and method | |
CN102837821B (en) | Controller of steering engine | |
CN103699134A (en) | Position loop control-based electric steering engine system | |
CN106788049B (en) | Speed sensor-free torque control system and method based on cascading sliding mode observer | |
CN104201960B (en) | A kind of maximum torque per ampere control method of permanent-magnet synchronous reluctance motor | |
CN103208958A (en) | DC (direct control) servo drive control system | |
CN103607149B (en) | A kind of ultrasonic motor rudder servo system and control method thereof | |
CN102497153A (en) | Constant-power-angle self-adaptive control method of permanent magnet synchronous motor | |
CN101734379A (en) | FPGA-based highly-integrated high-precision control system for micro flywheel | |
CN105353869A (en) | Interactive experience driving method for virtual automobile | |
CN102497151A (en) | Intelligent reconstruction flexible motor driven controller | |
CN113467229A (en) | AC servo driving method | |
CN105173063A (en) | Integrated electric actuator for unmanned aerial vehicle | |
CN107395080A (en) | Speedless sensor moment controlling system and method based on cascade non-singular terminal sliding mode observer | |
CN113131815A (en) | High bandwidth control method for space smart load electric actuator | |
CN106364368A (en) | Control system of electric vehicle based on two hub motors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160120 Termination date: 20160506 |