CN103279777A - Wireless surface acoustic wave temperature measurement system reader-writer - Google Patents
Wireless surface acoustic wave temperature measurement system reader-writer Download PDFInfo
- Publication number
- CN103279777A CN103279777A CN2013101624116A CN201310162411A CN103279777A CN 103279777 A CN103279777 A CN 103279777A CN 2013101624116 A CN2013101624116 A CN 2013101624116A CN 201310162411 A CN201310162411 A CN 201310162411A CN 103279777 A CN103279777 A CN 103279777A
- Authority
- CN
- China
- Prior art keywords
- frequency
- signal
- switch
- radio
- amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本发明公开了一种无线声表面波测温系统读写器,由信号生成单元101、放大单元102、带通滤波器103、射频开关104、晶振105、本机振荡器106、带通滤波器107、低噪声放大器108、滤波器109、中频放大器110、模数转换模块111、数字信号处理模块112构成。所述的读写器采用双锁相环结构,保证了收发达到期望频率,为准确测量温度提供保障。
The invention discloses a reader/writer of a wireless surface acoustic wave temperature measurement system, which comprises a signal generation unit 101, an amplification unit 102, a band-pass filter 103, a radio frequency switch 104, a crystal oscillator 105, a local oscillator 106, and a band-pass filter 107 , a low noise amplifier 108 , a filter 109 , an intermediate frequency amplifier 110 , an analog-to-digital conversion module 111 , and a digital signal processing module 112 . The reader/writer adopts a double phase-locked loop structure, which ensures that the transceiver reaches the desired frequency and provides a guarantee for accurate temperature measurement.
Description
技术领域technical field
本发明属于无线射频技术与声表面波技术的交叉应用,尤其涉及一种无线声表面波测温电路,基于DSP技术的声表面波射频识别读写器。The invention belongs to the cross application of wireless radio frequency technology and surface acoustic wave technology, in particular to a wireless surface acoustic wave temperature measuring circuit and a surface acoustic wave radio frequency identification reader-writer based on DSP technology.
背景技术Background technique
声表面波(SAW)是传播于压电晶体表面的机械波,其声速仅为电磁波速的十万分之一,传播衰耗很小。通过叉指换乘器,将电信号装换为声信号,并局限在基片表面传播,将其利用在压力、温度等参数的测量上具有很高的准确性,如公开号为CN202305058U的一种谐振型SAW温度传感器自动测试系统,这种测试系统庞大复杂,且无法同时测试多个传感器,虽然具有谐振型传播距离远的特点,但这台系统的本质是用来测试温度传感器,不是测温阅读器,目前还尚无无线声表面波测温阅读器的相关技术公开;又如公开号为CN102622571A的一种改进的超高频RFID阅读器,这种阅读器虽然具有较远的操作距离,但其采用编码方式只是用来识别信息,并无法做到测量温度的功能。为此我们希望提供一种能够同时准确测量多个传感器的无线声表面波测温系统读写器。Surface acoustic wave (SAW) is a mechanical wave propagating on the surface of piezoelectric crystal, its sound speed is only one hundred thousandth of the electromagnetic wave speed, and the propagation attenuation is very small. Through the interdigital interchanger, the electrical signal is converted into an acoustic signal, and it is limited to spread on the surface of the substrate. It is used in the measurement of pressure, temperature and other parameters with high accuracy, such as a publication with the publication number CN202305058U A resonant SAW temperature sensor automatic test system, this test system is huge and complex, and cannot test multiple sensors at the same time. Temperature reader, there is still no related technology disclosure of wireless surface acoustic wave temperature measurement reader at present; Another example is a kind of improved UHF RFID reader whose publication number is CN102622571A, although this reader has a far operating distance , but its encoding method is only used to identify information, and cannot achieve the function of measuring temperature. For this reason, we hope to provide a wireless surface acoustic wave temperature measurement system reader that can accurately measure multiple sensors at the same time.
发明内容Contents of the invention
鉴于现有技术的以上缺点,本发明的目的是提供无线声表面波测温系统读写器,使之在测量多个传感器时无需多个读写器,并且提高温度检测的准确性。In view of the above shortcomings of the prior art, the object of the present invention is to provide a reader-writer for a wireless surface acoustic wave temperature measurement system, so that multiple readers are not needed when measuring multiple sensors, and the accuracy of temperature detection is improved.
本发明的目的是通过如下的手段实现的:The purpose of the present invention is achieved by the following means:
一种无线声表面波测温系统读写器,其特征在于,由信号生成单元101、放大单元102、带通滤波器103、射频开关104、晶振105、本机振荡器106、带通滤波器107、低噪声放大器108、滤波器109、中频放大器110、模数转换模块111、数字信号处理模块112构成;其中晶振105产生最原始的参考频率,同时将频率送到信号生成单元101与本机振荡器106,经过信号生成单元处理的频率再经过放大单元102和带通滤波器103,通过射频开关104发射探询信号;射频开关104接收前端传感器传回的响应信号,将响应信号送到带通滤波器107,再经过前置放大器108放大,与之前本机振荡器106送来的频率进行混频处理,将混频后的信号通过中频放大器110,再将信号送到模数转换模块111和数字信号处理模块112进行处理,得到温度值。A wireless surface acoustic wave temperature measurement system reader, characterized in that it consists of a
采用本发明的设备,晶振105产生最原始的参考频率,同时将频率送到信号生成单元101与本机振荡器106,经过信号生成单元处理的频率再经过放大单元102和带通滤波器103,通过射频开关104发射探询信号;射频开关104接收前端传感器传回的响应信号,将响应信号送到带通滤波器107,再经过前置放大器108放大,与之前本机振荡器106送来的频率进行混频处理,将混频后的信号通过中频放大器110,再将信号送到模数转换模块111和数字信号处理模块112进行处理,得到温度值。Using the device of the present invention, the
射频开关芯片同时连接收模块和发模块构成独立的收、发选通;射频开关芯片同时连接多通道天线扩展电路以保持信号的线性度;前置放大模块采用的低噪声放大器连接射频开关模块中的带通滤波器;低噪声放大器输出放大后的信号进入中频放大器;通过中频放大器将信息传送到DSP处理;在发送模块,将参考频率放大、滤波后连接到射频开关;同时参考频率也通过本机振荡器,与收到信号混频,保证了精确性;射频开关连接多个天线端子,每个天线可挂接多个传感器,同时测量多点温度。The RF switch chip is connected to the receiving module and the transmitting module at the same time to form an independent receiving and transmitting gate; the RF switch chip is connected to the multi-channel antenna expansion circuit at the same time to maintain the linearity of the signal; the low-noise amplifier used in the preamplifier module is connected to the RF switch module band-pass filter; the amplified signal output by the low noise amplifier enters the intermediate frequency amplifier; the information is transmitted to the DSP for processing through the intermediate frequency amplifier; in the sending module, the reference frequency is amplified and filtered and then connected to the RF switch; at the same time, the reference frequency is also passed through this The machine oscillator is mixed with the received signal to ensure the accuracy; the RF switch is connected to multiple antenna terminals, and each antenna can be connected to multiple sensors to measure the temperature of multiple points at the same time.
本发明的工作原理:Working principle of the present invention:
晶振105产生最原始的参考频率,同时将频率送到信号生成单元101与本机振荡器106,经过信号生成单元处理的频率再经过放大单元102和带通滤波器103,通过射频开关104发射探询信号;射频开关104接收前端传感器传回的响应信号,将响应信号送到带通滤波器107,再经过前置放大器108放大,与之前本机振荡器106送来的频率进行混频处理,将混频后的信号通过中频放大器110,再将信号送到模数转换模块111和数字信号处理模块112进行处理,得到温度值。The
首先,本振通过两个锁相环产生,稳定度高,作为发射探询信号和检测响应信号的基准,在整个电路中起着重要的作用。First of all, the local oscillator is generated by two phase-locked loops with high stability, and plays an important role in the entire circuit as a reference for transmitting inquiry signals and detecting response signals.
其次,在发射模块,晶振105产生最原始的参考信号,经过信号生成单元101截取需要的脉冲宽度、上变频,再经放大、滤波后,得到脉冲,再经前置功率放大器,由天线发射出去,形成探询信号。Secondly, in the transmitting module, the
接着,在接收模块,射频开关打到等待接收状态,选择时间1.2-2us,响应信号到达接收模块后,首先进过带通滤波器107进行滤波处理,滤波处理后,信号通过射频放大器108进行放大,它是低噪声放大器,经过射频滤波和放大后,信号与本振106进行下变频,;下变频后,信号进入中频滤波器109进行中频滤波,再经中频放大器110中频放大。放大H后的信号经模数转换后再送至DSP进行计算,通过公式(1)计算出温度值t。Next, in the receiving module, the RF switch is set to the waiting state, and the time is selected to be 1.2-2us. After the response signal reaches the receiving module, it first passes through the
t=(fr-fs)/Sk+t0 (1)t=(f r -f s )/S k +t 0 (1)
其中t0为基准温度值,fr为接收到的有频偏的响应频率值,fs为发送出的探寻信号的频率,Sk为SAW传感器频偏温度特性(根据不同传感器特性不同,例如有7K=1℃)。Where t 0 is the reference temperature value, fr is the received response frequency value with frequency offset, f s is the frequency of the search signal sent out, S k is the frequency offset temperature characteristic of the SAW sensor (according to different sensor characteristics, for example There is 7K=1℃).
射频开关属于单刀双掷(SPDT),选择时间1.2-2us,高电平选择发送、低电平选择接收信号,保持线性度,并提供发送与接收链之间的隔离,同时尽可能实现最小的插损。The RF switch belongs to single pole double throw (SPDT), the selection time is 1.2-2us, the high level selects the transmission, the low level selects the receiving signal, maintains linearity, and provides isolation between the transmission and reception chains, while achieving the smallest possible insertion loss.
在混频前,通过如图2所示的锁相环结构,得到稳定与理想的混频频率,进入锁相环的是一个稳定且与发射端相同的参考源,再经过分频器与压控振荡器,得到期望稳定的混频频率与收到的信号混频。Before mixing, through the phase-locked loop structure shown in Figure 2, a stable and ideal mixing frequency is obtained. What enters the phase-locked loop is a stable reference source that is the same as the transmitter, and then passes through the frequency divider and voltage Control the oscillator to obtain the expected stable mixing frequency and mix with the received signal.
采用上述的技术,本发明明显的效果是:Adopt above-mentioned technology, the obvious effect of the present invention is:
采用多天线多传感器模式,每个天线端子外接多个传感器,每个传感器谐振频率均不同,保证了能够同时测量多个点位的温度。The multi-antenna multi-sensor mode is adopted, and each antenna terminal is externally connected with multiple sensors, and the resonant frequency of each sensor is different, which ensures that the temperature of multiple points can be measured at the same time.
采用间歇的矩形矩形脉冲做信号激励,保持线性度,并提供发送与接收链之间的隔离,同时尽可能实现最小的插损。Intermittent rectangular rectangular pulses are used as signal excitation to maintain linearity and provide isolation between the transmit and receive chains while achieving the lowest possible insertion loss.
采用双锁相环结构,保证了信号的稳定性,同时保持收发模块的频率紧密型,为分离出变化的频率成分提供稳定的保障。The dual phase-locked loop structure is adopted to ensure the stability of the signal, while maintaining the frequency tightness of the transceiver module, which provides a stable guarantee for the separation of changing frequency components.
采用多天线通道,通过射频开关选择工作主通道,且保证整个阅读器工作于时分复用模式。Multiple antenna channels are used, the main channel is selected through the radio frequency switch, and the entire reader is guaranteed to work in time-division multiplexing mode.
附图说明Description of drawings
图1为本发明无线声表面波测温系统读写器的实现框图Fig. 1 is the implementation block diagram of the reader of the wireless surface acoustic wave temperature measuring system of the present invention
图2为本发明无线声表面波测温系统读写器的锁相环结构Fig. 2 is the phase-locked loop structure of the reader of the wireless surface acoustic wave temperature measuring system of the present invention
图3为图1的工作过程示意Figure 3 is a schematic diagram of the working process of Figure 1
图4为图2的工作过程示意图Figure 4 is a schematic diagram of the working process of Figure 2
图5为本发明无线声表面波测温系统读写器的射频开关模块连接图。Fig. 5 is a connection diagram of the radio frequency switch module of the reader-writer of the wireless surface acoustic wave temperature measurement system of the present invention.
具体实施方式Detailed ways
本发明的具体实施方式:一种无线声表面波测温系统读写器,所述读写器包括发送信号生成单元、发送信号放大单元、发送信号带通滤波器、射频开关、本机振荡器、接收信号带通滤波器、低噪声放大器、滤波器、中频放大器、模数转换模块、数字信号处理模块以及多个天线端子。下面结合附图对本发明作进一步的描述。A specific embodiment of the present invention: a reader/writer for a wireless surface acoustic wave temperature measurement system, the reader includes a sending signal generating unit, a sending signal amplifying unit, a sending signal bandpass filter, a radio frequency switch, and a local oscillator , a received signal band-pass filter, a low noise amplifier, a filter, an intermediate frequency amplifier, an analog-to-digital conversion module, a digital signal processing module and a plurality of antenna terminals. The present invention will be further described below in conjunction with the accompanying drawings.
如图1所示,本发明方案由发送信号生成单元101、发送信号放大单元102、发送信号带通滤波器103、射频开关104(选择时间1.2-2us)、晶振105、本机振荡器106、接收信号带通滤波器107、低噪声放大器108、滤波器109、中频放大器110、模数转换模块111、数字信号处理模块112构成。其中晶振105产生最原始的参考频率,同时将频率送到发送信号生成单元101与本机振荡器106,经过发送信号生成单元处理的频率再经过发送信号放大单元102和发送信号带通滤波器103,通过射频开关104发射探询信号;射频开关104接收前端传感器传回的响应信号,将响应信号送到接收信号带通滤波器107,再经过前置放大器108放大,与之前本机振荡器106送来的频率进行混频处理,将混频后的信号通过中频放大器110,再将信号送到模数转换模块111和数字信号处理模块112进行处理,得到温度值。计算方式如公式1所示。As shown in Figure 1, the solution of the present invention consists of a transmission
图2为本发明中发送信号生成单元101的组成框图。晶振105产生最原始的参考频率。参考频率信号发送给参考频率分频器1015将信号送到鉴相器1014,经由鉴相器后通过环路滤波器1011,再通过压控振荡器1012后,进入反馈频率分频器1013形成PLL锁相环路。产生的信号送给发送信号放大单元102。FIG. 2 is a block diagram of the transmission
图5为本发明无线声表面波测温系统读写器的射频开关模块,射频开关104并联多个下游射频开关接收不同的响应信号天线端子,为便于进行阅读器信号收发方向的选择,射频开关104采用双路控制开关,在接受和发射时选用不同的通路;下游射频开关(1042、1043、1044)选用单路开关,各天线端子挂接多个传感谐振频率均不同的前端传感器。下游射频开关每个都自带一根天线,每个天线挂接不同的传感器,实现多点检测。传感器是单独存在,不同传感器具有不同的谐振频率,因此要求阅读器在同一根天线上发送不同频率的探测信号。下游射频开关进行发送天线的选择,它们中在同一时刻只能有一个处于打开状态。阅读器在同一时刻只能从某一个天线进行信号的发送或者接收。Fig. 5 is the radio frequency switch module of the wireless surface acoustic wave temperature measurement system reader of the present invention, the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101624116A CN103279777A (en) | 2013-05-06 | 2013-05-06 | Wireless surface acoustic wave temperature measurement system reader-writer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101624116A CN103279777A (en) | 2013-05-06 | 2013-05-06 | Wireless surface acoustic wave temperature measurement system reader-writer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103279777A true CN103279777A (en) | 2013-09-04 |
Family
ID=49062289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013101624116A Pending CN103279777A (en) | 2013-05-06 | 2013-05-06 | Wireless surface acoustic wave temperature measurement system reader-writer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103279777A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104390726A (en) * | 2014-11-10 | 2015-03-04 | 上海鸿晔电子科技有限公司 | Passive wireless temperature measuring device |
CN104485894A (en) * | 2014-11-12 | 2015-04-01 | 广州中大微电子有限公司 | Common-mode level shift treatment circuit and method for operational amplifier |
CN105043584A (en) * | 2015-07-10 | 2015-11-11 | 北京中讯四方科技股份有限公司 | Wireless temperature measurement system |
CN105092081A (en) * | 2015-08-14 | 2015-11-25 | 深圳华远微电科技有限公司 | Anti-interference temperature signal receiver and signal processing method |
CN105167757A (en) * | 2015-10-12 | 2015-12-23 | 无锡华普微电子有限公司 | Cattle and sheep body temperature monitoring system based on surface acoustic waves and RFID technology |
CN105571743A (en) * | 2016-02-24 | 2016-05-11 | 南京科睿博电气科技有限公司 | Surface acoustic wave technology-based switch cabinet temperature measurement interference shielding apparatus |
CN106339646A (en) * | 2016-08-26 | 2017-01-18 | 无锡卓信信息科技股份有限公司 | Non-contact RFID reader and writer |
CN106410368A (en) * | 2016-11-16 | 2017-02-15 | 中科微声(天津)传感技术有限公司 | Multifunctional antenna |
EP3171291A1 (en) * | 2015-11-20 | 2017-05-24 | pro.micron GmbH & Co.KG | Method and inquiring device for requesting data from a passive element |
CN107078534A (en) * | 2014-10-20 | 2017-08-18 | 高通股份有限公司 | distributed power receiving element for wireless power transfer |
CN108344800A (en) * | 2018-01-17 | 2018-07-31 | 浙江大学 | System for detecting temperature based on wireless passive sonic surface wave sensor and receive-transmit system |
CN110736557A (en) * | 2019-10-24 | 2020-01-31 | 深圳市三和电力科技有限公司 | data collector for passive wireless temperature transmission measuring system |
CN111289137A (en) * | 2020-02-14 | 2020-06-16 | 固开(上海)电气有限公司 | Wireless passive temperature measuring device and its working method |
CN112468165A (en) * | 2020-11-25 | 2021-03-09 | 青岛理工大学 | Wireless passive high-voltage power grid temperature measurement system and method |
CN113916392A (en) * | 2021-10-11 | 2022-01-11 | 国网湖南省电力有限公司 | Hydropower station generator rotor winding temperature on-line monitoring system and method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2299423Y (en) * | 1997-05-12 | 1998-12-02 | 中国科学院陕西天文台 | VHF frequency synthesizer |
WO2002020287A1 (en) * | 2000-09-08 | 2002-03-14 | Automotive Technologies International, Inc. | Vehicle wireless sensing and communication system |
CN1384959A (en) * | 2000-08-26 | 2002-12-11 | Rgb系统公司 | Method and apparatus for vertically input and output video signals |
CN1547723A (en) * | 2001-08-23 | 2004-11-17 | ���м�������˾ | Interrogation method for passive sensor monitoring system |
CN101303736A (en) * | 2007-05-08 | 2008-11-12 | 深圳市配天网络技术有限公司 | Multi-protocol ultrahigh frequency reader-writer |
CN201230306Y (en) * | 2008-06-20 | 2009-04-29 | 鞍山吉兆电子有限公司 | Dual phase-locked loop frequency synthesizer |
US20090122830A1 (en) * | 2004-12-15 | 2009-05-14 | Senseor | Surface acoustic wave transponders |
CN102708394A (en) * | 2012-04-17 | 2012-10-03 | 重庆大学 | SAW (surface acoustic wave)-based passive temperature tag and SAW-based passive temperature tag reader |
CN203260051U (en) * | 2013-05-06 | 2013-10-30 | 西南交通大学 | Wireless surface acoustic wave temperature measuring system reader-writer |
-
2013
- 2013-05-06 CN CN2013101624116A patent/CN103279777A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2299423Y (en) * | 1997-05-12 | 1998-12-02 | 中国科学院陕西天文台 | VHF frequency synthesizer |
CN1384959A (en) * | 2000-08-26 | 2002-12-11 | Rgb系统公司 | Method and apparatus for vertically input and output video signals |
WO2002020287A1 (en) * | 2000-09-08 | 2002-03-14 | Automotive Technologies International, Inc. | Vehicle wireless sensing and communication system |
CN1547723A (en) * | 2001-08-23 | 2004-11-17 | ���м�������˾ | Interrogation method for passive sensor monitoring system |
US20090122830A1 (en) * | 2004-12-15 | 2009-05-14 | Senseor | Surface acoustic wave transponders |
CN101303736A (en) * | 2007-05-08 | 2008-11-12 | 深圳市配天网络技术有限公司 | Multi-protocol ultrahigh frequency reader-writer |
CN201230306Y (en) * | 2008-06-20 | 2009-04-29 | 鞍山吉兆电子有限公司 | Dual phase-locked loop frequency synthesizer |
CN102708394A (en) * | 2012-04-17 | 2012-10-03 | 重庆大学 | SAW (surface acoustic wave)-based passive temperature tag and SAW-based passive temperature tag reader |
CN203260051U (en) * | 2013-05-06 | 2013-10-30 | 西南交通大学 | Wireless surface acoustic wave temperature measuring system reader-writer |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017536072A (en) * | 2014-10-20 | 2017-11-30 | クアルコム,インコーポレイテッド | Distributed power receiver for wireless power transfer |
CN107078534B (en) * | 2014-10-20 | 2020-08-04 | 高通股份有限公司 | Distributed power receiving element for wireless power transfer |
CN107078534A (en) * | 2014-10-20 | 2017-08-18 | 高通股份有限公司 | distributed power receiving element for wireless power transfer |
CN104390726A (en) * | 2014-11-10 | 2015-03-04 | 上海鸿晔电子科技有限公司 | Passive wireless temperature measuring device |
CN104485894A (en) * | 2014-11-12 | 2015-04-01 | 广州中大微电子有限公司 | Common-mode level shift treatment circuit and method for operational amplifier |
CN105043584A (en) * | 2015-07-10 | 2015-11-11 | 北京中讯四方科技股份有限公司 | Wireless temperature measurement system |
CN105092081A (en) * | 2015-08-14 | 2015-11-25 | 深圳华远微电科技有限公司 | Anti-interference temperature signal receiver and signal processing method |
CN105092081B (en) * | 2015-08-14 | 2017-12-12 | 深圳华远微电科技有限公司 | Anti-tampering temperature signal receiver and signal processing method |
WO2017028542A1 (en) * | 2015-08-14 | 2017-02-23 | 深圳华远微电科技有限公司 | Anti-interference temperature signal receiving device and signal processing method |
CN105167757A (en) * | 2015-10-12 | 2015-12-23 | 无锡华普微电子有限公司 | Cattle and sheep body temperature monitoring system based on surface acoustic waves and RFID technology |
EP3171291A1 (en) * | 2015-11-20 | 2017-05-24 | pro.micron GmbH & Co.KG | Method and inquiring device for requesting data from a passive element |
CN105571743A (en) * | 2016-02-24 | 2016-05-11 | 南京科睿博电气科技有限公司 | Surface acoustic wave technology-based switch cabinet temperature measurement interference shielding apparatus |
CN106339646A (en) * | 2016-08-26 | 2017-01-18 | 无锡卓信信息科技股份有限公司 | Non-contact RFID reader and writer |
CN106410368A (en) * | 2016-11-16 | 2017-02-15 | 中科微声(天津)传感技术有限公司 | Multifunctional antenna |
CN106410368B (en) * | 2016-11-16 | 2023-09-22 | 苏州光声纳米科技有限公司 | Multifunctional antenna |
CN108344800A (en) * | 2018-01-17 | 2018-07-31 | 浙江大学 | System for detecting temperature based on wireless passive sonic surface wave sensor and receive-transmit system |
CN110736557A (en) * | 2019-10-24 | 2020-01-31 | 深圳市三和电力科技有限公司 | data collector for passive wireless temperature transmission measuring system |
CN111289137A (en) * | 2020-02-14 | 2020-06-16 | 固开(上海)电气有限公司 | Wireless passive temperature measuring device and its working method |
CN112468165A (en) * | 2020-11-25 | 2021-03-09 | 青岛理工大学 | Wireless passive high-voltage power grid temperature measurement system and method |
CN112468165B (en) * | 2020-11-25 | 2022-05-03 | 青岛理工大学 | A wireless passive high-voltage power grid temperature measurement system and method |
CN113916392A (en) * | 2021-10-11 | 2022-01-11 | 国网湖南省电力有限公司 | Hydropower station generator rotor winding temperature on-line monitoring system and method |
CN113916392B (en) * | 2021-10-11 | 2023-11-10 | 国网湖南省电力有限公司 | On-line monitoring system and method for temperature of rotor winding of hydropower station generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103279777A (en) | Wireless surface acoustic wave temperature measurement system reader-writer | |
KR101520775B1 (en) | Two-way ranging messaging scheme | |
KR100761462B1 (en) | Distance measuring sensor and distance measuring method using the same | |
US9461716B2 (en) | Near field communications (NFC) modulation feedback apparatus for tuned antenna configurations | |
CN203260051U (en) | Wireless surface acoustic wave temperature measuring system reader-writer | |
CN107576345B (en) | wireless measurement system and measurement method of multi-node resonance type surface acoustic wave sensor | |
US10374646B1 (en) | Crowd size estimation based on wireless signal absorption | |
US20180195909A1 (en) | Anti-interference temperature signal receiving device and signal processing method | |
CN106950539A (en) | The anti-GPS tracking modules positioning identifying method of high accuracy based on time difference method | |
CN105117764A (en) | High-performance anti-collision surface acoustic wave delay line type wireless sensor system | |
CN104990625A (en) | Wireless test circuit of resonant type surface acoustic wave sensor and test method | |
CN107192473B (en) | Surface acoustic wave temperature detection system and detection method based on phased array antenna | |
CN108344800A (en) | System for detecting temperature based on wireless passive sonic surface wave sensor and receive-transmit system | |
CN102565452B (en) | Novel microwave radar ultra-thin water flow determination sensor | |
CN105871373A (en) | Surface acoustic wave sensor excitation and inquiry device and frequency offset obtaining method thereof | |
US11567039B2 (en) | Passive wireless sensor | |
CN204188306U (en) | Surface acoustic wave temperature measuring equipment | |
CN102803986A (en) | Radar device | |
Grosinger et al. | A passive RFID sensor tag antenna transducer | |
CN205003282U (en) | Digital UHF doppler radar device | |
CN203930045U (en) | A kind of antenna pattern measurement device based on Full digital high-frequency radar | |
US9531428B2 (en) | Wireless communication calibration system and associated method | |
CN203655277U (en) | Measurement device for drilling resistivity | |
CN102792179A (en) | In-car pulse radar | |
CN205792522U (en) | A kind of surface acoustic wave sensor excitation and inquiry unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130904 |