CN103292760A - Thin-wall blade error analytical method - Google Patents
Thin-wall blade error analytical method Download PDFInfo
- Publication number
- CN103292760A CN103292760A CN2013102402103A CN201310240210A CN103292760A CN 103292760 A CN103292760 A CN 103292760A CN 2013102402103 A CN2013102402103 A CN 2013102402103A CN 201310240210 A CN201310240210 A CN 201310240210A CN 103292760 A CN103292760 A CN 103292760A
- Authority
- CN
- China
- Prior art keywords
- error
- blade
- data points
- thin
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 25
- 238000013461 design Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000003754 machining Methods 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims abstract description 5
- 238000005259 measurement Methods 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims 1
- 238000007730 finishing process Methods 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000001314 profilometry Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Images
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
本发明公开了一种薄壁叶片误差分析方法,通过三坐标测量机在加工后的薄壁叶片上采用Z轴等高法测量三组数据点,针对设计叶片提取与测量数据点等高的三组数据,精确的计算出薄壁叶片的误差值,并对所测量的数据点进行分析去噪处理,将精简后的测量数据点与设计数据进行配准拟合建立目标函数;用粒子群算法优化求解目标函数;并可快速准确分析出加工后的薄壁叶片的测量数据和叶片理论数据之间的误差,并直观反映出误差值的大小,缩短了误差分析周期,同时提高了误差分析效率。实现对薄壁叶片精加工过程中的有效控制,大幅提高加工精度和效率。
The invention discloses an error analysis method for thin-walled blades, which uses a three-coordinate measuring machine to measure three sets of data points on the processed thin-walled blades using the Z-axis contour method, and aims at extracting three sets of equal heights between the design blades and the measured data points. Group data, accurately calculate the error value of thin-walled blades, and analyze and denoise the measured data points, and register and fit the simplified measured data points with the design data to establish the objective function; use particle swarm algorithm Optimize and solve the objective function; and quickly and accurately analyze the error between the measured data of the processed thin-walled blade and the theoretical data of the blade, and intuitively reflect the size of the error value, shorten the error analysis cycle, and improve the efficiency of error analysis . Realize the effective control in the finishing process of the thin-walled blade, and greatly improve the machining accuracy and efficiency.
Description
技术领域technical field
本发明属于航空发动机叶片制造与精加工领域,具体地说,涉及一种薄壁叶片误差分析方法。The invention belongs to the field of manufacturing and finishing of aeroengine blades, and in particular relates to an error analysis method for thin-walled blades.
背景技术Background technique
叶片是航空发动机及燃气涡轮机的核心零部件,也是一种典型的薄壁类零件,其制造加工水平直接影响着发动机的气动性能。随着气动设计技术、结构技术和材料技术的不断发展,航空发动机及燃气涡轮机叶片出现了弯、扭、薄、掠、轻的结构特点,其不仅加工工艺复杂,精度要求高,而且加工质量直接影响着发动机的整体性能。在工程实践中,为了消除对薄壁叶片加工精度的不利影响,常通过采用一些工艺措施或辅助测量的手段,来减小叶片的加工变形和加工误差,但这就必然会增加很多额外的工序,而且这些工艺措施主要是以定性分析和实际加工经验为基础的,缺乏定量分析和操作规范,不仅叶片零件的精度和质量难以保证,而且对测量环境要求高,并且误差值的检测精度低。因此如何快速准确的分析出叶片的加工误差,是保证加工精度达到设计要求的重要环节。Blade is the core component of aero-engine and gas turbine, and it is also a typical thin-walled part. Its manufacturing and processing level directly affects the aerodynamic performance of the engine. With the continuous development of aerodynamic design technology, structural technology and material technology, the blades of aero-engines and gas turbines have structural characteristics of bending, twisting, thinning, sweeping, and lightness. Not only the processing technology is complex, the precision requirements are high, and the processing quality is direct. affect the overall performance of the engine. In engineering practice, in order to eliminate the adverse effect on the processing accuracy of thin-walled blades, some technological measures or auxiliary measurement methods are often used to reduce the processing deformation and processing errors of the blades, but this will inevitably increase many additional processes , and these technological measures are mainly based on qualitative analysis and actual processing experience, lacking quantitative analysis and operating specifications, not only the accuracy and quality of blade parts are difficult to guarantee, but also the requirements for the measurement environment are high, and the detection accuracy of error values is low. Therefore, how to quickly and accurately analyze the machining error of the blade is an important link to ensure that the machining accuracy meets the design requirements.
发明专利201210255187.0中公开了一种叶片全尺寸快速检测方法与设备,该方法是基于三维光学测量系统和面结构光投影轮廓术对叶片进行测量。在发明专利201210350382.1中提出了一种快速实现电感量仪检测叶片型面的方法,是利用电感量仪进行初始零位调整,然后用三坐标测量机测量叶片数据获得误差值。其不足是对测量环境要求高,并且误差值的检测精度低。Invention patent 201210255187.0 discloses a method and equipment for rapid full-scale detection of blades. The method is based on a three-dimensional optical measurement system and surface structured light projection profilometry to measure blades. In the invention patent 201210350382.1, a method of quickly realizing the detection of the blade profile by the inductance meter is proposed, which is to use the inductance meter to adjust the initial zero position, and then use the three-coordinate measuring machine to measure the blade data to obtain the error value. Its disadvantage is that it has high requirements on the measurement environment, and the detection accuracy of the error value is low.
发明内容Contents of the invention
为避免现有技术存在的不足,克服其对测量环境要求高,且误差值的检测精度低的问题,本发明提出一种薄壁叶片误差分析方法,其采用测量数据点模型与设计数据点模型进行匹配拟合,快速准确分析出加工后叶片的测量数据和叶片理论数据之间的误差,并直观反映出误差值的大小。该误差分析方法,通过三坐标测量机在加工后叶片上采用Z轴等高法测量三组数据点,针对设计叶片提取与测量数据点等高的三组数据,并对测量数据点进行分析去噪处理,对精简后的测量数据点与设计数据进行配准建立目标函数;用粒子群算法优化求解目标函数;获得叶片误差分析结果。In order to avoid the deficiencies of the existing technology and overcome the high requirements for the measurement environment and the low detection accuracy of the error value, the present invention proposes an error analysis method for thin-walled blades, which uses the measurement data point model and the design data point model Perform matching and fitting, quickly and accurately analyze the error between the measured data of the processed blade and the theoretical data of the blade, and intuitively reflect the size of the error value. In this error analysis method, three sets of data points are measured on the processed blade by a three-coordinate measuring machine using the Z-axis contour method, and three sets of data that are equal to the height of the measured data points are extracted for the designed blade, and the measured data points are analyzed and removed. Noise processing, registration of the simplified measurement data points and design data to establish the objective function; use particle swarm optimization algorithm to optimize and solve the objective function; obtain the blade error analysis results.
本发明薄壁叶片误差分析方法,其特点在于包括以下步骤:Thin-walled blade error analysis method of the present invention is characterized in that comprising the following steps:
步骤1.采用三坐标测量机对加工后的叶片进行测量,并采用Z轴等高法获得三组截面数据点;Step 1. Use a three-coordinate measuring machine to measure the processed blade, and use the Z-axis contour method to obtain three sets of cross-sectional data points;
步骤2.对叶片设计模型获取与步骤1等高的对应的三组叶片截面数据点;Step 2. Obtain three groups of blade cross-section data points corresponding to the same height as step 1 for the blade design model;
步骤3.将测量数据进行分析去噪预处理,其具体步骤如下:Step 3. The measurement data is analyzed and denoised preprocessing, and its specific steps are as follows:
(1)对于测量点集的n个有序数据点Pi(i=0,1,2…n),Pi-1、Pi、Pi+1是相邻三点,组成一个三角形;(1) For n ordered data points P i (i=0,1,2...n) of the measurement point set, P i-1 , P i , and P i+1 are three adjacent points, forming a triangle;
(2)α表示与的夹角,d=|Pi-1Pi|sinα表示弦高;(2) α means and The included angle, d=|P i-1 P i |sinα represents the chord height;
(3)对定角度△α和弦高△d限值,将处在两个阀值内的点过滤掉。△α取0~10度,△d按式(1)确定:(3) For the fixed angle △α and the chord height △d limit, filter out the points within the two thresholds. △α takes 0~10 degrees, and △d is determined according to formula (1):
其中,Nb表示初始点数,Na表示简化后的点数,Among them, N b represents the initial number of points, N a represents the number of simplified points,
表示相邻点距离的均值; Indicates the mean value of the distance between adjacent points;
步骤4.对精简后的测量数据点集与设计数据进行配准,其具体步骤如下:Step 4. Registering the streamlined measurement data point set with the design data, the specific steps are as follows:
(1)通过沿Z轴的转动和绕X轴、Y轴的移动把两组数据转换到相同的坐标系下,旋转变换矩阵为:(1) Transform the two sets of data into the same coordinate system by rotating along the Z-axis and moving around the X-axis and Y-axis. The rotation transformation matrix is:
γ为测量数据点在加工坐标系中绕设计数据点旋转的角度,γ is the rotation angle of the measurement data point around the design data point in the processing coordinate system,
Px、Py为测量数据点相对于设计数据点的位移量;P x , P y are the displacements of the measured data points relative to the design data points;
(2)建立目标函数使两组数据对应点之间的距离值平均值达到最小,并且引入权值mi来提高配准精度,目标函数由(2)式确定:(2) Establish the objective function to minimize the average distance value between the corresponding points of the two sets of data, and introduce the weight m i to improve the registration accuracy. The objective function is determined by formula (2):
其中,Qi为设计数据点,Pi为测量数据点,li表示在Qi处叶片截面的厚度,lmax表示在同一截面上厚度的最大值;Among them, Q i is the design data point, P i is the measurement data point, l i represents the thickness of the blade section at Q i , and l max represents the maximum value of the thickness on the same section;
(3)用粒子群算法求解,使目标函数值达到最小的最优旋转变换矩阵;(3) Use the particle swarm optimization algorithm to solve the optimal rotation transformation matrix that minimizes the objective function value;
步骤5.根据配准后的结果计算加工后叶片的误差,所求取的误差包括轮廓度误差、扭曲度误差、倾斜度误差、弯曲度误差;Step 5. Calculate the error of the processed blade according to the result after registration, and the calculated error includes contour error, twist error, inclination error, and curvature error;
步骤6.对得到的误差分析结果。Step 6. Analyzing the obtained error results.
有益效果Beneficial effect
本发明薄壁叶片误差分析方法,采用测量数据点模型与设计数据点模型进行匹配的方法,精确的计算出叶片的误差值,保证在叶片型面检测过程中检测结果更为精确可靠,同时提高了误差分析效率。分析方法可以快速准确分析出加工后叶片的测量数据和叶片理论数据之间的误差,并直观反映出误差值的大小;缩短了误差分析周期,实现了自动化分析。The thin-wall blade error analysis method of the present invention adopts the method of matching the measurement data point model with the design data point model to accurately calculate the error value of the blade, so as to ensure that the detection result is more accurate and reliable during the detection process of the blade profile, and at the same time improve improve the efficiency of error analysis. The analysis method can quickly and accurately analyze the error between the measured data of the processed blade and the theoretical data of the blade, and intuitively reflect the size of the error value; the error analysis cycle is shortened, and automatic analysis is realized.
附图说明Description of drawings
下面结合附图和实施方式对本发明一种薄壁叶片误差分析方法作进一步的详细说明。A method for analyzing errors of thin-walled blades according to the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
图1是本发明薄壁叶片误差分析方法的流程图。Fig. 1 is a flow chart of the error analysis method for thin-walled blades of the present invention.
图2是针对加工后叶片测量的三组数据点的示意图。Figure 2 is a schematic diagram of three sets of data points measured for a machined blade.
图3是针对叶片设计模型提取的与测量数据点分别等高的三组数据点。Fig. 3 is three sets of data points extracted from the blade design model that are equal in height to the measured data points.
具体实施方式:Detailed ways:
本实施例是一种薄壁叶片误差分析方法。This embodiment is an error analysis method for a thin-walled blade.
参阅图1、图2、图3,本发明采用测量数据点模型与设计数据点模型进行匹配的方法,快速准确分析出加工后叶片的测量数据和叶片理论数据之间的误差,并直观反映出误差值的大小。Referring to Fig. 1, Fig. 2 and Fig. 3, the present invention adopts the method of matching the measured data point model with the design data point model, quickly and accurately analyzes the error between the measured data of the processed blade and the theoretical data of the blade, and intuitively reflects The magnitude of the error value.
下面应用误差分析方法针对某型航空发动机加工后的薄壁叶片进行分析,具体步骤如下:Next, the error analysis method is used to analyze the thin-walled blades processed by a certain type of aero-engine, and the specific steps are as follows:
第一步,将加工后的叶片用三坐标测量机进行测量;并采用Z轴等高法获得三组截面数据点,如图2所示;The first step is to measure the processed blade with a three-coordinate measuring machine; and use the Z-axis contour method to obtain three sets of cross-sectional data points, as shown in Figure 2;
第二步,对叶片设计模型获取与步骤1等高的对应的三组叶片截面数据点,如图3所示;The second step is to obtain three sets of blade cross-section data points corresponding to the same height as step 1 for the blade design model, as shown in Figure 3;
第三步,对测量数据进行分析去噪预处理,其具体步骤如下:The third step is to analyze and denoise the measurement data, and the specific steps are as follows:
(1)对于测量点集的n个有序数据点Pi(i=0,1,2…n),Pi-1、Pi、Pi+1是相邻三点,组成一个三角形;(1) For n ordered data points P i (i=0,1,2...n) of the measurement point set, P i-1 , P i , and P i+1 are three adjacent points, forming a triangle;
(2)α表示与的夹角,d=|Pi-1Pi|sinα表示弦高;(2) α means and The included angle, d=|P i-1 P i |sinα represents the chord height;
(3)对定角度△α和弦高△d限值,将处在两个阀值内的点过滤掉,△α取0~10度,△d按式(1)确定:(3) For the limit value of angle △α and chord height △d, filter out the points within the two thresholds, △α is 0 to 10 degrees, and △d is determined according to formula (1):
其中,Nb表示初始点数,Na表示简化后的点数,Among them, N b represents the initial number of points, N a represents the number of simplified points,
表示相邻点距离的均值; Indicates the mean value of the distance between adjacent points;
第四步,对精简后的测量数据点集与设计数据进行配准,其具体步骤如下:The fourth step is to register the simplified measurement data point set with the design data, and the specific steps are as follows:
(1)通过沿Z轴的转动和绕X轴、Y轴的移动把两组数据转换到相同的坐标系下,旋转变换矩阵为:(1) Transform the two sets of data into the same coordinate system by rotating along the Z-axis and moving around the X-axis and Y-axis. The rotation transformation matrix is:
γ为测量数据点在加工坐标系中绕设计数据点旋转的角度,γ is the rotation angle of the measurement data point around the design data point in the processing coordinate system,
Px、Py为测量数据点相对于设计数据点的位移量;P x , P y are the displacements of the measured data points relative to the design data points;
(2)建立目标函数使两组数据对应点之间的距离值平均值达到最小,并且引入权值mi来提高配准精度,目标函数由(2)式确定:(2) Establish the objective function to minimize the average distance value between the corresponding points of the two sets of data, and introduce the weight m i to improve the registration accuracy. The objective function is determined by formula (2):
其中,Qi为设计数据点,Pi为测量数据点,li表示在Qi处叶片截面的厚度,lmax表示在同一截面上厚度的最大值;Among them, Q i is the design data point, P i is the measurement data point, l i represents the thickness of the blade section at Q i , and l max represents the maximum value of the thickness on the same section;
(3)用粒子群算法求解使目标函数值达到最小的最优旋转变换矩阵;(3) Use the particle swarm optimization algorithm to solve the optimal rotation transformation matrix that minimizes the objective function value;
第五步,根据配准后的结果,计算加工后叶片的误差,所求取的误差包括轮廓度误差、扭曲度误差、倾斜度误差、弯曲度误差;The fifth step is to calculate the error of the processed blade according to the registration result, and the calculated error includes contour error, twist error, inclination error, and curvature error;
第六步,得到误差分析结果。The sixth step is to get the error analysis results.
本发明薄壁叶片误差分析方法,通过对加工后的薄壁叶片进行分析,研究找出叶片误差,得到误差分析结果;实现对薄壁叶片精加工过程中的有效控制,大幅提高了加工精度和效率。通过对某型发动机叶片的误差分析,验证了本发明方法完全能够保证叶片误差分析的准确度,并且实现了自动化分析。The error analysis method of the thin-walled blade of the present invention analyzes the processed thin-walled blade to find out the error of the blade, and obtains the error analysis result; realizes effective control in the finishing process of the thin-walled blade, and greatly improves the machining accuracy and efficiency. Through the error analysis of a certain type of engine blade, it is verified that the method of the present invention can fully guarantee the accuracy of blade error analysis and realize automatic analysis.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102402103A CN103292760A (en) | 2013-06-17 | 2013-06-17 | Thin-wall blade error analytical method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102402103A CN103292760A (en) | 2013-06-17 | 2013-06-17 | Thin-wall blade error analytical method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103292760A true CN103292760A (en) | 2013-09-11 |
Family
ID=49094023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102402103A Pending CN103292760A (en) | 2013-06-17 | 2013-06-17 | Thin-wall blade error analytical method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103292760A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104476109A (en) * | 2014-09-25 | 2015-04-01 | 北京航星机器制造有限公司 | Skin structure accurate positioning machining method |
CN107526875A (en) * | 2017-07-31 | 2017-12-29 | 电子科技大学 | A kind of aerial blade type face mismachining tolerance method for visualizing |
CN110260836A (en) * | 2019-07-09 | 2019-09-20 | 中国航发哈尔滨东安发动机有限公司 | A kind of method at rapid survey small-sized blade profile bending angle |
CN110672032A (en) * | 2019-10-16 | 2020-01-10 | 合肥学院 | Blade machining torsion error measuring method based on chord line |
CN111504223A (en) * | 2020-04-22 | 2020-08-07 | 荆亮 | Blade profile measuring method, device and system based on line laser sensor |
CN113032930A (en) * | 2021-04-08 | 2021-06-25 | 河海大学常州校区 | Blade pitch angle correction method based on error analysis |
CN113369998A (en) * | 2021-06-30 | 2021-09-10 | 中国航发动力股份有限公司 | Die forging blade profile adaptive compensation processing method based on process model |
CN118940641A (en) * | 2024-10-12 | 2024-11-12 | 山东天舟精密机械有限公司 | A constrained registration method for turbine blade datums |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1596156A1 (en) * | 2004-05-12 | 2005-11-16 | Snecma | Three-dimensional measuring machine for simultaneous measurements |
CN101692257A (en) * | 2009-09-25 | 2010-04-07 | 华东理工大学 | Method for registering complex curved surface |
CN102564372A (en) * | 2011-12-16 | 2012-07-11 | 西北工业大学 | Blade error separation method for aeroengine |
-
2013
- 2013-06-17 CN CN2013102402103A patent/CN103292760A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1596156A1 (en) * | 2004-05-12 | 2005-11-16 | Snecma | Three-dimensional measuring machine for simultaneous measurements |
CN101692257A (en) * | 2009-09-25 | 2010-04-07 | 华东理工大学 | Method for registering complex curved surface |
CN102564372A (en) * | 2011-12-16 | 2012-07-11 | 西北工业大学 | Blade error separation method for aeroengine |
Non-Patent Citations (3)
Title |
---|
席平等: "基于CAD模型的涡轮叶片误差检测系统", 《北京航空航天大学学报》, vol. 34, no. 10, 31 October 2008 (2008-10-31) * |
王建录等: "结合分割逼近和粒子群法的燃气轮机叶片轮廓度误差计算", 《西安交通大学学报》, vol. 44, no. 7, 31 July 2010 (2010-07-31) * |
郭旭敏等: "基于改进粒子群的汽轮机高精度叶片控制算法研究", 《微电子学与计算机》, vol. 30, no. 5, 31 May 2013 (2013-05-31) * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104476109A (en) * | 2014-09-25 | 2015-04-01 | 北京航星机器制造有限公司 | Skin structure accurate positioning machining method |
CN107526875A (en) * | 2017-07-31 | 2017-12-29 | 电子科技大学 | A kind of aerial blade type face mismachining tolerance method for visualizing |
CN107526875B (en) * | 2017-07-31 | 2020-09-01 | 电子科技大学 | Visualization method for machining errors of aviation blade profile |
CN110260836A (en) * | 2019-07-09 | 2019-09-20 | 中国航发哈尔滨东安发动机有限公司 | A kind of method at rapid survey small-sized blade profile bending angle |
CN110672032A (en) * | 2019-10-16 | 2020-01-10 | 合肥学院 | Blade machining torsion error measuring method based on chord line |
CN111504223A (en) * | 2020-04-22 | 2020-08-07 | 荆亮 | Blade profile measuring method, device and system based on line laser sensor |
CN111504223B (en) * | 2020-04-22 | 2022-05-31 | 荆亮 | Blade profile measuring method, device and system based on line laser sensor |
CN113032930A (en) * | 2021-04-08 | 2021-06-25 | 河海大学常州校区 | Blade pitch angle correction method based on error analysis |
CN113032930B (en) * | 2021-04-08 | 2022-11-04 | 河海大学常州校区 | A Correction Method of Blade Spacing Angle Based on Error Analysis |
CN113369998A (en) * | 2021-06-30 | 2021-09-10 | 中国航发动力股份有限公司 | Die forging blade profile adaptive compensation processing method based on process model |
CN118940641A (en) * | 2024-10-12 | 2024-11-12 | 山东天舟精密机械有限公司 | A constrained registration method for turbine blade datums |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103292760A (en) | Thin-wall blade error analytical method | |
CN111400667B (en) | A method and system for profile detection of aviation blades based on variable tolerance zone constraints | |
CN107702651B (en) | The method for registering of four axis measuring system coordinate systems and tested leaf model coordinate system based on distance measuring sensor | |
CN104697462B (en) | A kind of aerial blade surface-type feature parameter extracting method based on axis | |
CN105627923B (en) | A kind of planning parameters of scanning paths method that blade dense point cloud based on laser ranging is obtained | |
CN106446343B (en) | A method for automatic extraction of parametric profiles of straight-grained blades of radial flow impellers | |
CN111241609A (en) | Prediction method for blade tip clearance of rotor and stator assembly of aircraft engine | |
CN104316014B (en) | Rapid measurement route planning method of sections of blades of aviation engine | |
CN102735204A (en) | Chord-line-based aviation thin-wall blade machining torsion degree error measurement method | |
CN111008980B (en) | Blade edge head section profile adaptive segmentation method based on curvature change | |
CN112013788A (en) | Method for calibrating rotation center based on curve characteristics of local leading edge of blade | |
CN104462807A (en) | Blade type value checking method for precision casting type spray pushing impeller | |
CN110672032A (en) | Blade machining torsion error measuring method based on chord line | |
CN109190232B (en) | Method for calculating and evaluating kinetic energy loss of plane stern area | |
CN108536932B (en) | Calculation method of verticality of aero-blade stacking axis based on mutual torsion constraint | |
CN116164695B (en) | Turbine guide and exhaust area measurement method thereof | |
CN102728658B (en) | Method for determining flexibility error in blade processing | |
CN106123725B (en) | Correct the reverse implementation method of the compressor blade of various dimensions mismachining tolerance | |
CN116777831A (en) | Blade front and rear edge roughness evaluation method | |
CN107726974B (en) | Iterative scanning measurement method for blades with complex curved surfaces based on ranging sensor | |
CN111062099B (en) | Leaf mean camber line construction method based on equal radius search | |
CN109060136A (en) | Background radiation influences modification method in a kind of turbo blade radiation temperature measurement based on closed contour integral | |
CN115164809A (en) | Six-axis measurement and error compensation method for blisk | |
CN114719801A (en) | Turbine guide blade welding positioning method | |
CN112362290A (en) | Method for rapidly analyzing influence of thickness tolerance of wing on resistance coefficient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130911 |