CN103290455A - A highly bioactive titanium dioxide film with micro/nano dual structure and preparation method thereof - Google Patents
A highly bioactive titanium dioxide film with micro/nano dual structure and preparation method thereof Download PDFInfo
- Publication number
- CN103290455A CN103290455A CN2013102376734A CN201310237673A CN103290455A CN 103290455 A CN103290455 A CN 103290455A CN 2013102376734 A CN2013102376734 A CN 2013102376734A CN 201310237673 A CN201310237673 A CN 201310237673A CN 103290455 A CN103290455 A CN 103290455A
- Authority
- CN
- China
- Prior art keywords
- micro
- titanium
- film
- nano
- dual structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000009977 dual effect Effects 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title abstract description 56
- 239000004408 titanium dioxide Substances 0.000 title abstract description 26
- 230000000975 bioactive effect Effects 0.000 title description 2
- 239000010936 titanium Substances 0.000 claims abstract description 42
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 17
- 230000004071 biological effect Effects 0.000 claims abstract description 11
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 230000003647 oxidation Effects 0.000 claims abstract description 6
- PSHMSSXLYVAENJ-UHFFFAOYSA-N dilithium;[oxido(oxoboranyloxy)boranyl]oxy-oxoboranyloxyborinate Chemical compound [Li+].[Li+].O=BOB([O-])OB([O-])OB=O PSHMSSXLYVAENJ-UHFFFAOYSA-N 0.000 claims abstract description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 3
- 239000012498 ultrapure water Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 239000007769 metal material Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 239000008151 electrolyte solution Substances 0.000 claims 3
- 239000004576 sand Substances 0.000 claims 1
- 238000004506 ultrasonic cleaning Methods 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 abstract description 16
- 238000007745 plasma electrolytic oxidation reaction Methods 0.000 abstract description 16
- 239000004053 dental implant Substances 0.000 abstract description 6
- 230000035876 healing Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 3
- 239000007864 aqueous solution Substances 0.000 abstract description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 238000009736 wetting Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 40
- 239000010410 layer Substances 0.000 description 18
- 239000011148 porous material Substances 0.000 description 12
- 210000000988 bone and bone Anatomy 0.000 description 10
- 239000007943 implant Substances 0.000 description 9
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 238000010883 osseointegration Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 239000000243 solution Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910021538 borax Inorganic materials 0.000 description 3
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 235000010339 sodium tetraborate Nutrition 0.000 description 3
- 239000004328 sodium tetraborate Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 238000012876 topography Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000011164 ossification Effects 0.000 description 2
- 210000000963 osteoblast Anatomy 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000002977 biomimetic material Substances 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000003075 superhydrophobic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Landscapes
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种高生物活性的具有微/纳米双重结构的二氧化钛薄膜及其制备方法。该二氧化钛薄膜可用做人体硬组织替代材料的表面改性层,属于生物医用材料和表面工程领域。The invention relates to a highly biologically active titanium dioxide film with a micro/nano dual structure and a preparation method thereof. The titanium dioxide thin film can be used as a surface modification layer of a human body hard tissue substitute material, and belongs to the fields of biomedical materials and surface engineering.
技术背景technical background
钛金属与其它金属医用植入材料相比,因其弹性模量低、密度小、比强度高、抗腐蚀性能优良、加工和成型性能良好,已经成为了牙种植体、骨创伤产品及人工关节等人体硬组织替代物和修复物的首选材料,在临床上得到了越来越广泛的应用。硬组织替代材料植入人体后必须要和周围的骨组织进行良好固定。代表性的如在义齿植入领域,牙种植体完全需要与牙槽骨形成骨结合来进行固定。而植入体与骨之间快速形成骨结合的先决条件,是建立没有结缔组织或其它非骨组织介入的骨与植入体之间的直接接触,这一点则强烈依赖于植入体的表面特性。钛金属抗腐蚀性能之所以优良,是因为其表面自然情况下会形成一层完整、致密的TiO2保护层。这层保护层具有良好的生物惰性特性,它们不会与骨化学结合,不能像含有Ca、P的涂层那样诱导骨的生长。文献[Liu XY,Chu PK,Ding CX.Surface modification of titanium,titanium alloys,andrelated materials for biomedical applications.Materials Science andEngineering,2004;R47:49–121]的研究已表明,这种具有生物惰性表面的植入体植入人体后,一般会很快地被一层纤维组织所包裹,使之与周围骨组织相隔离,从而阻止或减弱了植入体表面与骨组织之间的直接结合。因此,如何提高钛金属植入体表面二氧化钛膜层的生物活性,改善其硬组织或骨组织相容性,促进骨结合的形成,是现代生物医用钛金属能否广泛临床应用的核心问题,也是亟待解决的难点之一。Compared with other metal medical implant materials, titanium metal has become a popular choice for dental implants, bone trauma products and artificial joints because of its low elastic modulus, low density, high specific strength, excellent corrosion resistance, and good processing and forming properties. It is the preferred material for human hard tissue substitutes and restorations, and it has been more and more widely used clinically. After hard tissue replacement materials are implanted into the human body, they must be well fixed with the surrounding bone tissue. Typically, in the field of denture implantation, the dental implant completely needs to form osseointegration with the alveolar bone for fixation. The prerequisite for the rapid formation of osseointegration between the implant and the bone is to establish direct contact between the bone and the implant without the intervention of connective tissue or other non-osseous tissues, which strongly depends on the surface of the implant. characteristic. The reason why the corrosion resistance of titanium metal is excellent is that a complete and dense TiO 2 protective layer will be formed on its surface naturally. This layer of protective layer has good biological inert properties, they will not chemically bond with bone, and cannot induce bone growth like Ca and P containing coatings. Studies in the literature [Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering, 2004; R47:49–121] have shown that this plant with a biologically inert surface After the implant is implanted into the human body, it will be quickly wrapped by a layer of fibrous tissue to isolate it from the surrounding bone tissue, thus preventing or weakening the direct connection between the surface of the implant and the bone tissue. Therefore, how to improve the biological activity of the titanium dioxide film on the surface of titanium metal implants, improve the compatibility of its hard tissue or bone tissue, and promote the formation of osseointegration is the core issue of whether modern biomedical titanium can be widely used clinically. One of the difficulties that need to be solved urgently.
文献[Geetha M,Singh AK,Asokamani R,et al.Ti based biomaterials,the ultimate choice for orthopaedic implants–A review.Progress inMaterials Science,2009;54:397-425]、[Tian Y,Ding SY,Peng H,ea al.Osteoblast growth behavior on porous-structure titanium surface.Applied Surface Science,2012;261:25-30]和文献[Rupp F,Scheideler L,Olshanska N,et al.Enhancing surface free energy and hydrophilicitythrough chemical modification of microstructured titanium implantsurfaces.Journal of Biomedical Materials Research Part A,2006;76A(2):323-334]、[Stadlinger B,Lode AT,Eckelt U,et al.Surface-conditioneddental implants:an animal study on bone formation.Journal of ClinicalPeriodontology,2009;36:882-891]分别指出提高钛金属表面粗糙度、增强其表面亲水性均能够强化其和生物学环境间的交互作用,促进成骨细胞的吸附、分化及最后骨结合的形成,即增强了钛金属的生物活性。文献[黄伟欣.超亲水多孔TiO2薄膜的制备及超亲水机理研究.广州:华南理工大学,2010]则指出,材料表面的粗糙度与其表面亲水性之间存在着关联性。材料表面粗糙度的提高对其表面亲水性具有较大的促进作用。但实际上,粗糙度并不能反映材料表面微观形貌的规则特征,文献[Koch K,Barthlott W.Superhydrophobicand superhydrophilic plant surfaces:an inspiration for biomimeticmaterials.Philosophical Transactions of the Royal Society A,2009;367:1487-1509]的研究表明,只有表面具有仿生特征的微/纳米双重或多重规则结构,才有可能呈现出优异的亲水性以及生物学性能。因此,发明并制备出一种表面具有微/纳米双重或多重微观结构特征,从而具有较高粗糙度,且呈现出超亲水性性能的钛金属表面TiO2改性层是提高其生物活性的最佳方法。Literature [Geetha M, Singh AK, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopedic implants–A review. Progress in Materials Science, 2009;54:397-425], [Tian Y, Ding SY, Peng H ,ea al.Osteoblast growth behavior on porous-structure titanium surface.Applied Surface Science,2012;261:25-30] and literature [Rupp F,Scheideler L,Olshanska N,et al.Enhancing surface free energy and hydraulicity through chemical modification of microstructured titanium implant surfaces.Journal of Biomedical Materials Research Part A,2006;76A(2):323-334], [Stadlinger B,Lode AT,Eckelt U,et al.Surface-conditioned dental implants:an animal study on bone formation.Journal of ClinicalPeriodontology,2009;36:882-891] pointed out that improving the surface roughness of titanium metal and enhancing its surface hydrophilicity can strengthen the interaction between it and the biological environment, and promote the adsorption, differentiation and final bone formation of osteoblasts. The formation of the bond enhances the biological activity of titanium metal. The literature [Huang Weixin. Preparation of superhydrophilic porous TiO2 film and research on superhydrophilic mechanism. Guangzhou: South China University of Technology, 2010] pointed out that there is a correlation between the roughness of the material surface and its surface hydrophilicity. The improvement of the surface roughness of the material has a greater promotion effect on its surface hydrophilicity. But in fact, the roughness can not reflect the regular characteristics of the microscopic topography of the material surface, the literature [Koch K,Barthlott W.Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimeticmaterials.Philosophical Transactions of the Royal Society A,2009;367:1487- 1509] showed that only the micro/nano dual or multiple regular structures with bionic features on the surface could exhibit excellent hydrophilicity and biological properties. Therefore, inventing and preparing a TiO2 modified layer on the surface of titanium metal with micro/nano dual or multiple microstructural features on the surface, which has higher roughness and exhibits superhydrophilic properties, is the key to improving its biological activity. Best way.
传统微弧氧化法可以在钛金属表面制备出TiO2多孔结构,该多孔结构大多为单一的火山坑状,不具有微/纳米双重结构特征,亲水性能较差,导致其生物活性和骨结合能力也较低。选择特定的微弧氧化用电解液可以在钛金属表面制备出具有褶皱孔槽状的TiO2膜层,在提高钛金属表面粗糙度的同时,使其呈现出超亲水性性能。如本发明人先前发明的技术方案(中国发明专利:一种超润湿性褶皱孔槽状二氧化钛薄膜的制备工艺专利申请号:201210096780.5)。该技术方案是采用等离子体微弧氧化技术在纯钛表面原位获得二氧化钛薄膜。所用电解质是用1000g去离子水中加入0.07~1.2mol四硼酸钠配制而成。采用该电解质制得的薄膜特点为:表面由褶皱状孔槽和孔槽周围均匀分布的纳米级微孔组成;表面以下或膜层内部有均匀分布的多孔结构组成;表面褶皱状孔槽与膜内多孔结构间或贯通。在该制备工艺中,通过改变微弧氧化的时间来控制二氧化钛薄膜的孔槽尺寸、深度和密度,以保证所得到的二氧化钛薄膜无内应力,且具有良好的润湿性能;选择合理的占空比来获得孔槽密度和深度合适的氧化膜。由于受所选电解质的限制,利用该技术方案制得的TiO2改性膜层在生物活性表现方面仍存在不足,其主要问题如下:①四硼酸钠作为电解液时,虽然制得的TiO2膜层结构由微米级的褶皱状孔槽和孔槽周围均匀分布的纳米级微孔组成,但其微米级孔槽互联互通不够,且纳米级微孔数量较少,深度较浅,使得膜层结构以微米级孔槽结构为主,微/纳米双重结构特征不显著,膜层超亲水性能得不到充分发挥;②褶皱孔槽状结构边缘相对尖锐,各区域过渡不圆润,不利于细胞的吸附和生长。The traditional micro-arc oxidation method can prepare TiO 2 porous structure on the surface of titanium metal. The porous structure is mostly single crater-like, does not have micro/nano dual structure characteristics, and has poor hydrophilicity, which leads to its biological activity and osseointegration. Capability is also lower. Selecting a specific electrolyte for micro-arc oxidation can prepare a TiO 2 film layer with wrinkled pores and grooves on the surface of titanium metal, which can improve the surface roughness of titanium metal and make it exhibit super-hydrophilic properties. Such as the technical solution previously invented by the inventor (Chinese invention patent: a preparation process patent application number of super-wettable wrinkled pore-shaped titanium dioxide film: 201210096780.5). The technical solution is to obtain a titanium dioxide film in situ on the surface of pure titanium by using plasma micro-arc oxidation technology. The electrolyte used is prepared by adding 0.07-1.2 mol of sodium tetraborate into 1000 g of deionized water. The characteristics of the film prepared by using this electrolyte are as follows: the surface is composed of wrinkled pores and nano-scale micropores evenly distributed around the pores; the surface is composed of uniformly distributed porous structures below the surface or inside the membrane layer; the surface is wrinkled. The inner porous structure is occasionally connected. In this preparation process, the pore size, depth and density of the titanium dioxide film are controlled by changing the time of micro-arc oxidation to ensure that the obtained titanium dioxide film has no internal stress and has good wettability; To obtain an oxide film with suitable hole density and depth. Due to the limitation of the selected electrolyte, the TiO 2 modified film prepared by this technical solution still has insufficient biological activity performance. The main problems are as follows: ① When sodium tetraborate is used as the electrolyte, although the prepared TiO 2 The membrane layer structure is composed of micron-scale wrinkled pores and nanoscale micropores evenly distributed around the pores, but the interconnection of the micron-scale pores is not enough, and the number of nanoscale pores is small and the depth is shallow, making the film layer The structure is dominated by micron-scale pore structure, the micro/nano dual structure features are not obvious, and the superhydrophilic performance of the film layer cannot be fully utilized; adsorption and growth.
发明内容Contents of the invention
本发明的目的正是针对上述现有技术中所存在的问题与不足,提供了一种高生物活性的具有微/纳米双重结构的二氧化钛薄膜及其制备方法。该二氧化钛微弧氧化膜层具有显著的微/纳米双重结构特征,与已有技术相比,应具有更加优异的超亲水性性能和生物活性。作为新一代牙种植体的表面改性层来说,其骨结合的能力应更强,植入愈合期更短。该制备方法应简单,无污染,效率高。The purpose of the present invention is to provide a highly biologically active titanium dioxide film with a micro/nano dual structure and a preparation method thereof to address the problems and deficiencies in the above-mentioned prior art. The titanium dioxide micro-arc oxidation film layer has remarkable micro/nano dual structure characteristics, and should have more excellent superhydrophilic performance and biological activity compared with the prior art. As the surface modification layer of a new generation of dental implants, its osseointegration ability should be stronger, and the implant healing period should be shorter. The preparation method should be simple, pollution-free and efficient.
本发明采用的技术方案如下:一种高生物活性的具有微/纳米双重结构的二氧化钛薄膜,所述二氧化钛薄膜由在整个表面上均匀分布的槽宽为1μm-30μm的微米级沟槽和槽内外均匀分布的孔径小于1μm的纳米级孔洞构成;微米级沟槽和纳米级孔洞这两种几何结构重叠分布在整个膜层表面;微米级沟槽呈现出无规则、互联互通的弯曲褶皱状形态,将膜层材料分割成众多的蠕虫状或岛状凸起。The technical scheme adopted in the present invention is as follows: a highly biologically active titanium dioxide film with a micro/nano dual structure, the titanium dioxide film is composed of micron-scale grooves with a groove width of 1 μm-30 μm uniformly distributed on the entire surface and inside and outside the grooves. Uniformly distributed nano-scale holes with a diameter of less than 1 μm; two geometric structures, micro-scale grooves and nano-scale holes, overlap and distribute on the entire surface of the film; micro-scale grooves present irregular, interconnected, curved and wrinkled shapes. Divide the film material into numerous worm-like or island-like protrusions.
一种高生物活性的具有微/纳米双重结构的二氧化钛薄膜的制备方法:首先制取钛金属样品,用砂纸打磨工作面,超纯水清洗,高纯丙酮超声清洗,吹干或烘干;对清洁处理的钛金属表面进行微弧氧化,所采用的电源为双极性脉冲微弧氧化电源;钛金属材料为阳极,不锈钢片为阴极,将阳极和阴极放入电解液中;电解液采用在1000g去离子水中加入0.05~0.5mol四硼酸锂Li2B4O7配制;电解液的温度保持在50℃以下,在两极之间加以直流脉冲电压,其电压为360~500V,电流密度为1~4A/dm2,脉冲频率为400~700Hz,占空比为10%~30%,氧化时间为1~30分钟,最后在钛金属表面获得具有微/纳米双重结构的二氧化钛薄膜。A preparation method of a highly biologically active titanium dioxide film with a micro/nano dual structure: first prepare a titanium metal sample, polish the working surface with sandpaper, clean it with ultrapure water, ultrasonically clean it with high-purity acetone, and dry it or dry it; The cleaned titanium metal surface is subjected to micro-arc oxidation, and the power source used is a bipolar pulse micro-arc oxidation power source; the titanium metal material is used as the anode, and the stainless steel sheet is used as the cathode, and the anode and cathode are placed in the electrolyte; the electrolyte is used in Add 0.05~0.5mol lithium tetraborate Li 2 B 4 O 7 to 1000g deionized water to prepare; keep the temperature of the electrolyte below 50°C, apply a DC pulse voltage between the two electrodes, the voltage is 360~500V, and the current density is 1 ~4A/dm 2 , the pulse frequency is 400~700Hz, the duty ratio is 10%~30%, the oxidation time is 1~30 minutes, and finally a titanium dioxide film with micro/nano dual structure is obtained on the titanium metal surface.
所述钛金属为工业纯钛或钛基合金。The titanium metal is industrial pure titanium or titanium-based alloy.
在上述的制备方法中,通过改变微弧氧化的时间来控制二氧化钛薄膜中微米级沟槽的密度及分布,以保证所得到的二氧化钛薄膜微/纳米双重结构特征分布均匀,且无过度氧化造成薄膜剥落的现象;合理选择电压、电流密度、脉冲频率和占空比以获得微米级沟槽尺寸和深度合适的氧化膜,使得薄膜具有最佳的超亲水性和生物活性性能。In the above-mentioned preparation method, the density and distribution of micron-scale grooves in the titanium dioxide film are controlled by changing the time of micro-arc oxidation, so as to ensure that the obtained titanium dioxide film micro/nano dual structure features are evenly distributed, and there is no excessive oxidation to cause thin film The phenomenon of exfoliation; reasonable selection of voltage, current density, pulse frequency and duty cycle to obtain an oxide film with a suitable micron-scale trench size and depth, so that the film has the best superhydrophilic and bioactive properties.
本发明的有益技术效果是:这种二氧化钛薄膜的制备方法,是采用四硼酸锂水溶液作为电解质,对清洁处理的钛金属表面进行微弧氧化处理,电源为双极性脉冲微弧氧化电源,其工作电压为360~500V,电流密度为1~4A/dm2,脉冲频率为400~700Hz,占空比为10%~30%,氧化时间为1~30分钟。得到的薄膜形貌为:均匀分散的微米级沟槽和纳米级孔洞重叠分布在整个膜层表面。这种具有微/纳米双重结构的二氧化钛薄膜决定了它的特殊性能:膜层具有超强的润湿能力,水、油的接触角均为零。对于能够承受大的咬合力,愈合期较短的新一代牙种植体来说具有重要意义。该制备工艺简单,电解液无污染,易于大规模生产和工业化推广。The beneficial technical effect of the present invention is: the preparation method of this titanium dioxide thin film is to adopt lithium tetraborate aqueous solution as electrolyte, carry out micro-arc oxidation treatment to the cleaned titanium metal surface, power supply is bipolar pulse micro-arc oxidation power supply, its The working voltage is 360-500V, the current density is 1-4A/dm2, the pulse frequency is 400-700Hz, the duty cycle is 10%-30%, and the oxidation time is 1-30 minutes. The morphology of the obtained film is as follows: uniformly dispersed micron-scale grooves and nano-scale holes are overlapped and distributed on the entire surface of the film layer. This titanium dioxide film with a micro/nano dual structure determines its special properties: the film layer has super-wetting ability, and the contact angle of water and oil is zero. It is of great significance for a new generation of dental implants that can withstand large occlusal forces and have a short healing period. The preparation process is simple, the electrolyte is pollution-free, and it is easy for large-scale production and industrial promotion.
附图说明Description of drawings
图1为已有技术利用四硼酸钠电解液在纯钛表面微弧氧化获得的二氧化钛薄膜SEM微观形貌图(500倍)。Figure 1 is the SEM microscopic topography (500 times) of titanium dioxide thin film obtained by micro-arc oxidation on the surface of pure titanium using sodium tetraborate electrolyte in the prior art.
图2为图1的进一步放大图(4000倍)。Figure 2 is a further enlarged view of Figure 1 (4000 times).
图3为依本发明技术方案及实施例1各项参数在纯钛表面制备的具有微/纳米双重结构特征的二氧化钛薄膜SEM微观形貌图(500倍)。Fig. 3 is a SEM microscopic topography view (500 times) of a titanium dioxide thin film with micro/nano dual structure characteristics prepared on the surface of pure titanium according to the technical solution of the present invention and various parameters of Example 1.
图4为图3的进一步放大图(5000倍)。Figure 4 is a further enlarged view of Figure 3 (5000 times).
图中:1、褶皱孔槽,2、纳米级微孔,3、微米级沟槽,4、蠕虫状或岛状凸起,5、纳米级孔洞。In the figure: 1. Wrinkle hole groove, 2. Nano-scale micropore, 3. Micron-scale groove, 4. Worm-shaped or island-shaped protrusion, 5. Nano-scale hole.
图1、2示出了利用已有技术制备的二氧化钛膜层结构虽然也由微米级的褶皱孔槽1和均匀分布的纳米级微孔2组成,但其褶皱孔槽1互联互通不够,且纳米级微孔2数量较少,深度较浅,使得膜层结构以微米级孔槽1结构为主,微/纳米双重结构特征不显著,膜层超亲水性能得不到充分发挥。另外,褶皱孔槽1状结构边缘相对尖锐,各区域过渡不圆润,不利于细胞的吸附和生长。Figures 1 and 2 show that although the titanium dioxide film layer structure prepared by the prior art is also composed of micron-scale wrinkled pores 1 and uniformly distributed nanoscale micropores 2, the interconnection of the wrinkled pores 1 is not enough, and the nanoscale The number of micropores 2 is small and the depth is relatively shallow, so that the film layer structure is dominated by the structure of micron-scale pores 1, the micro/nano dual structure features are not obvious, and the superhydrophilic performance of the film layer cannot be fully exerted. In addition, the edges of the wrinkled pore-like structure are relatively sharp, and the transition of each region is not round, which is not conducive to the adsorption and growth of cells.
图3、4示出了利用本发明技术方案制备的二氧化钛薄膜由在整个表面上均匀分布的微米级沟槽3和槽内外均匀分布的纳米级孔洞5构成;微米级沟槽3和纳米级孔洞5这两种几何结构重叠分布在整个膜层表面,构成典型的微/纳米双重结构;微米级沟槽3呈现出无规则的弯曲褶皱状形态,之间互联互通,从而将膜层材料分割成众多的蠕虫状或岛状凸起4。3 and 4 show that the titanium dioxide film prepared by the technical scheme of the present invention is composed of micron-
具体实施方式Detailed ways
下面用具体实施例结合附图对本发明作进一步的详细说明。The present invention will be further described in detail below with specific embodiments in conjunction with the accompanying drawings.
在牌号为TA2的工业纯钛表面获取一种高生物活性的具有微/纳米双重结构的二氧化钛薄膜的操作步骤如下:The operation steps to obtain a highly biologically active titanium dioxide film with a micro/nano dual structure on the surface of commercially pure titanium with the grade TA2 are as follows:
(1)对纯钛基体的清洁处理(1) Cleaning treatment of pure titanium substrate
将样品切割成直径10mm,厚度2mm的圆片。然后用800#、1000#砂纸分别打磨,超纯水清洗,再用浓度为99.7%的丙酮超声清洗,冷风吹干。The sample was cut into discs with a diameter of 10 mm and a thickness of 2 mm. Then use 800#, 1000# sandpaper to polish respectively, clean with ultrapure water, then use acetone with a concentration of 99.7% to ultrasonically clean, and dry with cold air.
(2)微弧氧化(2) Micro arc oxidation
对清洁处理的纯钛表面进行微弧氧化,所采用的电源为双极性脉冲微弧氧化电源;纯钛样品为阳极,不锈钢片为阴极,将阳极和阴极放入电解液中;电解液采用在1000g去离子水中加入0.1mol四硼酸锂配制;通过冷却循环水保持所述电解液低于35℃低温状态,在两极之间加以直流脉冲电压,其电压为440V,电流密度为3A/dm2,脉冲频率为500Hz,占空比为15%,氧化时间为15分钟。The micro-arc oxidation is performed on the cleaned pure titanium surface, and the power source used is a bipolar pulse micro-arc oxidation power source; the pure titanium sample is used as the anode, and the stainless steel sheet is used as the cathode, and the anode and cathode are placed in the electrolyte; the electrolyte uses Prepared by adding 0.1mol lithium tetraborate to 1000g deionized water; keep the electrolyte below 35°C by cooling circulating water, and apply a DC pulse voltage between the two poles, the voltage is 440V, and the current density is 3A/dm 2 , the pulse frequency was 500 Hz, the duty cycle was 15%, and the oxidation time was 15 minutes.
对上述实施例所制备的二氧化钛薄膜采用SEM观察其表面形貌,如图3、4所示,所得薄膜上均匀分布着微米级沟槽3(槽宽10~20μm)和纳米级孔洞5(孔径100~300nm);微米级沟槽3和纳米级孔洞5这两种几何结构重叠分布在整个膜层表面,构成典型的微/纳米双重结构;微米级沟槽3呈现出无规则的弯曲褶皱状形态,之间互联互通,从而将膜层材料分割成众多的蠕虫状或岛状凸起4。SEM was used to observe the surface morphology of the titanium dioxide film prepared in the above examples. As shown in Figures 3 and 4, micron-scale grooves 3 (groove width 10-20 μm) and nano-scale holes 5 (aperture diameter) were evenly distributed on the obtained film. 100-300nm); micron-
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102376734A CN103290455A (en) | 2013-06-14 | 2013-06-14 | A highly bioactive titanium dioxide film with micro/nano dual structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102376734A CN103290455A (en) | 2013-06-14 | 2013-06-14 | A highly bioactive titanium dioxide film with micro/nano dual structure and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103290455A true CN103290455A (en) | 2013-09-11 |
Family
ID=49091962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102376734A Pending CN103290455A (en) | 2013-06-14 | 2013-06-14 | A highly bioactive titanium dioxide film with micro/nano dual structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103290455A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103668390A (en) * | 2014-01-02 | 2014-03-26 | 四川大学 | Titanium or titanium-alloy material with micron-nano coarse-structure surface and preparation method thereof |
CN108588626A (en) * | 2017-03-07 | 2018-09-28 | 中国科学院上海硅酸盐研究所 | A kind of micrometer/nanometer multilevel hierarchy coating of titanium dioxide and preparation method thereof with excellent biocompatibility |
CN108950647A (en) * | 2018-07-26 | 2018-12-07 | 东北大学 | A kind of electrochemical preparation method of boronising Nano tube array of titanium dioxide |
CN109487323A (en) * | 2018-12-20 | 2019-03-19 | 大连理工大学 | A kind of electrolyte in surface of metal titanium differential arc oxidation preparation perforated membrane containing biological active elements |
CN114473212A (en) * | 2022-03-11 | 2022-05-13 | 北京理工大学 | Pyrolytic carbon surface self-organizing three-level micro-nano composite structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102605411A (en) * | 2012-03-31 | 2012-07-25 | 大连理工大学 | Preparation process of a super-wettable wrinkled and grooved titanium dioxide film |
-
2013
- 2013-06-14 CN CN2013102376734A patent/CN103290455A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102605411A (en) * | 2012-03-31 | 2012-07-25 | 大连理工大学 | Preparation process of a super-wettable wrinkled and grooved titanium dioxide film |
Non-Patent Citations (3)
Title |
---|
BY KERSTIN KOCH,WILHELM BARTHLOTT: "《Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials》", 《PHIL. TRANS. R. SOC.》, vol. 367, 16 March 2009 (2009-03-16), pages 1487 - 1509 * |
M. S. VASIL’EVA, V. S. RUDNEV, L. M. TYRINA ET AL: "《Phase Composition of Coatings Formed on Titanium in Borate Electrolyte by Microarch Oxidation》", 《APPLIED ELECTROCHEMISTRY》, vol. 75, no. 4, 30 April 2002 (2002-04-30), pages 569 - 572 * |
黄伟欣,黄洪,雷鸣,陈焕钦: "《超亲水多孔TiO2 薄膜的制备及其超亲水机理研究》", 《化工新型材料》, vol. 38, no. 5, 31 May 2010 (2010-05-31), pages 63 - 65 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103668390A (en) * | 2014-01-02 | 2014-03-26 | 四川大学 | Titanium or titanium-alloy material with micron-nano coarse-structure surface and preparation method thereof |
CN103668390B (en) * | 2014-01-02 | 2016-10-26 | 四川大学 | There is the titanium on micro-nano rough structure surface or titanium alloy material and preparation method |
CN108588626A (en) * | 2017-03-07 | 2018-09-28 | 中国科学院上海硅酸盐研究所 | A kind of micrometer/nanometer multilevel hierarchy coating of titanium dioxide and preparation method thereof with excellent biocompatibility |
CN108588626B (en) * | 2017-03-07 | 2020-12-11 | 中国科学院上海硅酸盐研究所 | A kind of micro/nano hierarchical structure titanium dioxide coating with excellent biocompatibility and preparation method thereof |
CN108950647A (en) * | 2018-07-26 | 2018-12-07 | 东北大学 | A kind of electrochemical preparation method of boronising Nano tube array of titanium dioxide |
CN109487323A (en) * | 2018-12-20 | 2019-03-19 | 大连理工大学 | A kind of electrolyte in surface of metal titanium differential arc oxidation preparation perforated membrane containing biological active elements |
CN114473212A (en) * | 2022-03-11 | 2022-05-13 | 北京理工大学 | Pyrolytic carbon surface self-organizing three-level micro-nano composite structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101871118B (en) | Method for preparing titanium dioxide layer with multi-level pore structure on surface of medicinal titanium | |
CN103736148B (en) | The method preparing titanium implant and the titanium implant obtained | |
CN102743789B (en) | Artificial tooth root with micro-nano hierarchical topologic surface structure and preparation method of artificial tooth root | |
CN102586786B (en) | Method for forming graded multi-hole shape on titanium surface | |
CN101919741B (en) | Dental implant with micron-nanometer multi-grade micro-surface structure and preparation method | |
CN101254138B (en) | A Microporous Treatment Method for Rough Surface of Bone Prosthesis | |
CN104562145B (en) | A kind of method that combined oxidation prepares bioceramic film | |
CN102090982B (en) | An artificial tooth root or joint material and its preparation method by micro-arc oxidation | |
CN103834945B (en) | A kind of titanium oxide composite coating and preparation method thereof | |
CN103388173B (en) | Method for constructing micro-nano ordered structure on titanium and titanium alloy surface | |
TWI480026B (en) | Bio-implant having screw body selectively formed with nanoporous in spiral groove and method of making the same | |
CN102732882B (en) | Artificial joint with micro-nano graded topological surface structure and preparation method of artificial joint | |
CN103290455A (en) | A highly bioactive titanium dioxide film with micro/nano dual structure and preparation method thereof | |
CN105420789A (en) | Hydrophobic composite biological activity coating on surface of pure-magnesium or magnesium alloy and preparation method of hydrophobic composite biological activity coating | |
JP2012143416A (en) | Dental implant and surface treatment method of dental implant | |
CN103361703A (en) | Preparation method of titanium surface multilevel porous structure | |
CN103142298B (en) | Implanting body with multiple-size surface structure and preparation method thereof | |
CN101310897A (en) | Titanium material with biological activity and preparation method thereof | |
CN113529158B (en) | A process for preparing porous structure on the surface of TC4 titanium alloy by electrochemical dealloying | |
CN102747405A (en) | Preparation method of composite ceramic coating for improving bioactivity of medical magnesium alloy | |
CN104726874A (en) | Titanium surface material with micro-nano grading permeability and preparation method for titanium surface material | |
CN107012492B (en) | The preparation method of surface modified micropore metal implant | |
CN104404602B (en) | Preparation method of NiTi shape memory alloy with porous surface | |
CN104746120B (en) | Carbon/carbon compound material containing bioactivity calcium phosphate coating and preparation method thereof | |
CN105496577B (en) | Titanium implant and preparation method with similar Bone resoiption pit surface topography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130911 |