CN103279450A - Fast method for three-dimensional discrete Hartley transformation - Google Patents
Fast method for three-dimensional discrete Hartley transformation Download PDFInfo
- Publication number
- CN103279450A CN103279450A CN2013101350991A CN201310135099A CN103279450A CN 103279450 A CN103279450 A CN 103279450A CN 2013101350991 A CN2013101350991 A CN 2013101350991A CN 201310135099 A CN201310135099 A CN 201310135099A CN 103279450 A CN103279450 A CN 103279450A
- Authority
- CN
- China
- Prior art keywords
- sigma
- theta
- cas
- cos
- phi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000009466 transformation Effects 0.000 title claims abstract description 26
- 239000000284 extract Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims 11
- 238000000354 decomposition reaction Methods 0.000 claims 2
- 238000004422 calculation algorithm Methods 0.000 description 15
- 238000004364 calculation method Methods 0.000 description 9
- 210000004556 brain Anatomy 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
Images
Landscapes
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种三维离散Hartley变换的快速方法,特别是一种用于图像与视频编码中的三维离散Hartley变换的快速方法,属于数字数据处理技术领域。The invention relates to a fast method for three-dimensional discrete Hartley transformation, in particular to a fast method for three-dimensional discrete Hartley transformation in image and video coding, and belongs to the technical field of digital data processing.
背景技术Background technique
自1987年Buneman提出多维离散DHT后,它便在多维信号处理中引起了广泛的关注。如四维的DHT可以用来分析三维运动图像,也可以用来计算多维的离散傅里叶变换,从而降低计算的复杂度;特别在三维的磁共振图像压缩中,DHT变换具有独特的优越性。Sunder等分别利用三维DHT、三维DCT和三维DFT这三种变换对一幅磁共振脑图像和一幅X线图像进行压缩,比较不同变换方法压缩重建的峰值信噪比(PSNR)和比特率。Sunder的实验结果表明:三维DHT在压缩磁共振脑图像的效果要优于其他两种变换;但对于X线图像的压缩而言,三维DCT的效果最好,而三维DHT次之。多维DHT变换的核函数具有不可分离性,所以很难将一维的算法直接推广至高维。目前较常用的两种快速计算DHT的方法分别是传统的行-列算法和基于多项式的算法,Bortfeld和Dinter也提出利用一维DFT来计算多维DHT。这些方法能够比较有效地减少算术运算量,但算法实现的结构比较复杂。向量基的算法是目前能够有效平衡计算复杂度和实现结构的一种算法。Boussakta等提出三维的向量基-2×2×2(下面简称基-2)时域抽取(Decimation-in-time:DIT)DHT算法和频域的抽取(Decimation-in-frequency:DIF)的算法;之后,Bouguezel等人将基-2的算法推广至任意维数(M-D)的DHT计算,建立了M维DHT的向量基方法与M维复信号FFT算法之间的关系,他们还引入分裂向量基算法用来快速计算三维DHT,并同时将算法推广到更高维DHT的计算。已有研究表明,基于蝶形结构的DHT较行-列法和多项式法在计算复杂度和计算效率之间取得了更好的平衡,向量基的方法不仅可以充分利用变换之间的关系,而且实现结构更为简单、规则。目前,三维DHT快速算法的研究针对的信号长度多为2或4的倍数,但许多实际应用中数据的类型并不局限于此,对数据类型为其他长度的算法也值得进一步探索。Since Buneman proposed the multidimensional discrete DHT in 1987, it has attracted widespread attention in multidimensional signal processing. For example, four-dimensional DHT can be used to analyze three-dimensional moving images, and can also be used to calculate multi-dimensional discrete Fourier transform, thereby reducing the complexity of calculation; especially in three-dimensional magnetic resonance image compression, DHT transform has unique advantages. Sunder et al. used three-dimensional DHT, three-dimensional DCT and three-dimensional DFT to compress an MRI brain image and an X-ray image respectively, and compared the peak signal-to-noise ratio (PSNR) and bit rate of compressed reconstruction with different transformation methods. Sunder's experimental results show that: 3D DHT is better than the other two transformations in compressing MRI brain images; but for the compression of X-ray images, 3D DCT has the best effect, and 3D DHT takes the second place. The kernel function of multi-dimensional DHT transformation is inseparable, so it is difficult to directly extend the one-dimensional algorithm to high-dimensional. Currently, the two commonly used fast calculation methods of DHT are traditional row-column algorithm and polynomial-based algorithm. Bortfeld and Dinter also proposed to use one-dimensional DFT to calculate multi-dimensional DHT. These methods can effectively reduce the amount of arithmetic operations, but the structure of the algorithm is more complicated. The vector-based algorithm is currently an algorithm that can effectively balance the computational complexity and implementation structure. Boussakta et al. proposed a three-dimensional vector base-2×2×2 (hereinafter referred to as base-2) time domain extraction (Decimation-in-time: DIT) DHT algorithm and frequency domain extraction (Decimation-in-frequency: DIF) algorithm ; Later, Bouguezel et al. extended the base-2 algorithm to the DHT calculation of any dimension (M-D), and established the relationship between the M-dimensional DHT vector basis method and the M-dimensional complex signal FFT algorithm. They also introduced the split vector The basic algorithm is used to quickly calculate the three-dimensional DHT, and at the same time extend the algorithm to the calculation of higher-dimensional DHT. Existing studies have shown that the DHT based on the butterfly structure has achieved a better balance between computational complexity and computational efficiency than the row-column method and the polynomial method. The vector-based method can not only make full use of the relationship between transformations, but also The implementation structure is simpler and more regular. At present, the research on fast algorithms for 3D DHT mostly focuses on signal lengths that are multiples of 2 or 4, but the types of data in many practical applications are not limited to this, and algorithms with data types of other lengths are also worthy of further exploration.
发明内容Contents of the invention
发明目的:针对现有技术中存在的问题与不足,本发明提供一种运用于图像和视频编码的三维离散Hartley变换的快速方法。Purpose of the invention: Aiming at the problems and deficiencies in the prior art, the present invention provides a fast method for three-dimensional discrete Hartley transform applied to image and video coding.
技术方案:一种三维离散Hartley变换的快速方法,离散Hartley变换基于蝶形算法的结构,采用分治法的思想,将数据大小为3m×3m×3m的数据块,通过频域抽取将数据通过线性变换和三角函数变换性质将数据块分解为27个3m-1×3m-1×3m-1子模块,将每个子数据块继续通过此方法分解,直至每个子数据只包含3×3×3数据,最后只需计算若干个3×3×3数据块。该方法分三步实现:Technical solution: A fast method for three-dimensional discrete Hartley transform. Discrete Hartley transform is based on the structure of butterfly algorithm, adopts the idea of divide and conquer, and extracts data blocks with a data size of 3 m × 3 m × 3 m through frequency domain The data is decomposed into 27 sub-modules of 3 m-1 × 3 m-1 × 3 m-1 through linear transformation and trigonometric function transformation properties, and each sub-data block is continuously decomposed by this method until each sub-data is only Contains 3×3×3 data, and finally only needs to calculate several 3×3×3 data blocks. This method is implemented in three steps:
利用三角函数变换性质和线性组合计算中间变量S,Si,Dii=1,2,…,13;Use trigonometric function transformation properties and linear combination to calculate intermediate variables S, Si, Dii=1,2,...,13;
将频域抽取的N×N×N序列分解成的S序列的计算(其中N为数据每一个维度的大小);返回第一步对计算,直至序列大小为3×3×3。重述N×N×N实序列x(n1,n2,n3)三维DHT定义如下:Decompose the N×N×N sequence extracted in the frequency domain into The calculation of the S sequence (where N is the size of each dimension of the data); return the first step to Calculate until the sequence size is 3×3×3. Restate the N×N×N real sequence x(n 1 ,n 2 ,n 3 ) three-dimensional DHT definition as follows:
其中x(n1,n2,n3)是输入序列,X(k1,k2,k3)是输出序列。where x(n 1 ,n 2 ,n 3 ) is the input sequence, and X(k 1 ,k 2 ,k 3 ) is the output sequence.
这里要求数据的模块大小满足N=3q Here the module size of the data is required to satisfy N=3 q
根据三角函数性质,可以推导出DHT具有以下性质:According to the properties of trigonometric functions, it can be deduced that DHT has the following properties:
X(k1,k2,N-k3)=X(k1,k2,-k3) (1)X(k 1 ,k 2 ,Nk 3 )=X(k 1 ,k 2 ,-k 3 ) (1)
X(k1,N-k2,k3)=X(k1,-k2,k3) (2)X(k 1 ,Nk 2 ,k 3 )=X(k 1 ,-k 2 ,k 3 ) (2)
X(N-k1,k2,k3)=X(-k1,k2,k3) (3)X(Nk 1 ,k 2 ,k 3 )=X(-k 1 ,k 2 ,k 3 ) (3)
X(k1,N-k2,N-k3)=X(k1,-k2,-k3) (4)X(k 1 ,Nk 2 ,Nk 3 )=X(k 1 ,-k 2 ,-k 3 ) (4)
X(N-k1,k2,N-k3)=X(-k1,k2,-k3) (5)X(Nk 1 ,k 2 ,Nk 3 )=X(-k 1 ,k 2 ,-k 3 ) (5)
X(N-k1,N-k2,k3)=X(-k1,-k2,k3) (6)X(Nk 1 ,Nk 2 ,k 3 )=X(-k 1 ,-k 2 ,k 3 ) (6)
X(N-k1,N-k2,N-k3)=X(-k1,-k2,-k3) (7)根据式(1)-(7)所示的DHT性质,N×N×N点的DHT可以根据输出序列的k1,k2,k3除以3的非负余数分组求取:X(Nk 1 , Nk 2 , Nk 3 )=X(-k 1 ,-k 2 ,-k 3 ) (7) According to the DHT properties shown in formulas (1)-(7), N×N×N points The DHT of can be calculated according to the non-negative remainder of k 1 , k 2 , k 3 of the output sequence divided by 3:
其中in
[pqr]i=[001,010,100,011,101,110,01(-1),10(-1),1(-1)0,111,11(-1),1(-1)1,(-1)11],i=1,2,3,...,13。[pqr] i = [001,010,100,011,101,110,01(-1),10(-1),1(-1)0,111,11(-1),1(-1)1,(-1)11], i=1 ,2,3,...,13.
定义中间变量Define intermediate variables
为简化书写计算,我们在计算Ai(k1,k2,k3),Bi(k1,k2,k3)时引入一些符号:In order to simplify the written calculation, we introduce some symbols when calculating A i (k 1 ,k 2 ,k 3 ),B i (k 1 ,k 2 ,k 3 ):
a0=x(n1,n2,n3),
并定义如下变量:And define variables like this:
c1=a1+a2,c2=a3+a6,c3=a4+a8,c4=a5+a7,c5=a9+a18,c6=a10+a20,c7=a11+a19,c8=a12+a24,c9=a13+a26,c10=a14+a25,c11=a15+a21,a12=a16+a23,c13=a17+a22.c 1 =a 1 +a 2 ,c 2 =a 3 +a 6 ,c 3 =a 4 +a 8 ,c 4 =a 5 +a 7 ,c 5 =a 9 +a 18 ,c 6 =a 10 +a 20 ,c 7 =a 11 +a 19 ,c 8 =a 12 +a 24 ,c 9 =a 13 +a 26 ,c 10 =a 14 +a 25 ,c 11 =a 15 +a 21 ,a 12 =a 16 +a 23 ,c 13 =a 17 +a 22 .
为了减少计算量,将变量线性组合:To reduce computation, the variables are linearly combined:
以及as well as
d1=a1-a2,d2=a3-a6,d3=a4-a8,d4=a5-a7,d5=a9-a18,d6=a10-a20,d7=a11-a19,d8=a12-a24,d9=a13-a26,d10=a14-a25,d11=a15-a21,d12=a16-a23,d13=a17-a22.d 1 =a 1 -a 2 ,d 2 =a 3 -a 6 ,d 3 =a 4 -a 8 ,d 4 =a 5 -a 7 ,d 5 =a 9 -a 18 ,d 6 =a 10 -a 20 ,d 7 =a 11 -a 19 ,d 8 =a 12 -a 24 ,d 9 =a 13 -a 26 ,d 10 =a 14 -a 25 ,d 11 =a 15 -a 21 ,d 12 =a 16 -a 23 ,d 13 =a 17 -a 22 .
和and
计算A0(k1,k2,k3),Ai(k1,k2,k3),Bi(k1,k2,k3),i=1,2,3,...,13。Calculate A 0 (k 1 ,k 2 ,k 3 ), A i (k 1 ,k 2 ,k 3 ),B i (k 1 ,k 2 ,k 3 ),i=1,2,3,.. .,13.
1)计算A0(k1,k2,k3)=X(3k1,3k2,3k3)1) Calculate A 0 (k 1 ,k 2 ,k 3 )=X(3k 1 ,3k 2 ,3k 3 )
其中 in
这样N×N×N点的DHT计算就转化成了点序列S的DHT的计算。In this way, the DHT calculation of N×N×N points is transformed into Computation of the DHT of the point sequence S.
2)计算A1(k1,k2,k3)和B1(k1,k2,k3)2) Calculate A 1 (k 1 ,k 2 ,k 3 ) and B 1 (k 1 ,k 2 ,k 3 )
其中
从上式可以看到,N×N×N点序列x(n1,n2,n3)的DHT就转化成了点的序列
下面计算B1(k1,k2,k3)Calculate B 1 (k 1 ,k 2 ,k 3 ) below
但上式的形式并不是点的DHT形式。根据式三角函数性质可以知道:But the form of the above formula is not The DHT form of the point. According to the properties of trigonometric functions, we can know:
因此只要求出的值,再做反褶运算,同样能够得到B1(k1,k2,k3)。Therefore only ask for The value of B 1 (k 1 ,k 2 ,k 3 ) can also be obtained by defolding operation.
下面求
得出:inferred:
这样N×N×N点x(n1,n2,n3)的DHT也转化成为点序列的DHT。再对输出序列做反褶运算,就可以得到B1(k1,k2,k3)。In this way, the DHT of N×N×N point x(n1,n2,n3) is also transformed into point sequence DHT. Then defold the output sequence to obtain B 1 (k 1 ,k 2 ,k 3 ).
根据三角函数性质可以得到According to the properties of trigonometric functions, we can get
这样N×N×N点的DHT变换就可以通过点DHT变换求得。In this way, the DHT transformation of N×N×N points can be passed Obtained by point DHT transformation.
3)同理,计算Ai(k1,k2,k3),Bi(k1,k2,k3),i=1,2,3,...,133) Similarly, calculate A i (k 1 ,k 2 ,k 3 ), B i (k 1 ,k 2 ,k 3 ), i=1,2,3,...,13
其中 in
从式(12)(15)(16)(17)可以看到,N×N×N序列x(n1,n2,n3)的3-D DHT转化成了27个长度序列的DHT变换,这样不断分解直至分解到3×3×3的序列。From equations (12)(15)(16)(17), it can be seen that the 3-D DHT of the N×N×N sequence x(n 1 ,n 2 ,n 3 ) is transformed into 27 length The DHT transformation of the sequence is continuously decomposed until it is decomposed into a 3×3×3 sequence.
有益效果:本发明提供的三维离散Hartley变换的快速方法,针对长度为的3m×3m×3m序列的处理十分有效,若数据长度不为3m×3m×3m可以进行补零;本方法基于蝶形结构,具有简单、规整的结构;本方法在保证精度与背景技术中的方法基本相同的情况下,有效的减少了运算量。Beneficial effects: the fast method of three-dimensional discrete Hartley transform provided by the present invention is very effective for the processing of 3 m × 3 m × 3 m sequence, if the data length is not 3 m × 3 m × 3 m , zero padding can be performed ; This method is based on the butterfly structure and has a simple and regular structure; this method effectively reduces the amount of computation while ensuring that the accuracy is basically the same as the method in the background technology.
附图说明Description of drawings
图1为本发明实施例的基-3的3D DHT变换计算结构图。Fig. 1 is the 3D DHT transformation calculation structural diagram of base-3 of the embodiment of the present invention.
具体实施方式Detailed ways
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。Below in conjunction with specific embodiment, further illustrate the present invention, should be understood that these embodiments are only used to illustrate the present invention and are not intended to limit the scope of the present invention, after having read the present invention, those skilled in the art will understand various equivalent forms of the present invention All modifications fall within the scope defined by the appended claims of this application.
实施例1:Example 1:
采用图1所示的三维离散Hartley变换的快速方法结构。A fast method structure using the three-dimensional discrete Hartley transform shown in Fig. 1.
三维离散Hartley变换的快速方法变换过程如下:The fast method transformation process of three-dimensional discrete Hartley transformation is as follows:
先将输入序列进行线性组合和三角函数变换,得到中间变量Si,Di,然后再将Si,Di进行线性组合和三角函数变换得到频域数据。First, the input sequence is linearly combined and transformed by trigonometric functions to obtain intermediate variables S i and D i , and then linearly combined and transformed by S i and D i to obtain frequency domain data.
输入3×3×3序列:Enter a 3×3×3 sequence:
将输入序列利用公式Convert the input sequence using the formula
a0=x(n1,n2,n3),
进行符号化,得到:Symbolize to get:
利用公式use the formula
c1=a1+a2,c2=a3+a6,c3=a4+a8,c4=a5+a7,c5=a9+a18,c6=a10+a20,c7=a11+a19,c8=a12+a24,c9=a13+a26,c10=a14+a25,c11=a15+a21,a12=a16+a23,c13=a17+a22.c 1 =a 1 +a 2 ,c 2 =a 3 +a 6 ,c 3 =a 4 +a 8 ,c 4 =a 5 +a 7 ,c 5 =a 9 +a 18 ,c 6 =a 10 +a 20 ,c 7 =a 11 +a 19 ,c 8 =a 12 +a 24 ,c 9 =a 13 +a 26 ,c 10 =a 14 +a 25 ,c 11 =a 15 +a 21 ,a 12 =a 16 +a 23 ,c 13 =a 17 +a 22 .
和and
d1=a1-a2,d2=a3-a6,d3=a4-a8,d4=a5-a7,d5=a9-a18,d6=a10-a20,d7=a11-a19,d8=a12-a24,d9=a13-a26,d10=a14-a25,d11=a15-a21,d12=a16-a23,d13=a17-a22.d 1 =a 1 -a 2 ,d 2 =a 3 -a 6 ,d 3 =a 4 -a 8 ,d 4 =a 5 -a 7 ,d 5 =a 9 -a 18 ,d 6 =a 10 -a 20 ,d 7 =a 11 -a 19 ,d 8 =a 12 -a 24 ,d 9 =a 13 -a 26 ,d 10 =a 14 -a 25 ,d 11 =a 15 -a 21 ,d 12 =a 16 -a 23 ,d 13 =a 17 -a 22 .
进行线性组合,得:Perform linear combination to get:
利用公式:Use the formula:
得到中间变量Si,Di:Get intermediate variables S i , D i :
然后再将Si,Di利用公式,Then S i , D i use the formula,
其中 in
进行线性组合和三角函数变换得到频域数据,并与通过定义式(0)计算得出的结果对比:Perform linear combination and trigonometric function transformation to obtain frequency domain data, and compare it with the result calculated by definition (0):
实施例2Example 2
采用图1所示的三维离散Hartley变换的快速方法结构。A fast method structure using the three-dimensional discrete Hartley transform shown in Figure 1.
三维离散Hartley变换的快速方法变换过程如下:The fast method transformation process of three-dimensional discrete Hartley transformation is as follows:
先将输入序列进行线性组合和三角函数变换,得到中间变量Si,Di,然后再将Si,Di进行线性组合和三角函数变换得到频域数据。First, the input sequence is linearly combined and transformed by trigonometric functions to obtain intermediate variables S i and D i , and then linearly combined and transformed by S i and D i to obtain frequency domain data.
输入3×3×3序列:Enter a 3×3×3 sequence:
将输入序列利用公式Convert the input sequence using the formula
a0=x(n1,n2,n3),
进行符号化,得到:Symbolize to get:
利用公式:
得到中间变量Si,Di:Get intermediate variables S i , D i :
然后再将Si,Di利用公式Then S i , D i use the formula
其中 in
进行线性组合和三角函数变换得到频域数据,并与通过定义式(0)计算得出的结果对比:Perform linear combination and trigonometric function transformation to obtain frequency domain data, and compare it with the result calculated by definition (0):
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101350991A CN103279450A (en) | 2013-04-17 | 2013-04-17 | Fast method for three-dimensional discrete Hartley transformation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101350991A CN103279450A (en) | 2013-04-17 | 2013-04-17 | Fast method for three-dimensional discrete Hartley transformation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103279450A true CN103279450A (en) | 2013-09-04 |
Family
ID=49061975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013101350991A Pending CN103279450A (en) | 2013-04-17 | 2013-04-17 | Fast method for three-dimensional discrete Hartley transformation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103279450A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107436883A (en) * | 2016-05-26 | 2017-12-05 | 北京京东尚科信息技术有限公司 | The method, apparatus and system of data pick-up based on complementation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030236804A1 (en) * | 2002-06-19 | 2003-12-25 | Hou Hsieh S. | Merge and split fast hartley block transform method |
CN102384747A (en) * | 2011-09-20 | 2012-03-21 | 西安费斯达自动化工程有限公司 | Hartley output method of rigid body space motion states |
-
2013
- 2013-04-17 CN CN2013101350991A patent/CN103279450A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030236804A1 (en) * | 2002-06-19 | 2003-12-25 | Hou Hsieh S. | Merge and split fast hartley block transform method |
CN102384747A (en) * | 2011-09-20 | 2012-03-21 | 西安费斯达自动化工程有限公司 | Hartley output method of rigid body space motion states |
Non-Patent Citations (3)
Title |
---|
ALSHIBAMI O ET AL: "Fast 3-D decimation-in-frequency algorithm for 3-D Hartley transform", 《SIGNAL PROCESS》 * |
TINGHUAN CHEN ET AL: "《2012 Second International Conference on Instrumentation & Measurement, Computer, Communication and Control》", 10 December 2012 * |
董志芳等: "一种新的二维离散Hartley变换算法", 《计算物理》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107436883A (en) * | 2016-05-26 | 2017-12-05 | 北京京东尚科信息技术有限公司 | The method, apparatus and system of data pick-up based on complementation |
CN107436883B (en) * | 2016-05-26 | 2020-06-30 | 北京京东尚科信息技术有限公司 | Data extraction method, device and system based on remainder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109033030B (en) | Tensor decomposition and reconstruction method based on GPU | |
CN101739666B (en) | One-dimensional Hartley transform and match tracing based image sparse decomposition fast method | |
US8582869B2 (en) | Finite dataset interpolation method | |
Park | 2D discrete Fourier transform on sliding windows | |
CN112511824B (en) | Image compression sampling method and assembly | |
CN102075749B (en) | Image compression reconstruction method under compressed sensing frame based on non-convex model | |
Xu et al. | Singular vector sparse reconstruction for image compression | |
CN103955904A (en) | Method for reconstructing signal based on dispersed fractional order Fourier transform phase information | |
Stone | Progressive wavelet correlation using Fourier methods | |
García-García et al. | Matrix models for classical groups and Toeplitz±Hankel minors with applications to Chern–Simons theory and fermionic models | |
Pandey et al. | Image transformation and compression using Fourier transformation | |
CN113689513A (en) | SAR image compression method based on robust tensor decomposition | |
Bouguezel et al. | New parametric discrete Fourier and Hartley transforms, and algorithms for fast computation | |
CN100517382C (en) | VLSI structure for parallel lifting 9/7 wavelet base | |
Lun et al. | Orthogonal discrete periodic Radon transform. Part I: theory and realization | |
CN103279450A (en) | Fast method for three-dimensional discrete Hartley transformation | |
CN103606189B (en) | A kind of track base system of selection towards non-rigid three-dimensional reconstruction | |
Yuan et al. | Ichv: A new compression approach for industrial images | |
CN101957738A (en) | Digital inner product calculator based on first moment | |
Patra et al. | Discrete Hartley Transform and its applications-A review | |
Grigoryan | Efficient algorithms for computing the 2-D hexagonal Fourier transforms | |
Pei et al. | Binary signal perfect recovery from partial DFT coefficients | |
Malakooti et al. | Image Recognition Method based on Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD) | |
Liu et al. | The lifting factorization of 2D 4-channel nonseparable wavelet transforms | |
Peng et al. | Combined data distortion strategies for privacy-preserving data mining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130904 |