CN103296975B - Multiple Power Domain Operational Amplifier and Voltage Generator Using It - Google Patents
Multiple Power Domain Operational Amplifier and Voltage Generator Using It Download PDFInfo
- Publication number
- CN103296975B CN103296975B CN201210055028.6A CN201210055028A CN103296975B CN 103296975 B CN103296975 B CN 103296975B CN 201210055028 A CN201210055028 A CN 201210055028A CN 103296975 B CN103296975 B CN 103296975B
- Authority
- CN
- China
- Prior art keywords
- power domain
- voltage
- input
- coupled
- operational amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000872 buffer Substances 0.000 claims description 49
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 238000010586 diagram Methods 0.000 description 12
- 230000036039 immunity Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Amplifiers (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种多重电源域运算放大器及使用其的电压产生器。The invention relates to an operational amplifier with multiple power domains and a voltage generator using it.
背景技术Background technique
导因于半导体元件的特性,许多的应用都需要一组不受温度影响的正参考电压及负参考电压,其电压大小约为+5伏特及-5伏特,接近中压元件的耐压上限6伏特。业界一般利用能隙参考电路(bandgapreferencecircuit)产生约为1.2伏特的零温度系数参考电压,再以此零温度系数参考电压为基准通过稳压器(regulator)进行升压及降压的操作,如此即可产生各种应用所需要的参考电压。Due to the characteristics of semiconductor components, many applications require a set of positive and negative reference voltages that are not affected by temperature. The voltages are about +5 volts and -5 volts, which are close to the upper limit of the withstand voltage of medium-voltage components6 volt. The industry generally uses a bandgap reference circuit (bandgapreference circuit) to generate a zero temperature coefficient reference voltage of about 1.2 volts, and then uses this zero temperature coefficient reference voltage as a reference to perform step-up and step-down operations through a regulator, so that The reference voltage required by various applications can be generated.
请参照图1,其绘示传统电压产生器的一例的电路图。电压产生器10包括一单位增益缓冲器(unitygainbuffer)12、一第一稳压器14以及一第二稳压器16。于图1中,工作电压VDD例如为3伏特,能隙参考电路所产生的零温度系数参考电压Vref例如为1.2伏特。零温度系数参考电压Vref可利用第一稳压器14以及第二稳压器16,通过电阻关系(R1+R2)/R1=5/1.2进行升压及降压的操作而得到正参考电压VOUTP=5伏特及负参考电压VOUTN=-5伏特。其中,第二稳压器16因为以地电压0伏特为参考点,故其内部的转导运算放大器(operationaltransconductanceamplifier,OTA)18的电源域需为VDD~-2VDD=3伏特~-6伏特,超过中压元件的耐压限制而必须采用高压元件。如此一来,高压元件的元件特性较差会降低整体电路表现,并占用大量的布局面积。Please refer to FIG. 1 , which shows a circuit diagram of an example of a conventional voltage generator. The voltage generator 10 includes a unity gain buffer 12 , a first voltage regulator 14 and a second voltage regulator 16 . In FIG. 1 , the operating voltage VDD is, for example, 3 volts, and the zero temperature coefficient reference voltage V ref generated by the bandgap reference circuit is, for example, 1.2 volts. The zero temperature coefficient reference voltage V ref can use the first voltage regulator 14 and the second voltage regulator 16 to perform step-up and step-down operations through the resistance relationship (R1+R2)/R1=5/1.2 to obtain a positive reference voltage V OUTP =5V and negative reference voltage V OUTN =-5V. Wherein, because the second regulator 16 takes the ground voltage 0 volts as a reference point, the power domain of its internal transconductance operational amplifier (operational transconductance amplifier, OTA) 18 needs to be VDD~-2VDD=3 volts~-6 volts, exceeding The withstand voltage of medium voltage components is limited and high voltage components must be used. As a result, poor device characteristics of high-voltage components will degrade overall circuit performance and occupy a large layout area.
请参照图2,其绘示传统电压产生器的另一例的电路图。电压产生器20包括一单位增益缓冲器22、一第一稳压器24、一第二稳压器26以及一第三稳压器28。于图2中,工作电压VDD例如为3伏特,能隙参考电路所产生的零温度系数参考电压Vref例如为1.2伏特。零温度系数参考电压Vref利用第一稳压器24,通过电阻关系进行升压的操作而得到正参考电压VOUTP=5伏特。此外,零温度系数参考电压Vref利用第二稳压器26以地电压0伏特为参考点,进行降压的操作而先得到-Vref=-1.2伏特,再通过第三稳压器28进行二次降压的操作而得到负参考电压VOUTN=-5伏特。通过串联(cascade)的两级稳压器结构26及28,使得第二稳压器26的电源域为VDD~-VDD=3伏特~-3伏特,且第三稳压器28的电源域为GND~-2VDD=0伏特~-6伏特,均维持在中压元件的耐压范围内而避免高压元件的使用。然而,在电压产生器20的结构中,多一级的稳压器却会使输出电压发生偏移(offset)以及受到电源噪声(powernoise)的影响。Please refer to FIG. 2 , which shows a circuit diagram of another example of a conventional voltage generator. The voltage generator 20 includes a unity gain buffer 22 , a first voltage regulator 24 , a second voltage regulator 26 and a third voltage regulator 28 . In FIG. 2 , the operating voltage VDD is, for example, 3 volts, and the zero temperature coefficient reference voltage V ref generated by the bandgap reference circuit is, for example, 1.2 volts. The zero temperature coefficient reference voltage V ref is boosted by the first voltage regulator 24 through a resistance relationship to obtain a positive reference voltage V OUTP =5 volts. In addition, the zero-temperature-coefficient reference voltage V ref uses the second voltage regulator 26 to take the ground voltage of 0 volts as a reference point to perform a step-down operation to obtain -V ref =-1.2 volts first, and then through the third voltage regulator 28 to perform a step-down operation. The negative reference voltage V OUTN =-5 volts is obtained through the second step-down operation. Through the cascade two-stage voltage regulator structure 26 and 28, the power domain of the second voltage regulator 26 is VDD~-VDD=3 volts~-3 volts, and the power domain of the third voltage regulator 28 is GND~-2VDD=0 volts~-6 volts, all of which are maintained within the withstand voltage range of medium voltage components and avoid the use of high voltage components. However, in the structure of the voltage generator 20 , the multi-stage voltage regulator will cause the output voltage to be offset and affected by power noise.
此外,在正电压转换至负电压的过程中,电压产生器10及20分别必须使用单位增益缓冲器12及22以使得零温度系数参考电压Vref具备推力以提供电流输出。然而,单位增益缓冲器12及22的使用除了增加电路复杂度与布局面积,亦会增加输出电压的偏移及电源噪声的影响。In addition, the voltage generators 10 and 20 have to use the unity gain buffers 12 and 22 respectively to make the zero temperature coefficient reference voltage V ref have a thrust to provide current output during the conversion from positive to negative voltage. However, the use of the unity-gain buffers 12 and 22 not only increases the circuit complexity and layout area, but also increases the offset of the output voltage and the impact of power supply noise.
发明内容Contents of the invention
本发明是有关于一种多重电源域运算放大器及使用其的电压产生器。通过多重电源域运算放大器的电源域的转换,使得电压产生器不需使用高压元件即可产生所需的正参考电压及负参考电压。The invention relates to an operational amplifier with multiple power domains and a voltage generator using it. Through the conversion of the power domains of the operational amplifier with multiple power domains, the voltage generator can generate the required positive reference voltage and negative reference voltage without using high-voltage components.
根据本发明的第一方面,提出一种多重电源域运算放大器,包括一输入级电路、一电源域转换电路以及一有源负载。输入级电路用以将一组输入电压转换为在一第一电源域内的一组输入电流。电源域转换电路用以转换此组输入电流为在一第二电源域内的一组输出电流。有源负载用以依据此组输出电流产生一输出电压,其中输出电压的一共模范围相对于此组输入电压的一共模范围是产生平移。According to a first aspect of the present invention, an operational amplifier with multiple power domains is proposed, including an input stage circuit, a power domain conversion circuit and an active load. The input stage circuit is used for converting a set of input voltages into a set of input currents in a first power domain. The power domain conversion circuit is used for converting the set of input currents into a set of output currents in a second power domain. The active load is used to generate an output voltage according to the set of output currents, wherein a common-mode range of the output voltage is shifted relative to a common-mode range of the set of input voltages.
根据本发明的第二方面,提出一种电压产生器,包括一串接电阻、一第一稳压器以及一第二稳压器。串接电阻具有一第一反馈端与一第二反馈端。第一稳压器用以输出一第一输出电压,第一稳压器包括具有负反馈配置的一多重电源域运算放大器,多重电源域运算放大器操作在一第一电源域内与一第二电源域内,多重电源域运算放大器具有一反相输入端接收一第一参考电压,以及一正相输入端耦接至第一反馈端。第二稳压器用以输出一第二输出电压,第二稳压器包括操作在一第三电源域内且具有负反馈配置的一单一电源域运算放大器,单一电源域运算放大器具有一反相输入端接收一第二参考电压,以及一正相输入端耦接至第二反馈端。According to a second aspect of the present invention, a voltage generator is provided, including a series resistor, a first voltage regulator, and a second voltage regulator. The serial resistor has a first feedback terminal and a second feedback terminal. The first voltage regulator is used to output a first output voltage. The first voltage regulator includes a multi-power domain operational amplifier with a negative feedback configuration. The multi-power domain operational amplifier operates in a first power domain and a second power domain. The multi-power domain operational amplifier has an inverting input terminal receiving a first reference voltage, and a non-inverting input terminal coupled to the first feedback terminal. The second voltage regulator is used to output a second output voltage, the second voltage regulator includes a single power domain operational amplifier operating in a third power domain and having a negative feedback configuration, the single power domain operational amplifier has an inverting input terminal A second reference voltage is received, and a non-inverting input terminal is coupled to the second feedback terminal.
为了对本发明的上述及其它方面有更佳的了解,下文特举一实施例,并配合所附图式,作详细说明如下。In order to have a better understanding of the above and other aspects of the present invention, an embodiment is exemplified below and described in detail in conjunction with the accompanying drawings.
附图说明Description of drawings
图1绘示传统电压产生器的一例的电路图。FIG. 1 shows a circuit diagram of an example of a conventional voltage generator.
图2绘示传统电压产生器的另一例的电路图。FIG. 2 is a circuit diagram of another example of a conventional voltage generator.
图3绘示依照一实施例的多重电源域运算放大器的示意图。FIG. 3 is a schematic diagram of a multi-power domain operational amplifier according to an embodiment.
图4绘示依照一实施例的多重电源域运算放大器的电路图。FIG. 4 is a circuit diagram of a multi-power domain operational amplifier according to an embodiment.
图5绘示依照另一实施例的多重电源域运算放大器的电路图。FIG. 5 is a circuit diagram of a multi-power domain operational amplifier according to another embodiment.
图6绘示依照一实施例的电压产生器的电路图。FIG. 6 is a circuit diagram of a voltage generator according to an embodiment.
[主要元件标号说明][Description of main component labels]
10、20、600:电压产生器12、22:单位增益缓冲器10, 20, 600: Voltage generator 12, 22: Unity gain buffer
14、24、610:第一稳压器16、26、620:第二稳压器14, 24, 610: first voltage regulator 16, 26, 620: second voltage regulator
18:转导运算放大器28:第三稳压器18: Transconductance Operational Amplifier 28: Third Voltage Regulator
300、400、500、615:多重电源域运算放大器300, 400, 500, 615: Multiple Power Domain Operational Amplifiers
310、410、510:输入级电路320、420、520:电源域转换电路310, 410, 510: input stage circuits 320, 420, 520: power domain conversion circuits
422:第一组电流镜424:第二组电流镜422: the first set of current mirrors 424: the second set of current mirrors
522:第一组迭接电路524:第二组迭接电路522: the first group of stacking circuits 524: the second group of stacking circuits
330、430、530:有源负载625:单一电源域运算放大器330, 430, 530: Active load 625: Single supply domain operational amplifier
具体实施方式detailed description
本发明所提出的多重电源域(powerdomain)运算放大器及使用其的电压产生器,通过电源域的转换以调整多重电源域运算放大器的共模范围(commonmoderange),使得电压产生器不需使用高压元件即可产生所需的正参考电压及负参考电压。The multi-power domain operational amplifier and the voltage generator using it proposed by the present invention adjust the common mode range (common mode range) of the multi-power domain operational amplifier through the conversion of the power domain, so that the voltage generator does not need to use high-voltage components The required positive reference voltage and negative reference voltage can be generated.
请参照图3,其绘示依照一实施例的多重电源域运算放大器的示意图。多重电源域运算放大器300包括一输入级电路310、一电源域转换电路320以及一有源负载(activeload)330。输入级电路310耦接至一第一电压源VDD,其可以由单一PMOS输入对、单一NMOS输入对、或是一PMOS输入对及一NMOS输入对所构成。输入级电路310用以将一组输入电压(Vin+,Vin-)转换为在一第一电源域内的一组输入电流(Iin+,Iin-)。第一电源域介于第一电压源与第二电压源之间。于此范例中,第一电压源是举例为VDD,第二电压源是举例为-VDD,亦即第一电源域为(VDD~-VDD)。具体而言,第一电压源VDD例如为3伏特,第二电压源-VDD例如为-3伏特。Please refer to FIG. 3 , which shows a schematic diagram of an operational amplifier with multiple power domains according to an embodiment. The multi-power domain operational amplifier 300 includes an input stage circuit 310 , a power domain conversion circuit 320 and an active load 330 . The input stage circuit 310 is coupled to a first voltage source VDD, which may be composed of a single PMOS input pair, a single NMOS input pair, or a PMOS input pair and an NMOS input pair. The input stage circuit 310 is used to convert a set of input voltages (V in+ , V in− ) into a set of input currents (I in+ , I in− ) in a first power domain. The first power domain is between the first voltage source and the second voltage source. In this example, the first voltage source is, for example, VDD, and the second voltage source is, for example, -VDD, that is, the first power domain is (VDD˜-VDD). Specifically, the first voltage source VDD is, for example, 3 volts, and the second voltage source -VDD is, for example, -3 volts.
电源域转换电路320包括一第一电流缓冲器以及一第二电流缓冲器。第一电流缓冲器耦接至输入级电路310与第二电压源-VDD之间,并用以转换此组输入电流(Iin+,Iin-)为在一中继电源域内的一组中继电流。第一中继电源域介于第二电压源与第三电压源(譬如为GND)之间。于此范例中,第一中继续电源域是举例为(-VDD~GND)。第二电流缓冲器耦接于第一电流缓冲器与第三电压源GND之间,并用以依据此组中继电流产生在一第二电源域内的一组输出电流(Iout+,Iout-)。第二电源域介于第三电压源与第四电压源(譬如为-2VDD)之间。于此范例中,第二电源域是举例为(GND~-2VDD)(更具体而言,例如为0伏特~-6伏特)。The power domain conversion circuit 320 includes a first current buffer and a second current buffer. The first current buffer is coupled between the input stage circuit 310 and the second voltage source -VDD, and is used for converting the set of input currents (I in+ , I in- ) into a set of relay voltages in a relay power domain. flow. The first relay power domain is between the second voltage source and the third voltage source (such as GND). In this example, the first continuous power domain is (-VDD˜GND) for example. The second current buffer is coupled between the first current buffer and the third voltage source GND, and is used for generating a set of output currents (I out+ , I out− ) in a second power domain according to the set of relay currents. ). The second power domain is between the third voltage source and the fourth voltage source (eg -2VDD). In this example, the second power domain is, for example, (GND˜-2VDD) (more specifically, eg, 0V˜-6V).
有源负载330可以由一电流镜或一电流源构成,其耦接于第二电流缓冲器与第四电压源-2VDD之间,并用以依据此组输出电流(Iout+,Iout-)产生一输出电压Vout。其中,输出电压Vout的一共模范围(GND~-2VDD)相对于此组输入电压(Vin+,Vin-)的一共模范围(VDD~-VDD)是产生平移。The active load 330 can be constituted by a current mirror or a current source, which is coupled between the second current buffer and the fourth voltage source −2VDD, and is used to generate the output current (I out+ , I out− ) according to the set of output currents. An output voltage V out . Wherein, a common-mode range (GND˜-2VDD) of the output voltage V out is shifted relative to a common-mode range (VDD˜-VDD) of the set of input voltages (V in+ , V in− ).
请参照图4,其绘示依照一实施例的多重电源域运算放大器的电路图。多重电源域运算放大器400包括一输入级电路410、一电源域转换电路420以及一有源负载430。输入级电路410可由一PMOS输入对所构成,其耦接至第一电压源VDD。输入级电路410将输入电压(Vin+,Vin-)转换为输入电流(Iin+,Iin-)。于图4中,兹举电源域转换电路420是一电流镜架构电路为例作说明。电流镜架构电路420具有一第一组电流镜422及一第二组电流镜424以分别实现第一电流缓冲器以及第二电流缓冲器。Please refer to FIG. 4 , which shows a circuit diagram of an operational amplifier with multiple power domains according to an embodiment. The multi-power domain operational amplifier 400 includes an input stage circuit 410 , a power domain conversion circuit 420 and an active load 430 . The input stage circuit 410 may be formed by a PMOS input pair coupled to the first voltage source VDD. The input stage circuit 410 converts the input voltage (V in+ , V in− ) into an input current (I in+ , I in− ). In FIG. 4 , the power domain conversion circuit 420 is taken as an example for illustration. The current mirror architecture circuit 420 has a first set of current mirrors 422 and a second set of current mirrors 424 to realize the first current buffer and the second current buffer respectively.
第一组电流镜422耦接至输入级电路410与第二电压源-VDD之间,并用以转换输入电流(Iin+,Iin-)为中继电流(Ire+,Ire-)。第二组电流镜424耦接于第一组电流镜422与第三电压源GND之间,并用以依据第三电压源GND为基准点而提供输出电流(Iout+,Iout-)给有源负载430以产生输出电压Vout。有源负载430耦接于第二组电流镜424与第四电压源-2VDD之间。由于输出电压Vout的共模范围相对于输入电压(Vin+,Vin-)的共模范围产生平移,故不需使用高压元件即可以GND=0伏特为基准点输出GND~-2VDD=0伏特~-6伏特的电压。The first group of current mirrors 422 is coupled between the input stage circuit 410 and the second voltage source -VDD, and is used for converting the input currents (I in+ , I in− ) into relay currents (I re+ , I re− ). The second set of current mirrors 424 is coupled between the first set of current mirrors 422 and the third voltage source GND, and is used to provide output currents (I out+ , I out− ) to active sources based on the third voltage source GND as a reference point. load 430 to generate the output voltage V out . The active load 430 is coupled between the second set of current mirrors 424 and the fourth voltage source −2VDD. Since the common-mode range of the output voltage V out shifts relative to the common-mode range of the input voltage (V in+ , V in- ), it is possible to output GND to -2VDD=0 without using high-voltage components. Voltage from volts to -6 volts.
请参照图5,其绘示依照另一实施例的多重电源域运算放大器的电路图。多重电源域运算放大器500包括一输入级电路510、一电源域转换电路520以及一有源负载530。输入级电路510由一PMOS输入对所构成,其耦接至第一电压源VDD。输入级电路510将输入电压(Vin+,Vin-)转换为输入电流(Iin+,Iin-)。于图5中,兹举电源域转换电路520是一折迭式迭接架构电路为例做说明。电流镜架构电路520具有一第一组迭接电路(folded-cascode)522及一第二组迭接电路(folded-cascode)524以分别实现第一电流缓冲器以及第二电流缓冲器。Please refer to FIG. 5 , which shows a circuit diagram of an operational amplifier with multiple power domains according to another embodiment. The multi-power domain operational amplifier 500 includes an input stage circuit 510 , a power domain conversion circuit 520 and an active load 530 . The input stage circuit 510 is composed of a PMOS input pair coupled to the first voltage source VDD. The input stage circuit 510 converts the input voltage (V in+ , V in− ) into an input current (I in+ , I in− ). In FIG. 5 , the power domain conversion circuit 520 is taken as an example for illustration. The current mirror structure circuit 520 has a first set of folded-cascode 522 and a second set of folded-cascode 524 to realize the first current buffer and the second current buffer respectively.
第一组迭接电路522耦接至输入级电路510与第二电压源-VDD之间,并用以转换输入电流(Iin+,Iin-)为中继电流(Ire+,Ire-)。第二组迭接电路524耦接于第一组迭接电路522与第三电压源GND之间,并用以依据第三电压源GND为基准点而提供输出电流(Iout+,Iout-)给有源负载530以产生输出电压Vout。有源负载530耦接于第二组迭接电路524与第四电压源-2VDD之间。由于输出电压Vout的共模范围相对于输入电压(Vin+,Vin-)的共模范围产生平移,故不需使用高压元件即可以GND=0伏特为基准点输出GND~-2VDD=0伏特~-6伏特的电压。此外,由于多重电源域运算放大器500以折迭式迭接结构接收并输出电流,具有更佳的线性稳压与抗噪能力,且可在同样功率的条件下提供更高的输入共模范围与输出共模范围。The first stacking circuit 522 is coupled between the input stage circuit 510 and the second voltage source -VDD, and is used for converting the input current (I in+ , I in- ) into the relay current (I re+ , I re- ) . The second stacking circuit 524 is coupled between the first stacking circuit 522 and the third voltage source GND, and is used to provide output currents (I out+ , I out− ) to the third voltage source GND as a reference point. The active load 530 generates the output voltage V out . The active load 530 is coupled between the second stacking circuit 524 and the fourth voltage source −2VDD. Since the common-mode range of the output voltage V out shifts relative to the common-mode range of the input voltage (V in+ , V in- ), it is possible to output GND to -2VDD=0 without using high-voltage components. Voltage from volts to -6 volts. In addition, since the multi-power domain operational amplifier 500 receives and outputs current in a folded cascaded structure, it has better linear voltage regulation and noise immunity, and can provide a higher input common-mode range and output common-mode range.
在上述的电源域转换电路420/520中,虽仅以二个电流缓冲器为例进行说明,然并不限于此,电源域转换电路420/520还可包括一至多个第三电流缓冲器,耦接于第一电流缓冲器与第二电流缓冲器之间,用以依据输入电流(Iin+,Iin-),而产生其它一至多组中继电流,并将其它一至多组中继电流当中的一组提供给第二电流缓冲器,其中其它一至多组中继电流的电源域是彼此不相同。In the above power domain conversion circuit 420/520, although only two current buffers are used as an example for illustration, it is not limited thereto. The power domain conversion circuit 420/520 may also include one or more third current buffers, Coupled between the first current buffer and the second current buffer, it is used to generate other one or more groups of relay currents according to the input current (I in+ , I in- ), and to generate other one or more groups of relay currents One group of currents is provided to the second current buffer, and the power domains of the other one or more groups of relay currents are different from each other.
请参照图6,其绘示依照一实施例的电压产生器的电路图。电压产生器600包括一串接电阻R1、一第一稳压器610以及一第二稳压器620。串接电阻R1具有一第一反馈端(节点A)与一第二反馈端(节点B)。第一稳压器610用以输出一第一输出电压VOUTN。第一稳压器610包括具有负反馈配置的一多重电源域运算放大器615、彼此串接的电阻R3及R4、以及晶体管M1,其中R3=R1且R4=R2。电阻R3的第一端耦接于第一反馈端(节点A)。晶体管M1具有一第一端耦接至电压源-2VDD、一第二端耦接至电阻R4的第二端、以及一控制端耦接至多重电源域运算放大器615的一输出端。Please refer to FIG. 6 , which shows a circuit diagram of a voltage generator according to an embodiment. The voltage generator 600 includes a series resistor R1 , a first voltage regulator 610 and a second voltage regulator 620 . The series resistor R1 has a first feedback terminal (node A) and a second feedback terminal (node B). The first regulator 610 is used to output a first output voltage V OUTN . The first voltage regulator 610 includes a multiple power domain operational amplifier 615 with a negative feedback configuration, resistors R3 and R4 connected in series, and a transistor M1, wherein R3=R1 and R4=R2. The first end of the resistor R3 is coupled to the first feedback end (node A). The transistor M1 has a first terminal coupled to the voltage source −2VDD, a second terminal coupled to the second terminal of the resistor R4 , and a control terminal coupled to an output terminal of the multi-power domain operational amplifier 615 .
多重电源域运算放大器615的实际电路架构可如前述的多重电源域运算放大器300/400/500所示。多重电源域操作放大器615耦接于一第一电压源VDD与一第二电压源-VDD之间,并耦接于一第三电压源GND与一第四电压源-2VDD之间。多重电源域运算放大器615操作在一第一电源域(VDD~-VDD)内与一第二电源域(GND~-2VDD)内。多重电源域运算放大器615具有一反相输入端接收一第一参考电压GND,以及一正相输入端耦接至第一反馈端(节点A)。如此一来,第一反馈端(节点A)会稳定于第一参考电压GND。The actual circuit structure of the multi-power domain operational amplifier 615 can be shown as the aforementioned multi-power domain operational amplifier 300/400/500. The multi-power domain operational amplifier 615 is coupled between a first voltage source VDD and a second voltage source -VDD, and is coupled between a third voltage source GND and a fourth voltage source -2VDD. The multi-power domain operational amplifier 615 operates in a first power domain (VDD˜−VDD) and a second power domain (GND˜−2VDD). The multi-power-domain operational amplifier 615 has an inverting input end receiving a first reference voltage GND, and a non-inverting input end coupled to the first feedback end (node A). In this way, the first feedback terminal (node A) will be stable at the first reference voltage GND.
第一稳压器610由于使用多重电源域操作放大器615,故可在不使用高压元件的情况下,以第一参考电压GND为基准点并产生GND~-2VDD=0伏特~-6伏特的电压输出。Since the first regulator 610 uses multiple power supply domains to operate the amplifier 615, it can use the first reference voltage GND as a reference point and generate voltages from GND~-2VDD=0 volts to -6 volts without using high-voltage components. output.
第二稳压器620用以输出一第二输出电压VOUTP。第二稳压器620包括操作在一第三电源域(2VDD~GND)内且具有负反馈配置的一单一电源域运算放大器625、电阻R2、以及晶体管M2。电阻R2的第一端耦接于第二反馈端(节点B)。晶体管M2具有一第一端耦接至电压源2VDD、一第二端耦接至电阻R2的第二端、以及一控制端耦接至单一电源域运算放大器625的一输出端。单一电源域操作放大器625耦接于一第五电压源2VDD与第三电压源GND之间。单一电源域运算放大器625具有一反相输入端接收一第二参考电压Vref,以及一正相输入端耦接至第二反馈端(节点B)。如此一来,第二反馈端(节点B)会稳定于第二参考电压Vref。The second regulator 620 is used to output a second output voltage V OUTP . The second voltage regulator 620 includes a single power domain operational amplifier 625 operating in a third power domain (2VDD˜GND) and having a negative feedback configuration, a resistor R2, and a transistor M2. The first end of the resistor R2 is coupled to the second feedback end (node B). The transistor M2 has a first terminal coupled to the voltage source 2VDD, a second terminal coupled to the second terminal of the resistor R2 , and a control terminal coupled to an output terminal of the single power domain operational amplifier 625 . The single power domain operational amplifier 625 is coupled between a fifth voltage source 2VDD and a third voltage source GND. The single power domain operational amplifier 625 has an inverting input terminal receiving a second reference voltage V ref , and a noninverting input terminal coupled to the second feedback terminal (node B). In this way, the second feedback terminal (node B) is stable at the second reference voltage V ref .
由第二稳压器620耦接的第二反馈端(节点B)提供第一稳压器610耦接的第一反馈端(节点A)所需的电流,即可以合并第一稳压器610以及第二稳压器620。如此一来,通过Vfeedback,B=Vref=1.2伏特与Vfeedback,A=GND=0伏特于电阻R1产生所需的直流电流流经电阻R2、R3及R4,即可得到第一输出电压VOUTN=-5伏特与第二输出电压VOUTP=5伏特。The second feedback terminal (node B) coupled to the second voltage regulator 620 provides the current required by the first feedback terminal (node A) coupled to the first voltage regulator 610, that is, the first voltage regulator 610 can be combined and a second voltage regulator 620 . In this way, through V feedback, B = V ref = 1.2 volts and V feedback, A = GND = 0 volts, the resistor R1 generates the required DC current and flows through the resistors R2, R3 and R4 to obtain the first output voltage. V OUTN =−5V and the second output voltage V OUTP =5V.
本发明上述实施例所揭露的多重电源域运算放大器及使用其的电压产生器,通过多重电源域运算放大器的电源域的转换,可以调整多重电源域运算放大器的共模范围,使得电压产生器不需使用高压元件,且利用少数量的稳压器即可产生所需的正参考电压及负参考电压。如此一来,不仅简化电路设计复杂度与降低布局面积,亦可以大幅降低元件不匹配所造成的电压偏移及通过电源晶体管而产生的电源噪声。The multi-power domain operational amplifier disclosed in the above embodiments of the present invention and the voltage generator using it can adjust the common-mode range of the multi-power domain operational amplifier through the conversion of the power domains of the multi-power domain operational amplifier, so that the voltage generator does not High voltage components are required, and the required positive and negative reference voltages can be generated with a small number of voltage regulators. In this way, not only the circuit design complexity is simplified and the layout area is reduced, but also the voltage offset caused by component mismatch and the power supply noise generated by the power transistor can be greatly reduced.
综上所述,虽然本发明已以多个实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视所附的权利要求范围所界定者为准。To sum up, although the present invention has been disclosed in a number of embodiments, they are not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the appended claims.
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210055028.6A CN103296975B (en) | 2012-03-05 | 2012-03-05 | Multiple Power Domain Operational Amplifier and Voltage Generator Using It |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210055028.6A CN103296975B (en) | 2012-03-05 | 2012-03-05 | Multiple Power Domain Operational Amplifier and Voltage Generator Using It |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103296975A CN103296975A (en) | 2013-09-11 |
CN103296975B true CN103296975B (en) | 2016-05-11 |
Family
ID=49097401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210055028.6A Active CN103296975B (en) | 2012-03-05 | 2012-03-05 | Multiple Power Domain Operational Amplifier and Voltage Generator Using It |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103296975B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106505953B (en) * | 2016-07-05 | 2019-03-22 | 络达科技股份有限公司 | Operational Amplifier Circuit |
CN114003079B (en) * | 2020-07-28 | 2023-08-08 | 瑞昱半导体股份有限公司 | Circuits applied in multiple power domains |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5581212A (en) * | 1993-10-18 | 1996-12-03 | Industrial Technology Research Institute | Fully differential CMOS transconductance-transimpedance wide-band amplifier |
US6833760B1 (en) * | 2003-07-07 | 2004-12-21 | National Semiconductor Corporation | Low power differential amplifier powered by multiple unequal power supply voltages |
CN101453835A (en) * | 2007-12-04 | 2009-06-10 | 华为技术有限公司 | Transformer, method and device for capacitor integration package |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663439B2 (en) * | 2007-12-06 | 2010-02-16 | Himax Technologies Limited | Operational amplifier |
-
2012
- 2012-03-05 CN CN201210055028.6A patent/CN103296975B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5581212A (en) * | 1993-10-18 | 1996-12-03 | Industrial Technology Research Institute | Fully differential CMOS transconductance-transimpedance wide-band amplifier |
US6833760B1 (en) * | 2003-07-07 | 2004-12-21 | National Semiconductor Corporation | Low power differential amplifier powered by multiple unequal power supply voltages |
CN101453835A (en) * | 2007-12-04 | 2009-06-10 | 华为技术有限公司 | Transformer, method and device for capacitor integration package |
Also Published As
Publication number | Publication date |
---|---|
CN103296975A (en) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI495262B (en) | Multi power domain operational amplifier and voltage generator using the same | |
CN103326681B (en) | Amplifier, signal handling equipment and amplifier circuit for output buffer | |
JP5779490B2 (en) | Linear amplifier circuit | |
US9035639B2 (en) | Voltage-to-current sensing circuit and related DC-DC converter | |
JP5527056B2 (en) | Differential amplifier circuit and series regulator | |
JP5394968B2 (en) | Differential amplifier circuit | |
TWI517722B (en) | Reference voltage generation circuit | |
CN106374745A (en) | Single Inductor Dual Output DC‑DC Boost Converter Based on Voltage Intermodulation Suppression | |
CN108055014A (en) | Differential operational amplifier and bandgap reference voltage generating circuit | |
JP2017167753A (en) | Voltage Regulator | |
CN103296975B (en) | Multiple Power Domain Operational Amplifier and Voltage Generator Using It | |
CN215576341U (en) | Voltage-stabilizing source circuit | |
TW201115913A (en) | Amplifier circuit with overshoot suppression | |
KR20180071988A (en) | Fully balanced differential rail-to-rail second generation current conveyor | |
JP5369749B2 (en) | Constant voltage circuit | |
KR101915979B1 (en) | Balanced output rail-to-rail second generation current conveyor | |
JP5320503B2 (en) | Amplifier circuit | |
CN107688368A (en) | Buffer stage and control circuit | |
CN101931373B (en) | Output circuit using analog amplifier | |
Hassan et al. | Comparative study on multistage amplifier and folded cascode amplifier design in sample and hold circuit using 0.18 μm CMOS technology | |
KR20180071989A (en) | Fully balanced differential rail-to-rail second generation current conveyor | |
CN112068625A (en) | Reference voltage generating circuit | |
JP2007081568A (en) | Differential operational amplifier | |
JP7120555B2 (en) | differential amplifier | |
CN103267548B (en) | A kind of voltage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |