CN103294873B - A kind of analogy method of corona discharge space electrofluid - Google Patents
A kind of analogy method of corona discharge space electrofluid Download PDFInfo
- Publication number
- CN103294873B CN103294873B CN201310263782.3A CN201310263782A CN103294873B CN 103294873 B CN103294873 B CN 103294873B CN 201310263782 A CN201310263782 A CN 201310263782A CN 103294873 B CN103294873 B CN 103294873B
- Authority
- CN
- China
- Prior art keywords
- discharge space
- electrofluid
- wind
- discharge
- radius
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供了一种电晕放电空间电流体的模拟方法。该方法首先建立模型及确定控制方程,并通过计算及绘图得到放电空间不同电压下的电场强度分布图和电流密度分布图,之后通过放电空间电场强度分布图来确定模拟电流体状态时的风源范围,并根据放电空间电流密度分布图确定风源半径,对于不同的放电电压,其所对应的风源半径也不相同,再根据相应计算公式计算得出不同放电电压下的风源风速(即初始风速)。因此,在后续对电流体进行模拟时,就可以更加准确地反映出各种放电电压下电流体的状态,使得模拟结果与理论值更为接近,由此减小了对电晕放电空间电流体的模拟误差。
The invention provides a method for simulating corona discharge space electrofluid. This method first establishes the model and determines the control equation, and obtains the electric field intensity distribution diagram and current density distribution diagram under different voltages in the discharge space through calculation and drawing, and then determines the wind source when simulating the electric fluid state through the electric field intensity distribution diagram in the discharge space range, and determine the radius of the wind source according to the current density distribution diagram of the discharge space. For different discharge voltages, the corresponding wind source radius is also different, and then calculate the wind speed of the wind source under different discharge voltages according to the corresponding calculation formula (ie initial wind speed). Therefore, in the subsequent simulation of the electrofluid, the state of the electrofluid under various discharge voltages can be more accurately reflected, making the simulation result closer to the theoretical value, thereby reducing the impact on the corona discharge space electrofluid. the simulation error.
Description
技术领域technical field
本发明涉及一种电流体模拟方法,具体地说是一种电晕放电空间电流体的模拟方法。The invention relates to an electrofluid simulation method, in particular to a corona discharge space electrofluid simulation method.
背景技术Background technique
电晕放电过程中,在放电空间形成两个区域:电晕区和电晕外区。电晕区场强很大,但衰减迅速,在该区域由于强电场的作用,从电晕线表面或附近释放的电子迅速向接地极运动,运动过程中,电子将与气体原子(或分子)碰撞,使原子(或分子)分解为正离子和电子,该过程循环发生,空间中的自由电子迅速增加,形成电子崩,各种离子在电场力的作用下移动、碰撞,形成具有一定气流结构的电流体(也称离子风)。During corona discharge, two areas are formed in the discharge space: corona area and corona outer area. The field strength in the corona area is very strong, but it decays rapidly. In this area, due to the action of the strong electric field, the electrons released from the surface of the corona wire or near the ground move rapidly to the ground electrode. During the movement, the electrons will interact with gas atoms (or molecules) Collision makes atoms (or molecules) decompose into positive ions and electrons. This process occurs cyclically. The free electrons in the space increase rapidly, forming electron avalanche. Various ions move and collide under the action of electric field force, forming a certain airflow structure The electric fluid (also known as ion wind).
电晕放电时在放电空间所形成的正负离子和电子具有广泛的应用价值,例如可应用于静电除尘器、高速打印机、雾化等领域。了解放电空间的电场分布、离子状态及电流体的形成构成,具有重要的理论和应用价值,而对电流体状态进行分析又是研究放电空间物质之间相互作用的重要手段之一。现有技术中,通常用流体分析软件——Fluent软件对放电空间电流体的状态进行模拟分析,模拟时需要根据放电状态进行模型建立及参数设定。The positive and negative ions and electrons formed in the discharge space during corona discharge have a wide range of application values, such as electrostatic precipitators, high-speed printers, atomization and other fields. It is of great theoretical and practical value to understand the electric field distribution, ion state, and electrofluid formation in the discharge space, and the analysis of the electrofluid state is one of the important means to study the interaction between substances in the discharge space. In the prior art, fluid analysis software—Fluent software is usually used to simulate and analyze the state of the electric fluid in the discharge space. During the simulation, model establishment and parameter setting are required according to the discharge state.
电流体是从放电极出发的高速离子射流,射流源的形态、射流喷口的形状以及射流的初速度等都是影响电流体流动特征的主要因素。电流体的射流源即为Fluent软件模拟时的风源。例如:在静电除尘器中,电晕放电时放电空间的尺度一般在15cm左右,电晕线附近的电晕区近似圆形,尺度约几毫米,其为电流体形成的喷射区,该区域的主要作用是积累电流体形成所必需的电荷数量和初始能量。The electrofluid is a high-speed ion jet starting from the discharge electrode. The shape of the jet source, the shape of the jet nozzle, and the initial velocity of the jet are the main factors affecting the flow characteristics of the electrofluid. The jet source of the electrofluid is the wind source in the simulation of the Fluent software. For example: in the electrostatic precipitator, the size of the discharge space during corona discharge is generally about 15cm, and the corona area near the corona line is approximately circular, with a size of about several millimeters, which is the injection area formed by the electrofluid. The main role is to accumulate the amount of charge and initial energy necessary for the formation of electric fluids.
在以往的模拟中,由于电晕区很小,近似于电晕线尺度,因此把整个电晕线作为风源,在不同电压下设置同一风源半径及不同初始风速以进行模拟。但是在实际的电晕放电过程中,不同电压下电晕区的大小并不相同,这就决定了模拟时不同电压下的风源半径也应该是不同的,因此采用传统模拟方法对电流体进行模拟,必然存在较大的误差。In previous simulations, since the corona area is very small, which is similar to the scale of the corona wire, the entire corona wire is used as the wind source, and the same wind source radius and different initial wind speeds are set for simulation under different voltages. However, in the actual corona discharge process, the size of the corona area under different voltages is not the same, which determines that the radius of the wind source should be different under different voltages during simulation. There must be large errors in the simulation.
发明内容Contents of the invention
本发明的目的就是提供一种电晕放电空间电流体的模拟方法,以解决现有模拟方法因在不同电压下设置同一风源半径所导致的模拟误差较大的问题。The purpose of the present invention is to provide a simulation method of corona discharge space electrofluid to solve the problem of large simulation errors caused by setting the same wind source radius under different voltages in the existing simulation methods.
本发明的目的是这样实现的:一种电晕放电空间电流体的模拟方法,包括如下步骤:The object of the present invention is achieved in that a kind of simulation method of corona discharge space electrofluid comprises the steps:
a、建立二维线板放电模型并确定电场中的电势泊松方程和电流连续性方程,对电势泊松方程和电流连续性方程进行离散得到电势离散方程和电荷密度离散方程,根据有限差分法在放电空间对电势离散方程和电荷密度离散方程进行迭代计算,并绘得放电空间不同电压下的电场强度分布图和电流密度分布图;a. Establish a two-dimensional wire-plate discharge model and determine the potential Poisson equation and the current continuity equation in the electric field. Discretize the potential Poisson equation and the current continuity equation to obtain the potential discrete equation and the charge density discrete equation. According to the finite difference method Iteratively calculate the potential discrete equation and the charge density discrete equation in the discharge space, and draw the electric field intensity distribution diagram and current density distribution diagram under different voltages in the discharge space;
b、根据电场强度分布图确定放电空间的电场陡降区,所述电场陡降区即为模拟电流体状态时的风源范围;b. Determine the steep drop zone of the electric field in the discharge space according to the distribution diagram of the electric field intensity;
c、将能够使放电空间电流体呈旋涡状结构的最小放电电压设为基准电压,所述基准电压下的风源半径即为电晕线的半径r,从基准电压所对应的电流密度分布图上找到电晕线外边缘处的电流密度ρ0,从其它放电电压所对应的电流密度分布图上分别找到电流密度也为ρ0的点距电晕线中心的距离,该距离即为不同放电电压下的风源半径R;c. Set the minimum discharge voltage that can make the electric fluid in the discharge space have a vortex structure as the reference voltage, and the radius of the wind source under the reference voltage is the radius r of the corona wire. From the current density distribution diagram corresponding to the reference voltage Find the current density ρ 0 at the outer edge of the corona wire, and find the distance from the point with the current density ρ 0 to the center of the corona wire from the current density distribution diagram corresponding to other discharge voltages. Wind source radius R under voltage;
d、根据电晕线外边缘处离子风速v与放电电压u之间的关系v=0.0246(u-14.81)2,计算得出基准电压下的风源风速v0;d. According to the relationship v=0.0246(u-14.81) 2 between the ion wind speed v at the outer edge of the corona wire and the discharge voltage u, calculate the wind source wind speed v 0 under the reference voltage;
e、根据基准电压下的风源半径r、基准电压下的风源风速v0以及其它放电电压下的风源半径R,计算得出其它放电电压下的风源风速v′,其中, e. According to the radius r of the wind source under the reference voltage, the wind speed v 0 of the wind source under the reference voltage and the radius R of the wind source under other discharge voltages, calculate the wind speed v′ of the wind source under other discharge voltages, where,
f、根据不同放电电压所对应的风源半径及风源风速对放电空间电流体的运动状态进行仿真模拟。f. According to the radius of the wind source and the wind speed of the wind source corresponding to different discharge voltages, the motion state of the electric fluid in the discharge space is simulated.
本发明是利用计算机执行上述模拟计算步骤,进行电晕放电空间电流体的模拟。The present invention uses a computer to execute the above simulation calculation steps to simulate the corona discharge space electrofluid.
在执行步骤a时,是利用Matlab软件进行迭代计算,并绘得放电空间不同电压下的电场强度分布图和电流密度分布图。When step a is executed, Matlab software is used for iterative calculation, and electric field intensity distribution diagrams and current density distribution diagrams under different voltages in the discharge space are drawn.
在执行步骤f时,是将不同放电电压所对应的风源半径及风源风速值输入Fluent软件,通过Fluent软件模拟放电空间电流体的运动状态。When step f is executed, the radius of the wind source and the wind speed of the wind source corresponding to different discharge voltages are input into the Fluent software, and the movement state of the electric fluid in the discharge space is simulated by the Fluent software.
主要有两种因素影响常压空气中电流体的形成及状态:一、作用在空间电荷上的电场强度的大小;二、空间电荷的能量,具体表现为空间电荷的数量及移动速度。因此,本发明选取了空间电场强度的分布来确定风源范围,通过电流密度的分布确定风源半径;对于不同的放电电压,其所对应的风源半径也不相同,再根据相应计算公式计算得出不同放电电压下的风源风速(即初始风速)。因此,在后续的采用Fluent软件对电流体进行模拟时,就可以更加准确地反映出各种放电电压下电流体的状态,使得模拟结果与理论值更为接近,由此减小了对电晕放电空间电流体的模拟误差。There are two main factors affecting the formation and state of the electrofluid in atmospheric air: 1. The magnitude of the electric field strength acting on the space charge; 2. The energy of the space charge, which is specifically expressed as the number and moving speed of the space charge. Therefore, the present invention selects the distribution of the space electric field intensity to determine the range of the wind source, and determines the radius of the wind source through the distribution of the current density; for different discharge voltages, the corresponding wind source radius is also different, and then calculate according to the corresponding calculation formula The wind speed of the wind source (that is, the initial wind speed) under different discharge voltages is obtained. Therefore, when using Fluent software to simulate the electric fluid in the future, it can more accurately reflect the state of the electric fluid under various discharge voltages, making the simulation result closer to the theoretical value, thereby reducing the impact on the corona Simulation errors for discharge space electrofluids.
附图说明Description of drawings
图1是本发明所建立的二维线板放电模型示意图。Fig. 1 is a schematic diagram of a two-dimensional wire-plate discharge model established by the present invention.
图2是在30kV和50kV放电电压下所得到的放电空间的电场强度分布模拟图。Fig. 2 is a simulation diagram of electric field intensity distribution in the discharge space obtained under discharge voltages of 30kV and 50kV.
图3是在30kV放电电压下所得到的放电空间的电流密度分布模拟图。FIG. 3 is a simulation diagram of the current density distribution in the discharge space obtained at a discharge voltage of 30 kV.
图4是在50kV放电电压下所得到的放电空间的电流密度分布模拟图。Fig. 4 is a simulation diagram of the current density distribution in the discharge space obtained at a discharge voltage of 50 kV.
图5是现有模拟方法在不同放电电压下对图1中F点进行实测、模拟及理论计算所得风速曲线图。Fig. 5 is a wind speed curve obtained by actual measurement, simulation and theoretical calculation of point F in Fig. 1 under different discharge voltages by the existing simulation method.
图6是本发明模拟方法在不同放电电压下对图1中F点进行实测、模拟及理论计算所得风速曲线图。Fig. 6 is a wind speed curve obtained from the actual measurement, simulation and theoretical calculation of point F in Fig. 1 by the simulation method of the present invention under different discharge voltages.
具体实施方式Detailed ways
本发明提供了一种有效地模拟电晕放电时不同放电电压下的空间电流体运动状态的方法。该方法是借助计算机执行以下步骤,进行电晕放电空间电流体的模拟,具体步骤是:The invention provides a method for effectively simulating the movement state of space electric fluid under different discharge voltages during corona discharge. The method is to carry out the following steps by means of a computer to simulate the corona discharge space electric fluid, and the specific steps are:
1、确定模型及控制方程1. Determine the model and governing equations
在静电除尘器中,最常用的是线板式的除尘器,常用的线板间距为15cm,放电空间呈现对称性。据此,本发明建立二维线板放电模型,如图1所示,电晕线半径r为0.75mm,线板间距OF=15cm,放电通道长度AD=BC=40cm,放电电压为30-50kV。In the electrostatic precipitator, the most commonly used is the line-plate type dust collector. The commonly used line-plate spacing is 15cm, and the discharge space is symmetrical. Accordingly, the present invention establishes a two-dimensional line-plate discharge model, as shown in Figure 1, the corona wire radius r is 0.75mm, the line-plate spacing OF=15cm, the discharge channel length AD=BC=40cm, and the discharge voltage is 30-50kV .
在电场中,通用的求解方程为电势泊松方程和电流连续性方程,两个方程相互耦合,具体表示为:In the electric field, the general solution equations are the potential Poisson equation and the current continuity equation. The two equations are coupled with each other, specifically expressed as:
电势泊松方程:
电流连续性方程:
其中,V——放电空间电势,V;Among them, V—discharge space potential, V;
ρ——空间电荷密度,C/m3;ρ——space charge density, C/m 3 ;
ε0——自由空间电介质介电常数,ε0=8.85×10-12C/(V·m);ε 0 ——free space dielectric permittivity, ε 0 =8.85×10 -12 C/(V·m);
对上述两个控制方程进行离散,得到电势离散方程:The above two governing equations are discretized to obtain the potential discretization equation:
电荷密度离散方程:Discrete equation for charge density:
Δx、Δy分别为x轴和y轴方向上的网格步长,i、j为节点坐标序号。Δx and Δy are the grid step size in the direction of x-axis and y-axis respectively, and i and j are the serial numbers of node coordinates.
因为放电的对称性,所以针对图1区域,选取OEBF作为分析对象,其他区域与该区域对称,具体方法如下:利用Matlab软件,根据有限差分法对OEBF区域的电势和电荷密度的离散方程进行迭代计算,迭代计算的初始位置都是从电晕线的外边缘开始的,最终可得到电场强度分布模拟图(如图2所示)和电流密度分布模拟图(如图3和图4所示)。Because of the symmetry of the discharge, the OEBF is selected as the analysis object for the area in Figure 1, and other areas are symmetrical to this area. The specific method is as follows: use Matlab software to iterate the discrete equations of the potential and charge density in the OEBF area according to the finite difference method Calculation, the initial position of the iterative calculation starts from the outer edge of the corona wire, and finally the electric field intensity distribution simulation diagram (as shown in Figure 2) and the current density distribution simulation diagram (as shown in Figure 3 and Figure 4) can be obtained .
2、不同放电电压下放电空间的场强分布2. Field strength distribution in discharge space under different discharge voltages
如图2所示,不同放电电压下OEBF区域电场强度均有如图中所示的下降趋势,0.00点代表电晕线外边缘O点处,在离开电晕线很短的距离内,场强出现迅速下降,约下降一个数量级(由107量级变为106量级)。场强陡降区的变化范围约是0-5mm,因此将从电晕线外边缘到至外边缘5mm的范围定为射流源范围,即为采用Fluent软件模拟电流体状态时的风源范围。由于电晕线半径r为0.75mm,因此,风源范围为离电晕线中心0.75~5.75mm的环形区域。As shown in Figure 2, the electric field strength in the OEBF area has a downward trend as shown in the figure under different discharge voltages. The point 0.00 represents the point O on the outer edge of the corona line. Within a short distance from the corona line, the field strength appears Decrease rapidly, about an order of magnitude (from 10 7 to 10 6 ). The change range of the field strength steep drop zone is about 0-5mm, so the range from the outer edge of the corona wire to the outer edge 5mm is defined as the range of the jet source, which is the range of the wind source when the Fluent software is used to simulate the state of the electric fluid. Since the radius r of the corona wire is 0.75mm, the range of the wind source is an annular area 0.75-5.75mm away from the center of the corona wire.
3、不同放电电压下放电空间的电流密度分布3. Current density distribution in discharge space under different discharge voltages
空间电荷的能量由电荷的数量和速度共同决定,因此可以用电流密度来表征单位长度上空间电荷的能量,电流密度对电流体的运动状态有很大影响。The energy of the space charge is determined by the quantity and speed of the charge, so the energy of the space charge per unit length can be represented by the current density, and the current density has a great influence on the motion state of the electrofluid.
在以前的模拟中发现,放电电压较小时电流体不呈现旋涡状的结构,只有当放电电压达到一定数值时,电流体才呈现旋涡状结构,因此,本发明中将能够使电流体呈现旋涡状结构的最小放电电压设定为基准电压。通过多次实验得出基准电压为30kV,因此本发明中以放电电压30kV时的电流密度为基准来确定不同放电电压下的风源半径。In previous simulations, it was found that when the discharge voltage is small, the electrofluid does not present a vortex-like structure, and only when the discharge voltage reaches a certain value, the electrofluid presents a vortex-like structure. Therefore, the present invention will enable the electrofluid to present a vortex-like structure The minimum discharge voltage of the structure is set as the reference voltage. The reference voltage is 30kV obtained through multiple experiments, so in the present invention, the radius of the wind source under different discharge voltages is determined based on the current density when the discharge voltage is 30kV.
如图3所示,放电电压为30kV时在电晕线外边缘处(即图3中的O点)的电流密度为5.8×10-3A/m2,图3和图4中的等值线标尺相同,从图4中找到放电电压50kV时电流密度为5.8×10-3A/m2的点距O点的距离为3.3mm,所以放电电压50kV时风源半径为4.05mm(电晕线半径r为0.75mm,0.75mm+3.3mm=4.05mm),根据此规律,依次找到放电电压35kV、40kV、45kV时的风源半径分别为1.45mm、2.1mm、2.7mm。放电电压30kV时的风源半径即为电晕线半径r0.75mm。As shown in Figure 3, when the discharge voltage is 30kV, the current density at the outer edge of the corona wire (that is, point O in Figure 3) is 5.8×10 -3 A/m 2 , the equivalent values in Figure 3 and Figure 4 The line scales are the same. From Figure 4, the distance between the point where the current density is 5.8×10 -3 A/m 2 and the point O is 3.3mm when the discharge voltage is 50kV, so the radius of the wind source is 4.05mm when the discharge voltage is 50kV (corona The line radius r is 0.75mm, 0.75mm+3.3mm=4.05mm), according to this rule, the wind source radii at discharge voltages of 35kV, 40kV, and 45kV are found to be 1.45mm, 2.1mm, and 2.7mm respectively. The radius of the wind source when the discharge voltage is 30kV is the corona wire radius r0.75mm.
4、不同放电电压下入口风速的确定4. Determination of inlet wind speed under different discharge voltages
以放电电压30kV时的放电情况为基准,确定了相同电流密度(5.8×10-3A/m2)下的平面作为风源的入口,还需要确定采用Fluent软件模拟时风源入口的速度值。假设30kV时的风源半径为r,50kV时的风源半径为R,r<R,则50kV和30kV的风源入口的周长之比为所以当电流密度(单位长度上电荷的能量)相同时,那么电荷总能量之比也为由于电流体是离子集体运动的结果,入口风速由风源处的电荷总能量决定,所以50kV时的入口风速为30kV时的倍。Based on the discharge condition at a discharge voltage of 30kV, the plane under the same current density (5.8×10 -3 A/m 2 ) is determined as the inlet of the wind source, and the velocity value of the inlet of the wind source when simulated by Fluent software needs to be determined . Assuming that the radius of the wind source at 30kV is r, and the radius of the wind source at 50kV is R, r<R, then the ratio of the perimeter of the inlet of the wind source at 50kV and 30kV is So when the current density (the energy of the charge per unit length) is the same, then the ratio of the total energy of the charge is also Since the electric fluid is the result of the collective movement of ions, the inlet wind speed is determined by the total energy of the charge at the wind source, so the inlet wind speed at 50kV is that at 30kV times.
30kV时的入口风速的具体求解过程如下:The specific solution process of the inlet wind speed at 30kV is as follows:
本发明实施例中线板间距OF=15cm,而对于不同的线板间距,通过Origin软件对电晕放电时的伏安特性进行非线性拟合,发现当放电电压大于或者等于某一数值u0时,离子风有效电流与电晕线所加电压之间符合如下关系:In the embodiment of the present invention, the line-to-plate spacing OF=15cm, and for different line-to-plate spacings, the volt-ampere characteristics during corona discharge are nonlinearly fitted by Origin software, and it is found that when the discharge voltage is greater than or equal to a certain value u 0 , the relationship between the effective current of the ion wind and the voltage applied by the corona wire is as follows:
I=K(u-u0)2 (1)I=K(uu 0 ) 2 (1)
对于不同的线板间距,公式(1)中的K值在0.1左右小幅度变化,且公式(1)对于不同的线板放电装置具有普遍适用性。For different line-to-plate spacings, the value of K in formula (1) varies slightly around 0.1, and formula (1) has universal applicability to different line-to-plate discharge devices.
在电晕放电过程中,离子风速随放电电压的变化规律与其伏安特性关系一样也非常稳定,并且与电晕放电伏安特性的变化规律相似,所以,根据离子风的形成机制并结合电流形成公式:In the process of corona discharge, the change law of ion wind speed with discharge voltage is also very stable as its relationship with its volt-ampere characteristics, and is similar to the change law of corona discharge volt-ampere characteristics. Therefore, according to the formation mechanism of ion wind combined with current formation formula:
I=nvqS (2)I=nvqS (2)
其中n为通过横截面的载流子密度,v为载流子垂直横截面的速度,q为每个载流子的带电量,S为横截面的面积。可知,放电电流随着电荷数量以及电荷运动速度的增大而增大。放电电流越高,单位时间通过某一横截面的电荷数就越多,电荷定向移动的速度也越快,因此造成电流体运动越剧烈,离子风速度随之增大。Where n is the carrier density passing through the cross section, v is the velocity of the carrier vertical to the cross section, q is the charged amount of each carrier, and S is the area of the cross section. It can be seen that the discharge current increases with the increase of the charge quantity and the charge movement speed. The higher the discharge current is, the more charges pass through a certain cross-section per unit time, and the faster the directional movement of charges is, so the more violent the electrofluid movement is, the greater the ion wind speed will be.
根据上述分析可以设想极板处(如图1中F点处)离子风速和放电电流之间存在简单的线性关系,即:According to the above analysis, it can be imagined that there is a simple linear relationship between the ion wind speed and the discharge current at the plate (point F in Figure 1), namely:
v=AI (3)v=AI (3)
由公式(1)可得:From the formula (1) can get:
v=AI=Ak(u-u0)2 (4)v=AI=Ak(uu 0 ) 2 (4)
因为A和k都是常数,所以令Ak等于常数B,于是公式(4)可以变形为Since A and k are both constants, let Ak be equal to the constant B, then formula (4) can be transformed into
v=AI=B(u-u0)2 (5)v=AI=B(uu 0 ) 2 (5)
为了验证该假设是否成立,对极板处离子风速随放电电压的变化进行二次函数非线性拟合,拟合结果与实验结果的吻合度很好,与放电伏安特性规律一样。In order to verify whether the assumption is true, the quadratic function nonlinear fitting was performed on the ion wind velocity at the plate with the discharge voltage. The fitting results are in good agreement with the experimental results, which is the same as the discharge volt-ampere characteristic.
上述结论得出的是不同线板间距下极板处离子风速与放电电压的关系。为了深入研究电晕线处离子风速与放电电压的关系以及放电通道各点处离子风的矢量分布状态,采用动力风代替离子风的方法,利用Fluent软件建立数学仿真模型进行数值模拟分析。The above conclusions draw the relationship between the ion wind speed at the plate and the discharge voltage at different line-plate spacings. In order to deeply study the relationship between the ion wind speed at the corona line and the discharge voltage and the vector distribution state of the ion wind at each point of the discharge channel, the dynamic wind is used to replace the ion wind, and the mathematical simulation model is established by using Fluent software for numerical simulation analysis.
利用Fluent软件进行电流体模拟时,电晕线处输入的动力风风速数值与电晕线处所加电压相对应。假设公式(5)在电晕线处同样适用,由实验测得,在线板间距为15cm的条件下,单根电晕线空载火花放电的临界值为70kV,曾有报道指出火花放电时电晕线附近的离子风速为75m/s,根据公式(5)并结合上述条件,可得B=0.0246。故而得出在电晕线处离子风速与放电电压u满足以下变化规律:When using Fluent software for electrofluid simulation, the value of the dynamic wind speed input at the corona wire corresponds to the voltage applied at the corona wire. Assuming that the formula (5) is also applicable to the corona wire, it is measured by experiments that under the condition that the distance between the wire and the plate is 15cm, the critical value of the no-load spark discharge of a single corona wire is 70kV. The ion wind speed near the halo line is 75m/s, according to formula (5) and combined with the above conditions, B=0.0246 can be obtained. Therefore, it is concluded that the ion wind speed and the discharge voltage u at the corona wire meet the following variation rules:
v=0.0246(u-14.81)2 (6)v=0.0246 (u-14.81) 2 (6)
其中,u>14.81kV。Among them, u>14.81kV.
由公式(6)可计算出线板间距为15cm时不同放电电压所对应的电晕线处离子风速,结果如表1所示。The ion wind speed at the corona line corresponding to different discharge voltages can be calculated from the formula (6) when the distance between the wire and the plate is 15cm. The results are shown in Table 1.
表1:Table 1:
本发明中放电电压为30kV时风源的入口风速值即为表1中30kV时的电晕线处离子风速5.68m/s。In the present invention, when the discharge voltage is 30kV, the inlet wind velocity value of the wind source is the ion wind velocity 5.68m/s at the corona line when the discharge voltage is 30kV in Table 1.
根据30kV时对应的风源风速为5.68m/s,再结合放电电压35kV、40kV、45kV、50kV时的风源半径分别为1.45mm、2.1mm、2.7mm、4.05mm,不同放电电压下的风源风速之比即为其对应的风源半径之比,根据这个规律可计算得出不同放电电压下的风源风速,如表2所示。According to the corresponding wind speed of the wind source at 30kV is 5.68m/s, combined with the discharge voltages of 35kV, 40kV, 45kV, and 50kV, the wind source radii are 1.45mm, 2.1mm, 2.7mm, and 4.05mm respectively. The ratio of the source wind speed is the ratio of the corresponding wind source radius. According to this rule, the wind source wind speed under different discharge voltages can be calculated, as shown in Table 2.
表2:Table 2:
由于表1中所得风速均为电晕线处离子风速,而现有技术中在对放电空间电流体进行模拟时,对于不同的放电电压下设置同一风源半径(即电晕线半径)及不同的初始风速,因此,根据表1中各数据,采用Fluent软件模拟不同放电电压下放电空间中的电流体状态,测得二维线板放电模型中F点(见图1)的离子风速模拟值与实测风速值、理论风速的对比结果如图5所示。Since the wind speeds obtained in Table 1 are the ion wind speeds at the corona wires, and in the prior art when simulating the discharge space electric fluid, the same wind source radius (that is, the corona wire radius) and different Therefore, according to the data in Table 1, the Fluent software is used to simulate the state of the electric fluid in the discharge space under different discharge voltages, and the simulated value of the ion wind speed at point F (see Figure 1) in the two-dimensional wire-plate discharge model is measured The comparison results with the measured wind speed value and theoretical wind speed are shown in Fig. 5.
而本发明在对放电空间电流体进行模拟时,对于不同的放电电压下具有不同的风源半径及不同的初始风速,因此,根据表2中各数据,采用Fluent软件模拟不同放电电压下放电空间中的电流体状态,测得二维线板放电模型中F点(见图1)的离子风速模拟值与实测风速值、理论风速的对比结果如图6所示。However, when the present invention simulates the electric fluid in the discharge space, it has different wind source radii and different initial wind speeds for different discharge voltages. Therefore, according to the data in Table 2, Fluent software is used to simulate the discharge space under different discharge voltages. Fig. 6 shows the comparison results of the simulated value of the ion wind speed at point F (see Fig. 1) in the two-dimensional wire-plate discharge model, the measured wind speed value, and the theoretical wind speed.
通过对图5和图6进行比较可以看出,采用本发明所述方法在对电流体进行模拟时,模拟值与实验值和理论值更加相吻合,因此相比现有技术而言,可减小模拟误差,使得模拟值与理论值更加接近。By comparing Fig. 5 and Fig. 6, it can be seen that when the method of the present invention is used to simulate the electric fluid, the simulated value is more consistent with the experimental value and the theoretical value, so compared with the prior art, it can reduce The small simulation error makes the simulated value closer to the theoretical value.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310263782.3A CN103294873B (en) | 2013-06-27 | 2013-06-27 | A kind of analogy method of corona discharge space electrofluid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310263782.3A CN103294873B (en) | 2013-06-27 | 2013-06-27 | A kind of analogy method of corona discharge space electrofluid |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103294873A CN103294873A (en) | 2013-09-11 |
CN103294873B true CN103294873B (en) | 2015-09-23 |
Family
ID=49095730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310263782.3A Active CN103294873B (en) | 2013-06-27 | 2013-06-27 | A kind of analogy method of corona discharge space electrofluid |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103294873B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104866683B (en) * | 2015-06-03 | 2020-10-30 | 武汉大学 | Transient upstream element-based oil paper insulation internal space charge transport simulation method |
CN106354925B (en) * | 2016-08-26 | 2019-09-10 | 西安理工大学 | A kind of analogy method based on corona discharge space Potential Distributing |
CN109521223B (en) * | 2018-11-21 | 2020-10-02 | 华北电力大学 | A short air gap ion wind parameter monitoring method |
CN110361635B (en) * | 2018-11-26 | 2020-07-14 | 华北电力大学 | A method and apparatus for determining corona onset voltage |
CN110502796B (en) * | 2019-07-24 | 2023-06-02 | 天津华派集装箱制造有限公司 | Three-dimensional electric field solving method suitable for barbed-plate electrode structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102389862A (en) * | 2010-06-30 | 2012-03-28 | 德塞拉股份有限公司 | Emitter wire conditioning device with wear-tolerant profile |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100116460A1 (en) * | 2008-11-10 | 2010-05-13 | Tessera, Inc. | Spatially distributed ventilation boundary using electrohydrodynamic fluid accelerators |
-
2013
- 2013-06-27 CN CN201310263782.3A patent/CN103294873B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102389862A (en) * | 2010-06-30 | 2012-03-28 | 德塞拉股份有限公司 | Emitter wire conditioning device with wear-tolerant profile |
Non-Patent Citations (4)
Title |
---|
Numerical Simulation of the Electrohydrodynamic Flow in a Single Wire-Plate Electrostatic Precipitator;Lin Zhao等;《IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS》;20080630;第44卷(第3期);第683-691页 * |
电晕放电电流体状态实验研究与数值模拟;李庆等;《高压电技术》;20101130;第36卷(第11期);第2739-2744页 * |
线板放电电流体数值模拟与实验研究;李鹏;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20101216(第1期);全文 * |
线板放电电流体的实验研究与数值模拟;李庆等;《科学通报》;20111215;第56卷(第35期);第2947-2951页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103294873A (en) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103294873B (en) | A kind of analogy method of corona discharge space electrofluid | |
Ye et al. | On the simulation of space charge in electrostatic powder coating with a corona spray gun | |
Bouazza et al. | A simplified formulation of wire-plate corona discharge in air: Application to the ion wind simulation | |
Biskos et al. | Electrostatic characterisation of corona-wire aerosol chargers | |
Bian et al. | Corona-generated space charge effects on electric field distribution for an indoor corona cage and a monopolar test line | |
Guo et al. | Toward the development of an integrated multiscale model for electrostatic precipitation | |
Wettervik et al. | A domain decomposition method for three species modeling of multi-electrode negative corona discharge–With applications to electrostatic precipitators | |
Tu et al. | Mechanism study of electrostatic precipitation in a compact hybrid particulate collector | |
Johnson et al. | A finite volume method for electrostatic three species negative corona discharge simulations with application to externally charged powder bells | |
CN102609588B (en) | Method for calculating ion flow field | |
Ortiz et al. | Dimensional analysis for assessing the performance of electrostatic precipitators | |
Hamou et al. | Finite element method investigation of electrostatic precipitator performance | |
Intra et al. | Influence of the corona-wire diameter and length on corona discharge characteristics of a cylindrical tri-axial charger | |
Feng et al. | A critical review of models used in numerical simulation of electrostatic precipitators | |
Elmoursi | Electrical characterization of bell-type electrostatic painting systems | |
Zhao et al. | Research on the water-mist corona charging effect and coal dust removal performance of a red copper barbed ring electrode | |
Lv et al. | Simulation of electric field distribution along insulator surface in polluted environments | |
Domat et al. | Determination of the relevant charging parameters for the modeling of unipolar chargers | |
Benyoucef et al. | Improved fictitious charge method for calculations of electric potential and field generated by point-to-plane electrodes | |
Park et al. | Effects of particle space charge and turbulent diffusion on performance of plate–plate electrostatic precipitators | |
Ziedan et al. | An experimental implementation and testing of the corona discharge in wire-duct electrostatic precipitators affected by velocities of incoming flow gases | |
Intra et al. | Comparative Study on Electrical Discharge and Operational Characteristics of Needle and Wire-Cylinder Corona Chargers | |
Zhang et al. | DIFFUSION CHARGING EFFECTS ON PM 10 COLLECTION EFFICIENCY IN A WIRE-PIPE ESP UNDER MULTI-FIELD COUPLING. | |
CN116882341B (en) | Simulation method and system for surface defect partial discharge electromagnetic signals | |
Lv et al. | Influence of electrical field distortions induced by water droplets on the contamination characteristics of an insulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |