CN103285885B - CdS-intercalated and Mn-doped K4Nb6O17 composite photocatalytic material and preparation method thereof - Google Patents
CdS-intercalated and Mn-doped K4Nb6O17 composite photocatalytic material and preparation method thereof Download PDFInfo
- Publication number
- CN103285885B CN103285885B CN201210596465.9A CN201210596465A CN103285885B CN 103285885 B CN103285885 B CN 103285885B CN 201210596465 A CN201210596465 A CN 201210596465A CN 103285885 B CN103285885 B CN 103285885B
- Authority
- CN
- China
- Prior art keywords
- cds
- doping
- intercalation
- composite photocatalyst
- photocatalyst material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 39
- 239000002131 composite material Substances 0.000 title claims abstract description 31
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 238000009830 intercalation Methods 0.000 claims abstract description 30
- 230000002687 intercalation Effects 0.000 claims abstract description 29
- 239000011941 photocatalyst Substances 0.000 claims abstract description 27
- 239000003054 catalyst Substances 0.000 claims abstract description 13
- 238000007146 photocatalysis Methods 0.000 claims abstract description 12
- 238000005987 sulfurization reaction Methods 0.000 claims abstract description 5
- 238000005342 ion exchange Methods 0.000 claims abstract description 3
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 230000015556 catabolic process Effects 0.000 claims description 5
- 238000006555 catalytic reaction Methods 0.000 claims description 5
- 238000006731 degradation reaction Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000003746 solid phase reaction Methods 0.000 claims description 4
- 238000010671 solid-state reaction Methods 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- 239000000356 contaminant Substances 0.000 claims description 2
- FVIZARNDLVOMSU-UHFFFAOYSA-N ginsenoside K Natural products C1CC(C2(CCC3C(C)(C)C(O)CCC3(C)C2CC2O)C)(C)C2C1C(C)(CCC=C(C)C)OC1OC(CO)C(O)C(O)C1O FVIZARNDLVOMSU-UHFFFAOYSA-N 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 238000003836 solid-state method Methods 0.000 claims description 2
- 238000004073 vulcanization Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 abstract description 5
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 2
- 150000001412 amines Chemical class 0.000 abstract 1
- 230000000593 degrading effect Effects 0.000 abstract 1
- 239000011229 interlayer Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 abstract 1
- 238000010532 solid phase synthesis reaction Methods 0.000 abstract 1
- 238000005119 centrifugation Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 4
- 229940043267 rhodamine b Drugs 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 206010013786 Dry skin Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Catalysts (AREA)
Abstract
The invention belongs to the technical field of photocatalysis and relates to a CdS-intercalated and Mn-doped K4Nb6O17 composite photocatalytic material and a preparation method thereof, which solve the problem of low visible-light utilization rate of a traditional photocatalyst. The catalyst material disclosed by the invention is prepared by intercalating CdS into Mn-doped K4Nb6O17 board layers; the Mn-doped K4Nb6O17 is prepared by adopting a high-temperature solid-phase method, and by an interlayer ion exchange action, an amine intercalation reaction and a sulfuration action, the CdS-intercalated and Mn-doped K4Nb6O17 composite photocatalytic material is prepared and is used for degrading organic pollutants by photocatalysis; and compared with an existing laminated compound photocatalytic material, the CdS-intercalated and Mn-doped K4Nb6O17 composite photocatalytic material has the advantage that the catalytic activity is obviously improved under the visible light.
Description
Technical field
The present invention relates to a kind of CdS intercalation Mn doping K
4nb
6o
17composite photocatalyst material and preparation method thereof, belongs to photocatalysis technology field, can be used for the preparation of green novel energy source hydrogen or the catalytic degradation of pollutant.
Background technology
Energy and environment problem is two hang-ups that the mankind face for a long time, on the one hand, earth non-renewable resources are along with the use of accumulating over a long period, approach exhaustion, according to interrelated data display, the Expenditure Levels of the global coal resources more with current earth storage capacity, is also about to exhausted less than the times of 200 years, oil can only maintain the time less than 100 years especially, develops renewable green alternate resources extremely urgent; On the other hand, along with the fast development of industry, a large amount of discharges of various discarded object, severe contamination natural environment, threatens the sustainable development of human society, and control of environmental pollution problem is very urgent.Last century the seventies, the people such as A.Fujishima and K.Honda are first with TiO
2for in the photoelectrochemical cell of positive electrode, find the photocatalysis Decomposition effect of water, opened new era of photocatalysis field.In the last few years, Japan, the research of conductor photocatalysis hydrogen manufacturing had been risen gradually in the states such as the U.S., and how to produce at catalyst, and the aspects such as catalyst modification achieve certain progress.Recently, semiconductor light-catalyst purification also achieves with decomposing organic pollutant aspect and applies widely.
Photocatalitic Technique of Semiconductor refers to the irradiation utilizing light to semiconductor, makes electronics produce valence band to the transition of conduction band, conduction band produces light induced electron, valence band produces hole.Wherein, light induced electron can by the H in water
+be reduced to hydrogen, organic matter degradation can be CO by hole
2and H
2the inorganic molecules such as O.Preparing highly active photochemical catalyst is the key issue improving photocatalysis hydrogen production efficiency.Layered semiconductor photochemical catalyst itself has hydrogen and generates activated centre, water just can be made to resolve into H without the need to supporting the noble metals such as Pt
2and O
2, be study many class photochemical catalyst, wherein K
4nb
6o
17it is most typical lamellar compound.K
4nb
6o
17nbO
6the two-dimensional layer compound that octahedra unit connects and composes through bridging oxygen.But, K
4nb
6o
17energy gap is about 3.2 eV, the same with most of lamellar compound, cannot absorb visible ray.
Ion doping and low energy gap molecule intercalation are two kinds and change photochemical catalyst energy gap, improve the important method of its visible ray utilization rate.Foreign aid's ion is mixed K
4nb
6o
17in lattice, be equivalent at K
4nb
6o
17conduction band and valence band between insert new conduction level, form new activated centre, change K
4nb
6o
17band structure, reduces its energy gap, expands K
4nb
6o
17to can by the response of light.By low energy gap molecule intercalation K
4nb
6o
17, utilize the sensibilization of low energy gap molecule to improve the visible light-responded scope of potassium niobate, and suppress photo-generate electron-hole compound, improve photocatalytic activity.But single modified K
4nb
6o
17visible light catalysis activity is still unsatisfactory, constrains its practical application and popularization.Therefore, combine ion doping and intercalation synthesis two kinds of methods common modified photocatalytic material, is the new approach improving catalysis material.
At present about CdS intercalation Mn doping K
4nb
6o
17the preparations and applicatio of composite photocatalyst material there is not yet relevant report.
Summary of the invention
The object of the invention is the deficiency overcoming existing photocatalysis technology, propose a kind of CdS intercalation Mn doping K
4nb
6o
17composite photocatalyst material and preparation method thereof, is intended to the utilization rate and the photocatalysis efficiency that improve visible ray.
Content of the present invention is a kind of CdS intercalation Mn doping K
4nb
6o
17the preparation method of composite photocatalyst material and Photocatalytic Performance Study thereof, the technical scheme taked is:
a kind of CdS intercalation Mn doping K
4nb
6o
17composite photocatalyst material, this composite photocatalyst material structure: Mn ion substitution Nb ion enters lamellar compound K
4nb
6o
17in sites, nanoscale CdS molecule inserts K simultaneously
4nb
6o
17between flaggy, form a kind of nanoscale CdS intercalation Mn ion doping K
4nb
6o
17compound catalysis material.Nb/Mn atomic molar is 10:1 ~ 10:4 than the mol ratio for 100:1 ~ 39:1, Mn+Nb and Cd, and the preparation of this catalyst comprises the following steps, and adopts high temperature solid-state method to prepare Mn doping K
4nb
6o
17body, and then adopt acid exchange, ion-exchange, vulcanisation step to prepare CdS intercalation Mn doping K
4nb
6o
17composite photocatalyst material.
CdS intercalation Mn adulterates K
4nb
6o
17the preparation method of composite photocatalyst material refers to and takes Nb by amount of substance than 3:2
2o
5, K
2cO
3, Nb/Mn mol ratio is that 100:1 ~ 39:1 takes MnO in addition
2, with Nb
2o
5, K
2cO
3be ground, high temperature solid state reaction 2 ~ 6 h at 800 ~ 1000 DEG C, after being cooled to room temperature, sample be first placed on the C of 0.5 ~ 1.5 mol/L hydrochloric acid, 20 ~ 80 % percents by volume
4h
9nH
2cd (the CH of solution, 0.3 ~ 0.5 mol/L
3cOO)
2in solution, stir 1 ~ 72 h continuously under 25 ~ 90 DEG C of water-baths or microwave irradiation condition, after product separation drying, will H be placed in
2sulfuration in S gaseous environment, namely obtains CdS intercalation Mn doping K
4nb
6o
17composite photocatalyst material (K
4nb
6-xmn
xo
17/ CdS).
preferablythe preparation method of this composite photocatalyst material, comprises the following steps:
Step one takes Nb by amount of substance than 3:2
2o
5, K
2cO
3(preferred K
2cO
3separately excessive 10% to compensate the loss of alkali-metal vaporization at high temperature), Nb/Mn mol ratio is that 100:1 ~ 39:1 takes MnO in addition
2, with Nb
2o
5, K
2cO
3be ground, high temperature solid state reaction 2 ~ 6 h at 800 ~ 1000 DEG C, after being cooled to room temperature, take out (being preferably ground to powdery), obtain Mn doping K
4nb
6o
17composite catalyst (K
4nb
6-xmn
xo
17).
The doped samples that step one obtains by step 2 is placed in 0.5 ~ 1.5 mol/L hydrochloric acid, stirs 1 ~ 72 h continuously under 25 ~ 90 DEG C of water-baths or microwave irradiation condition, and dry after product centrifugation (preferably 50 ~ 110 DEG C of dryings 8 ~ 20 h).
The product that step 2 obtains by step 3 is placed in the C of 20 ~ 80 % percents by volume
4h
9nH
2in the aqueous solution, stir 1 ~ 72 h continuously under 25 ~ 90 DEG C of water-baths or microwave irradiation condition, dry after product centrifugation (preferably 50 ~ 110 DEG C of dryings 8 ~ 20 h).
The product that step 3 obtains by step 4 is placed in the Cd (CH of 0.3 ~ 0.5 mol/L
3cOO)
2in the aqueous solution, stir 1 ~ 72 h continuously under 25 ~ 90 DEG C of water-baths or microwave irradiation condition, dry after product centrifugation (preferably 50 ~ 110 DEG C of dryings 8 ~ 20 h).
The product that step 4 obtains by step 5 is placed in H
2sulfuration in S gaseous environment (preferably after sample all turns yellow), takes out sample, namely obtains CdS intercalation Mn doping K
4nb
6o
17composite photocatalyst material (K
4nb
6-xmn
xo
17/ CdS).
The CdS intercalation Mn doping K that step 5 obtains
4nb
6o
17composite photocatalyst material, both can be applicable to photocatalysis degradation organic contaminant, can be used for again decomposition water (preferably can add hole sacrifice agent) hydrogen manufacturing.
Accompanying drawing explanation
Fig. 1 is the powder X-ray diffractogram (XRD) of different materials of the present invention.a:K
4Nb
6O
17;b:K
4Nb
5.85Mn
0.15O
17;c:K
4Nb
5.85Mn
0.15O
17/CdS。
Fig. 2 is CdS intercalation Mn of the present invention doping K
4nb
6o
17photocatalyzed Hydrogen Production figure under composite photocatalyst material visible ray.
Fig. 3 is CdS intercalation Mn of the present invention doping K
4nb
6o
17to the photocatalytic degradation figure of rhodamine B under composite photocatalyst material visible ray.
Detailed description of the invention
Catalyst preparing and the using method of the present invention's proposition is further described below by examples of implementation.
embodiment 1
Take Nb
2o
5, K
2cO
3, be that 10:0.1 takes MnO by Nb/Mn mol ratio in addition
2, with Nb
2o
5, K
2cO
3be ground, at 800 ~ 1000 DEG C, high temperature solid state reaction 2 ~ 6 h, takes out after being cooled to room temperature, is ground to powdery, obtains Mn doping K
4nb
6o
17composite catalyst (K
4nb
6-xmn
xo
17).The doped samples obtained is placed in 1 mol/L hydrochloric acid, under 80 DEG C of microwave irradiation conditions, stirs 5 h, 110 DEG C of drying 10 h after product centrifugation continuously.Product is placed in the C of 50 % percents by volume
4h
9nH
2in the aqueous solution, under 80 DEG C of microwave irradiation conditions, stir 6 h, 60 DEG C of drying 5 h after product centrifugation continuously.The product obtained is placed in the Cd (CH of 0.5 mol/L
3cOO)
2in the aqueous solution, under 80 DEG C of microwave irradiation conditions, stir 6 h, 110 DEG C of drying 10 h after product centrifugation continuously.Product is placed in H
2sulfuration in S gaseous environment, after sample all turns yellow, takes out sample, namely obtains CdS intercalation Mn doping K
4nb
6o
17composite photocatalyst material.
embodiment 2
Get 0.5 gram of sample, with 250 ml 0.1mol/L Na
2s, 0.5 mol/L Na
2sO
3, the 1 mol/L KOH aqueous solution fully mixes in reative cell, and (visible ray passes into 1 mol/L NaNO to 1000 W xenon lamps in chuck
2solution as cooling medium and filter out xenon lamp produce a small amount of ultraviolet) irradiate under react 3h.a:K
4Nb
6O
17;b:K
4Nb
5.85Mn
0.15O
17;c:K
4Nb
6O
17/CdS;d:K
4Nb
5.85Mn
0.15O
17/CdS。As seen from the figure, CdS intercalation Mn doping K
4nb
6o
17photocatalyzed Hydrogen Production amount under composite photocatalyst material visible ray is 8.55 mmol/ (g cat), far above K
4nb
6o
17body, Mn adulterates K
4nb
6o
17compound catalyze material and CdS intercalation K
4nb
6o
17composite photocatalyst material.
embodiment 3
Get 0.5g sample and put into photochemical reaction instrument with 0.01 g/L rhodamine B solution respectively, after adsorbing half an hour, with the xenon lamp of 1000 W for light source, add optical filter between light source and rhodamine B solution, isolated ultraviolet light, carries out visible light photocatalysis reaction.React 2 h, every 15 min extract 3ml solution, and detectable concentration changes.As seen from the figure, CdS intercalation Mn doping K
4nb
6o
17be 94.38% to the catalysis degradation modulus of rhodamine B under composite photocatalyst material visible ray, effect is much better than K
4nb
6o
17body, Mn adulterates K
4nb
6o
17compound catalyze material and CdS intercalation K
4nb
6o
17composite photocatalyst material.
Claims (3)
1. a CdS intercalation Mn doping K
4nb
6o
17composite photocatalyst material, is characterized in that:
This composite photocatalyst material structure: Mn ionic portions replaces Nb ion and enters lamellar compound K
4nb
6o
17in sites, nanoscale CdS molecule inserts K simultaneously
4nb
6o
17between flaggy, form a kind of nanoscale CdS intercalation Mn doping K
4nb
6o
17compound catalysis material, Nb/Mn atomic molar is than being 10:1 ~ 10:4 for the mol ratio of 100:1 ~ 39:1, Mn+Nb and Cd, and the preparation of this catalyst comprises the following steps, and adopts high temperature solid-state method to prepare Mn doping K
4nb
6o
17body, and then adopt acid exchange, ion-exchange, vulcanisation step to prepare CdS intercalation Mn doping K
4nb
6o
17composite photocatalyst material.
2. CdS intercalation Mn doping K as described in claim 1
4nb
6o
17the preparation method of composite photocatalyst material, the method refers to and takes Nb by amount of substance than 3:2
2o
5, K
2cO
3, Nb/Mn mol ratio is that 100:1 ~ 39:1 takes MnO in addition
2, with Nb
2o
5, K
2cO
3be ground, high temperature solid state reaction 2 ~ 6 h at 800 ~ 1000 DEG C, after being cooled to room temperature, sample be first placed on the C of 0.5 ~ 1.5 mol/L hydrochloric acid, 20 ~ 80 % percents by volume
4h
9nH
2cd (the CH of solution, 0.3 ~ 0.5 mol/L
3cOO)
2in solution, stir 1 ~ 72 h continuously under 25 ~ 90 DEG C of water-baths or microwave irradiation condition, after product separation drying, will H be placed in
2sulfuration in S gaseous environment, namely obtains CdS intercalation Mn doping K
4nb
6o
17composite photocatalyst material (K
4nb
6-xmn
xo
17/ CdS).
3. CdS intercalation Mn doping K as described in claim 1
4nb
6o
17composite photocatalyst material, is characterized in that both can be applicable to photocatalysis degradation organic contaminant, can be used for hydrogen production by water decomposition again.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210596465.9A CN103285885B (en) | 2012-12-26 | 2012-12-26 | CdS-intercalated and Mn-doped K4Nb6O17 composite photocatalytic material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210596465.9A CN103285885B (en) | 2012-12-26 | 2012-12-26 | CdS-intercalated and Mn-doped K4Nb6O17 composite photocatalytic material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103285885A CN103285885A (en) | 2013-09-11 |
CN103285885B true CN103285885B (en) | 2015-04-22 |
Family
ID=49087725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210596465.9A Expired - Fee Related CN103285885B (en) | 2012-12-26 | 2012-12-26 | CdS-intercalated and Mn-doped K4Nb6O17 composite photocatalytic material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103285885B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114100626B (en) * | 2021-12-07 | 2024-12-13 | 浙江浙能技术研究院有限公司 | A manganese-based intercalation type ultra-low temperature denitration catalyst and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1513040A (en) * | 2001-04-25 | 2004-07-14 | 南欧派克有限公司 | Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparating same |
-
2012
- 2012-12-26 CN CN201210596465.9A patent/CN103285885B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1513040A (en) * | 2001-04-25 | 2004-07-14 | 南欧派克有限公司 | Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparating same |
Non-Patent Citations (2)
Title |
---|
Microwave-assisted synthesis of CdS intercalated K4Nb6O17 and its photocatalytic;Wenquan Cui等;《Applied Catalysis A: General》;20120229;第417-418卷;第111-118页 * |
Ni、Co、Mn、Cu掺杂对K4 Nb6O17光催化活性的影响;杨亚辉等;《材料导报》;20050531;第19卷(第5期);第117-119页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103285885A (en) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Efficient day-night photocatalysis performance of 2D/2D Ti3C2/Porous g-C3N4 nanolayers composite and its application in the degradation of organic pollutants | |
Wang et al. | Recent progress of electrochemical production of hydrogen peroxide by two‐electron oxygen reduction reaction | |
Chu et al. | Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation | |
Miao et al. | 2D N-doped porous carbon derived from polydopamine-coated graphitic carbon nitride for efficient nonradical activation of peroxymonosulfate | |
Gong et al. | 2D CeO2 and a partially phosphated 2D Ni-based metal–organic framework formed an S-scheme heterojunction for efficient photocatalytic hydrogen evolution | |
Hu et al. | Carbon‐based metal‐free catalysts for energy storage and environmental remediation | |
Kumar et al. | Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production | |
Han et al. | Graphene/graphitic carbon nitride hybrids for catalysis | |
Hu et al. | Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation | |
Wang et al. | Oxygen-Defective Bi2MoO6/g-C3N4 hollow tubulars S-scheme heterojunctions toward optimized photocatalytic performance | |
Xing et al. | A novel 2D/2D carbonized poly-(furfural alcohol)/g-C3N4 nanocomposites with enhanced charge carrier separation for photocatalytic H2 evolution | |
CN109821528B (en) | A kind of Bi/ZnO nanometer heterogeneous material and its preparation method and application | |
ZHENG et al. | Advances in photocatalysis in China | |
Li et al. | Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production | |
Liu et al. | TiOF2/TiO2 composite nanosheets: Effect of hydrothermal synthesis temperature on physicochemical properties and photocatalytic activity | |
Vijayakumar et al. | Promoting spatial charge transfer of ZrO2 nanoparticles: embedded on layered MoS2/g-C3N4 nanocomposites for visible-light-induced photocatalytic removal of tetracycline | |
Wang et al. | Synchronous surface hydroxylation and porous modification of g-C3N4 for enhanced photocatalytic H2 evolution efficiency | |
Li et al. | Progress of copper‐based nanocatalysts in advanced oxidation degraded organic pollutants | |
Li et al. | Double-solvent-induced derivatization of Bi-MOF to vacancy-rich Bi4O5Br2: toward efficient photocatalytic degradation of ciprofloxacin in water and HCHO gas | |
Yang et al. | Ultrafine SnO2/010 facet-exposed BiVO4 nanocomposites as efficient photoanodes for controllable conversion of 2, 4-dichlorophenol via a preferential dechlorination path | |
Zhang et al. | Highly efficient photocatalytic H2O2 production on core–shell CdS@ CdIn2S4 heterojunction in non-sacrificial system | |
Rabin et al. | A procession on photocatalyst for solar fuel production and waste treatment | |
CN103272622A (en) | Preparation method of silver phosphate photocatalyst | |
Mondal et al. | Nanocomposites of GaBr3 and BiBr3 nanocrystals on BiOBr for the photocatalytic degradation of dyes and tetracycline | |
Wang et al. | Copper Single‐Atom Catalysts—A Rising Star for Energy Conversion and Environmental Purification: Synthesis, Modification, and Advanced Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150422 Termination date: 20181226 |
|
CF01 | Termination of patent right due to non-payment of annual fee |