[go: up one dir, main page]

CN103297659A - Image edge processing method and image processing device - Google Patents

Image edge processing method and image processing device Download PDF

Info

Publication number
CN103297659A
CN103297659A CN2012100443405A CN201210044340A CN103297659A CN 103297659 A CN103297659 A CN 103297659A CN 2012100443405 A CN2012100443405 A CN 2012100443405A CN 201210044340 A CN201210044340 A CN 201210044340A CN 103297659 A CN103297659 A CN 103297659A
Authority
CN
China
Prior art keywords
gradient
image
value
pixel
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100443405A
Other languages
Chinese (zh)
Inventor
徐纬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novatek Microelectronics Corp
Original Assignee
Novatek Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novatek Microelectronics Corp filed Critical Novatek Microelectronics Corp
Priority to CN2012100443405A priority Critical patent/CN103297659A/en
Publication of CN103297659A publication Critical patent/CN103297659A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

The invention relates to an image edge processing method and an image processing device. In one embodiment of the method for edge processing of an image, a first directional gradient along a first direction and a second directional gradient along a second direction are calculated for a cross pattern centered at a target pixel in an input image. According to the first direction gradient and the second direction gradient, whether the target pixel is compensated based on the pixel values of a first plurality of pixels along the second direction in the cross-shaped pattern or the target pixel is compensated based on the pixel values of a second plurality of pixels along the first direction or the pixel value of the target pixel is output is determined.

Description

影像的边缘处理方法及影像处理装置Image edge processing method and image processing device

技术领域 technical field

本发明涉及一种影像的边缘处理方法及影像处理装置。The invention relates to an image edge processing method and an image processing device.

背景技术 Background technique

在影像处理中,由于输入影像可能是依据一模拟增益作模拟增益或选取ISO值较大者(如400、800或以上)或感光不足时所拍摄产生的结果,故输入影像可能呈现有噪声(杂讯)或现增益而使噪声增强,使影像中有边缘不平顺的情况。而传统的噪声降低的方法例如是利用低通滤波器来处理,如此会令处理的结果变得模糊,故通常之后会加上边缘强化处理,来作补偿。如此一来,噪声虽然被模糊化,但仍然存在于影像之中,影响了影像的品质。In image processing, because the input image may be based on an analog gain as the analog gain or the result of selecting a larger ISO value (such as 400, 800 or above) or the result of shooting when the light sensitivity is insufficient, the input image may appear noisy ( Noise) or current gain to enhance the noise, resulting in uneven edges in the image. The traditional method of noise reduction, for example, uses a low-pass filter to process, which will make the processing result blurred, so edge enhancement processing is usually added afterwards to compensate. In this way, although the noise is blurred, it still exists in the image, which affects the quality of the image.

发明内容 Contents of the invention

本发明是有关于影像的边缘处理方法及影像处理装置。The invention relates to an image edge processing method and an image processing device.

根据本发明的一方面,提出一种影像的边缘处理方法方法的实施例。此方法的一实施例,包括如下步骤。(a)于一输入影像的一区域内,对于区域内一目标像素为中心的一个十字形图样,计算沿一第一方向的一第一方向梯度以及沿一第二方向的一第二方向梯度。(b)判断第一方向梯度是否大于一第一比较梯度值,其中第一比较梯度值依据第二方向梯度来决定。(c)若步骤(b)的判断结果为是,则基于此十字形图样中沿第二方向的第一多个像素的像素值,以获得一第一估测像素值作为此目标像素的一估测像素值。(d)若步骤(b)的判断结果为否,则判断第二方向梯度是否大于一第二比较梯度值,其中第二比较梯度值依据第一方向梯度来决定。(e)若步骤(d)的判断结果为是,则基于此十字形图样中沿第一方向的第二多个像素的像素值,以获得一第二估测像素值作为此目标像素的估测像素值。(f)若步骤(d)的判断结果为否,则输出此目标像素的像素值。According to an aspect of the present invention, an embodiment of an image edge processing method is proposed. An embodiment of the method includes the following steps. (a) In an area of an input image, for a cross-shaped pattern centered on a target pixel in the area, calculate a first directional gradient along a first direction and a second directional gradient along a second direction . (b) judging whether the gradient in the first direction is greater than a first comparison gradient value, wherein the first comparison gradient value is determined according to the gradient in the second direction. (c) if the determination result of step (b) is yes, then based on the pixel values of the first plurality of pixels along the second direction in the cross-shaped pattern, a first estimated pixel value is obtained as a value of the target pixel Estimated pixel values. (d) If the judgment result of step (b) is negative, it is judged whether the gradient in the second direction is greater than a second comparison gradient value, wherein the second comparison gradient value is determined according to the gradient in the first direction. (e) If the judgment result of step (d) is yes, then based on the pixel values of the second plurality of pixels along the first direction in the cross-shaped pattern, a second estimated pixel value is obtained as the estimated pixel value of the target pixel measure the pixel value. (f) If the judgment result of step (d) is no, then output the pixel value of the target pixel.

根据本发明的另一方面的,提出一种影像处理装置的一实施例。此通讯装置包括一噪声抑制单元、一边缘低通滤波单元和一边缘强化单元。噪声抑制单元,其包括一低通滤波器,并接收一第一影像,进行一噪声抑制处理以输出一第二影像。边缘低通滤波单元,接收第二影像,进行一边缘低通滤波处理以平滑影像边缘,并输出一第三影像。边缘强化单元,其包括一高通滤波器,接收第三影像以加强影像边缘。According to another aspect of the present invention, an embodiment of an image processing device is proposed. The communication device includes a noise suppression unit, an edge low-pass filter unit and an edge enhancement unit. The noise suppression unit includes a low-pass filter, receives a first image, and performs a noise suppression process to output a second image. The edge low-pass filter unit receives the second image, performs edge low-pass filter processing to smooth the edge of the image, and outputs a third image. The edge enhancement unit includes a high-pass filter for receiving the third image to enhance the edge of the image.

为了对上述及其他方面有更佳的了解,下文特举一些实施例,并结合附图详细说明如下。In order to have a better understanding of the above and other aspects, some embodiments are specifically cited below and described in detail with reference to the accompanying drawings.

附图说明 Description of drawings

图1为绘示一数字影像的示意图。FIG. 1 is a schematic diagram illustrating a digital image.

图2绘示一数字影像中的一区域内一目标像素为中心的十字形图样。FIG. 2 illustrates a cross-shaped pattern centered on a target pixel in a region of a digital image.

图3绘示一种影像的边缘处理方法的一实施例的流程图。FIG. 3 is a flowchart of an embodiment of an image edge processing method.

图4绘示一种影像处理装置的一实施例的方块图。FIG. 4 is a block diagram of an embodiment of an image processing device.

图5绘示图4中的边缘低通滤波单元的一实施例的方块图。FIG. 5 is a block diagram of an embodiment of the edge low-pass filtering unit in FIG. 4 .

图6绘示可实施图3的影像的边缘处理方法的电子装置的一实施例的方块图。FIG. 6 is a block diagram of an embodiment of an electronic device capable of implementing the image edge processing method in FIG. 3 .

图7及图8绘示影像的边缘处理方法的其他实施例的流程图。7 and 8 are flowcharts of other embodiments of the image edge processing method.

附图符号说明Description of reference symbols

1:数字影像1: Digital image

10:数字影像的一区域10: An area of a digital image

40:影像处理装置40: Image processing device

50、410:噪声抑制单元50, 410: noise suppression unit

60:电子装置60: Electronics

101、102:十字形图样101, 102: cross pattern

420:边缘低通滤波单元420: edge low-pass filter unit

430:边缘强化单元430: Edge Strengthening Unit

510:第一运算电路510: The first arithmetic circuit

520:第二运算电路520: Second operation circuit

521:判断电路521: judgment circuit

525:估测电路525: Estimation circuit

610:处理单元610: processing unit

620:存储单元620: storage unit

630:影像模块630: Image module

640:显示单元640: display unit

S70、S80、S100:步骤S70, S80, S100: Steps

S110、S120、S125、S130、S135、S139:步骤S110, S120, S125, S130, S135, S139: steps

S810、S821、S822:步骤S810, S821, S822: steps

具体实施方式 Detailed ways

以下提出影像的边缘处理方法及影像处理装置的实施例。图3绘示一种影像的边缘处理方法的一实施例的流程图。此实施例可用以处理图1所示的一输入影像1(可为静态影像或动态影像)中以一目标像素PC为中心的一区域10,以产生此目标像素PC的一估测像素值。应用此实施例,以输入影像1中每一像素作为目标像素,若沿着一定次序例如逐行的利用此方法,并以估测像素值代替对应的目标像素,最后能产生一边缘处理后的一输出影像。在一些实施例中,相对于输入影像,此边缘处理后的输出影像能得到边缘平顺的效果。此方法可利用各种进行影像处理的装置中执行,如图4的影像处理装置40(如一影像处理芯片或影像引击)的边缘低通滤波单元420实施此方法,又如图6的电子装置中的影像模块或处理单元实施此方法。Embodiments of an image edge processing method and an image processing device are proposed below. FIG. 3 is a flowchart of an embodiment of an image edge processing method. This embodiment can be used to process a region 10 centered on a target pixel PC in an input image 1 (which may be a static image or a dynamic image) shown in FIG. 1 to generate an estimated pixel value of the target pixel PC. Applying this embodiment, each pixel in the input image 1 is used as the target pixel. If this method is used in a certain order, such as row by row, and the estimated pixel value is used to replace the corresponding target pixel, an edge-processed image can finally be generated. An output image. In some embodiments, compared with the input image, the edge-processed output image can obtain an edge-smoothing effect. This method can be implemented in various image processing devices, such as the edge low-pass filter unit 420 of the image processing device 40 (such as an image processing chip or image trigger) in Figure 4 to implement this method, and the electronic device in Figure 6 A vision module or processing unit in implements the method.

请参考图3,如步骤S110所示,于一输入影像的一区域内,对于此区域内一目标像素为中心的一个十字形图样,计算沿一第一方向的一第一方向梯度以及沿一第二方向的一第二方向梯度。十字形图样例如图2绘示一输入影像1中的一区域10内一目标像素PC为中心的十字形图样101或102。此外,第一方向及第二方向例如分别为水平方向及垂直方向,而反之亦可。Please refer to FIG. 3, as shown in step S110, in an area of an input image, for a cross-shaped pattern centered on a target pixel in this area, a first direction gradient along a first direction and a gradient along a first direction are calculated. A second direction gradient of the second direction. For example, FIG. 2 shows a cross-shaped pattern 101 or 102 centered on a target pixel PC in an area 10 of an input image 1 . In addition, the first direction and the second direction are, for example, the horizontal direction and the vertical direction, respectively, and vice versa.

如步骤S120所示,判断第一方向梯度是否大于一第一比较梯度值,其中第一比较梯度值依据第二方向梯度来决定。若步骤S120的判断结果为是,则如步骤S125所示,基于此十字形图样中沿第二方向的第一多个像素的像素值,以获得一第一估测像素值作为此目标像素的一估测像素值。若步骤S120的判断结果为否,则如步骤S130所示,判断第二方向梯度是否大于一第二比较梯度值,其中第二比较梯度值依据第一方向梯度来决定。若步骤S130的判断结果为是,则如步骤S135所示,基于此十字形图样中沿第一方向的第二多个像素的像素值,以获得一第二估测像素值作为此目标像素的估测像素值。若步骤S130的判断结果为否,则如步骤S139所示,输出此目标像素的像素值(即视作为估测像素值)。As shown in step S120, it is determined whether the gradient in the first direction is greater than a first comparison gradient value, wherein the first comparison gradient value is determined according to the gradient in the second direction. If the judgment result of step S120 is yes, as shown in step S125, based on the pixel values of the first plurality of pixels in the cross-shaped pattern along the second direction, a first estimated pixel value is obtained as the target pixel. An estimated pixel value. If the judgment result of step S120 is negative, as shown in step S130, it is judged whether the second direction gradient is greater than a second comparison gradient value, wherein the second comparison gradient value is determined according to the first direction gradient. If the judgment result of step S130 is yes, as shown in step S135, based on the pixel values of the second plurality of pixels in the cross-shaped pattern along the first direction, a second estimated pixel value is obtained as the target pixel. Estimated pixel values. If the determination result of step S130 is negative, then as shown in step S139 , output the pixel value of the target pixel (ie regarded as estimated pixel value).

以下藉由十字形图样101及102为例,说明图3的方法的步骤的各种实施态样。Various implementations of the steps of the method in FIG. 3 will be described below by taking the cross patterns 101 and 102 as examples.

对于步骤S110,计算此十字图样中沿一第一方向(如垂直方向)且距此目标像素PC不同距离的一个至多个第一方向单元梯度。如以差分来计算,十字形图样101的一个至多个第一方向单元梯度可表示为:|PC-V1|、|PC-V2|,其中如图2所示,V1及V2分别代表十字形图样101内垂直方向两个像素的像素值。十字形图样102的一个至多个第一方向单元梯度可表示为:|PC-V1|、|PC-V2|、|V0-V1|、|V2-V3|,其中如图2所示V0、V1、V2及V3分别代表十字形图样101内垂直方向4个像素的像素值。For step S110 , one to a plurality of unit gradients in the first direction along a first direction (eg, vertical direction) and at different distances from the target pixel PC in the cross pattern are calculated. If calculated by difference, the gradient of one or more first direction units of the cross-shaped pattern 101 can be expressed as: |PC-V1|, |PC-V2|, where as shown in Figure 2, V1 and V2 respectively represent the cross-shaped pattern The pixel value of two pixels in the vertical direction within 101. One or more first direction unit gradients of the cross-shaped pattern 102 can be expressed as: |PC-V1|, |PC-V2|, |V0-V1|, |V2-V3|, wherein V0, V1 as shown in FIG. 2 , V2 and V3 respectively represent the pixel values of 4 pixels in the vertical direction in the cross pattern 101 .

第一方向梯度,例如一个至多个第一方向单元梯度的总和。例如该一个至多个第一方向单元梯度当中每一个是此十字图样中沿第一方向且位于此目标像素的两不同侧的两组相邻两像素的绝对差值的总和。对于十字形图样101,第一方向梯度如记作deltaV=|PC-V1|+|PC-V2|。对于十字形图样102,第一方向梯度如记作deltaV=|PC-V1|+|PC-V2|+|V0-V1|+|V2-V3|。The first direction gradient, for example, the sum of gradients of one or more first direction units. For example, each of the one or more unit gradients in the first direction is the sum of absolute differences between two groups of adjacent two pixels located on two different sides of the target pixel along the first direction in the cross pattern. For the cross-shaped pattern 101 , the gradient in the first direction is written as deltaV=|PC-V1|+|PC-V2|. For the cross-shaped pattern 102, the gradient in the first direction is written as deltaV=|PC-V1|+|PC-V2|+|V0-V1|+|V2-V3|.

计算十字形图样101中沿一第二方向(如水平直方向)且距目标像素PC不同距离的一个至多个第二方向单元梯度。如以差分来计算,十字形图样101的一个至多个第一方向单元梯度可表示为:|PC-H1|、|PC-H2|,其中如图2所示,H1及H2分别代表十字形图样101内水平方向两个像素的像素值。十字形图样102的一个至多个第一方向单元梯度则可表示为:|PC-H1|、|PC-H2|、|H0-H1|、|H2-H3|,其中如图2所示H0、H1、H2及H3分别代表十字形图样101内水平方向4个像素的像素值。One or more unit gradients in the second direction along a second direction (such as a horizontal direction) and different distances from the target pixel PC in the cross pattern 101 are calculated. If calculated by difference, the gradient of one or more first direction units of the cross-shaped pattern 101 can be expressed as: |PC-H1|, |PC-H2|, where as shown in Figure 2, H1 and H2 respectively represent the cross-shaped pattern The pixel value of two pixels in the horizontal direction within 101. One or more unit gradients in the first direction of the cross-shaped pattern 102 can be expressed as: |PC-H1|, |PC-H2|, |H0-H1|, |H2-H3|, where H0, H1 , H2 and H3 respectively represent pixel values of four pixels in the horizontal direction in the cross-shaped pattern 101 .

第二方向梯度,例如是该一个至多个第二方向单元梯度的总和。例如该一个至多个第二方向单元梯度当中每一个是此十字图样中沿第二方向且位于此目标像素的两不同侧的两组相邻两像素的绝对差值的总和。对于十字形图样101,第二方向梯度如表示为:deltaH=|PC-H1|+|PC-H2|。The second direction gradient is, for example, the sum of the one or more second direction unit gradients. For example, each of the one or more unit gradients in the second direction is the sum of the absolute differences between two groups of adjacent two pixels located on two different sides of the target pixel along the second direction in the cross pattern. For the cross-shaped pattern 101 , the gradient in the second direction is expressed as: deltaH=|PC-H1|+|PC-H2|.

对于步骤S120,例如第一比较梯度值实质上等于第二方向梯度与一既定倍数(如表示为W_Edge)的乘积,沿用上述的例子表示,则第一比较梯度值可表示如:W_Edge x deltaH。第二比较梯度值,例如实质上等于第一方向梯度与此既定倍数的乘积,如:W_Edge x deltaV。For step S120, for example, the first comparative gradient value is substantially equal to the product of the second directional gradient and a predetermined multiple (such as expressed as W_Edge), following the above example, the first comparative gradient value can be expressed as: W_Edge x deltaH. The second comparison gradient value, for example, is substantially equal to the product of the gradient in the first direction and the predetermined multiple, such as: W_Edge x deltaV.

在步骤S125中,第一估测像素值,例如实质上等于第一多个像素的像素值的一加权总和。在步骤S135中,第二估测像素值,例如实质上等于第二多个像素的像素值的一加权总和。沿用上述例子,对于十字形图样101为例,第一估测像素值可以表示为:H1和H2的加权总和,第二估测像素值可以表示为:V1和V2的加权总和,其中各个像素值对应的加权值(或权重),例如可设为1/2。对于十字形图样102为例,第一估测像素值可以表示为:H0、H1、H2和H3的加权总和,第二估测像素值可以表示为:V0、V1、V2和V3的加权总和,其中权重例如可设为1/2。In step S125, the first estimated pixel value, for example, is substantially equal to a weighted sum of pixel values of the first plurality of pixels. In step S135, the second estimated pixel value is, for example, substantially equal to a weighted sum of the pixel values of the second plurality of pixels. Using the above example, taking the cross-shaped pattern 101 as an example, the first estimated pixel value can be expressed as: the weighted sum of H1 and H2, and the second estimated pixel value can be expressed as: the weighted sum of V1 and V2, wherein each pixel value The corresponding weighted value (or weight) may be set to 1/2, for example. Taking the cross pattern 102 as an example, the first estimated pixel value can be expressed as: the weighted sum of H0, H1, H2 and H3, and the second estimated pixel value can be expressed as: the weighted sum of V0, V1, V2 and V3, The weight can be set to 1/2, for example.

此外,在步骤S125及S135的一些实施例中,依据上述例子计算第一估测像素值(或第估测像素值)时,第一多个像素(或第二多个像素)分别所对应的加权值是依据第一多个像素(或第二多个像素)各自与此目标像素的相对距离来决定。例如,其中当此相对距离越大时,所对应的加权值越小。如对于十字形图样102为例,第一估测像素值可以表示为:w0*H0+w1*H1+w2*H2+w3*H3,其中因为像素值H1和H2的两像素与目标像素PC的相对距离小于与像素值H0和H3的两像素,故加权值w0及w3可设定为分别小于加权值w1及w2。又符合此与目标像素的相对距离有关的例子,例如可以设定,第一估测像素值为:In addition, in some embodiments of steps S125 and S135, when calculating the first estimated pixel value (or the second estimated pixel value) according to the above example, the first plurality of pixels (or the second plurality of pixels) respectively correspond to The weighted value is determined according to the relative distances between the first plurality of pixels (or the second plurality of pixels) and the target pixel. For example, when the relative distance is larger, the corresponding weighting value is smaller. Take the cross-shaped pattern 102 as an example, the first estimated pixel value can be expressed as: w0*H0+w1*H1+w2*H2+w3*H3, wherein because the two pixels of the pixel values H1 and H2 are different from the target pixel PC The relative distance is less than two pixels from the pixel values H0 and H3, so the weighted values w0 and w3 can be set to be smaller than the weighted values w1 and w2 respectively. In accordance with this example related to the relative distance of the target pixel, for example, it can be set that the first estimated pixel value is:

(W_P0*(H1+H2)+W_P1*(H0+H3))/(W_P0+W_P1),(W_P0*(H1+H2)+W_P1*(H0+H3))/(W_P0+W_P1),

其中W_P0及W_P1为实数值且W_P0大于W_P1。相对而言,对于第二估测像素值的计算,亦可仿效上述第一估测像素值的例子以设定依据第二多个像素的加权总和计算的加权值的大小,例如可以设定,第二估测像素值为:Where W_P0 and W_P1 are real values and W_P0 is greater than W_P1. Relatively speaking, for the calculation of the second estimated pixel value, the above-mentioned example of the first estimated pixel value can also be followed to set the size of the weighted value calculated based on the weighted sum of the second plurality of pixels, for example, it can be set, The second estimated pixel value is:

(W_P0*(V1+V2)+W_P1*(V0+V3))/(W_P0+W_P1)。(W_P0*(V1+V2)+W_P1*(V0+V3))/(W_P0+W_P1).

上述这些与权重计算估测像素值的实施例,因为依照位置距离给予权重,故可视为带有权重的空间滤波器(Spatial Filter)。The above-mentioned embodiments of calculating estimated pixel values with weights can be regarded as a weighted spatial filter (Spatial Filter) because the weights are given according to the position distance.

此外,步骤S120至S125的意义,在于目标像素与十字形图样中的第一方向(如垂直方向)的邻近像素值的落差达一定程度时,在目标像素可能受到噪声的影响或呈现不平顺的边缘的情况,故利用相对像素值落差较小(或较为平顺或噪声影响较低)的第二方向(如水平方向)的邻近像素值来补偿此目标像素,亦即获得估测像素值。再者,对于步骤S130至S135的意义,亦有相似的作用,故不再赘述。又步骤S139的意义,在于此条件满足下,并不需要作补偿,故而输出目标像素的像素值。如此,若再利用加权总和并如前述的一些实施例加以考虑加权值与相对距离的关系以获得估测像素值,边缘处理后的一输出影像将能获得较为平顺的边缘的画质效果。In addition, the significance of steps S120 to S125 is that when the difference between the value of the target pixel and adjacent pixels in the first direction (such as the vertical direction) in the cross-shaped pattern reaches a certain level, the target pixel may be affected by noise or appear uneven In the case of an edge, the target pixel is compensated by adjacent pixel values in the second direction (such as the horizontal direction) with relatively small (or smoother or less affected by noise) relative to the pixel value drop, that is, an estimated pixel value is obtained. Furthermore, the meanings of steps S130 to S135 also have similar functions, so details are not repeated here. The meaning of step S139 is that when the condition is satisfied, no compensation is needed, so the pixel value of the target pixel is output. In this way, if the weighted sum is used and the relationship between the weighted value and the relative distance is considered to obtain the estimated pixel value as in some embodiments above, an output image after edge processing will be able to obtain a smoother edge quality effect.

此外,上述的实施例中,第一估测像素值与第二像素值与此目标像素的像素值无关。在其他实施例中,目标像素可以纳入第一估测像素值或第二像素值的计算中,但目标像素的加权值(或权重)较佳设定为小于其他的像素值的加权值,以减低噪声的影响。In addition, in the above-mentioned embodiment, the first estimated pixel value and the second pixel value have nothing to do with the pixel value of the target pixel. In other embodiments, the target pixel can be included in the calculation of the first estimated pixel value or the second pixel value, but the weighted value (or weight) of the target pixel is preferably set to be smaller than the weighted values of other pixel values, so as to Reduce the effect of noise.

图7及图8绘示影像的边缘处理方法的其他实施例的流程图。在图7中,如步骤S70所示,从多个滤波器当中选取其中的一个,其中这些滤波器分别对应不同大小的十字形图样。例如,提供至少两个或以上的十字形图样,如101及102,并选择其中之一。接着,如步骤S100所代表:依据所选取的此滤波器所对应的此十字形图样来进行再进行如图3所示的步骤。此外,步骤执行的顺序并没有限定,只要能获得估测像素值的顺序皆可;例如步骤S110可以对于这些滤波器进行计算梯度,接着执行步骤S70,以后才执行其他步骤。在另一些实施例中,依据一模拟增益值来决定从多个滤波器当中选取其中的一个。例如在图8中,步骤S80代表步骤S70的一种实作例。如步骤S810所示,判断一模拟增益值是否大于或等于一阈值,例如4。若是,如步骤S822所示,则设定一第二滤波器为所选取的此滤波器,其中第二滤波器对应到较大的十字形图样,如图2的102。若否,如步骤S821所示,则设定一第一滤波器为所选取的此滤波器,其中第一滤波器对应到较小的十字形图样,如图2的101。于此,因为模拟增益值较大时,代表输入影像可能有噪声被放大的情况,故选取较大的十字形图样的滤波器,以获得较平顺的效果。7 and 8 are flowcharts of other embodiments of the image edge processing method. In FIG. 7 , as shown in step S70 , one of multiple filters is selected, wherein these filters respectively correspond to cross patterns of different sizes. For example, provide at least two or more cross patterns, such as 101 and 102, and select one of them. Next, as represented by step S100 : perform the steps shown in FIG. 3 according to the cross-shaped pattern corresponding to the selected filter. In addition, the execution order of the steps is not limited, as long as the estimated pixel values can be obtained; for example, step S110 may calculate gradients for these filters, then execute step S70, and then execute other steps. In some other embodiments, one of the filters is selected according to an analog gain value. For example, in FIG. 8, step S80 represents an implementation example of step S70. As shown in step S810, it is determined whether an analog gain value is greater than or equal to a threshold value, such as 4. If yes, as shown in step S822, a second filter is set as the selected filter, wherein the second filter corresponds to a larger cross pattern, such as 102 in FIG. 2 . If not, as shown in step S821, a first filter is set as the selected filter, wherein the first filter corresponds to a smaller cross-shaped pattern, such as 101 in FIG. 2 . Here, because the larger the analog gain value, it means that the noise of the input image may be amplified, so a larger cross-shaped filter is selected to obtain a smoother effect.

于一些实施例中,由于输入影像可能是依据一模拟增益值作模拟增益或选取ISO值较大者(如400、800或以上)或感光不足时所拍摄产生的结果,故此情况可依据图3的方法,利用一个十字形图样的滤波器,或是从多个不同大小的十字形图样的滤波器中选取其中之一,以获得一估测像素值,从而得到一处理后的输出影像,以进行下一步的影像处理(例如边缘增强处理)。此外,十字形图样例如可以为:3x3、5x5、7x7或其他如长宽不同的十字形图样,而十字形图样皆于一目标像素为中心的区域以内。故图1所示的区域10亦可改为3x3、5x5、7x7个像素或其他长宽不同的区域。In some embodiments, since the input image may be based on an analog gain value as the analog gain or the result of selecting a larger ISO value (such as 400, 800 or above) or the result of shooting when the light sensitivity is insufficient, this situation can be based on FIG. 3 The method uses a cross-shaped filter, or selects one of a plurality of cross-shaped filters of different sizes to obtain an estimated pixel value, thereby obtaining a processed output image, and Carry out the next step of image processing (such as edge enhancement processing). In addition, the cross-shaped pattern can be, for example, 3x3, 5x5, 7x7 or other cross-shaped patterns with different lengths and widths, and the cross-shaped patterns are all within an area centered on a target pixel. Therefore, the area 10 shown in FIG. 1 can also be changed to 3x3, 5x5, 7x7 pixels or other areas with different lengths and widths.

此外,输入影像的周边的像素,如图1所示意的一目标像素PC的右方及上方(即第1、2行或列)的各个像素,亦可使用如图3的方法或其他方法进行处理。这些周边的像素作为一个新的目标像素时,可能并不能从输入影像中取得如同区域10大小的区域。但可以采用补点的方式,例如以周边的像素作为新的目标像素时,以此目标像素本身来补充以得到与区域10相同大小的区域,并依图3的方式处理。在其他实施例中,当第2行或列的像素,作为目标像素时,可以设定一较小的区域(如3x3);对于第1行或列的像素,可以不作处理。这些实作方式有多种,故并不以上述为限。In addition, the surrounding pixels of the input image, each pixel on the right and above (that is, the first and second rows or columns) of a target pixel PC as shown in Figure 1, can also be processed using the method shown in Figure 3 or other methods deal with. When these surrounding pixels are used as a new target pixel, it may not be possible to obtain an area as large as the area 10 from the input image. However, point supplementation can be used. For example, when surrounding pixels are used as new target pixels, the target pixels themselves are supplemented to obtain an area with the same size as the area 10, and the processing is performed in the manner shown in FIG. 3 . In other embodiments, when the pixels in the second row or column are used as target pixels, a smaller area (such as 3×3) may be set; for the pixels in the first row or column, no processing may be performed. There are many ways to implement these methods, so they are not limited to the above.

此外,上述方法的各个实施例可利用各种进行影像处理的装置中执行,如图4的影像处理装置40(如一影像处理芯片、影像引击或影像感测器)的边缘低通滤波单元420实施此方法,又如图6的电子装置中的影像模块或处理单元实施此方法。In addition, various embodiments of the above methods can be implemented in various image processing devices, such as the edge low-pass filter unit 420 of the image processing device 40 (such as an image processing chip, image trigger or image sensor) shown in FIG. 4 The method is implemented, and the image module or processing unit in the electronic device as shown in FIG. 6 implements the method.

图4绘示一种影像处理装置的一实施例的方块图。FIG. 4 is a block diagram of an embodiment of an image processing device.

此影像处理装置40,包括:一噪声抑制单元410、一边缘低通滤波单元420和一边缘强化单元430。噪声抑制单元410,其包括一低通滤波器,并接收一第一影像,进行一噪声抑制处理以输出一第二影像。边缘低通滤波单元420,接收第二影像(亦即图3的方法中所述的输入影像),进行一边缘低通滤波处理以平滑影像边缘,并输出一第三影像。边缘强化单元430,其包括一高通滤波器,接收第三影像以加强影像边缘。The image processing device 40 includes: a noise suppression unit 410 , an edge low-pass filter unit 420 and an edge enhancement unit 430 . The noise suppression unit 410 includes a low-pass filter, receives a first image, and performs a noise suppression process to output a second image. The edge low-pass filtering unit 420 receives the second image (ie the input image described in the method of FIG. 3 ), performs an edge low-pass filtering process to smooth the edge of the image, and outputs a third image. The edge enhancement unit 430, which includes a high-pass filter, receives the third image to enhance the edge of the image.

边缘低通滤波单元420执行下述操作:对于第二影像中的一目标像素为中心的一个十字形图样,计算沿一第一方向的一第一方向梯度以及沿一第二方向的一第二方向梯度;以及依据第一方向梯度与第二方向梯度,决定是否基于此十字形图样中沿第二方向的第一多个像素的像素值来补偿此目标像素,或是基于沿第一方向的第二多个像素的像素值来补偿此目标像素,或是输出输出此目标像素的像素值。也就是说,边缘低通滤波单元420可依据如图3的步骤S110至S139来实现其电路硬件。在一实施例中,边缘低通滤波单元420耦接于噪声抑制单元410与边缘强化单元430之间,以管线(pipeline)方式进行操作。The edge low-pass filtering unit 420 performs the following operations: For a cross-shaped pattern centered on a target pixel in the second image, calculate a first direction gradient along a first direction and a second direction gradient along a second direction direction gradient; and according to the first direction gradient and the second direction gradient, determine whether to compensate the target pixel based on the pixel values of the first plurality of pixels along the second direction in the cross-shaped pattern, or based on the pixel values along the first direction The pixel value of the second plurality of pixels is used to compensate the target pixel, or output the pixel value of the target pixel. That is to say, the edge low-pass filtering unit 420 can implement its circuit hardware according to steps S110 to S139 as shown in FIG. 3 . In one embodiment, the edge low-pass filter unit 420 is coupled between the noise suppression unit 410 and the edge enhancement unit 430 and operates in a pipeline manner.

图5绘示图4中的边缘低通滤波单元的一实施例的方块图。边缘低通滤波单元50包括第一运算电路510及第二运算电路520。第一运算电路510具有实现步骤S110的电路。第二运算电路520具有实现步骤S120至S139的电路。第二运算电路520包括一判断电路521和估测电路525。判断电路521具有实现步骤S120及S130的电路。估测电路525具有实现步骤S125、S135及S139的电路。FIG. 5 is a block diagram of an embodiment of the edge low-pass filtering unit in FIG. 4 . The edge low-pass filter unit 50 includes a first operation circuit 510 and a second operation circuit 520 . The first arithmetic circuit 510 has a circuit for realizing step S110. The second arithmetic circuit 520 has a circuit that realizes steps S120 to S139. The second computing circuit 520 includes a judging circuit 521 and an estimating circuit 525 . The judgment circuit 521 has a circuit that realizes steps S120 and S130. The estimation circuit 525 has a circuit for realizing steps S125, S135, and S139.

图6绘示可实施图3的影像的边缘处理方法的电子装置的一实施例的方块图。电子装置60例如是各种能作影像处理的装置,如数字相机、智能型手机、平板计算机、多媒体装置、电视或计算机。电子装置60包括一处理单元610、存储单元620、影像模块630和显示单元640。在一例子中,影像模块630可包括如图4的影像处理装置40。在另一例子中,处理单元610从存储单元620中读取程序指令,以实现依据图3的方法的实施例。FIG. 6 is a block diagram of an embodiment of an electronic device capable of implementing the image edge processing method in FIG. 3 . The electronic device 60 is, for example, various devices capable of image processing, such as digital cameras, smart phones, tablet computers, multimedia devices, televisions or computers. The electronic device 60 includes a processing unit 610 , a storage unit 620 , an image module 630 and a display unit 640 . In an example, the image module 630 may include the image processing device 40 as shown in FIG. 4 . In another example, the processing unit 610 reads program instructions from the storage unit 620 to implement the embodiment of the method according to FIG. 3 .

如上述图4至图6所示的例子,影像的边缘处理方法的实施例可以用集成电路如微控制器、微处理器、数字讯号处理器、特殊应用集成电路(ASIC,Application Specific Integrated Circuit)或元件可编程逻辑门阵列(FPGA,FieldProgrammable Gate Array)或一逻辑电路来实施。As shown in the examples shown in FIGS. 4 to 6 above, the embodiment of the image edge processing method can use integrated circuits such as microcontrollers, microprocessors, digital signal processors, and application specific integrated circuits (ASIC, Application Specific Integrated Circuit) Or element programmable logic gate array (FPGA, Field Programmable Gate Array) or a logic circuit to implement.

上述的实施例中,每个像素可以是代表R/G/B数值或是Y(亮度)或是任何不同的色彩座标转换数值。而对于一输入影像的各目标像素,可个别或分别对于目标像素的不同成份(component)或子像素(subpixel)的数值例如Y或R,应用图3的方法的实施例得到对应于此子像素值的估测像素值。In the above-mentioned embodiments, each pixel may represent R/G/B values or Y (brightness) or any different color coordinate conversion values. For each target pixel of an input image, the values corresponding to different components (component) or subpixels (subpixel) of the target pixel, such as Y or R, can be individually or separately obtained by applying the embodiment of the method in FIG. 3 corresponding to the subpixel The estimated pixel value of the value.

上述实施例提出影像的边缘处理方法及影像处理装置。在一些实施例中,由于梯度判断,可以保留解析度,又如在垂直或水平的边缘做平滑的处理,因此可以让边缘部分较为平整(顺修),减少高频噪声(Noises and Artifacts),让影像看起来更清澈。另外,一些实施例中提及利用一些系数来作边缘处理的控制(如步骤S120或S130的既定倍数值)判断是否需要作估测像素值的运算,能有效减少所需的存储体空间。另外,一些实施例依据不同滤波器,可做不同程度的处理,以让方法的实施方式具有更大的弹性。此方法实现时,计算复杂度并不高,易于整合到各种影像处理装置、平台、软体。再者,可根据量化方式,以实验验证其效果。The above embodiments provide an image edge processing method and an image processing device. In some embodiments, due to the gradient judgment, the resolution can be preserved, and for example, smoothing is done on the vertical or horizontal edge, so that the edge part can be smoothed (smooth repair), and high-frequency noise (Noises and Artifacts) can be reduced. Make the image look clearer. In addition, in some embodiments, it is mentioned that some coefficients are used to control the edge processing (such as the predetermined multiple value in step S120 or S130 ) to determine whether to perform calculations for estimating pixel values, which can effectively reduce the required memory space. In addition, some embodiments may perform different degrees of processing according to different filters, so that the implementation of the method has greater flexibility. When this method is implemented, the computational complexity is not high, and it is easy to integrate into various image processing devices, platforms, and software. Furthermore, according to the quantification method, its effect can be verified experimentally.

综上所述,虽然本发明已以实施例揭示如上,然其并非用以限定本发明的实施方式。本领域的技术人员,在依据本发明的精神和范围的前提下,可作各种的更动与润饰。因此,本发明的保护范围是以本发明的权利要求为准。To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the implementation of the present invention. Those skilled in the art can make various changes and modifications under the premise of following the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the claims of the present invention.

Claims (23)

1.一种影像的边缘处理方法,包括:1. An image edge processing method, comprising: (a)于一输入影像的一区域内,对于该区域内一目标像素为中心的一个十字形图样,计算沿一第一方向的一第一方向梯度以及沿一第二方向的一第二方向梯度;(a) In a region of an input image, for a cross-shaped pattern centered at a target pixel in the region, calculate a first direction gradient along a first direction and a second direction along a second direction gradient; (b)判断该第一方向梯度是否大于一第一比较梯度值,其中该第一比较梯度值依据该第二方向梯度来决定;(b) judging whether the gradient in the first direction is greater than a first comparison gradient value, wherein the first comparison gradient value is determined according to the gradient in the second direction; (c)若步骤(b)的判断结果为是,则基于该十字形图样中沿该第二方向的第一多个像素的像素值,以获得一第一估测像素值作为该目标像素的一估测像素值;(c) if the determination result of step (b) is yes, then based on the pixel values of the first plurality of pixels in the cross-shaped pattern along the second direction, a first estimated pixel value is obtained as the target pixel an estimated pixel value; (d)若步骤(b)的判断结果为否,则判断该第二方向梯度是否大于一第二比较梯度值,其中该第二比较梯度值依据该第一方向梯度来决定;(d) If the judgment result of step (b) is no, then judge whether the second direction gradient is greater than a second comparison gradient value, wherein the second comparison gradient value is determined according to the first direction gradient; (e)若步骤(d)的判断结果为是,则基于该十字形图样中沿该第一方向的第二多个像素的像素值,以获得一第二估测像素值作为该目标像素的该估测像素值;(e) if the determination result of step (d) is yes, then based on the pixel values of the second plurality of pixels in the cross-shaped pattern along the first direction, a second estimated pixel value is obtained as the target pixel the estimated pixel value; (f)若步骤(d)的判断结果为否,则输出该目标像素的像素值。(f) If the judgment result of step (d) is no, then output the pixel value of the target pixel. 2.如权利要求1所述的影像的边缘处理方法,还包括:2. The edge processing method of image as claimed in claim 1, further comprising: 计算该十字图样中沿一第一方向且距该目标像素不同距离的一个至多个第一方向单元梯度;calculating gradients of one or more first direction units along a first direction and at different distances from the target pixel in the cross pattern; 计算该十字图样中沿一第二方向且距该目标像素不同距离的一个至多个第二方向单元梯度,以及其中calculating gradients of one to a plurality of second direction unit gradients along a second direction and different distances from the target pixel in the cross pattern, and wherein 于步骤(a)中,该第一方向梯度是该一个至多个第一方向单元梯度的总和,以及In step (a), the first directional gradient is the sum of the one or more first directional unit gradients, and 该第二方向梯度是该一个至多个第二方向单元梯度的总和。The second directional gradient is the sum of the one or more second directional unit gradients. 3.如权利要求2所述的影像的边缘处理方法,其中3. The edge processing method of image as claimed in claim 2, wherein 该一个至多个第一方向单元梯度当中每一个是该十字图样中沿该第一方向且位于该目标像素的两不同侧的两组相邻两像素的绝对差值的总和,以及Each of the one or more unit gradients in the first direction is the sum of the absolute differences between two groups of adjacent two pixels located on two different sides of the target pixel along the first direction in the cross pattern, and 该一个至多个第二方向单元梯度当中每一个是该十字图样中沿该第二方向且位于该目标像素的两不同侧的两组相邻两像素的绝对差值的总和。Each of the one or more unit gradients in the second direction is a sum of absolute differences between two groups of adjacent two pixels located on two different sides of the target pixel along the second direction in the cross pattern. 4.如权利要求1所述的影像的边缘处理方法,其中4. The edge processing method of image as claimed in claim 1, wherein 该第一比较梯度值实质上等于该第二方向梯度与一既定倍数的乘积,以及The first comparison gradient value is substantially equal to the product of the second direction gradient and a predetermined multiple, and 该第二比较梯度值实质上等于该第一方向梯度与该既定倍数的乘积。The second comparison gradient value is substantially equal to the product of the first direction gradient and the predetermined multiple. 5.如权利要求1所述的影像的边缘处理方法,其中该第一估测像素值实质上等于该第一多个像素的像素值的一加权总和;以及5. The image edge processing method according to claim 1, wherein the first estimated pixel value is substantially equal to a weighted sum of pixel values of the first plurality of pixels; and 该第二估测像素值实质上等于该第二多个像素的像素值的一加权总和。The second estimated pixel value is substantially equal to a weighted sum of pixel values of the second plurality of pixels. 6.如权利要求5所述的影像的边缘处理方法,其中该第一多个像素与该第二多个像素分别所对应的加权值依据该第一多个像素与该第二多个像素各自与该目标像素的相对距离来决定。6. The image edge processing method according to claim 5, wherein the weighted values respectively corresponding to the first plurality of pixels and the second plurality of pixels are based on the respective weight values of the first plurality of pixels and the second plurality of pixels The relative distance to the target pixel is determined. 7.如权利要求6所述的影像的边缘处理方法,其中当该相对距离越大时,所对应的该加权值越小。7. The image edge processing method according to claim 6, wherein when the relative distance is larger, the corresponding weighting value is smaller. 8.如权利要求3所述的影像的边缘处理方法,还包括:8. The edge processing method of image as claimed in claim 3, further comprising: 从多个滤波器当中选取其中的一个,其中所述滤波器分别对应不同大小的十字形图样,以及其中Select one of a plurality of filters, wherein the filters correspond to cross-shaped patterns of different sizes, and wherein 步骤(a)~(f)是依据所选取的该滤波器所对应的该十字形图样来进行。Steps (a)-(f) are performed according to the cross pattern corresponding to the selected filter. 9.如权利要求8所述的影像的边缘处理方法,其中从多个滤波器当中选取其中的一个的步骤是依据一模拟增益值来决定。9. The image edge processing method as claimed in claim 8, wherein the step of selecting one of the filters is determined according to an analog gain value. 10.如权利要求1所述的影像的边缘处理方法,其中该第一估测像素值与该第二像素值与该目标像素的像素值无关。10. The image edge processing method as claimed in claim 1, wherein the first estimated pixel value is independent of the second pixel value and the target pixel value. 11.一种影像处理装置,包括:11. An image processing device, comprising: 一噪声抑制单元,其包括一低通滤波器,并接收一第一影像,进行一噪声抑制处理以输出一第二影像;A noise suppression unit, which includes a low-pass filter, and receives a first image, performs a noise suppression process to output a second image; 一边缘低通滤波单元,接收该第二影像,进行一边缘低通滤波处理以平滑影像边缘,并输出一第三影像;以及An edge low-pass filter unit receives the second image, performs an edge low-pass filter process to smooth the edge of the image, and outputs a third image; and 一边缘强化单元,其包括一高通滤波器,接收该第三影像以加强影像边缘。An edge enhancement unit, including a high-pass filter, receives the third image to enhance the edge of the image. 12.如权利要求11所述的影像处理装置,其中该边缘低通滤波单元执行下述操作:12. The image processing device as claimed in claim 11, wherein the edge low-pass filter unit performs the following operations: 对于该第二影像中的一目标像素为中心的一个十字形图样,计算沿一第一方向的一第一方向梯度以及沿一第二方向的一第二方向梯度;以及calculating a first directional gradient along a first direction and a second directional gradient along a second direction for a cross-shaped pattern centered on a target pixel in the second image; and 依据该第一方向梯度与该第二方向梯度,决定是否基于该十字形图样中沿该第二方向的第一多个像素的像素值来补偿该目标像素,或是基于沿该第一方向的第二多个像素的像素值来补偿该目标像素,或是输出输出该目标像素的像素值。According to the gradient in the first direction and the gradient in the second direction, it is determined whether to compensate the target pixel based on the pixel values of the first plurality of pixels in the cross pattern along the second direction, or to compensate the target pixel based on the pixel values along the first direction. The pixel value of the second plurality of pixels is used to compensate the target pixel, or output the pixel value of the target pixel. 13.如权利要求12所述的影像处理装置,其中该边缘低通滤波单元执行下述操作:13. The image processing device as claimed in claim 12, wherein the edge low-pass filter unit performs the following operations: 判断该第一方向梯度是否大于一第一比较梯度值,其中该第一比较梯度值依据该第二方向梯度来决定;以及judging whether the first direction gradient is greater than a first comparison gradient value, wherein the first comparison gradient value is determined according to the second direction gradient; and 当判断结果为是时,则基于该第一多个像素的像素值,以获得一第一估测像素值作为该目标像素的一估测像素值。When the determination result is yes, a first estimated pixel value is obtained as an estimated pixel value of the target pixel based on the pixel values of the first plurality of pixels. 14.如权利要求13所述的影像处理装置,其中若该判断的结果为否时,则该边缘低通滤波单元执行下述操作:14. The image processing device according to claim 13, wherein if the result of the determination is negative, the edge low-pass filter unit performs the following operations: 再判断该第二方向梯度是否大于一第二比较梯度值,其中该第二比较梯度值依据该第一方向梯度来决定;以及Then judge whether the second direction gradient is greater than a second comparison gradient value, wherein the second comparison gradient value is determined according to the first direction gradient; and 当再判断的结果为是时,则基于该第二多个像素的像素值,以获得一第二估测像素值作为该目标像素的一估测像素值。When the result of the re-judgment is yes, a second estimated pixel value is obtained as an estimated pixel value of the target pixel based on the pixel values of the second plurality of pixels. 15.如权利要求14所述的影像处理装置,其中若该再判断的结果为否时,则该边缘低通滤波单元输出该目标像素的像素值。15. The image processing device according to claim 14, wherein if the result of the re-judgment is negative, the edge low-pass filter unit outputs the pixel value of the target pixel. 16.如权利要求13所述的影像处理装置,其中该第一比较梯度值实质上等于该第二方向梯度与一既定倍数的乘积。16. The image processing device as claimed in claim 13, wherein the first comparison gradient value is substantially equal to the product of the second direction gradient and a predetermined multiple. 17.如权利要求14所述的影像处理装置,其中该第二比较梯度值实质上等于该第一方向梯度与一既定倍数的乘积。17. The image processing device according to claim 14, wherein the second comparison gradient value is substantially equal to the product of the first direction gradient and a predetermined multiple. 18.如权利要求13所述的影像处理装置,其中该第一估测像素值实质上等于该第一多个像素的像素值的一加权总和。18. The image processing device of claim 13, wherein the first estimated pixel value is substantially equal to a weighted sum of pixel values of the first plurality of pixels. 19.如权利要求14所述的影像处理装置,其中该第二估测像素值实质上等于该第二多个像素的像素值的一加权总和。19. The image processing device of claim 14, wherein the second estimated pixel value is substantially equal to a weighted sum of pixel values of the second plurality of pixels. 20.如权利要求11所述的影像处理装置,其中该边缘低通滤波单元,包括:20. The image processing device according to claim 11, wherein the edge low-pass filter unit comprises: 一第一运算电路,对于该第二影像中的一目标像素为中心的一个十字形图样,计算沿一第一方向的一第一方向梯度以及沿一第二方向的一第二方向梯度;以及a first computing circuit, for a cross-shaped pattern centered on a target pixel in the second image, calculating a first directional gradient along a first direction and a second directional gradient along a second direction; and 一第二运算电路,依据该第一方向梯度与该第二方向梯度,决定是否基于该十字形图样中沿该第二方向的第一多个像素的像素值来补偿该目标像素,或是基于沿该第一方向的第二多个像素的像素值来补偿该目标像素,或是输出输出该目标像素的像素值。A second operation circuit, according to the gradient in the first direction and the gradient in the second direction, determine whether to compensate the target pixel based on the pixel values of the first plurality of pixels along the second direction in the cross-shaped pattern, or based on Compensating the target pixel with pixel values of a second plurality of pixels along the first direction, or outputting the pixel value of the target pixel. 21.如权利要求20所述的影像处理装置,其中该第二运算电路判断该第一方向梯度是否大于一第一比较梯度值,其中该第一比较梯度值依据该第二方向梯度来决定,其中当判断结果为是时,则该第二运算电路基于该第一多个像素的像素值,输出一第一估测像素值作为该目标像素的一估测像素值。21. The image processing device as claimed in claim 20, wherein the second computing circuit judges whether the first direction gradient is greater than a first comparison gradient value, wherein the first comparison gradient value is determined according to the second direction gradient, Wherein when the determination result is yes, the second operation circuit outputs a first estimated pixel value as an estimated pixel value of the target pixel based on the pixel values of the first plurality of pixels. 22.如权利要求21所述的影像处理装置,其中若该判断的结果为否时,则该第二运算电路再判断该第二方向梯度是否大于一第二比较梯度值,其中该第二比较梯度值依据该第一方向梯度来决定,其中当再判断的结果为是时,则该第二运算电路基于该第二多个像素的像素值,输出一第二估测像素值作为该目标像素的一估测像素值。22. The image processing device as claimed in claim 21, wherein if the result of the determination is negative, the second operation circuit then determines whether the second direction gradient is greater than a second comparison gradient value, wherein the second comparison The gradient value is determined according to the gradient in the first direction, and when the result of the re-judgment is yes, the second operation circuit outputs a second estimated pixel value as the target pixel based on the pixel values of the second plurality of pixels An estimated pixel value of . 23.如权利要求22所述的影像处理装置,其中若该再判断的结果为否时,则该第二运算电路输出该目标像素的像素值。23. The image processing device according to claim 22, wherein if the result of the re-judgment is negative, the second operation circuit outputs the pixel value of the target pixel.
CN2012100443405A 2012-02-23 2012-02-23 Image edge processing method and image processing device Pending CN103297659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100443405A CN103297659A (en) 2012-02-23 2012-02-23 Image edge processing method and image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100443405A CN103297659A (en) 2012-02-23 2012-02-23 Image edge processing method and image processing device

Publications (1)

Publication Number Publication Date
CN103297659A true CN103297659A (en) 2013-09-11

Family

ID=49097930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100443405A Pending CN103297659A (en) 2012-02-23 2012-02-23 Image edge processing method and image processing device

Country Status (1)

Country Link
CN (1) CN103297659A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104601922A (en) * 2013-11-01 2015-05-06 佳能企业股份有限公司 Image processing method, electronic device, storage medium readable by electronic device, and program applied to electronic device
CN109426599A (en) * 2017-08-24 2019-03-05 财团法人工业技术研究院 Power estimation method and power estimation device
CN109754371A (en) * 2017-11-06 2019-05-14 瑞昱半导体股份有限公司 Electronic device and image processing method for enhancing image edge
CN109936679A (en) * 2017-12-19 2019-06-25 瑞昱半导体股份有限公司 Image gradient method for improving and image gradient promote circuit
CN110268713A (en) * 2017-02-09 2019-09-20 株式会社宜科思 Image processing method and the image processing apparatus for executing image processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053161A1 (en) * 2001-09-13 2003-03-20 Guo Li Method and system for enhancing images using edge orientation
CN1622637A (en) * 2004-12-27 2005-06-01 北京中星微电子有限公司 Image dead point and noise eliminating method
CN101431605A (en) * 2007-11-08 2009-05-13 华晶科技股份有限公司 Image adjusting method
CN101770646A (en) * 2010-02-25 2010-07-07 昆山锐芯微电子有限公司 Edge detection method based on Bayer RGB images

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053161A1 (en) * 2001-09-13 2003-03-20 Guo Li Method and system for enhancing images using edge orientation
CN1622637A (en) * 2004-12-27 2005-06-01 北京中星微电子有限公司 Image dead point and noise eliminating method
CN101431605A (en) * 2007-11-08 2009-05-13 华晶科技股份有限公司 Image adjusting method
CN101770646A (en) * 2010-02-25 2010-07-07 昆山锐芯微电子有限公司 Edge detection method based on Bayer RGB images

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104601922A (en) * 2013-11-01 2015-05-06 佳能企业股份有限公司 Image processing method, electronic device, storage medium readable by electronic device, and program applied to electronic device
CN104601922B (en) * 2013-11-01 2018-04-17 佳能企业股份有限公司 Image processing method, electronic device, storage medium readable by electronic device and program applied to electronic device
CN110268713A (en) * 2017-02-09 2019-09-20 株式会社宜科思 Image processing method and the image processing apparatus for executing image processing method
CN109426599A (en) * 2017-08-24 2019-03-05 财团法人工业技术研究院 Power estimation method and power estimation device
CN109426599B (en) * 2017-08-24 2022-05-06 财团法人工业技术研究院 Power estimation method and power estimation device
CN109754371A (en) * 2017-11-06 2019-05-14 瑞昱半导体股份有限公司 Electronic device and image processing method for enhancing image edge
CN109754371B (en) * 2017-11-06 2022-12-20 瑞昱半导体股份有限公司 Electronic device and image processing method for enhancing image edge
CN109936679A (en) * 2017-12-19 2019-06-25 瑞昱半导体股份有限公司 Image gradient method for improving and image gradient promote circuit
CN109936679B (en) * 2017-12-19 2022-03-08 瑞昱半导体股份有限公司 Image gradient lifting method and image gradient lifting circuit

Similar Documents

Publication Publication Date Title
TWI460681B (en) Method for processing edges in an image and image processing apparatus
US10489892B2 (en) Method for signal processing
EP3588431B1 (en) Bilateral filter with data model
CN110874827B (en) Turbulent image restoration method and device, terminal equipment and computer readable medium
JP6160292B2 (en) Image correction apparatus, imaging apparatus, and computer program for image correction
JP2012191465A (en) Image processing apparatus, image processing method, and program
CN103297659A (en) Image edge processing method and image processing device
JP6369150B2 (en) Filtering method and filtering apparatus for recovering anti-aliasing edge
CN104376542A (en) Image enhancement method
JP6213558B2 (en) Image processing method and image processing apparatus
JP2011095861A5 (en) Image processing apparatus, image processing method, and program
WO2016051716A1 (en) Image processing method, image processing device, and recording medium for storing image processing program
TWI528815B (en) Image processing method capable of reducing image noise
JP6256703B2 (en) Image processing method and image processing apparatus
US6876778B2 (en) Edge enhancement method and apparatus in digital image scalar-up circuit
JPWO2013161839A1 (en) Image processing method and image processing apparatus
JP6256704B2 (en) Image processing method and image processing apparatus
US9947114B2 (en) Modifying gradation in an image frame including applying a weighting to a previously processed portion of the image frame
JP2006014024A (en) Image processor, image display device using the same, image processing method and program for making computer execute the same
US9659346B2 (en) Image processing apparatus, image processing method, solid-state imaging device, and electronic apparatus configured to calculate a pixel value of a target position in accordance with a weighted value of each pixel on a candidate line of a plurality of candidate lines
JP4913246B1 (en) Edge enhancement method or edge enhancement calculation method
JP6079962B2 (en) Image processing method and image processing apparatus
US8115781B2 (en) Systems and methods of image processing including removal of discontinuous ramp and/or smoothing features
TWI656507B (en) Electronic device
KR20160150455A (en) Method and apparatus for extraction of edge in image based on multi-color and multi-direction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130911