CN103297659A - Image edge processing method and image processing device - Google Patents
Image edge processing method and image processing device Download PDFInfo
- Publication number
- CN103297659A CN103297659A CN2012100443405A CN201210044340A CN103297659A CN 103297659 A CN103297659 A CN 103297659A CN 2012100443405 A CN2012100443405 A CN 2012100443405A CN 201210044340 A CN201210044340 A CN 201210044340A CN 103297659 A CN103297659 A CN 103297659A
- Authority
- CN
- China
- Prior art keywords
- gradient
- image
- value
- pixel
- pixels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 title claims abstract description 50
- 238000003672 processing method Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000001629 suppression Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000001914 filtration Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 206010034960 Photophobia Diseases 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 208000013469 light sensitivity Diseases 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种影像的边缘处理方法及影像处理装置。The invention relates to an image edge processing method and an image processing device.
背景技术 Background technique
在影像处理中,由于输入影像可能是依据一模拟增益作模拟增益或选取ISO值较大者(如400、800或以上)或感光不足时所拍摄产生的结果,故输入影像可能呈现有噪声(杂讯)或现增益而使噪声增强,使影像中有边缘不平顺的情况。而传统的噪声降低的方法例如是利用低通滤波器来处理,如此会令处理的结果变得模糊,故通常之后会加上边缘强化处理,来作补偿。如此一来,噪声虽然被模糊化,但仍然存在于影像之中,影响了影像的品质。In image processing, because the input image may be based on an analog gain as the analog gain or the result of selecting a larger ISO value (such as 400, 800 or above) or the result of shooting when the light sensitivity is insufficient, the input image may appear noisy ( Noise) or current gain to enhance the noise, resulting in uneven edges in the image. The traditional method of noise reduction, for example, uses a low-pass filter to process, which will make the processing result blurred, so edge enhancement processing is usually added afterwards to compensate. In this way, although the noise is blurred, it still exists in the image, which affects the quality of the image.
发明内容 Contents of the invention
本发明是有关于影像的边缘处理方法及影像处理装置。The invention relates to an image edge processing method and an image processing device.
根据本发明的一方面,提出一种影像的边缘处理方法方法的实施例。此方法的一实施例,包括如下步骤。(a)于一输入影像的一区域内,对于区域内一目标像素为中心的一个十字形图样,计算沿一第一方向的一第一方向梯度以及沿一第二方向的一第二方向梯度。(b)判断第一方向梯度是否大于一第一比较梯度值,其中第一比较梯度值依据第二方向梯度来决定。(c)若步骤(b)的判断结果为是,则基于此十字形图样中沿第二方向的第一多个像素的像素值,以获得一第一估测像素值作为此目标像素的一估测像素值。(d)若步骤(b)的判断结果为否,则判断第二方向梯度是否大于一第二比较梯度值,其中第二比较梯度值依据第一方向梯度来决定。(e)若步骤(d)的判断结果为是,则基于此十字形图样中沿第一方向的第二多个像素的像素值,以获得一第二估测像素值作为此目标像素的估测像素值。(f)若步骤(d)的判断结果为否,则输出此目标像素的像素值。According to an aspect of the present invention, an embodiment of an image edge processing method is proposed. An embodiment of the method includes the following steps. (a) In an area of an input image, for a cross-shaped pattern centered on a target pixel in the area, calculate a first directional gradient along a first direction and a second directional gradient along a second direction . (b) judging whether the gradient in the first direction is greater than a first comparison gradient value, wherein the first comparison gradient value is determined according to the gradient in the second direction. (c) if the determination result of step (b) is yes, then based on the pixel values of the first plurality of pixels along the second direction in the cross-shaped pattern, a first estimated pixel value is obtained as a value of the target pixel Estimated pixel values. (d) If the judgment result of step (b) is negative, it is judged whether the gradient in the second direction is greater than a second comparison gradient value, wherein the second comparison gradient value is determined according to the gradient in the first direction. (e) If the judgment result of step (d) is yes, then based on the pixel values of the second plurality of pixels along the first direction in the cross-shaped pattern, a second estimated pixel value is obtained as the estimated pixel value of the target pixel measure the pixel value. (f) If the judgment result of step (d) is no, then output the pixel value of the target pixel.
根据本发明的另一方面的,提出一种影像处理装置的一实施例。此通讯装置包括一噪声抑制单元、一边缘低通滤波单元和一边缘强化单元。噪声抑制单元,其包括一低通滤波器,并接收一第一影像,进行一噪声抑制处理以输出一第二影像。边缘低通滤波单元,接收第二影像,进行一边缘低通滤波处理以平滑影像边缘,并输出一第三影像。边缘强化单元,其包括一高通滤波器,接收第三影像以加强影像边缘。According to another aspect of the present invention, an embodiment of an image processing device is proposed. The communication device includes a noise suppression unit, an edge low-pass filter unit and an edge enhancement unit. The noise suppression unit includes a low-pass filter, receives a first image, and performs a noise suppression process to output a second image. The edge low-pass filter unit receives the second image, performs edge low-pass filter processing to smooth the edge of the image, and outputs a third image. The edge enhancement unit includes a high-pass filter for receiving the third image to enhance the edge of the image.
为了对上述及其他方面有更佳的了解,下文特举一些实施例,并结合附图详细说明如下。In order to have a better understanding of the above and other aspects, some embodiments are specifically cited below and described in detail with reference to the accompanying drawings.
附图说明 Description of drawings
图1为绘示一数字影像的示意图。FIG. 1 is a schematic diagram illustrating a digital image.
图2绘示一数字影像中的一区域内一目标像素为中心的十字形图样。FIG. 2 illustrates a cross-shaped pattern centered on a target pixel in a region of a digital image.
图3绘示一种影像的边缘处理方法的一实施例的流程图。FIG. 3 is a flowchart of an embodiment of an image edge processing method.
图4绘示一种影像处理装置的一实施例的方块图。FIG. 4 is a block diagram of an embodiment of an image processing device.
图5绘示图4中的边缘低通滤波单元的一实施例的方块图。FIG. 5 is a block diagram of an embodiment of the edge low-pass filtering unit in FIG. 4 .
图6绘示可实施图3的影像的边缘处理方法的电子装置的一实施例的方块图。FIG. 6 is a block diagram of an embodiment of an electronic device capable of implementing the image edge processing method in FIG. 3 .
图7及图8绘示影像的边缘处理方法的其他实施例的流程图。7 and 8 are flowcharts of other embodiments of the image edge processing method.
附图符号说明Description of reference symbols
1:数字影像1: Digital image
10:数字影像的一区域10: An area of a digital image
40:影像处理装置40: Image processing device
50、410:噪声抑制单元50, 410: noise suppression unit
60:电子装置60: Electronics
101、102:十字形图样101, 102: cross pattern
420:边缘低通滤波单元420: edge low-pass filter unit
430:边缘强化单元430: Edge Strengthening Unit
510:第一运算电路510: The first arithmetic circuit
520:第二运算电路520: Second operation circuit
521:判断电路521: judgment circuit
525:估测电路525: Estimation circuit
610:处理单元610: processing unit
620:存储单元620: storage unit
630:影像模块630: Image module
640:显示单元640: display unit
S70、S80、S100:步骤S70, S80, S100: Steps
S110、S120、S125、S130、S135、S139:步骤S110, S120, S125, S130, S135, S139: steps
S810、S821、S822:步骤S810, S821, S822: steps
具体实施方式 Detailed ways
以下提出影像的边缘处理方法及影像处理装置的实施例。图3绘示一种影像的边缘处理方法的一实施例的流程图。此实施例可用以处理图1所示的一输入影像1(可为静态影像或动态影像)中以一目标像素PC为中心的一区域10,以产生此目标像素PC的一估测像素值。应用此实施例,以输入影像1中每一像素作为目标像素,若沿着一定次序例如逐行的利用此方法,并以估测像素值代替对应的目标像素,最后能产生一边缘处理后的一输出影像。在一些实施例中,相对于输入影像,此边缘处理后的输出影像能得到边缘平顺的效果。此方法可利用各种进行影像处理的装置中执行,如图4的影像处理装置40(如一影像处理芯片或影像引击)的边缘低通滤波单元420实施此方法,又如图6的电子装置中的影像模块或处理单元实施此方法。Embodiments of an image edge processing method and an image processing device are proposed below. FIG. 3 is a flowchart of an embodiment of an image edge processing method. This embodiment can be used to process a
请参考图3,如步骤S110所示,于一输入影像的一区域内,对于此区域内一目标像素为中心的一个十字形图样,计算沿一第一方向的一第一方向梯度以及沿一第二方向的一第二方向梯度。十字形图样例如图2绘示一输入影像1中的一区域10内一目标像素PC为中心的十字形图样101或102。此外,第一方向及第二方向例如分别为水平方向及垂直方向,而反之亦可。Please refer to FIG. 3, as shown in step S110, in an area of an input image, for a cross-shaped pattern centered on a target pixel in this area, a first direction gradient along a first direction and a gradient along a first direction are calculated. A second direction gradient of the second direction. For example, FIG. 2 shows a
如步骤S120所示,判断第一方向梯度是否大于一第一比较梯度值,其中第一比较梯度值依据第二方向梯度来决定。若步骤S120的判断结果为是,则如步骤S125所示,基于此十字形图样中沿第二方向的第一多个像素的像素值,以获得一第一估测像素值作为此目标像素的一估测像素值。若步骤S120的判断结果为否,则如步骤S130所示,判断第二方向梯度是否大于一第二比较梯度值,其中第二比较梯度值依据第一方向梯度来决定。若步骤S130的判断结果为是,则如步骤S135所示,基于此十字形图样中沿第一方向的第二多个像素的像素值,以获得一第二估测像素值作为此目标像素的估测像素值。若步骤S130的判断结果为否,则如步骤S139所示,输出此目标像素的像素值(即视作为估测像素值)。As shown in step S120, it is determined whether the gradient in the first direction is greater than a first comparison gradient value, wherein the first comparison gradient value is determined according to the gradient in the second direction. If the judgment result of step S120 is yes, as shown in step S125, based on the pixel values of the first plurality of pixels in the cross-shaped pattern along the second direction, a first estimated pixel value is obtained as the target pixel. An estimated pixel value. If the judgment result of step S120 is negative, as shown in step S130, it is judged whether the second direction gradient is greater than a second comparison gradient value, wherein the second comparison gradient value is determined according to the first direction gradient. If the judgment result of step S130 is yes, as shown in step S135, based on the pixel values of the second plurality of pixels in the cross-shaped pattern along the first direction, a second estimated pixel value is obtained as the target pixel. Estimated pixel values. If the determination result of step S130 is negative, then as shown in step S139 , output the pixel value of the target pixel (ie regarded as estimated pixel value).
以下藉由十字形图样101及102为例,说明图3的方法的步骤的各种实施态样。Various implementations of the steps of the method in FIG. 3 will be described below by taking the
对于步骤S110,计算此十字图样中沿一第一方向(如垂直方向)且距此目标像素PC不同距离的一个至多个第一方向单元梯度。如以差分来计算,十字形图样101的一个至多个第一方向单元梯度可表示为:|PC-V1|、|PC-V2|,其中如图2所示,V1及V2分别代表十字形图样101内垂直方向两个像素的像素值。十字形图样102的一个至多个第一方向单元梯度可表示为:|PC-V1|、|PC-V2|、|V0-V1|、|V2-V3|,其中如图2所示V0、V1、V2及V3分别代表十字形图样101内垂直方向4个像素的像素值。For step S110 , one to a plurality of unit gradients in the first direction along a first direction (eg, vertical direction) and at different distances from the target pixel PC in the cross pattern are calculated. If calculated by difference, the gradient of one or more first direction units of the
第一方向梯度,例如一个至多个第一方向单元梯度的总和。例如该一个至多个第一方向单元梯度当中每一个是此十字图样中沿第一方向且位于此目标像素的两不同侧的两组相邻两像素的绝对差值的总和。对于十字形图样101,第一方向梯度如记作deltaV=|PC-V1|+|PC-V2|。对于十字形图样102,第一方向梯度如记作deltaV=|PC-V1|+|PC-V2|+|V0-V1|+|V2-V3|。The first direction gradient, for example, the sum of gradients of one or more first direction units. For example, each of the one or more unit gradients in the first direction is the sum of absolute differences between two groups of adjacent two pixels located on two different sides of the target pixel along the first direction in the cross pattern. For the
计算十字形图样101中沿一第二方向(如水平直方向)且距目标像素PC不同距离的一个至多个第二方向单元梯度。如以差分来计算,十字形图样101的一个至多个第一方向单元梯度可表示为:|PC-H1|、|PC-H2|,其中如图2所示,H1及H2分别代表十字形图样101内水平方向两个像素的像素值。十字形图样102的一个至多个第一方向单元梯度则可表示为:|PC-H1|、|PC-H2|、|H0-H1|、|H2-H3|,其中如图2所示H0、H1、H2及H3分别代表十字形图样101内水平方向4个像素的像素值。One or more unit gradients in the second direction along a second direction (such as a horizontal direction) and different distances from the target pixel PC in the
第二方向梯度,例如是该一个至多个第二方向单元梯度的总和。例如该一个至多个第二方向单元梯度当中每一个是此十字图样中沿第二方向且位于此目标像素的两不同侧的两组相邻两像素的绝对差值的总和。对于十字形图样101,第二方向梯度如表示为:deltaH=|PC-H1|+|PC-H2|。The second direction gradient is, for example, the sum of the one or more second direction unit gradients. For example, each of the one or more unit gradients in the second direction is the sum of the absolute differences between two groups of adjacent two pixels located on two different sides of the target pixel along the second direction in the cross pattern. For the
对于步骤S120,例如第一比较梯度值实质上等于第二方向梯度与一既定倍数(如表示为W_Edge)的乘积,沿用上述的例子表示,则第一比较梯度值可表示如:W_Edge x deltaH。第二比较梯度值,例如实质上等于第一方向梯度与此既定倍数的乘积,如:W_Edge x deltaV。For step S120, for example, the first comparative gradient value is substantially equal to the product of the second directional gradient and a predetermined multiple (such as expressed as W_Edge), following the above example, the first comparative gradient value can be expressed as: W_Edge x deltaH. The second comparison gradient value, for example, is substantially equal to the product of the gradient in the first direction and the predetermined multiple, such as: W_Edge x deltaV.
在步骤S125中,第一估测像素值,例如实质上等于第一多个像素的像素值的一加权总和。在步骤S135中,第二估测像素值,例如实质上等于第二多个像素的像素值的一加权总和。沿用上述例子,对于十字形图样101为例,第一估测像素值可以表示为:H1和H2的加权总和,第二估测像素值可以表示为:V1和V2的加权总和,其中各个像素值对应的加权值(或权重),例如可设为1/2。对于十字形图样102为例,第一估测像素值可以表示为:H0、H1、H2和H3的加权总和,第二估测像素值可以表示为:V0、V1、V2和V3的加权总和,其中权重例如可设为1/2。In step S125, the first estimated pixel value, for example, is substantially equal to a weighted sum of pixel values of the first plurality of pixels. In step S135, the second estimated pixel value is, for example, substantially equal to a weighted sum of the pixel values of the second plurality of pixels. Using the above example, taking the
此外,在步骤S125及S135的一些实施例中,依据上述例子计算第一估测像素值(或第估测像素值)时,第一多个像素(或第二多个像素)分别所对应的加权值是依据第一多个像素(或第二多个像素)各自与此目标像素的相对距离来决定。例如,其中当此相对距离越大时,所对应的加权值越小。如对于十字形图样102为例,第一估测像素值可以表示为:w0*H0+w1*H1+w2*H2+w3*H3,其中因为像素值H1和H2的两像素与目标像素PC的相对距离小于与像素值H0和H3的两像素,故加权值w0及w3可设定为分别小于加权值w1及w2。又符合此与目标像素的相对距离有关的例子,例如可以设定,第一估测像素值为:In addition, in some embodiments of steps S125 and S135, when calculating the first estimated pixel value (or the second estimated pixel value) according to the above example, the first plurality of pixels (or the second plurality of pixels) respectively correspond to The weighted value is determined according to the relative distances between the first plurality of pixels (or the second plurality of pixels) and the target pixel. For example, when the relative distance is larger, the corresponding weighting value is smaller. Take the
(W_P0*(H1+H2)+W_P1*(H0+H3))/(W_P0+W_P1),(W_P0*(H1+H2)+W_P1*(H0+H3))/(W_P0+W_P1),
其中W_P0及W_P1为实数值且W_P0大于W_P1。相对而言,对于第二估测像素值的计算,亦可仿效上述第一估测像素值的例子以设定依据第二多个像素的加权总和计算的加权值的大小,例如可以设定,第二估测像素值为:Where W_P0 and W_P1 are real values and W_P0 is greater than W_P1. Relatively speaking, for the calculation of the second estimated pixel value, the above-mentioned example of the first estimated pixel value can also be followed to set the size of the weighted value calculated based on the weighted sum of the second plurality of pixels, for example, it can be set, The second estimated pixel value is:
(W_P0*(V1+V2)+W_P1*(V0+V3))/(W_P0+W_P1)。(W_P0*(V1+V2)+W_P1*(V0+V3))/(W_P0+W_P1).
上述这些与权重计算估测像素值的实施例,因为依照位置距离给予权重,故可视为带有权重的空间滤波器(Spatial Filter)。The above-mentioned embodiments of calculating estimated pixel values with weights can be regarded as a weighted spatial filter (Spatial Filter) because the weights are given according to the position distance.
此外,步骤S120至S125的意义,在于目标像素与十字形图样中的第一方向(如垂直方向)的邻近像素值的落差达一定程度时,在目标像素可能受到噪声的影响或呈现不平顺的边缘的情况,故利用相对像素值落差较小(或较为平顺或噪声影响较低)的第二方向(如水平方向)的邻近像素值来补偿此目标像素,亦即获得估测像素值。再者,对于步骤S130至S135的意义,亦有相似的作用,故不再赘述。又步骤S139的意义,在于此条件满足下,并不需要作补偿,故而输出目标像素的像素值。如此,若再利用加权总和并如前述的一些实施例加以考虑加权值与相对距离的关系以获得估测像素值,边缘处理后的一输出影像将能获得较为平顺的边缘的画质效果。In addition, the significance of steps S120 to S125 is that when the difference between the value of the target pixel and adjacent pixels in the first direction (such as the vertical direction) in the cross-shaped pattern reaches a certain level, the target pixel may be affected by noise or appear uneven In the case of an edge, the target pixel is compensated by adjacent pixel values in the second direction (such as the horizontal direction) with relatively small (or smoother or less affected by noise) relative to the pixel value drop, that is, an estimated pixel value is obtained. Furthermore, the meanings of steps S130 to S135 also have similar functions, so details are not repeated here. The meaning of step S139 is that when the condition is satisfied, no compensation is needed, so the pixel value of the target pixel is output. In this way, if the weighted sum is used and the relationship between the weighted value and the relative distance is considered to obtain the estimated pixel value as in some embodiments above, an output image after edge processing will be able to obtain a smoother edge quality effect.
此外,上述的实施例中,第一估测像素值与第二像素值与此目标像素的像素值无关。在其他实施例中,目标像素可以纳入第一估测像素值或第二像素值的计算中,但目标像素的加权值(或权重)较佳设定为小于其他的像素值的加权值,以减低噪声的影响。In addition, in the above-mentioned embodiment, the first estimated pixel value and the second pixel value have nothing to do with the pixel value of the target pixel. In other embodiments, the target pixel can be included in the calculation of the first estimated pixel value or the second pixel value, but the weighted value (or weight) of the target pixel is preferably set to be smaller than the weighted values of other pixel values, so as to Reduce the effect of noise.
图7及图8绘示影像的边缘处理方法的其他实施例的流程图。在图7中,如步骤S70所示,从多个滤波器当中选取其中的一个,其中这些滤波器分别对应不同大小的十字形图样。例如,提供至少两个或以上的十字形图样,如101及102,并选择其中之一。接着,如步骤S100所代表:依据所选取的此滤波器所对应的此十字形图样来进行再进行如图3所示的步骤。此外,步骤执行的顺序并没有限定,只要能获得估测像素值的顺序皆可;例如步骤S110可以对于这些滤波器进行计算梯度,接着执行步骤S70,以后才执行其他步骤。在另一些实施例中,依据一模拟增益值来决定从多个滤波器当中选取其中的一个。例如在图8中,步骤S80代表步骤S70的一种实作例。如步骤S810所示,判断一模拟增益值是否大于或等于一阈值,例如4。若是,如步骤S822所示,则设定一第二滤波器为所选取的此滤波器,其中第二滤波器对应到较大的十字形图样,如图2的102。若否,如步骤S821所示,则设定一第一滤波器为所选取的此滤波器,其中第一滤波器对应到较小的十字形图样,如图2的101。于此,因为模拟增益值较大时,代表输入影像可能有噪声被放大的情况,故选取较大的十字形图样的滤波器,以获得较平顺的效果。7 and 8 are flowcharts of other embodiments of the image edge processing method. In FIG. 7 , as shown in step S70 , one of multiple filters is selected, wherein these filters respectively correspond to cross patterns of different sizes. For example, provide at least two or more cross patterns, such as 101 and 102, and select one of them. Next, as represented by step S100 : perform the steps shown in FIG. 3 according to the cross-shaped pattern corresponding to the selected filter. In addition, the execution order of the steps is not limited, as long as the estimated pixel values can be obtained; for example, step S110 may calculate gradients for these filters, then execute step S70, and then execute other steps. In some other embodiments, one of the filters is selected according to an analog gain value. For example, in FIG. 8, step S80 represents an implementation example of step S70. As shown in step S810, it is determined whether an analog gain value is greater than or equal to a threshold value, such as 4. If yes, as shown in step S822, a second filter is set as the selected filter, wherein the second filter corresponds to a larger cross pattern, such as 102 in FIG. 2 . If not, as shown in step S821, a first filter is set as the selected filter, wherein the first filter corresponds to a smaller cross-shaped pattern, such as 101 in FIG. 2 . Here, because the larger the analog gain value, it means that the noise of the input image may be amplified, so a larger cross-shaped filter is selected to obtain a smoother effect.
于一些实施例中,由于输入影像可能是依据一模拟增益值作模拟增益或选取ISO值较大者(如400、800或以上)或感光不足时所拍摄产生的结果,故此情况可依据图3的方法,利用一个十字形图样的滤波器,或是从多个不同大小的十字形图样的滤波器中选取其中之一,以获得一估测像素值,从而得到一处理后的输出影像,以进行下一步的影像处理(例如边缘增强处理)。此外,十字形图样例如可以为:3x3、5x5、7x7或其他如长宽不同的十字形图样,而十字形图样皆于一目标像素为中心的区域以内。故图1所示的区域10亦可改为3x3、5x5、7x7个像素或其他长宽不同的区域。In some embodiments, since the input image may be based on an analog gain value as the analog gain or the result of selecting a larger ISO value (such as 400, 800 or above) or the result of shooting when the light sensitivity is insufficient, this situation can be based on FIG. 3 The method uses a cross-shaped filter, or selects one of a plurality of cross-shaped filters of different sizes to obtain an estimated pixel value, thereby obtaining a processed output image, and Carry out the next step of image processing (such as edge enhancement processing). In addition, the cross-shaped pattern can be, for example, 3x3, 5x5, 7x7 or other cross-shaped patterns with different lengths and widths, and the cross-shaped patterns are all within an area centered on a target pixel. Therefore, the
此外,输入影像的周边的像素,如图1所示意的一目标像素PC的右方及上方(即第1、2行或列)的各个像素,亦可使用如图3的方法或其他方法进行处理。这些周边的像素作为一个新的目标像素时,可能并不能从输入影像中取得如同区域10大小的区域。但可以采用补点的方式,例如以周边的像素作为新的目标像素时,以此目标像素本身来补充以得到与区域10相同大小的区域,并依图3的方式处理。在其他实施例中,当第2行或列的像素,作为目标像素时,可以设定一较小的区域(如3x3);对于第1行或列的像素,可以不作处理。这些实作方式有多种,故并不以上述为限。In addition, the surrounding pixels of the input image, each pixel on the right and above (that is, the first and second rows or columns) of a target pixel PC as shown in Figure 1, can also be processed using the method shown in Figure 3 or other methods deal with. When these surrounding pixels are used as a new target pixel, it may not be possible to obtain an area as large as the
此外,上述方法的各个实施例可利用各种进行影像处理的装置中执行,如图4的影像处理装置40(如一影像处理芯片、影像引击或影像感测器)的边缘低通滤波单元420实施此方法,又如图6的电子装置中的影像模块或处理单元实施此方法。In addition, various embodiments of the above methods can be implemented in various image processing devices, such as the edge low-
图4绘示一种影像处理装置的一实施例的方块图。FIG. 4 is a block diagram of an embodiment of an image processing device.
此影像处理装置40,包括:一噪声抑制单元410、一边缘低通滤波单元420和一边缘强化单元430。噪声抑制单元410,其包括一低通滤波器,并接收一第一影像,进行一噪声抑制处理以输出一第二影像。边缘低通滤波单元420,接收第二影像(亦即图3的方法中所述的输入影像),进行一边缘低通滤波处理以平滑影像边缘,并输出一第三影像。边缘强化单元430,其包括一高通滤波器,接收第三影像以加强影像边缘。The
边缘低通滤波单元420执行下述操作:对于第二影像中的一目标像素为中心的一个十字形图样,计算沿一第一方向的一第一方向梯度以及沿一第二方向的一第二方向梯度;以及依据第一方向梯度与第二方向梯度,决定是否基于此十字形图样中沿第二方向的第一多个像素的像素值来补偿此目标像素,或是基于沿第一方向的第二多个像素的像素值来补偿此目标像素,或是输出输出此目标像素的像素值。也就是说,边缘低通滤波单元420可依据如图3的步骤S110至S139来实现其电路硬件。在一实施例中,边缘低通滤波单元420耦接于噪声抑制单元410与边缘强化单元430之间,以管线(pipeline)方式进行操作。The edge low-
图5绘示图4中的边缘低通滤波单元的一实施例的方块图。边缘低通滤波单元50包括第一运算电路510及第二运算电路520。第一运算电路510具有实现步骤S110的电路。第二运算电路520具有实现步骤S120至S139的电路。第二运算电路520包括一判断电路521和估测电路525。判断电路521具有实现步骤S120及S130的电路。估测电路525具有实现步骤S125、S135及S139的电路。FIG. 5 is a block diagram of an embodiment of the edge low-pass filtering unit in FIG. 4 . The edge low-
图6绘示可实施图3的影像的边缘处理方法的电子装置的一实施例的方块图。电子装置60例如是各种能作影像处理的装置,如数字相机、智能型手机、平板计算机、多媒体装置、电视或计算机。电子装置60包括一处理单元610、存储单元620、影像模块630和显示单元640。在一例子中,影像模块630可包括如图4的影像处理装置40。在另一例子中,处理单元610从存储单元620中读取程序指令,以实现依据图3的方法的实施例。FIG. 6 is a block diagram of an embodiment of an electronic device capable of implementing the image edge processing method in FIG. 3 . The electronic device 60 is, for example, various devices capable of image processing, such as digital cameras, smart phones, tablet computers, multimedia devices, televisions or computers. The electronic device 60 includes a processing unit 610 , a storage unit 620 , an image module 630 and a display unit 640 . In an example, the image module 630 may include the
如上述图4至图6所示的例子,影像的边缘处理方法的实施例可以用集成电路如微控制器、微处理器、数字讯号处理器、特殊应用集成电路(ASIC,Application Specific Integrated Circuit)或元件可编程逻辑门阵列(FPGA,FieldProgrammable Gate Array)或一逻辑电路来实施。As shown in the examples shown in FIGS. 4 to 6 above, the embodiment of the image edge processing method can use integrated circuits such as microcontrollers, microprocessors, digital signal processors, and application specific integrated circuits (ASIC, Application Specific Integrated Circuit) Or element programmable logic gate array (FPGA, Field Programmable Gate Array) or a logic circuit to implement.
上述的实施例中,每个像素可以是代表R/G/B数值或是Y(亮度)或是任何不同的色彩座标转换数值。而对于一输入影像的各目标像素,可个别或分别对于目标像素的不同成份(component)或子像素(subpixel)的数值例如Y或R,应用图3的方法的实施例得到对应于此子像素值的估测像素值。In the above-mentioned embodiments, each pixel may represent R/G/B values or Y (brightness) or any different color coordinate conversion values. For each target pixel of an input image, the values corresponding to different components (component) or subpixels (subpixel) of the target pixel, such as Y or R, can be individually or separately obtained by applying the embodiment of the method in FIG. 3 corresponding to the subpixel The estimated pixel value of the value.
上述实施例提出影像的边缘处理方法及影像处理装置。在一些实施例中,由于梯度判断,可以保留解析度,又如在垂直或水平的边缘做平滑的处理,因此可以让边缘部分较为平整(顺修),减少高频噪声(Noises and Artifacts),让影像看起来更清澈。另外,一些实施例中提及利用一些系数来作边缘处理的控制(如步骤S120或S130的既定倍数值)判断是否需要作估测像素值的运算,能有效减少所需的存储体空间。另外,一些实施例依据不同滤波器,可做不同程度的处理,以让方法的实施方式具有更大的弹性。此方法实现时,计算复杂度并不高,易于整合到各种影像处理装置、平台、软体。再者,可根据量化方式,以实验验证其效果。The above embodiments provide an image edge processing method and an image processing device. In some embodiments, due to the gradient judgment, the resolution can be preserved, and for example, smoothing is done on the vertical or horizontal edge, so that the edge part can be smoothed (smooth repair), and high-frequency noise (Noises and Artifacts) can be reduced. Make the image look clearer. In addition, in some embodiments, it is mentioned that some coefficients are used to control the edge processing (such as the predetermined multiple value in step S120 or S130 ) to determine whether to perform calculations for estimating pixel values, which can effectively reduce the required memory space. In addition, some embodiments may perform different degrees of processing according to different filters, so that the implementation of the method has greater flexibility. When this method is implemented, the computational complexity is not high, and it is easy to integrate into various image processing devices, platforms, and software. Furthermore, according to the quantification method, its effect can be verified experimentally.
综上所述,虽然本发明已以实施例揭示如上,然其并非用以限定本发明的实施方式。本领域的技术人员,在依据本发明的精神和范围的前提下,可作各种的更动与润饰。因此,本发明的保护范围是以本发明的权利要求为准。To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the implementation of the present invention. Those skilled in the art can make various changes and modifications under the premise of following the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the claims of the present invention.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100443405A CN103297659A (en) | 2012-02-23 | 2012-02-23 | Image edge processing method and image processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100443405A CN103297659A (en) | 2012-02-23 | 2012-02-23 | Image edge processing method and image processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103297659A true CN103297659A (en) | 2013-09-11 |
Family
ID=49097930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100443405A Pending CN103297659A (en) | 2012-02-23 | 2012-02-23 | Image edge processing method and image processing device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103297659A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104601922A (en) * | 2013-11-01 | 2015-05-06 | 佳能企业股份有限公司 | Image processing method, electronic device, storage medium readable by electronic device, and program applied to electronic device |
CN109426599A (en) * | 2017-08-24 | 2019-03-05 | 财团法人工业技术研究院 | Power estimation method and power estimation device |
CN109754371A (en) * | 2017-11-06 | 2019-05-14 | 瑞昱半导体股份有限公司 | Electronic device and image processing method for enhancing image edge |
CN109936679A (en) * | 2017-12-19 | 2019-06-25 | 瑞昱半导体股份有限公司 | Image gradient method for improving and image gradient promote circuit |
CN110268713A (en) * | 2017-02-09 | 2019-09-20 | 株式会社宜科思 | Image processing method and the image processing apparatus for executing image processing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030053161A1 (en) * | 2001-09-13 | 2003-03-20 | Guo Li | Method and system for enhancing images using edge orientation |
CN1622637A (en) * | 2004-12-27 | 2005-06-01 | 北京中星微电子有限公司 | Image dead point and noise eliminating method |
CN101431605A (en) * | 2007-11-08 | 2009-05-13 | 华晶科技股份有限公司 | Image adjusting method |
CN101770646A (en) * | 2010-02-25 | 2010-07-07 | 昆山锐芯微电子有限公司 | Edge detection method based on Bayer RGB images |
-
2012
- 2012-02-23 CN CN2012100443405A patent/CN103297659A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030053161A1 (en) * | 2001-09-13 | 2003-03-20 | Guo Li | Method and system for enhancing images using edge orientation |
CN1622637A (en) * | 2004-12-27 | 2005-06-01 | 北京中星微电子有限公司 | Image dead point and noise eliminating method |
CN101431605A (en) * | 2007-11-08 | 2009-05-13 | 华晶科技股份有限公司 | Image adjusting method |
CN101770646A (en) * | 2010-02-25 | 2010-07-07 | 昆山锐芯微电子有限公司 | Edge detection method based on Bayer RGB images |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104601922A (en) * | 2013-11-01 | 2015-05-06 | 佳能企业股份有限公司 | Image processing method, electronic device, storage medium readable by electronic device, and program applied to electronic device |
CN104601922B (en) * | 2013-11-01 | 2018-04-17 | 佳能企业股份有限公司 | Image processing method, electronic device, storage medium readable by electronic device and program applied to electronic device |
CN110268713A (en) * | 2017-02-09 | 2019-09-20 | 株式会社宜科思 | Image processing method and the image processing apparatus for executing image processing method |
CN109426599A (en) * | 2017-08-24 | 2019-03-05 | 财团法人工业技术研究院 | Power estimation method and power estimation device |
CN109426599B (en) * | 2017-08-24 | 2022-05-06 | 财团法人工业技术研究院 | Power estimation method and power estimation device |
CN109754371A (en) * | 2017-11-06 | 2019-05-14 | 瑞昱半导体股份有限公司 | Electronic device and image processing method for enhancing image edge |
CN109754371B (en) * | 2017-11-06 | 2022-12-20 | 瑞昱半导体股份有限公司 | Electronic device and image processing method for enhancing image edge |
CN109936679A (en) * | 2017-12-19 | 2019-06-25 | 瑞昱半导体股份有限公司 | Image gradient method for improving and image gradient promote circuit |
CN109936679B (en) * | 2017-12-19 | 2022-03-08 | 瑞昱半导体股份有限公司 | Image gradient lifting method and image gradient lifting circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI460681B (en) | Method for processing edges in an image and image processing apparatus | |
US10489892B2 (en) | Method for signal processing | |
EP3588431B1 (en) | Bilateral filter with data model | |
CN110874827B (en) | Turbulent image restoration method and device, terminal equipment and computer readable medium | |
JP6160292B2 (en) | Image correction apparatus, imaging apparatus, and computer program for image correction | |
JP2012191465A (en) | Image processing apparatus, image processing method, and program | |
CN103297659A (en) | Image edge processing method and image processing device | |
JP6369150B2 (en) | Filtering method and filtering apparatus for recovering anti-aliasing edge | |
CN104376542A (en) | Image enhancement method | |
JP6213558B2 (en) | Image processing method and image processing apparatus | |
JP2011095861A5 (en) | Image processing apparatus, image processing method, and program | |
WO2016051716A1 (en) | Image processing method, image processing device, and recording medium for storing image processing program | |
TWI528815B (en) | Image processing method capable of reducing image noise | |
JP6256703B2 (en) | Image processing method and image processing apparatus | |
US6876778B2 (en) | Edge enhancement method and apparatus in digital image scalar-up circuit | |
JPWO2013161839A1 (en) | Image processing method and image processing apparatus | |
JP6256704B2 (en) | Image processing method and image processing apparatus | |
US9947114B2 (en) | Modifying gradation in an image frame including applying a weighting to a previously processed portion of the image frame | |
JP2006014024A (en) | Image processor, image display device using the same, image processing method and program for making computer execute the same | |
US9659346B2 (en) | Image processing apparatus, image processing method, solid-state imaging device, and electronic apparatus configured to calculate a pixel value of a target position in accordance with a weighted value of each pixel on a candidate line of a plurality of candidate lines | |
JP4913246B1 (en) | Edge enhancement method or edge enhancement calculation method | |
JP6079962B2 (en) | Image processing method and image processing apparatus | |
US8115781B2 (en) | Systems and methods of image processing including removal of discontinuous ramp and/or smoothing features | |
TWI656507B (en) | Electronic device | |
KR20160150455A (en) | Method and apparatus for extraction of edge in image based on multi-color and multi-direction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130911 |