CN103299214B - Method and system for improving earth model, velocity model and image volume accuracy - Google Patents
Method and system for improving earth model, velocity model and image volume accuracy Download PDFInfo
- Publication number
- CN103299214B CN103299214B CN201280004563.7A CN201280004563A CN103299214B CN 103299214 B CN103299214 B CN 103299214B CN 201280004563 A CN201280004563 A CN 201280004563A CN 103299214 B CN103299214 B CN 103299214B
- Authority
- CN
- China
- Prior art keywords
- geological
- volume
- geovolume
- offset
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 66
- 238000003384 imaging method Methods 0.000 claims abstract description 29
- 239000011435 rock Substances 0.000 claims description 47
- 238000013508 migration Methods 0.000 claims description 14
- 230000005012 migration Effects 0.000 claims description 12
- 230000000644 propagated effect Effects 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 6
- 238000012795 verification Methods 0.000 claims description 3
- 238000003860 storage Methods 0.000 description 23
- 238000005516 engineering process Methods 0.000 description 20
- 238000012545 processing Methods 0.000 description 14
- 238000004891 communication Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V11/00—Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/61—Analysis by combining or comparing a seismic data set with other data
- G01V2210/614—Synthetically generated data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/64—Geostructures, e.g. in 3D data cubes
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Geophysics And Detection Of Objects (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
根据一个或多个实施例,可以利用体积图像之间的自洽和/或差异以及解释空间性/体积性背景,以改进地质体的属性的地震成像和估计。示例性实施例允许利用与所关注地质体积的地质模型相关联的图像体积中的地质体的位置和/或形状差异和/或相似性,以改进地球模型和/或图像体积的准确度。可以确定和/或利用与所关注地质体积相关联的约束,以确认和/或指定潜在地与单个地质体相关联的属性之间的依赖关系。
According to one or more embodiments, self-consistency and/or differences between volumetric images and interpretation of spatial/volumetric context can be exploited to improve seismic imaging and estimation of properties of geological volumes. Exemplary embodiments allow for exploiting position and/or shape differences and/or similarities of geological bodies in an image volume associated with a geological model of the geological volume of interest to improve the accuracy of the earth model and/or image volume. Constraints associated with a geological volume of interest may be determined and/or utilized to identify and/or specify dependencies between attributes potentially associated with a single geological volume.
Description
相关申请的交叉引用 Cross References to Related Applications
该申请要求保护美国专利申请No.13/018094、No.13/018108以及No.13/018122的优先权,其申请日全部为2011年1月31日。 This application claims priority to US Patent Application Nos. 13/018094, 13/018108, and 13/018122, all filed on January 31, 2011.
技术领域 technical field
本公开涉及通过利用体积图像之间的自洽(self-consistency)和/或差异以及解释空间性/体积性背景,来改进地质体的属性和/或岩石特性的地震成像和估计。 The present disclosure relates to improving seismic imaging and estimation of properties of geological bodies and/or rock properties by exploiting self-consistency and/or differences between volumetric images and interpreting spatial/volumetric context.
背景技术 Background technique
执行地震成像和地下解释,以尽可能准确地获取地球的地下体积的地质模型。常规工业工作流程通常包括以下一系列处理步骤:(a)将地震数据处理成地球的地下体积的3D地震图像体积;(b)利用列表中和其它已知的岩石物理数据以及岩石特性,来提取地球的地下体积中的每一个地下点处的属性(例如,速度、泊松比、密度、声阻抗等);(c)在解释工作站上解释3D地质图像体积的几何结构、日志信息、以及地质模拟物,以获取结构、地层、以及地质形态;以及(d)根据所提取的属性和所获取的结构、地层、以及地质形态,来构建地质和储集层地下模型。 Perform seismic imaging and subsurface interpretation to obtain as accurate a geological model of the Earth's subsurface volume as possible. Conventional industrial workflows typically include the following sequence of processing steps: (a) processing seismic data into a 3D seismic image volume of the Earth's subsurface volume; (b) extracting properties (e.g., velocity, Poisson's ratio, density, acoustic impedance, etc.) at each subsurface point in the Earth's subsurface volume; (c) interpreting the geometry of the 3D geological image volume, log information, and geological simulants to capture the structure, stratigraphy, and geological morphology; and (d) construct geological and reservoir subsurface models based on the extracted attributes and the acquired structural, stratigraphic, and geological morphology.
常规工业工作流程对利用结构和地层学的解释并且利用来自地震估计的储集层特性成像时所使用的地球模型具有有限调和(reconciliation)/集成。每一个处理步骤都具有无法完全定量地限定的固有不确定性和非唯一性。从而,难于量化通过常规工业工作流程所生成的地质储集层模型的不确定性和非唯一性。大多数工业工作流程采取地质统计方法来估计不确定性和非唯一性。即便如此,也不保证所得概率模型与生成该模型所利用的所有数据一致。 Conventional industrial workflows have limited reconciliation/integration of earth models used with structural and stratigraphic interpretation and imaging of reservoir properties from seismic estimates. Each processing step has inherent uncertainty and non-uniqueness that cannot be fully quantitatively defined. Thus, it is difficult to quantify the uncertainty and non-uniqueness of geological reservoir models generated by conventional industrial workflows. Most industrial workflows take a geostatistical approach to estimating uncertainty and non-uniqueness. Even so, there is no guarantee that the resulting probabilistic model will be consistent with all the data utilized to generate it.
发明内容 Contents of the invention
本公开的一个方面涉及一种计算机实现方法,该计算机实现方法用于利用与所关注地质体积的地球模型相关联的图像体积中的地质体的位置和/或形状差异和/或相似性,以改进地球模型、用于叠前成像的速度模型、和/或图像体积的准确度。所述方法可以包括:根据表示已经通过所关注地质体积从一个或多个能量源传播至一个或多个能量接收器的能量的地震数据,来获取速度模型和/或地球模型。该地震数据可以包括多个偏移叠加、多个角叠加、或多个方位角叠加中的一个或多个。所述方法可以包括以下步骤:根据地震数据获取多个多偏移多属性图像体积。该多个多偏移多属性图像体积中的指定一个图像体积可以(1)对应于偏移叠加、角叠加、或方位角叠加中的一个,(2)与至少一个属性相关联,以及(3)包括存在于所关注地质体积中的地质体的地质体表示。所述方法可以包括:基于多偏移多属性图像体积来接收地质体解释。该地质体解释可以包括具有多偏移多属性图像体积中的地质体表示的标识地质体、和指配给所标识地质体的地质体类型。所述方法可以包括:基于所指配地质体类型,获取多偏移多属性图像体积中的不同图像体积中的、与单个标识地质体相关联的登记数据。给定地质体的登记数据可以表示给定地质体的空间位置、形状和/或给定地质体在多偏移多属性图像体积中的不同图像体积中的地质体表示之间的差异和/或相似性。所述方法可以包括:基于登记数据和所指配的地质体类型,利用行进时间反演技术来更新地球模型和/或速度模型。所述方法可以包括:基于所更新的地球模型和/或所更新的速度模型来生成更新的多偏移多属性图像体积。 One aspect of the present disclosure relates to a computer-implemented method for exploiting location and/or shape differences and/or similarities of geological bodies in an image volume associated with an earth model of the geological volume of interest to Improve the accuracy of Earth models, velocity models for prestack imaging, and/or image volumes. The method may include obtaining a velocity model and/or an earth model from seismic data representing energy that has propagated through the geological volume of interest from the one or more energy sources to the one or more energy receivers. The seismic data may include one or more of a plurality of migration stacks, a plurality of angular stacks, or a plurality of azimuth stacks. The method may include the step of acquiring a plurality of multi-offset multi-attribute image volumes from the seismic data. A given one of the plurality of multi-offset multi-attribute image volumes may (1) correspond to one of an offset stack, an angular stack, or an azimuthal stack, (2) be associated with at least one attribute, and (3 ) includes a geovolume representation of the geovolume present in the geological volume of interest. The method may include receiving a geological volume interpretation based on the multi-offset multi-attribute image volume. The geovolume interpretation may include an identified geovolume having a representation of the geovolume in the multi-offset multi-attribute image volume, and a geovolume type assigned to the identified geovolume. The method may include obtaining registration data associated with a single identified geologic body in different ones of the multi-offset multi-attribute image volume based on the assigned geologic body type. Registration data for a given geologic volume may represent the spatial location, shape, and/or differences between geologic volume representations of the given geologic volume in different image volumes of the multi-offset multi-attribute image volume and/or similarity. The method may include updating the earth model and/or the velocity model using travel time inversion techniques based on the registration data and the assigned geologic body type. The method may include generating an updated multi-offset multi-attribute image volume based on the updated earth model and/or the updated velocity model.
本公开的另一方面涉及一种系统,该系统被配置成利用与所关注地质体积的地球模型相关联的图像体积中的地质体的位置和/或形状差异和/或相似性,以改进地球模型、用于叠前成像的速度模型、和/或图像体积的准确度。该系统可以包括被配置成执行计算机程序模块的一个或多个处理器。该计算机程序模块可以包括:模型模块、成像模块、地质体解释模块、和/或其它模块。该模型模块可以被配置成,根据表示已经通过所关注地质体积从一个或多个能量源传播至一个或多个能量接收器的能量的地震数据,来获取速度模型和/或地球模型。该地震数据可以包括多个偏移叠加、多个角叠加、或多个方位角叠加中的一个或多个。该成像模块可以被配置成,根据地震数据获取多个多偏移多属性图像体积。该多偏移多属性图像体积中的给定图像体积可以(1)对应于偏移叠加、角叠加、或方位角叠加中的一个,(2)与至少一个属性相关联,以及(3)包括存在于所关注地质体积中的地质体的地质体表示。该地质体解释模块可以被配置成,基于多偏移多属性图像体积来接收地质体解释。该地质体解释可以包括具有多偏移多属性图像体积中的地质体表示的标识地质体,和指配给所标识地质体的地质体类型。该地质体解释模块还可以被配置成,基于所指配的地质体类型,获取多偏移多属性图像体积中的不同图像体积中的、与单个标识地质体相关联的登记数据。给定地质体的登记数据可以表示给定地质体的空间位置、形状和/或给定地质体在多偏移多属性图像体积中的不同图像体积中的地质体表示之间的差异和/或相似性。该建模模块还可以被配置成,基于登记数据和所指配的地质体类型,利用行进时间反演技术来更新地球模型和/或速度模型。该成像模块还可以被配置成,基于所更新的地球模型和/或所更新的速度模型,来生成更新的多偏移多属性图像体积。 Another aspect of the present disclosure relates to a system configured to utilize position and/or shape differences and/or similarities of geological bodies in an image volume associated with an earth model of the geological volume of interest to improve the model, velocity model for prestack imaging, and/or image volume accuracy. The system may include one or more processors configured to execute computer program modules. The computer program modules may include: a modeling module, an imaging module, a geological volume interpretation module, and/or other modules. The model module may be configured to obtain a velocity model and/or an earth model from seismic data representing energy that has propagated through the geological volume of interest from the one or more energy sources to the one or more energy receivers. The seismic data may include one or more of a plurality of migration stacks, a plurality of angular stacks, or a plurality of azimuth stacks. The imaging module may be configured to acquire a plurality of multi-offset multi-attribute image volumes from the seismic data. A given image volume in the multi-offset multi-attribute image volume may (1) correspond to one of an offset stack, an angle stack, or an azimuth stack, (2) be associated with at least one attribute, and (3) include A geovolume representation of the geovolume that exists in the geological volume of interest. The geovolume interpretation module may be configured to receive a geovolume interpretation based on the multi-offset multi-attribute image volume. The geovolume interpretation may include an identified geovolume having a representation of the geovolume in the multi-offset multi-attribute image volume, and a geovolume type assigned to the identified geovolume. The geovolume interpretation module may also be configured to obtain registration data associated with a single identified geovolume in different ones of the multi-offset multi-attribute image volumes based on the assigned geovolume type. Registration data for a given geologic volume may represent the spatial location, shape, and/or differences between geologic volume representations of the given geologic volume in different image volumes of the multi-offset multi-attribute image volume and/or similarity. The modeling module may also be configured to update the earth model and/or the velocity model using travel time inversion techniques based on the registration data and the assigned geologic body type. The imaging module may also be configured to generate an updated multi-offset multi-attribute image volume based on the updated earth model and/or the updated velocity model.
本公开的又一方面涉及一种其上具体实施有指令的计算机可读存储介质。该指令可通过处理器执行,以执行一方法,该方法用于利用与所关注地质体积的地球模型相关联的图像体积中的地质体的位置和/或形状差异和/或相似性,以改进地球模型、用于叠前成像的速度模型、和/或图像体积的准确度。所述方法可以包括:根据表示已经通过所关注地质体积从一个或多个能量源传播至一个或多个能量接收器的能量的地震数据,来获取速度模型和/或地球模型。该地震数据可以包括多个偏移叠加、多个角叠加、或多个方位角叠加中的一个或多个。所述方法可以包括:根据地震数据获取多个多偏移多属性图像体积。该多偏移多属性图像体积中的给定图像体积可以(1)对应于偏移叠加、角叠加、或方位角叠加中的一个,(2)与至少一个属性相关联,以及(3)包括存在于所关注地质体积中的地质体的地质体表示。所述方法可以包括:基于多偏移多属性图像体积来接收地质体解释。该地质体解释可以包括具有多偏移多属性图像体积中的地质体表示的标识地质体、和指配给所标识地质体的地质体类型。所述方法可以包括:基于所指配的地质体类型,获取多偏移多属性图像体积中的不同图像体积中的、与单个标识地质体相关联的登记数据。给定地质体的登记数据可以表示给定地质体的空间位置、形状和/或指定地质体在多偏移多属性图像体积中的不同图像体积中的地质体表示之间的差异和/或相似性。所述方法可以包括:基于登记数据和所指配的地质体类型,利用行进时间反演技术来更新地球模型和/或速度模型。所述方法可以包括:基于所更新的地球模型和/或所更新的速度模型,来生成更新的多偏移多属性图像体积。 Yet another aspect of the disclosure relates to a computer-readable storage medium having instructions embodied thereon. The instructions are executable by a processor to perform a method for utilizing position and/or shape differences and/or similarities of geological bodies in an image volume associated with an earth model of the geological volume of interest to improve Earth model, velocity model for prestack imaging, and/or image volume accuracy. The method may include obtaining a velocity model and/or an earth model from seismic data representing energy that has propagated through the geological volume of interest from the one or more energy sources to the one or more energy receivers. The seismic data may include one or more of a plurality of migration stacks, a plurality of angular stacks, or a plurality of azimuth stacks. The method may include acquiring a plurality of multi-offset multi-attribute image volumes from the seismic data. A given image volume in the multi-offset multi-attribute image volume may (1) correspond to one of an offset stack, an angle stack, or an azimuth stack, (2) be associated with at least one attribute, and (3) include A geovolume representation of the geovolume that exists in the geological volume of interest. The method may include receiving a geological volume interpretation based on the multi-offset multi-attribute image volume. The geovolume interpretation may include an identified geovolume having a representation of the geovolume in the multi-offset multi-attribute image volume, and a geovolume type assigned to the identified geovolume. The method may include obtaining registration data associated with a single identified geologic body in different ones of the multi-offset multi-attribute image volume based on the assigned geologic body type. Registration data for a given geologic volume may represent the spatial location, shape, and/or difference and/or similarity between geologic volume representations in different image volumes of a given geologic volume for a given geologic volume in a multi-offset multi-attribute image volume sex. The method may include updating the earth model and/or the velocity model using travel time inversion techniques based on the registration data and the assigned geologic body type. The method may include generating an updated multi-offset multi-attribute image volume based on the updated earth model and/or the updated velocity model.
当参照附图考虑下面的描述和所附权利要求书时,本技术的这些和其它特征以及特性,和结构与组合部分的相关部件的操作与功能的方法以及制造的经济性将变得更清楚,其全部形成了本说明书的一部分,其中,相同标号指定各个图中的对应部分。然而,应当明白,附图仅仅是出于例示和描述的目的,而非旨在作为对本技术的限制的解说。如在本说明书和权利要求书中使用的,单数形式“一(a)”、“一(an)”,以及“该/所述(the)”包括多个指示物,除非上下文另外清楚地规定。 These and other features and characteristics of the present technology, and the method of operation and function of the relevant parts of structure and composition parts and the economics of manufacture will become more apparent when the following description and appended claims are considered with reference to the accompanying drawings , all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It should be understood, however, that the drawings are for purposes of illustration and description only and are not intended as illustrations of the limits of the technology. As used in this specification and claims, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise .
附图说明 Description of drawings
图1例示了根据一个或多个实施例的、被配置成通过利用体积图像之间的自洽(self-consistency)和/或差异以及解释空间性/体积性背景,来改进地质体的属性和/或岩石特性的地震成像和估计的系统。 FIG. 1 illustrates a system configured to improve properties and properties of geological volumes by exploiting self-consistency and/or differences between volumetric images and accounting for spatial/volumetric context, according to one or more embodiments. and/or systems for seismic imaging and estimation of rock properties.
图2例示了根据一个或多个实施例的、用于通过利用体积图像之间的自洽和/或差异以及解释空间性/体积性背景,来改进地质体的属性和/或岩石特性的地震成像和估计的方法。 2 illustrates a seismic method for improving the properties of geological volumes and/or rock properties by exploiting self-consistency and/or differences between volumetric images and interpreting spatial/volumetric context, according to one or more embodiments Methods of Imaging and Estimation.
具体实施方式 detailed description
本技术可以按系统和要通过计算机执行的计算机方法的一般背景来描述和实现。这种计算机可执行指令可以包括程序、例程、对象,组件、数据结构、以及可以被用于执行特定任务和处理抽象数据类型的计算机软件技术。本技术的软件实现可以按针对多种计算平台和环境中的应用的不同语言来编码。应当清楚,本技术的范围和基本原理不限于任何特定计算机软件技术。 The technology may be described and implemented in the general context of systems and computer methods to be executed by a computer. Such computer-executable instructions may include programs, routines, objects, components, data structures, and computer software technologies that can be used to perform particular tasks and process abstract data types. Software implementations of the present technology may be coded in different languages for application in a variety of computing platforms and environments. It should be clear that the scope and underlying principles of the technology are not limited to any particular computer software technology.
而且,本领域技术人员应当清楚,本技术可以利用硬件和软件构造中的任一个或组合来实践,包括但不限于,具有单一和/或多处理器计算机处理器系统的系统、手持式装置、可编程消费者电子设备、迷你计算机、大型计算机等。本技术还可以在其中通过经由一个或多个数据通信网络链接的服务器或其它处理装置执行任务的分布式计算环境中实践。在分布式计算环境中,程序模块可以位于包括存储器存储装置的本地和远程计算机存储介质两者中。 Moreover, it should be apparent to those skilled in the art that the present technology may be practiced using any one or combination of hardware and software configurations, including but not limited to, systems with single and/or multi-processor computer processor systems, handheld devices, Programmable consumer electronic devices, minicomputers, mainframe computers, etc. The technology may also be practiced in distributed computing environments where tasks are performed by servers or other processing devices that are linked through one or more data communications networks. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
而且,用于与计算机处理器一起使用的制造品(如CD、预记录盘或其它等同装置)可以包括计算机程序存储介质和记录在其上的、用于引导计算机处理器以易于实现和实践本技术的程序装置。这种装置和制造品也落入本技术的精神和范围内。 Moreover, an article of manufacture (such as a CD, pre-recorded disc, or other equivalent device) for use with a computer processor may include a computer program storage medium and recorded thereon instructions for instructing the computer processor to facilitate the implementation and practice of the present invention. Technology program device. Such devices and articles of manufacture also fall within the spirit and scope of the present technology.
下面,参照附图,对本技术的实施例进行描述。本技术可以按许多方式来实现,例如被实现为系统(包括计算机处理系统)、方法(包括计算机实现方法)、装置、计算机可读介质、计算机程序产品、图形用户接口、门户网站,或者有形地固定在计算机可读存储器中的数据结构。下面,对本技术的几个实施例进行讨论。附图仅例示了本技术的典型实施例,并由此,不应被视为对其范围和宽度的限制。 Embodiments of the present technology will be described below with reference to the drawings. The technology can be implemented in numerous ways, for example, as a system (including a computer processing system), a method (including a computer-implemented method), an apparatus, a computer readable medium, a computer program product, a graphical user interface, a web portal, or tangibly A data structure fixed in computer readable memory. In the following, several embodiments of the present technology are discussed. The drawings illustrate only typical embodiments of the technology, and therefore should not be considered limiting of its scope and breadth.
图1例示了根据一个或多个实施例的、被配置成通过利用体积图像之间的自洽和/或差异以及解释空间性/体积性背景,来改进地质体的属性和/或岩石特性的地震成像和估计的系统100。更具体地说,该系统100可以被配置成利用与所关注地质体积的地球模型相关联的图像体积中的地质体的位置和/或形状差异和/或相似性,以改进地球模型、用于叠前成像的速度模型、和/或图像体积的准确度。在一些实施例中,该系统100可以被配置成约束岩石特性的范围,并且确认和/或指定与所关注地质体积相关联的地质体的岩石特性之间的依赖关系。根据一些实施例,该系统100可以被配置成,利用与所关注地质体积相关联的多偏移多属性图像体积和标识地质体来构建地球模型。地震数据可以利用更新模型重新成像。 FIG. 1 illustrates an image sensor configured to improve properties of geological volumes and/or rock properties by exploiting self-consistency and/or differences between volumetric images and accounting for spatial/volumetric context, according to one or more embodiments. A system 100 for seismic imaging and estimation. More specifically, the system 100 may be configured to utilize position and/or shape differences and/or similarities of geological bodies in an image volume associated with an earth model of the geological volume of interest to improve the earth model, for Accuracy of velocity models, and/or image volumes for prestack imaging. In some embodiments, the system 100 may be configured to constrain the range of rock properties and to identify and/or specify dependencies between rock properties of geological volumes associated with a geological volume of interest. According to some embodiments, the system 100 may be configured to construct an earth model using a multi-offset multi-attribute image volume associated with a geological volume of interest and identified geological volumes. Seismic data can be re-imaged using an updated model.
所关注地质体积可以包括一个或多个“覆盖层”。覆盖层通常可以被描述为矿床(bed)、折射物和/或反射物之上的地质部分。覆盖层的示例可以包括位于矿石或有价值的沉积物上方并且在其上压下的材料、基岩上方的松散未固结材料、和/或其它覆盖层。覆盖层可以与可以被用于重新成像的速度模型和/或其它模型相关联。 A geological volume of interest may include one or more "overburdens." Overburden may generally be described as the geological portion above a bed, refractor and/or reflector. Examples of overburden may include material overlying and depressed over ore or valuable deposits, loose unconsolidated material over bedrock, and/or other overburden. Overlays may be associated with velocity models and/or other models that may be used for re-imaging.
所关注地质体积可以包括一个或多个目标,举例来说,如储集层目标。根据一个或多个实施例,可以在这种目标上执行详细分析,以确定有关地质体和/或岩石特性的信息。根据求得的特定信息,所关注地质体积可以包括所关注区域上方从表面至目标层段的整个地质部分,或者所关注地质体积可以被限制成特定目标层段。 A geological volume of interest may include one or more targets, such as reservoir targets, for example. According to one or more embodiments, detailed analysis may be performed on such targets to determine information about geological volumes and/or rock properties. Depending on the specific information derived, the geological volume of interest may include the entire geological portion above the region of interest from the surface to the target interval, or the geological volume of interest may be limited to a specific target interval.
如图1中描绘,系统100可以包括:电子存储部102、用户接口104、一个或多个信息资源106、至少一个处理器108、和/或其它组件。在一些实施例中,电子存储部102包括电子地存储信息的电子存储介质。电子存储部102的电子存储介质可以包括与系统100集成地(即,基本上不可去除)设置的系统存储部、和/或例如经由端口(例如,USB端口、火线端口等)或驱动器(例如,盘驱动器等)可去除地连接至系统100的可去除存储部。电子存储部102可以包括光学可读存储介质(例如,光盘等)、磁可读存储介质(例如,磁带、磁硬盘驱动器、软盘驱动器等)、基于电荷的存储介质(例如、EEPROM、RAM等)、固态存储介质(例如,闪存驱动器等)中的一个或多个,和/或其它电子可读存储介质。电子存储部102可以存储软件算法、由处理器108确定的信息、经由用户接口104接收的信息、从信息资源106接收的信息、和/或使得系统100能够如在此所述地起作用的其它信息。电子存储部102可以是系统100内的分离组件,或者电子存储部102可以与系统100的一个或多个其它组件(例如,处理器108)集成地设置。 As depicted in FIG. 1 , system 100 may include electronic storage 102 , user interface 104 , one or more information resources 106 , at least one processor 108 , and/or other components. In some embodiments, electronic storage 102 includes electronic storage media that electronically stores information. Electronic storage media of electronic storage 102 may include system storage provided integrally (i.e., substantially non-removable) with system 100, and/or, for example, via ports (e.g., USB ports, FireWire ports, etc.) or drives (e.g., disk drive, etc.) is removably connected to the removable storage of the system 100. Electronic storage 102 may include optically readable storage media (e.g., optical disks, etc.), magnetically readable storage media (e.g., magnetic tape, magnetic hard drives, floppy disk drives, etc.), charge-based storage media (e.g., EEPROM, RAM, etc.) , one or more of solid-state storage media (eg, flash drives, etc.), and/or other electronically readable storage media. Electronic storage 102 may store software algorithms, information determined by processor 108, information received via user interface 104, information received from information resources 106, and/or other information that enables system 100 to function as described herein. information. Electronic storage 102 may be a separate component within system 100 , or electronic storage 102 may be provided integrally with one or more other components of system 100 (eg, processor 108 ).
用户接口104被配置成在系统100与用户之间提供用户可以通过其向系统100提供信息和接收来系统100的信息的接口。这使得统称为“信息”的数据、结果、和/或指令和任何其它可传送项能够在用户与系统100之间传送。如在此使用的,术语“用户”可以指单一个体或者可以协作地工作的个体的组。适于包含在用户接口104中的接口装置的示例包括下列中的一个或多个:小键盘、按钮、开关、键盘、旋钮、操作杆、显示屏、触摸屏、扬声器、麦克风、指示灯、声音报警器、和/或打印机。在一个实施例中,用户接口104实际上包括多个分离接口。 The user interface 104 is configured to provide an interface between the system 100 and the user through which the user can provide information to the system 100 and receive information from the system 100 . This enables data, results, and/or instructions and any other transferable items, collectively referred to as "information," to be transferred between the user and the system 100 . As used herein, the term "user" may refer to a single individual or a group of individuals who may work collaboratively. Examples of interface devices suitable for inclusion in user interface 104 include one or more of the following: keypads, buttons, switches, keypads, knobs, joysticks, display screens, touch screens, speakers, microphones, indicator lights, audible alarms device, and/or printer. In one embodiment, user interface 104 actually includes multiple separate interfaces.
要明白的是,其它通信技术(硬布线或无线)也可以被本技术设想为用户接口104。例如,本技术设想用户接口104可以与由电子存储部102提供的可去除存储接口集成。在这个示例中,可以将信息从可去除存储部(例如,智能卡、闪存驱动器、可去除盘等)加载到系统100中,使得用户能够定制系统100的实现。适于与系统100一起使用作为用户接口104的其它示例性输入装置和技术包括但不限于:RS-232端口、RF链路、IR链路、调制解调器(电话、线缆或其它)。简单地说,用于与系统100传送信息的任何技术被本技术设想为用户接口104。 It is to be understood that other communication technologies (hardwired or wireless) are also contemplated by the present technology as user interface 104 . For example, the technology contemplates that user interface 104 may be integrated with a removable storage interface provided by electronic storage 102 . In this example, information can be loaded into system 100 from removable storage (eg, smart card, flash drive, removable disk, etc.), enabling a user to customize the implementation of system 100 . Other exemplary input devices and technologies suitable for use with system 100 as user interface 104 include, but are not limited to: RS-232 port, RF link, IR link, modem (telephone, cable, or other). Simply stated, any technique for communicating information with system 100 is contemplated by the present technology as user interface 104 .
信息资源106包括与所关注地质体积有关的一个或多个信息源。通过非限制例的方式,信息资源106之一可以包括:在所关注地质体积处或附近获取的地震数据、从其导出的信息、和/或有关该获取的信息。这种地震数据可以包括源波场和接收器波场。地震数据可以包括地震数据的单个道(例如,在从源起传播通过所关注地质体积的地震能量的一个通道上记录的数据)、偏移叠加、角叠加、方位角叠加、和/或其它数据。根据地震数据导出的信息例如可以包括:根据表示已经通过所关注地质体积从一个或多个能量源传播至一个或多个能量接收器的能量的地震数据的地质模型、根据表示存在于所关注地质体积中的地质体的地质模型的图像体积和/或其它信息。这些图像体积中的单个图像体积可以对应于单个一个偏移叠加、角叠加、或方位角叠加。与获取地震数据有关的信息例如包括:与地震能量源的位置和/或取向有关的数据、地震能量的一个或多个检测器的位置和/或取向、由该源生成能量并且引导至所关注地质容积的时间、和/或其它信息。 Information resources 106 include one or more sources of information related to the geological volume of interest. By way of non-limiting example, one of the information resources 106 may include seismic data acquired at or near the geological volume of interest, information derived therefrom, and/or information related to the acquisition. Such seismic data may include source wavefields and receiver wavefields. Seismic data may include individual traces of seismic data (e.g., data recorded on one channel of seismic energy propagating from source through the geological volume of interest), migration stacks, angular stacks, azimuth stacks, and/or other data . Information derived from seismic data may include, for example, from geological models representing energy that has propagated through the geological volume of interest from one or more energy sources to one or more energy receivers, from geological models representing energy that exists in the geological volume of interest, Image volumes and/or other information of geological models of geological bodies in the volume. Individual ones of the image volumes may correspond to a single offset stack, angular stack, or azimuthal stack. Information related to acquiring seismic data includes, for example: data related to the location and/or orientation of a source of seismic energy, the location and/or orientation of one or more detectors of seismic energy, the energy generated by the source and directed to the Time, and/or other information for geological volumes.
信息资源106可以包括除了与所关注地质体积相关联的地震相关数据以外的其它信息。这种信息的示例可以包括:与重力、磁场、电阻率有关的信息、大地电磁信息、雷达数据、井日志、岩石特性、地质模拟数据、和/或其它信息。 Information resources 106 may include other information in addition to seismic-related data associated with the geological volume of interest. Examples of such information may include: information related to gravity, magnetic fields, resistivity, magnetotelluric information, radar data, well logs, rock properties, geological modeling data, and/or other information.
处理器108被配置成,在系统100中提供信息处理能力。同样地,处理器108可以包括数字处理器、模拟处理器、被设计成处理信息的数字电路、被设计成处理信息的模拟电路、状态机,和/或用于电子地处理信息的其它机构中的一个或多个。尽管处理器108在图1中被示出为单一实体,但这仅仅是出于例示性目的。在某些实现中,处理器108可以包括多个处理单元。这些处理单元可以物理地位于同一装置或计算平台内,或者处理器108可以表示协作操作的多个装置的处理功能。 Processor 108 is configured to provide information processing capabilities in system 100 . Likewise, processor 108 may include digital processors, analog processors, digital circuits designed to process information, analog circuits designed to process information, state machines, and/or other mechanisms for electronically processing information. one or more of . Although processor 108 is shown in FIG. 1 as a single entity, this is for illustrative purposes only. In some implementations, processor 108 may include multiple processing units. These processing units may be physically located within the same device or computing platform, or processor 108 may represent the processing functionality of multiple devices operating in cooperation.
如图1中所示,处理器108可以被配置成执行一个或多个计算机程序模块。该一个或多个计算机程序模块可以包括通信模块110、建模模块112、成像模块114、地质体解释模块116、合成地震数据模块118、特性约束模块120、和/或其它模块中的一个或多个。处理器108可以被配置成,通过软件,硬件,固件,软件、硬件和/或固件的某一组合,和/或用于配置处理器108上的处理能力的其它机制来执行模块110、112、114、116、118、和/或120。 As shown in FIG. 1, processor 108 may be configured to execute one or more computer program modules. The one or more computer program modules may include one or more of a communication module 110, a modeling module 112, an imaging module 114, a geological volume interpretation module 116, a synthetic seismic data module 118, a property constraint module 120, and/or other modules. indivual. Processor 108 may be configured to execute modules 110, 112, 114, 116, 118, and/or 120.
应当清楚,尽管模块110、112、114、116、118、以及120在图1中被例示为共同位于单一处理单元内,但在其中处理器108包括多个处理单元的实现中,模块110、112、114、116、118、和/或120中的一个或多个可以相对于其它模块远程定位。下面描述的、对由不同模块110、112、114、116、118、和/或120提供的功能的描述出于例示性目的,而非旨在进行限制,如模块110、112、114、116、118、和/或120中的任一个可以提供比所述的更多或更少的功能。例如,模块110、112、114、116、118、和/或120中的一个或多个可以消除,并且其一些或全部功能可以由模块110、112、114、116、118、和/或120中的其它模块提供。作为另一实施例,处理器108可以被配置成执行可以执行下面归因于模块110、112、114、116、118、和/或120中的一个的一些或全部功能的一个或多个附加模块。作为又一示例,处理器108可以被配置成执行可以执行下面归因于在2011年1月31日提交并且题名为“ExtractingGeologicInformationfromMultipleOffsetStacksand/orAngleStacks”的共同未决的美国专利申请No.13/017995中所描述的一个或多个模块的一些或全部功能的一个或多个模块,该申请通过引用并入于此。 It should be appreciated that although modules 110, 112, 114, 116, 118, and 120 are illustrated in FIG. One or more of , 114, 116, 118, and/or 120 may be located remotely relative to the other modules. The description of the functionality provided by the various modules 110, 112, 114, 116, 118, and/or 120 described below is for illustrative purposes and is not intended to be limiting, such as modules 110, 112, 114, 116, Any of 118, and/or 120 may provide more or less functionality than described. For example, one or more of modules 110, 112, 114, 116, 118, and/or 120 may be eliminated, and some or all of their functionality may be replaced by modules 110, 112, 114, 116, 118, and/or 120 provided by other modules. As another example, processor 108 may be configured to execute one or more additional modules that may perform some or all of the functions attributed to one of modules 110, 112, 114, 116, 118, and/or 120 below . As yet another example, the processor 108 may be configured to perform the following which is attributed to co-pending U.S. Patent Application No. 13/017995 filed on January 31, 2011 and entitled "Extracting Geologic Information from Multiple OffsetStacks and/or AngleStacks." Some or all of the functions of one or more modules described, this application is hereby incorporated by reference.
通信模块110可以被配置成接收信息。这种信息可以从信息资源106、经由用户接口104的用户、电子存储部102、和/或其它信息源接收。接收信息的示例可以包括:地震数据和由其导出的信息、与获取地震数据有关的信息、偏移叠加、角叠加、方位角叠加、地质模型、图像体积、和/或其它信息。通过通信模块110接收的信息可以被模块112、114、116、118、和/或120中的一个或多个所利用。对这样一些利用的示例描述如下。通信模块110可以被配置成,向系统100的一个或多个其它组件发送信息。 Communication module 110 may be configured to receive information. Such information may be received from information resource 106, a user via user interface 104, electronic storage 102, and/or other information sources. Examples of received information may include: seismic data and information derived therefrom, information related to acquiring seismic data, migration stacks, angular stacks, azimuth stacks, geological models, image volumes, and/or other information. Information received via communications module 110 may be utilized by one or more of modules 112 , 114 , 116 , 118 , and/or 120 . Examples of such exploits are described below. The communication module 110 may be configured to send information to one or more other components of the system 100 .
建模模块112可以被配置成生成和/或以其它方式获取与所关注地质体积相关联的一个或多个模型。该一个或多个模型可以是单维或多维的。这种模型的示例可以包括:地球模型、速度模型、和/或与所关注地质体积相关联的其它模型。地球模型可以包括至少一个特性(例如,地震速度、密度、衰减、各向异性、和/或其它特性)的作为所关注地质体积内的位置的函数的数值表示。速度模型可以包括可以用于追踪服从斯涅耳定律的射线路径的速度的空间分布。速度模型可以指在迁移(举例来说,如深度迁移)中使用的模型。速度模型可以被称为速度立方体。在某些实现中,模型模块112可以被配置成根据表示已经通过所关注地质体积从一个或多个能量源传播至一个或多个能量接收器的能量的地震数据,来获取速度模型、地球模型、和/或其它模型。地震数据可以包括一个或多个偏移叠加、一个或多个角叠加、一个或多个方位角叠加、和/或其它地震数据。 Modeling module 112 may be configured to generate and/or otherwise acquire one or more models associated with the geological volume of interest. The one or more models may be unidimensional or multidimensional. Examples of such models may include: earth models, velocity models, and/or other models associated with the geological volume of interest. The earth model may include a numerical representation of at least one property (eg, seismic velocity, density, attenuation, anisotropy, and/or other properties) as a function of position within the geological volume of interest. A velocity model can include a spatial distribution of velocities that can be used to trace ray paths that obey Snell's law. A velocity model may refer to a model used in migration such as depth migration, for example. A velocity model may be referred to as a velocity cube. In certain implementations, the model module 112 can be configured to derive a velocity model, an earth model, based on seismic data representing energy that has propagated through the geological volume of interest from one or more energy sources to one or more energy receivers. , and/or other models. The seismic data may include one or more migration stacks, one or more angular stacks, one or more azimuth stacks, and/or other seismic data.
模型模块112可以被配置成利用一种或多种反演技术来更新地球模型、速度模型、和/或其它模型。执行反演可以包括从数据(例如,地震数据、现场数据、和/或其它数据)导出用于描述与该数据一致的所关注地质体积的地下的模型。反演可以包括求解可以生成一组观察测量结果的参数的空间分布。这种参数的示例可以包括:登记数据、地震事件时间、和/或其它参数。 The model module 112 may be configured to update the earth model, the velocity model, and/or other models using one or more inversion techniques. Performing inversion may include deriving from data (eg, seismic data, field data, and/or other data) a model describing the subsurface of the geological volume of interest consistent with the data. Inversion can include solving for the spatial distribution of parameters that can generate a set of observed measurements. Examples of such parameters may include: registration data, seismic event times, and/or other parameters.
该一种或多种反演技术可以包括针对观察数据的一个或多个建模实现和/或比较。该一种或更多种反演技术可以包括:利用多个模型的成像、全息摄影术、干涉量度学、和/或其它反演技术。通过非限制例的方式,该一种或更多种反演技术可以包括时间行进反演。一类时间行进反演可以是层析反演。层析反演可以包括利用层析方法来确定地下速度分布。层析方法可以包括利用源位置和接收器位置的组合,根据大量观察来确定速度和/或反射率分布、和/或利用一个井中的发送器和另一井中的接收器根据传导率测量结果来确定电阻率分布。 The one or more inversion techniques may include one or more modeling implementations and/or comparisons to the observation data. The one or more inversion techniques may include imaging using multiple models, holography, interferometry, and/or other inversion techniques. By way of non-limiting example, the one or more inversion techniques may include time marching inversion. One type of time marching inversion may be tomographic inversion. Tomographic inversion may include the use of tomographic methods to determine subsurface velocity distributions. The tomographic method may include determining velocity and/or reflectivity distributions from a large number of observations using a combination of source and receiver locations, and/or using a transmitter in one well and a receiver in another well to determine Determine the resistivity distribution.
该一个或多个反演技术可以基于登记数据和/或包括在所关注地质体积内的地质体的指配地质体类型。地质体类型的示例可以包括以下中的一个或多个:地质表面、河流通道、凸案坝(pointbar)、暗礁、断层(fault)、不整合面(unconformity)、三角洲、岩墙(dike)、岩床(sill)、盐体、决口扇(crevassesplay)、储集层流动单元、流体接触、浊流岩通道、浊流岩床、和/或其它地质体类型。 The one or more inversion techniques may be based on registration data and/or assigned geobody types for geobodies included within the geological volume of interest. Examples of geologic body types may include one or more of the following: geologic surfaces, river channels, pointbars, reefs, faults, unconformities, deltas, dikes, Sills, salt bodies, crevasses plays, reservoir flow units, fluid contacts, turbidite channels, turbidite beds, and/or other geological body types.
模型模块112可以被配置成,利用与地质体相关联的一个或多个特性约束来更新地球模型、速度模型、和/或其它模型。结合特性约束模块120,对特性约束进行更详细描述。模型模块112可以被配置成,生成和/或以其它方式获取更新的地球模型、更新的速度模型、和/或其它模型,其中,在更新的地球模型、更新的速度模型、和/或其它模型中表示的地质体的一个或多个岩石特性已经基于在所更新的地球模型、更新的速度模型、和/或其它模型中表示的所标识地质体的指配地质体类型进行了约束。岩石特性的示例可以包括以下中的一个或多个:速度、各向异性、密度、声特性、弹性特性、岩石物理特性、流体特性、储集层特性、地质描述、岩性分类、和/或其它岩石特性。 The model module 112 may be configured to update the earth model, the velocity model, and/or other models with one or more property constraints associated with the geological volume. In conjunction with the characteristic constraint module 120, the characteristic constraint is described in more detail. The model module 112 may be configured to generate and/or otherwise obtain an updated earth model, an updated velocity model, and/or other models, wherein, in the updated earth model, updated velocity model, and/or other models One or more rock properties of the geologic volume represented in have been constrained based on the assigned geologic volume type of the identified geologic volume represented in the updated earth model, updated velocity model, and/or other model. Examples of rock properties may include one or more of: velocity, anisotropy, density, acoustic properties, elastic properties, petrophysical properties, fluid properties, reservoir properties, geological description, lithological classification, and/or other rock properties.
成像模块114可以被配置成执行成像,并且/或者生成和/或以其它方式获取一个或多个图像体积。图像体积可以对应于单个的偏移叠加、角叠加、方位角叠加、和/或其它信息。图像体积可以表示存在于所关注地质体积中的地质体。图像体积可以包括多偏移多属性图像体积。 Imaging module 114 may be configured to perform imaging and/or generate and/or otherwise acquire one or more image volumes. Image volumes may correspond to individual offset stacks, angular stacks, azimuth stacks, and/or other information. The image volume may represent geological bodies that exist within the geological volume of interest. The image volume may include a multi-offset multi-attribute image volume.
根据一些实施例,成像模块114可以被配置成,根据地震数据生成和/或以其它方式获取多个多偏移多属性图像体积。该多个多偏移多属性图像体积中的给定图像体积可以对应于偏移叠加、角叠加、和/或方位角叠加中的一个。多偏移多属性图像体积中的给定图像体积可以与至少一个属性相关联。属性的示例可以包括以下中的一个或多个:相干性、希尔伯特变换、幅度、瞬时频率、频谱分析、衰减、阻抗、泊松比、地震响应的偏移依赖关系、地震响应的反射角和/或方位角依赖关系、下沉(dip)、震级(magnitude)、曲率、粗糙度、下沉方位角、频谱形状、和/或其它属性。该多偏移多属性图像体积中的给定图像体积可以包括存在于所关注地质体积中的地质体的地质体表示。成像模块114可以被配置成基于所更新的地球模型和/或所更新的速度模型,来生成和/或以其它方式获取一个或多个更新的多偏移多属性图像体积。 According to some embodiments, imaging module 114 may be configured to generate and/or otherwise acquire a plurality of multi-offset multi-attribute image volumes from seismic data. A given image volume of the plurality of multi-offset multi-attribute image volumes may correspond to one of an offset stack, an angular stack, and/or an azimuthal stack. A given image volume in the multi-offset multi-attribute image volume may be associated with at least one attribute. Examples of properties may include one or more of: coherence, Hilbert transform, magnitude, instantaneous frequency, spectral analysis, attenuation, impedance, Poisson's ratio, offset dependence of seismic response, reflection of seismic response Angle and/or azimuth dependence, dip, magnitude, curvature, roughness, dip azimuth, spectral shape, and/or other properties. A given image volume of the multi-offset multi-attribute image volume may include a geologic representation of a geologic volume present in the geologic volume of interest. The imaging module 114 may be configured to generate and/or otherwise acquire one or more updated multi-offset multi-attribute image volumes based on the updated earth model and/or the updated velocity model.
根据一些实施例,成像模块114可以被配置成,根据合成的地震数据生成和/或以其它方式获取多个多偏移多属性图像体积。结合合成地震数据模块118对合成的地震数据进行进一步描述。多偏移多属性图像体积中的给定图像体积可以对应于合成的地震数据的偏移叠加、角叠加、或方位角叠加中的一个。多偏移多属性图像体积中的给定图像体积可以与一地震属性相关联。多偏移多属性图像体积中的给定图像体积可以包括先前在所更新的地球模型和/或速度模型中未标识的地质体的地质体表示。 According to some embodiments, imaging module 114 may be configured to generate and/or otherwise acquire a plurality of multi-offset multi-attribute image volumes from the synthesized seismic data. Synthetic seismic data is further described in connection with synthetic seismic data module 118 . A given image volume in the multi-migration multi-attribute image volume may correspond to one of a migration stack, an angular stack, or an azimuth stack of the synthesized seismic data. A given image volume in the multi-offset multi-attribute image volume may be associated with a seismic attribute. A given image volume in the multi-offset multi-attribute image volume may include representations of geologic volumes that were not previously identified in the updated earth model and/or velocity model.
地质体解释模块116可以被配置成确定、标识、和/或接收地质体解释。在一些实施例中,该地质体解释可以经由用户接口104来接收。地质体解释可以基于一个或多个图像体积,其可以包括一个或多个多偏移多属性图像体积。地质体解释可以包括具有图像体积中的地质体表示的标识地质体。地质体解释可以包括指配给所标识地质体的地质体类型。 Geologic volume interpretation module 116 may be configured to determine, identify, and/or receive geologic volume interpretations. In some embodiments, the geovolume interpretation may be received via user interface 104 . Geovolume interpretation may be based on one or more image volumes, which may include one or more multi-offset multi-attribute image volumes. The geovolume interpretation may include identifying geovolumes with representations of the geovolumes in the image volume. The geovolume interpretation may include a geovolume type assigned to the identified geovolume.
地质体解释模块116可以被配置成,基于所指配的地质体类型,获取多个图像体积中的不同图像体积中的、与单个标识地质体相关联的登记数据。给定地质体的登记数据可以表示空间位置、给定地质体的形状、给定地质体在多个图像体积中的不同图像体积中的地质体表示之间的差异和/或相似性、和/或与给定地质体相关联的其它信息。 The geovolume interpretation module 116 may be configured to obtain registration data associated with a single identified geovolume in different ones of the plurality of image volumes based on the assigned geovolume type. Registration data for a given geovolume may represent spatial location, shape of the given geovolume, differences and/or similarities between geovolume representations of the given geovolume in different ones of the plurality of image volumes, and/or or other information associated with a given geological body.
地质体解释模块116可以被配置成,基于合成地震数据与被用于获取图像体积的地震数据之间的比较,来验证标识地质体。结合合成地震数据模块118对合成的地震数据进行更详细描述。地质体解释模块116可以被配置成,响应于标识地质体的验证指示第一地质体的解释不准确,来确定和/或接收第一地质体的重新解释。该第一地质体的重新解释可以包括对第一地质体的地质体类型的新指配。地质体解释模块116可以被配置成,获取与重新解释相对应的、第一地质体的新登记数据。 The geological volume interpretation module 116 may be configured to verify the identified geological volumes based on a comparison between the synthetic seismic data and the seismic data used to acquire the image volume. Synthetic seismic data is described in more detail in connection with the synthetic seismic data module 118 . The geologic volume interpretation module 116 may be configured to determine and/or receive a reinterpretation of the first geologic volume in response to verification of the identified geologic volume indicating that the interpretation of the first geologic volume is inaccurate. The reinterpretation of the first geologic volume may include a new assignment of a geologic volume type to the first geologic volume. The geological volume interpretation module 116 may be configured to obtain new registration data for the first geological volume corresponding to the reinterpretation.
地质体解释模块116可以被配置成确定和/或接收指配给所标识地质体的岩石特性和/或地质体类型。该岩石特性和/或地质体类型与地质原理、地层学原理、和/或模拟数据库一致地指配。如上提到,岩石特性例如可以包括以下中的一个或多个:速度、各向异性、密度、声特性、弹性特性、岩石物理特性、流体特性、储集层特性、地质描述、岩性分类、和/或其它岩石特性。 The geovolume interpretation module 116 may be configured to determine and/or receive rock properties and/or geovolume types assigned to the identified geovolumes. The rock properties and/or geobody types are assigned consistent with geological principles, stratigraphic principles, and/or modeling databases. As mentioned above, rock properties may include, for example, one or more of: velocity, anisotropy, density, acoustic properties, elastic properties, petrophysical properties, fluid properties, reservoir properties, geological description, lithological classification, and/or other rock properties.
地质体解释模块116可以被配置成执行约束地震反演。约束反演可以指通过反演处理对岩石特性的输出值的限制、限制地震频率带宽上的反演、和/或其它约束反演。地质体解释模块116可以被配置成执行约束地震反演,以确定所标识地质体的岩石特性。地质体解释模块116可以被配置成,执行约束地震反演,以标识具有关联岩石特性的其它地质体,以便缩减所观察地震数据与合成数据之间的差异。根据一些实施例,所约束的地震反演可以根据所标识地质体的约束岩石特性来稳定化。 The geovolume interpretation module 116 may be configured to perform constrained seismic inversion. Constrained inversion may refer to limitations on output values of rock properties by the inversion process, inversions limited to seismic frequency bandwidths, and/or other constrained inversions. The geological volume interpretation module 116 may be configured to perform constrained seismic inversion to determine rock properties of the identified geological volumes. The geological volume interpretation module 116 may be configured to perform constrained seismic inversion to identify other geological volumes with associated rock properties in order to reduce discrepancies between observed seismic data and synthetic data. According to some embodiments, the constrained seismic inversion may be stabilized according to the constrained rock properties of the identified geologic volumes.
合成地震数据模块118可以被配置成生成和/或以其它方式获取合成地震数据。合成地震数据可以对应于地球模型、速度模型、和/或其它模型。合成地震数据可以包括通过假定特定波形行进通过假定模型而生成的人工地震反射记录。合成地震数据可以不受对应模型的维数限制。合成地震数据可以不受用于描述对应模型和/或表示波传播的数学和/或并入物理特性的复杂性所限制。合成地震数据可以包括传播通过具有衰减和速度各向异性的单维或多维弹性模型。 Synthetic seismic data module 118 may be configured to generate and/or otherwise acquire synthetic seismic data. Synthetic seismic data may correspond to an earth model, a velocity model, and/or other models. Synthetic seismic data may include artificial seismic reflection records generated by assuming a particular waveform to travel through a hypothetical model. Synthetic seismic data may not be limited by the dimensionality of the corresponding model. Synthetic seismic data may not be limited by the complexity of the mathematics and/or incorporated physics used to describe corresponding models and/or represent wave propagation. Synthetic seismic data may include propagation through a single-dimensional or multi-dimensional elastic model with attenuation and velocity anisotropy.
特性约束模块120可以被配置成,确定和/或以其它方式获取在与所关注地质体积相关联的地球模型、速度模型、和/或其它模型中,针对地质体的一个或多个岩石特性的一个或多个特性约束。特性约束模块120可以被配置成,基于地质原理、地层学原理、和/或模拟数据库,通过约束与多个地质体中的单个地质体相关联的岩石特性的范围,来确定和/或以其它方式获取该一个或多个特性约束。特性约束模块120可以被配置成,基于一个或多个岩石特性之间的依赖关系、井数据日志、从井数据日志导出的数据、所关注地质体积的局部地质知识、和/或其它信息中的一个或多个,来验证该特性约束。 The property constraint module 120 may be configured to determine and/or otherwise obtain a value for one or more rock properties of the geological volume in an earth model, velocity model, and/or other model associated with the geological volume of interest. One or more property constraints. The property constraint module 120 may be configured to determine and/or otherwise determine by constraining the range of rock properties associated with a single geologic body of the plurality of geologic bodies based on geologic principles, stratigraphic principles, and/or modeling databases. method to obtain the one or more property constraints. The property constraints module 120 may be configured to, based on dependencies among one or more rock properties, well data logs, data derived from well data logs, local geological knowledge of the geological volume of interest, and/or other information. One or more, to validate the feature constraints.
图2例示了根据一个或多个实施例的、用于通过利用体积图像之间的自洽和/或差异以及解释空间性/体积性背景,来改进地质体的属性和/或岩石特性的地震成像和估计的方法200。下面呈现的方法200的操作旨在例示。在一些实施例中,方法200可以利用未描述的一个或多个附加操作和/或不利用所讨论操作中的一个或多个来完成。例如,该方法200可以包括在2011年1月31日提交并且题名为“ExtractingGeologicInformationfromMultipleOffsetStacksand/orAngleStacks”的共同未决的美国专利申请No.13/017995中所描述的一个或多个操作,该申请通过引用并入于此。另外,其中图2例示和下面描述的方法200的操作的次序不旨在进行限制。 2 illustrates a seismic method for improving the properties of geological volumes and/or rock properties by exploiting self-consistency and/or differences between volumetric images and interpreting spatial/volumetric context, according to one or more embodiments Method 200 of Imaging and Estimation. The operations of method 200 presented below are intended to be illustrative. In some embodiments, method 200 may be accomplished with one or more additional operations not described and/or without one or more of the operations discussed. For example, the method 200 may include one or more of the operations described in co-pending U.S. Patent Application No. 13/017995, filed January 31, 2011 and entitled "Extracting Geologic Information from Multiple OffsetStacks and/or AngleStacks," which is incorporated by reference incorporated here. Additionally, the order in which the operations of method 200 are illustrated in FIG. 2 and described below is not intended to be limiting.
在一些实施例中,方法200可以在一个或多个处理装置(例如,数字处理器、模拟处理器、被设计成处理信息的数字电路、被设计成处理信息的模拟电路、状态机和/或用于电子地处理信息的其它机构)中实现。该一个或多个处理装置可以包括响应于电子地存储在电子存储介质上的指令来执行方法200的一些或全部操作的一个或多个装置。该一个或多个处理装置可以包括通过要具体设计用于执行方法200的一个或多个操作的硬件、固件和/或软件设置的一个或多个装置。 In some embodiments, method 200 may be performed on one or more processing devices (e.g., digital processors, analog processors, digital circuits designed to process information, analog circuits designed to process information, state machines, and/or implemented in other mechanisms for processing information electronically). The one or more processing devices may include one or more devices that perform some or all of the operations of method 200 in response to instructions stored electronically on an electronic storage medium. The one or more processing means may comprise one or more means configured by hardware, firmware, and/or software to be specifically designed to perform one or more operations of method 200 .
如图2中描绘,方法200可以包括:循环202、循环204、和/或其它循环。循环202和循环204中包括的操作可以分离地或者彼此结合来执行。信息可以在循环202与循环204之间传递,以补充其中包括的一个或多个操作。 As depicted in FIG. 2, method 200 may include loop 202, loop 204, and/or other loops. The operations included in loop 202 and loop 204 may be performed separately or in combination with each other. Information may be passed between loop 202 and loop 204 to supplement one or more operations involved therein.
循环202可以涉及成像和/或建模改进。更具体地说,循环202可以涉及利用与所关注地质体积的地球模型相关联的图像体积中地质体的位置和/或形状差异和/或相似性,以改进地球模型、用于叠前成像的速度模型、和/或图像体积的准确度。循环202可以涉及利用与所关注地质体积相关联的多偏移多属性图像体积和标识地质体来构建地球模型。地震数据可以利用更新的模型重新成像。可以迭代地重复循环202中的一个或多个操作,以使差异的量值减小和/或进行其它成像和/或建模修正。 Cycle 202 may involve imaging and/or modeling improvements. More specifically, loop 202 may involve utilizing position and/or shape differences and/or similarities of geological bodies in an image volume associated with an earth model of the geological volume of interest to improve the earth model, Accuracy of the velocity model, and/or image volume. Loop 202 may involve constructing an earth model using the multi-offset multi-attribute image volume associated with the geological volume of interest and identifying geological volumes. Seismic data can be re-imaged with updated models. One or more operations in loop 202 may be iteratively repeated to reduce the magnitude of the difference and/or to make other imaging and/or modeling corrections.
在操作206,可以获取和/或更新速度模型和/或地球模型。可以根据表示已经通过所关注地质体积从一个或多个能量源传播至一个或多个能量接收器的能量的地震数据,来获取速度模型和/或地球模型。该地震数据可以包括多个偏移叠加、多个角叠加、或多个方位角叠加中的一个或多个。可以基于与所关注地质体积内的地质体相关联的登记数据和指配地质体类型,利用行进时间反演技术来更新地球模型和/或速度模型。在更新的地球模型和/或速度模型中表示的地质体的一个或多个岩石特性可能已经基于在所更新地球模型和/或速度模型中表示的所标识地质体的指配地质体类型进行了约束。在操作206,可以获取与所更新的地球模型和/或速度模型相对应的合成地震数据。根据一些实施例,模型模块112和/或合成地震数据模块118可以执行操作206的一部分或全部。 At operation 206, a velocity model and/or an earth model may be acquired and/or updated. The velocity model and/or the earth model may be derived from seismic data representing energy that has propagated through the geological volume of interest from the one or more energy sources to the one or more energy receivers. The seismic data may include one or more of a plurality of migration stacks, a plurality of angular stacks, or a plurality of azimuth stacks. The earth model and/or the velocity model may be updated using travel time inversion techniques based on registration data and assigned geologic body types associated with geologic volumes within the geologic volume of interest. One or more rock properties of the geological body represented in the updated earth model and/or velocity model may have been determined based on the assigned geological body type of the identified geological body represented in the updated earth model and/or velocity model constraint. At operation 206, synthetic seismic data corresponding to the updated earth model and/or velocity model may be acquired. According to some embodiments, model module 112 and/or synthesized seismic data module 118 may perform some or all of operation 206 .
在操作208,可以根据地震数据和/或合成地震数据来获取多个多偏移多属性图像体积。当根据地震数据获取该多个多偏移多属性图像体积时,该多个多偏移多属性图像体积中的指定图像体积可以(1)对应于偏移叠加、角叠加、或方位角叠加中的一个,(2)可以与至少一个属性相关联,和/或(3)可以包括存在于所关注地质体积中的地质体的地质体表示。当根据合成地震数据获取该多个多偏移多属性图像体积时,该多偏移多属性图像体积中的给定图像体积(1)可以对应于合成地震数据的偏移叠加、角叠加、或方位角叠加中的一个,(2)可以与地震属性相关联,以及(3)可以包括先前在更新的地球模型和/或速度模型中未标识的地质体的地质体表示。在操作208,更新的多偏移多属性图像体积可以基于所更新的地球模型和/或更新的速度模型来生成(参见操作206)。这可以包括实现图像处理参数化中的一个或多个变化。根据一些实施例,成像模块114可以执行操作208。 At operation 208, a plurality of multi-offset multi-attribute image volumes may be acquired from the seismic data and/or synthetic seismic data. When the plurality of multi-offset multi-attribute image volumes is acquired from seismic data, a specified image volume in the plurality of multi-offset multi-attribute image volumes may (1) correspond to an offset stack, an angle stack, or an azimuth stack One of, (2) may be associated with at least one attribute, and/or (3) may include a geologic representation of a geologic volume present in the geologic volume of interest. When the plurality of multi-offset multi-attribute image volumes are acquired from synthetic seismic data, a given image volume (1) in the multi-offset multi-attribute image volume may correspond to an offset stack, an angular stack, or One of the azimuth stacks, (2) may be associated with seismic attributes, and (3) may include representations of geologic volumes that were not previously identified in the updated earth model and/or velocity model. At operation 208, an updated multi-offset multi-attribute image volume may be generated based on the updated earth model and/or the updated velocity model (see operation 206). This may include implementing one or more changes in image processing parameterization. According to some embodiments, imaging module 114 may perform operation 208 .
在操作210,确定和/或接收地质体解释。该地质体解释可以基于多偏移多属性图像体积。该地质体解释可以包括具有多偏移多属性图像体积中的地质体表示的标识地质体,和指配给所标识地质体的地质体类型。在操作210,可以执行约束地震反演,以确定所标识地质体的岩石特性,并且/或标识具有关联岩石特性的其它地质体,以便缩减所观察地震数据与合成数据之间的差异,所约束的地震反演可以根据标识地质体的约束岩石特性来稳定化。根据一些实施例,地质体解释模块116可以执行操作210。 At an operation 210, a geovolume interpretation is determined and/or received. The geovolume interpretation may be based on a multi-offset multi-attribute image volume. The geovolume interpretation may include an identified geovolume having a representation of the geovolume in the multi-offset multi-attribute image volume, and a geovolume type assigned to the identified geovolume. At operation 210, constrained seismic inversion may be performed to determine the rock properties of the identified geological volumes and/or to identify other geological volumes with associated rock properties in order to reduce the discrepancy between the observed seismic data and the synthetic data, constrained The seismic inversion of can be stabilized according to the constrained rock properties of the identified geologic bodies. According to some embodiments, the geological volume interpretation module 116 may perform operation 210 .
在操作212,获取多偏移多属性图像体积中的不同图像体积中的、与单个标识地质体相关联的登记数据。该登记数据可以基于所指配的地质体类型来获取。给定地质体的登记数据可以表示空间位置、给定地质体的形状、和/或给定地质体在多偏移多属性图像体积中的不同图像体积中的地质体表示之间的差异和/或相似性。根据一些实施例,地质体解释模块116可以执行操作212。 At operation 212, registration data associated with a single identified geologic volume in different ones of the multi-offset multi-attribute image volume is acquired. The registration data may be obtained based on the type of geological body assigned. Registration data for a given geovolume may represent spatial location, shape of the given geovolume, and/or differences between representations of the geovolume in different image volumes of the given geovolume within the multi-offset multi-attribute image volume and/or or similarity. According to some embodiments, the geological volume interpretation module 116 may perform operation 212 .
循环204可以涉及地质体内的岩石特性的解释。更具体地说,循环204可以涉及约束岩石特性的范围,并且确认和/或指定与所关注地质体积相关联的地质体的岩石特性之间的依赖关系。在示例性实施例中,循环204可以提供针对所关注地质体积中的一些或全部地质体的岩石特性的约束反演结果。可以迭代地重复循环204中的一个或多个操作,以消除和/或修正一个或多个特性约束,和/或进行其它解释性修正。 Cycle 204 may involve interpretation of rock properties within the geological volume. More specifically, loop 204 may involve constraining ranges of rock properties and identifying and/or specifying dependencies between rock properties of geovolumes associated with the geological volume of interest. In an exemplary embodiment, loop 204 may provide constrained inversion results for rock properties of some or all of the geologic volumes in the geologic volume of interest. One or more operations in loop 204 may be iteratively repeated to remove and/or correct one or more property constraints, and/or to make other explanatory corrections.
在操作214,标识表示所关注地质体积中的地质体的地质体表示。这些地质体表示可以根据多偏移多属性图像体积中的单个图像体积解释。根据一些实施例,地质体解释模块116可以执行操作214。 At an operation 214, geovolume representations representing geovolumes in the geovolume of interest are identified. These geovolume representations can be interpreted from a single image volume in a multi-offset multi-attribute image volume. According to some embodiments, the geological volume interpretation module 116 may perform operation 214 .
在操作216,确定和/或接收与所标识地质体表示相对应的地质体类型的指配。地质体类型可以基于地质体原理、地层学原理、和/或模拟数据库来确定和/或接收。根据一些实施例,地质体解释模块116可以执行操作216。 At an operation 216, an assignment of a geovolume type corresponding to the identified geovolume representation is determined and/or received. Geobody types may be determined and/or received based on geobody principles, stratigraphic principles, and/or modeling databases. According to some embodiments, geovolume interpretation module 116 may perform operation 216 .
在操作218,可以基于地质原理、地层学原理、和/或模拟数据库,根据与多个地质体中的单个地质体相关联的岩石特性的范围,来约束针对地球模型和/或速度模型中的地质体的一个或多个岩石特性的一个或多个特性约束。针对地球模型和/或速度模型中的地质体的一个或多个岩石特性的一个或多个特性约束可以根据井数据日志、从井数据日志导出的数据、和/或所关注地质体积的局部地质知识来估计。在示例性实施例中,这种估计可以基于根据本地井测量结果的外推。根据一些实施例,特性约束模块120可以执行操作218。 At operation 218 , the values in the earth model and/or the velocity model may be constrained according to the range of rock properties associated with a single geologic body in the plurality of geologic bodies based on geologic principles, stratigraphic principles, and/or modeling databases. One or more property constraints on one or more rock properties of a geological volume. One or more property constraints for one or more rock properties of geological volumes in the earth model and/or velocity model may be based on well data logs, data derived from well data logs, and/or local geology of the geological volume of interest knowledge to estimate. In an exemplary embodiment, such an estimate may be based on extrapolation from local well measurements. According to some embodiments, property constraint module 120 may perform operation 218 .
在操作220,验证该一个或多个特性约束。利用所验证的一个或多个特性约束中的至少一个,可以执行约束地震反演(例如,参见操作210),以确定所有标识地质体的岩石特性,和/或标识具有所关注地质体积中的关联岩石特性的所有其它地质体,以便缩减所观察地震数据与合成数据之间的差异。所约束地震反演可以根据所标识地质体的约束岩石特性来稳定化。根据一些实施例,特性约束模块120可以执行操作220。 At operation 220, the one or more property constraints are verified. Using at least one of the validated one or more property constraints, constrained seismic inversion (see, e.g., operation 210) may be performed to determine the rock properties of all identified geological volumes, and/or to identify All other geological bodies associated with rock properties in order to reduce the discrepancy between observed seismic data and synthetic data. The constrained seismic inversion may be stabilized according to the constrained rock properties of the identified geological volumes. According to some embodiments, property constraint module 120 may perform operation 220 .
尽管基于当前被认为是最有用且优选的实施例,而出于例示的目的,对本技术进行了详细描述,但要明白的是,这种细节仅出于该目的,并且本技术不限于所公开实施例,而且,正相反,其旨在覆盖处于所附权利要求书的精神和范围内的修改例和等同布置。例如,要明白的是,本技术设想,在尽可能的情况下,可以将任何实施例的一个或多个特征与任何其它实施例的一个或多个特征相组合。 While the technology has been described in detail for purposes of illustration based on what is presently considered to be the most useful and preferred embodiment, it is to be understood that such detail is for that purpose only and that the technology is not limited to the disclosed embodiments, and, on the contrary, it is intended to cover modifications and equivalent arrangements falling within the spirit and scope of the appended claims. For example, it is to be appreciated that the present technology contemplates that, where possible, one or more features of any embodiment may be combined with one or more features of any other embodiment.
Claims (15)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/018,094 | 2011-01-31 | ||
US13/018,108 | 2011-01-31 | ||
US13/018,108 US9063246B2 (en) | 2011-01-31 | 2011-01-31 | Exploitation of self-consistency and differences between volume images and interpreted spatial/volumetric context |
US13/018,122 | 2011-01-31 | ||
US13/018,094 US20120197613A1 (en) | 2011-01-31 | 2011-01-31 | Exploitation of self-consistency and differences between volume images and interpreted spatial/volumetric context |
US13/018,122 US8861309B2 (en) | 2011-01-31 | 2011-01-31 | Exploitation of self-consistency and differences between volume images and interpreted spatial/volumetric context |
PCT/US2012/022971 WO2012106211A2 (en) | 2011-01-31 | 2012-01-27 | Exploitation of self-consistency and differences between volume images and interpreted spatial/volumetric context |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103299214A CN103299214A (en) | 2013-09-11 |
CN103299214B true CN103299214B (en) | 2016-07-13 |
Family
ID=46603248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280004563.7A Expired - Fee Related CN103299214B (en) | 2011-01-31 | 2012-01-27 | Method and system for improving earth model, velocity model and image volume accuracy |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP2671099A4 (en) |
CN (1) | CN103299214B (en) |
AU (1) | AU2012212530B2 (en) |
BR (1) | BR112013012372A2 (en) |
CA (1) | CA2819165A1 (en) |
EA (1) | EA201391116A1 (en) |
WO (1) | WO2012106211A2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108089229B (en) * | 2017-12-28 | 2020-02-14 | 中国石油天然气集团公司 | Detection device position determining method and device and computer storage medium |
US11867857B2 (en) * | 2021-07-13 | 2024-01-09 | Saudi Arabian Oil Company | Method and system for updating a seismic velocity model |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5838634A (en) * | 1996-04-04 | 1998-11-17 | Exxon Production Research Company | Method of generating 3-D geologic models incorporating geologic and geophysical constraints |
US6138075A (en) * | 1998-08-05 | 2000-10-24 | Landmark Graphics Corporation | Methods and apparatus for analyzing seismic data |
CN101073020A (en) * | 2004-09-13 | 2007-11-14 | 切夫里昂美国公司 | Methods for earth modeling and seismic imaging using interactive and selective updating |
CN101432746A (en) * | 2006-04-28 | 2009-05-13 | Kjt企业有限公司 | Integrated earth formation evaluation method using controlled source electromagnetic survey data and seismic data |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0514934A (en) * | 2004-09-10 | 2008-07-01 | Exxonmobil Upstream Res Co | process for building geological models of underground sedimentary volumes |
EP2062071B1 (en) * | 2006-09-04 | 2014-10-22 | Geosystem S.r.l. | Method for building velocity models for pre-stack depth migration via the simultaneous joint inversion of seismic, gravity and magnetotelluric data |
US7986587B2 (en) * | 2008-03-20 | 2011-07-26 | Microseismic, Inc. | Method for imaging the earth's subsurface using passive seismic sensing |
-
2012
- 2012-01-27 EA EA201391116A patent/EA201391116A1/en unknown
- 2012-01-27 CA CA2819165A patent/CA2819165A1/en not_active Abandoned
- 2012-01-27 WO PCT/US2012/022971 patent/WO2012106211A2/en active Application Filing
- 2012-01-27 AU AU2012212530A patent/AU2012212530B2/en not_active Ceased
- 2012-01-27 CN CN201280004563.7A patent/CN103299214B/en not_active Expired - Fee Related
- 2012-01-27 EP EP12742096.6A patent/EP2671099A4/en not_active Withdrawn
- 2012-01-27 BR BR112013012372A patent/BR112013012372A2/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5838634A (en) * | 1996-04-04 | 1998-11-17 | Exxon Production Research Company | Method of generating 3-D geologic models incorporating geologic and geophysical constraints |
US6138075A (en) * | 1998-08-05 | 2000-10-24 | Landmark Graphics Corporation | Methods and apparatus for analyzing seismic data |
CN101073020A (en) * | 2004-09-13 | 2007-11-14 | 切夫里昂美国公司 | Methods for earth modeling and seismic imaging using interactive and selective updating |
CN101432746A (en) * | 2006-04-28 | 2009-05-13 | Kjt企业有限公司 | Integrated earth formation evaluation method using controlled source electromagnetic survey data and seismic data |
Also Published As
Publication number | Publication date |
---|---|
EA201391116A1 (en) | 2013-12-30 |
BR112013012372A2 (en) | 2016-08-30 |
WO2012106211A3 (en) | 2013-02-07 |
WO2012106211A2 (en) | 2012-08-09 |
CA2819165A1 (en) | 2012-08-09 |
AU2012212530A1 (en) | 2013-04-04 |
EP2671099A2 (en) | 2013-12-11 |
EP2671099A4 (en) | 2017-12-13 |
CN103299214A (en) | 2013-09-11 |
AU2012212530B2 (en) | 2015-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8861309B2 (en) | Exploitation of self-consistency and differences between volume images and interpreted spatial/volumetric context | |
US20120197613A1 (en) | Exploitation of self-consistency and differences between volume images and interpreted spatial/volumetric context | |
CN103765245B (en) | Hybrid Deterministic-Geostatistical Earth Model | |
AU2017367825B2 (en) | Method for estimating petrophysical properties for single or multiple scenarios from several spectrally variable seismic and full wavefield inversion products | |
US8838391B2 (en) | Extracting geologic information from multiple offset stacks and/or angle stacks | |
US9121968B2 (en) | Extracting geologic information from multiple offset stacks and/or angle stacks | |
US8972195B2 (en) | Extracting geologic information from multiple offset stacks and/or angle stacks | |
CA2964893C (en) | Structure tensor constrained tomographic velocity analysis | |
US20100088035A1 (en) | Pseudo-analytical method for the solution of wave equations | |
AU2012212520B2 (en) | Extracting geologic information from multiple offset stacks and/or angle stacks | |
US20200088896A1 (en) | Reservoir Characterization Utilizing ReSampled Seismic Data | |
Meju et al. | Structural coupling approaches in integrated geophysical imaging | |
WO2013093467A1 (en) | Method of, and apparatus for, full waveform inversion | |
EP3090278A1 (en) | Improved interpretation of seismic survey data using synthetic modelling | |
CN103299214B (en) | Method and system for improving earth model, velocity model and image volume accuracy | |
US9063246B2 (en) | Exploitation of self-consistency and differences between volume images and interpreted spatial/volumetric context | |
Kurzmann et al. | Real data applications of seismic full waveform inversion | |
Kleveland | Elastic Seismic Imaging and Probabilistic AVO Inversion: Application to CO2 Storage at Sleipner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160713 Termination date: 20170127 |
|
CF01 | Termination of patent right due to non-payment of annual fee |