[go: up one dir, main page]

CN103279450A - Fast method for three-dimensional discrete Hartley transformation - Google Patents

Fast method for three-dimensional discrete Hartley transformation Download PDF

Info

Publication number
CN103279450A
CN103279450A CN2013101350991A CN201310135099A CN103279450A CN 103279450 A CN103279450 A CN 103279450A CN 2013101350991 A CN2013101350991 A CN 2013101350991A CN 201310135099 A CN201310135099 A CN 201310135099A CN 103279450 A CN103279450 A CN 103279450A
Authority
CN
China
Prior art keywords
sigma
theta
cas
cos
phi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101350991A
Other languages
Chinese (zh)
Inventor
董志芳
陈廷欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2013101350991A priority Critical patent/CN103279450A/en
Publication of CN103279450A publication Critical patent/CN103279450A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

The invention discloses a fast method for three-dimensional discrete Hartley transformation. The method for three-dimensional discrete Hartley transformation is applied to the fields of analysis, processing and the like of computer vision, high-definition televisions, video telephones and moving images. The method includes the steps that based on the divide-and-conquer method and the butterfly arithmetic, a 3m*3m*3m data block is decomposed to 27 3m-1*3m-1*3m-1 sub-modules by using linear transformation and trigonometric function transformation characteristics with the method of frequency domain decimation; each data sub-block continues to be decomposed with the method till each data sub-block only contains 3*3*3 data; at last, only a plurality of 3*3*3 data blocks need to be calculated. Based on a traditional butterfly structure, the hardware structure is simple and regular and has in-place performance, internal data do not need to be rearranged, the fast method for three-dimensional discrete Hartley transformation is suitable for realizing engineering hardware and high in accuracy, and computational efficiency of the fast method for three-dimensional discrete Hartley transformation is improved by about 12%-24% compared with that of a classic determinant method.

Description

一种三维离散Hartley变换的快速方法A Fast Method for 3D Discrete Hartley Transform

技术领域technical field

本发明涉及一种三维离散Hartley变换的快速方法,特别是一种用于图像与视频编码中的三维离散Hartley变换的快速方法,属于数字数据处理技术领域。The invention relates to a fast method for three-dimensional discrete Hartley transformation, in particular to a fast method for three-dimensional discrete Hartley transformation in image and video coding, and belongs to the technical field of digital data processing.

背景技术Background technique

自1987年Buneman提出多维离散DHT后,它便在多维信号处理中引起了广泛的关注。如四维的DHT可以用来分析三维运动图像,也可以用来计算多维的离散傅里叶变换,从而降低计算的复杂度;特别在三维的磁共振图像压缩中,DHT变换具有独特的优越性。Sunder等分别利用三维DHT、三维DCT和三维DFT这三种变换对一幅磁共振脑图像和一幅X线图像进行压缩,比较不同变换方法压缩重建的峰值信噪比(PSNR)和比特率。Sunder的实验结果表明:三维DHT在压缩磁共振脑图像的效果要优于其他两种变换;但对于X线图像的压缩而言,三维DCT的效果最好,而三维DHT次之。多维DHT变换的核函数具有不可分离性,所以很难将一维的算法直接推广至高维。目前较常用的两种快速计算DHT的方法分别是传统的行-列算法和基于多项式的算法,Bortfeld和Dinter也提出利用一维DFT来计算多维DHT。这些方法能够比较有效地减少算术运算量,但算法实现的结构比较复杂。向量基的算法是目前能够有效平衡计算复杂度和实现结构的一种算法。Boussakta等提出三维的向量基-2×2×2(下面简称基-2)时域抽取(Decimation-in-time:DIT)DHT算法和频域的抽取(Decimation-in-frequency:DIF)的算法;之后,Bouguezel等人将基-2的算法推广至任意维数(M-D)的DHT计算,建立了M维DHT的向量基方法与M维复信号FFT算法之间的关系,他们还引入分裂向量基算法用来快速计算三维DHT,并同时将算法推广到更高维DHT的计算。已有研究表明,基于蝶形结构的DHT较行-列法和多项式法在计算复杂度和计算效率之间取得了更好的平衡,向量基的方法不仅可以充分利用变换之间的关系,而且实现结构更为简单、规则。目前,三维DHT快速算法的研究针对的信号长度多为2或4的倍数,但许多实际应用中数据的类型并不局限于此,对数据类型为其他长度的算法也值得进一步探索。Since Buneman proposed the multidimensional discrete DHT in 1987, it has attracted widespread attention in multidimensional signal processing. For example, four-dimensional DHT can be used to analyze three-dimensional moving images, and can also be used to calculate multi-dimensional discrete Fourier transform, thereby reducing the complexity of calculation; especially in three-dimensional magnetic resonance image compression, DHT transform has unique advantages. Sunder et al. used three-dimensional DHT, three-dimensional DCT and three-dimensional DFT to compress an MRI brain image and an X-ray image respectively, and compared the peak signal-to-noise ratio (PSNR) and bit rate of compressed reconstruction with different transformation methods. Sunder's experimental results show that: 3D DHT is better than the other two transformations in compressing MRI brain images; but for the compression of X-ray images, 3D DCT has the best effect, and 3D DHT takes the second place. The kernel function of multi-dimensional DHT transformation is inseparable, so it is difficult to directly extend the one-dimensional algorithm to high-dimensional. Currently, the two commonly used fast calculation methods of DHT are traditional row-column algorithm and polynomial-based algorithm. Bortfeld and Dinter also proposed to use one-dimensional DFT to calculate multi-dimensional DHT. These methods can effectively reduce the amount of arithmetic operations, but the structure of the algorithm is more complicated. The vector-based algorithm is currently an algorithm that can effectively balance the computational complexity and implementation structure. Boussakta et al. proposed a three-dimensional vector base-2×2×2 (hereinafter referred to as base-2) time domain extraction (Decimation-in-time: DIT) DHT algorithm and frequency domain extraction (Decimation-in-frequency: DIF) algorithm ; Later, Bouguezel et al. extended the base-2 algorithm to the DHT calculation of any dimension (M-D), and established the relationship between the M-dimensional DHT vector basis method and the M-dimensional complex signal FFT algorithm. They also introduced the split vector The basic algorithm is used to quickly calculate the three-dimensional DHT, and at the same time extend the algorithm to the calculation of higher-dimensional DHT. Existing studies have shown that the DHT based on the butterfly structure has achieved a better balance between computational complexity and computational efficiency than the row-column method and the polynomial method. The vector-based method can not only make full use of the relationship between transformations, but also The implementation structure is simpler and more regular. At present, the research on fast algorithms for 3D DHT mostly focuses on signal lengths that are multiples of 2 or 4, but the types of data in many practical applications are not limited to this, and algorithms with data types of other lengths are also worthy of further exploration.

发明内容Contents of the invention

发明目的:针对现有技术中存在的问题与不足,本发明提供一种运用于图像和视频编码的三维离散Hartley变换的快速方法。Purpose of the invention: Aiming at the problems and deficiencies in the prior art, the present invention provides a fast method for three-dimensional discrete Hartley transform applied to image and video coding.

技术方案:一种三维离散Hartley变换的快速方法,离散Hartley变换基于蝶形算法的结构,采用分治法的思想,将数据大小为3m×3m×3m的数据块,通过频域抽取将数据通过线性变换和三角函数变换性质将数据块分解为27个3m-1×3m-1×3m-1子模块,将每个子数据块继续通过此方法分解,直至每个子数据只包含3×3×3数据,最后只需计算若干个3×3×3数据块。该方法分三步实现:Technical solution: A fast method for three-dimensional discrete Hartley transform. Discrete Hartley transform is based on the structure of butterfly algorithm, adopts the idea of divide and conquer, and extracts data blocks with a data size of 3 m × 3 m × 3 m through frequency domain The data is decomposed into 27 sub-modules of 3 m-1 × 3 m-1 × 3 m-1 through linear transformation and trigonometric function transformation properties, and each sub-data block is continuously decomposed by this method until each sub-data is only Contains 3×3×3 data, and finally only needs to calculate several 3×3×3 data blocks. This method is implemented in three steps:

利用三角函数变换性质和线性组合计算中间变量S,Si,Dii=1,2,…,13;Use trigonometric function transformation properties and linear combination to calculate intermediate variables S, Si, Dii=1,2,...,13;

将频域抽取的N×N×N序列分解成

Figure BDA00003062189600021
的S序列的计算(其中N为数据每一个维度的大小);返回第一步对
Figure BDA00003062189600022
计算,直至序列大小为3×3×3。重述N×N×N实序列x(n1,n2,n3)三维DHT定义如下:Decompose the N×N×N sequence extracted in the frequency domain into
Figure BDA00003062189600021
The calculation of the S sequence (where N is the size of each dimension of the data); return the first step to
Figure BDA00003062189600022
Calculate until the sequence size is 3×3×3. Restate the N×N×N real sequence x(n 1 ,n 2 ,n 3 ) three-dimensional DHT definition as follows:

Xx (( kk 11 ,, kk 22 ,, kk 33 )) == ΣΣ nno 11 == 00 NN -- 11 ΣΣ nno 22 == 00 NN -- 11 ΣΣ nno 33 == 00 NN -- 11 xx (( nno 11 ,, nno 22 nno 33 )) cascas [[ 22 ππ NN (( nno 11 kk 11 ++ nno 22 kk 22 ++ nno 33 kk 33 )) ]] kk 1,2,31,2,3 == 0,1,20,1,2 ,, ·&Center Dot; ·&Center Dot; ·&Center Dot; NN -- -- -- (( 00 ))

其中x(n1,n2,n3)是输入序列,X(k1,k2,k3)是输出序列。where x(n 1 ,n 2 ,n 3 ) is the input sequence, and X(k 1 ,k 2 ,k 3 ) is the output sequence.

这里要求数据的模块大小满足N=3q Here the module size of the data is required to satisfy N=3 q

根据三角函数性质,可以推导出DHT具有以下性质:According to the properties of trigonometric functions, it can be deduced that DHT has the following properties:

X(k1,k2,N-k3)=X(k1,k2,-k3)   (1)X(k 1 ,k 2 ,Nk 3 )=X(k 1 ,k 2 ,-k 3 ) (1)

X(k1,N-k2,k3)=X(k1,-k2,k3)   (2)X(k 1 ,Nk 2 ,k 3 )=X(k 1 ,-k 2 ,k 3 ) (2)

X(N-k1,k2,k3)=X(-k1,k2,k3)   (3)X(Nk 1 ,k 2 ,k 3 )=X(-k 1 ,k 2 ,k 3 ) (3)

X(k1,N-k2,N-k3)=X(k1,-k2,-k3)   (4)X(k 1 ,Nk 2 ,Nk 3 )=X(k 1 ,-k 2 ,-k 3 ) (4)

X(N-k1,k2,N-k3)=X(-k1,k2,-k3)   (5)X(Nk 1 ,k 2 ,Nk 3 )=X(-k 1 ,k 2 ,-k 3 ) (5)

X(N-k1,N-k2,k3)=X(-k1,-k2,k3)   (6)X(Nk 1 ,Nk 2 ,k 3 )=X(-k 1 ,-k 2 ,k 3 ) (6)

X(N-k1,N-k2,N-k3)=X(-k1,-k2,-k3)   (7)根据式(1)-(7)所示的DHT性质,N×N×N点的DHT可以根据输出序列的k1,k2,k3除以3的非负余数分组求取:X(Nk 1 , Nk 2 , Nk 3 )=X(-k 1 ,-k 2 ,-k 3 ) (7) According to the DHT properties shown in formulas (1)-(7), N×N×N points The DHT of can be calculated according to the non-negative remainder of k 1 , k 2 , k 3 of the output sequence divided by 3:

AA ii (( kk 11 ,, kk 22 ,, kk 33 )) BB ii (( kk 11 ,, kk 22 ,, kk 33 )) == 11 11 11 -- 11 Xx (( 33 kk 11 ++ pp ii ,, 33 kk 22 ++ qq ii ,, 33 kk 33 ++ rr ii )) Xx (( 33 kk 11 -- pp ii ,, 33 kk 22 -- qq ii ,, 33 kk 33 -- rr ii )) -- -- -- (( 88 ))

其中in

[pqr]i=[001,010,100,011,101,110,01(-1),10(-1),1(-1)0,111,11(-1),1(-1)1,(-1)11],i=1,2,3,...,13。[pqr] i = [001,010,100,011,101,110,01(-1),10(-1),1(-1)0,111,11(-1),1(-1)1,(-1)11], i=1 ,2,3,...,13.

定义中间变量Define intermediate variables

为简化书写计算,我们在计算Ai(k1,k2,k3),Bi(k1,k2,k3)时引入一些符号:In order to simplify the written calculation, we introduce some symbols when calculating A i (k 1 ,k 2 ,k 3 ),B i (k 1 ,k 2 ,k 3 ):

a0=x(n1,n2,n3), a 1 = x ( n 1 , n 2 , n 3 + N 3 ) , a 2 = x ( n 1 , n 2 , n 3 + 2 N 3 ) , a 0 =x(n 1 ,n 2 ,n 3 ), a 1 = x ( no 1 , no 2 , no 3 + N 3 ) , a 2 = x ( no 1 , no 2 , no 3 + 2 N 3 ) ,

aa 33 == xx (( nno 11 ,, nno 22 ++ NN 33 ,, nno 33 )) ,, aa 44 == xx (( nno 11 ,, nno 22 ++ NN 33 ,, nno 33 ++ NN 33 )) ,, aa 55 == xx (( nno 11 ,, nno 22 ++ NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

aa 66 == xx (( nno 11 ,, nno 22 ++ 22 NN 33 ,, nno 33 )) ,, aa 77 == xx (( nno 11 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ NN 33 )) ,, aa 88 == xx (( nno 11 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

aa 99 == xx (( nno 11 ++ NN 33 ,, nno 22 ,, nno 33 )) ,, aa 1010 == xx (( nno 11 ++ NN 33 ,, nno 22 ,, nno 33 ++ NN 33 )) ,, aa 1111 == xx (( nno 11 ++ NN 33 ,, nno 22 ,, nno 33 ++ 22 NN 33 )) ,,

aa 1212 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ NN 33 ,, nno 33 )) ,, aa 1313 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ NN 33 ,, nno 33 ++ NN 33 )) ,,

aa 1414 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ NN 33 ,, nno 33 ++ 22 NN 33 )) ,, aa 1515 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 )) ,,

aa 1616 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ NN 33 )) ,, aa 1717 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

aa 1818 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ,, nno 33 )) ,, aa 1919 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ,, nno 33 ++ NN 33 )) ,,

aa 2020 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ,, nno 33 ++ 22 NN 33 )) ,, aa 21twenty one == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ NN 33 ,, nno 33 )) ,,

aa 22twenty two == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ NN 33 ,, nno 33 ++ NN 33 )) ,, aa 23twenty three == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

aa 24twenty four == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 )) ,, aa 2525 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ NN 33 )) ,,

aa 2626 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

并定义如下变量:And define variables like this:

c1=a1+a2,c2=a3+a6,c3=a4+a8,c4=a5+a7,c5=a9+a18,c6=a10+a20,c7=a11+a19,c8=a12+a24,c9=a13+a26,c10=a14+a25,c11=a15+a21,a12=a16+a23,c13=a17+a22.c 1 =a 1 +a 2 ,c 2 =a 3 +a 6 ,c 3 =a 4 +a 8 ,c 4 =a 5 +a 7 ,c 5 =a 9 +a 18 ,c 6 =a 10 +a 20 ,c 7 =a 11 +a 19 ,c 8 =a 12 +a 24 ,c 9 =a 13 +a 26 ,c 10 =a 14 +a 25 ,c 11 =a 15 +a 21 ,a 12 =a 16 +a 23 ,c 13 =a 17 +a 22 .

为了减少计算量,将变量线性组合:To reduce computation, the variables are linearly combined:

SS == ΣΣ ii == 00 2626 aa ii == aa 00 ++ ΣΣ ii == 11 1313 cc ii -- -- -- (( 99 ))

SS 11 SS 22 SS 33 SS 44 SS 55 SS 66 SS 77 SS 88 SS 99 SS 1010 SS 1111 SS 1212 SS 1313 ]] == 33 00 11 00 00 11 00 00 11 00 00 11 00 00 11 00 00 00 11 11 11 00 00 00 00 00 00 11 11 11 11 00 00 00 00 00 00 00 00 00 00 00 00 11 11 00 00 00 00 11 00 11 00 00 11 00 00 00 00 11 00 00 11 00 00 11 11 00 00 00 00 00 00 00 00 00 11 11 11 00 00 11 00 11 00 00 00 00 11 00 00 11 00 11 00 00 00 11 00 00 11 00 00 11 00 11 00 00 00 00 00 00 11 11 11 00 00 00 11 00 00 00 00 00 00 11 11 11 00 00 00 11 00 00 00 00 00 00 11 11 11 00 00 00 11 00 00 00 00 00 00 11 11 11 00 00 00 11 00 00 00 00 00 00 11 11 11 00 00 00 cc 11 cc 22 cc 33 cc 44 cc 55 cc 66 cc 77 cc 88 cc 99 cc 1010 cc 1111 cc 1212 cc 1313 ++ 33 aa 00 -- SS -- -- -- (( 1010 ))

以及as well as

d1=a1-a2,d2=a3-a6,d3=a4-a8,d4=a5-a7,d5=a9-a18,d6=a10-a20,d7=a11-a19,d8=a12-a24,d9=a13-a26,d10=a14-a25,d11=a15-a21,d12=a16-a23,d13=a17-a22.d 1 =a 1 -a 2 ,d 2 =a 3 -a 6 ,d 3 =a 4 -a 8 ,d 4 =a 5 -a 7 ,d 5 =a 9 -a 18 ,d 6 =a 10 -a 20 ,d 7 =a 11 -a 19 ,d 8 =a 12 -a 24 ,d 9 =a 13 -a 26 ,d 10 =a 14 -a 25 ,d 11 =a 15 -a 21 ,d 12 =a 16 -a 23 ,d 13 =a 17 -a 22 .

and

DD. 11 DD. 22 DD. 33 DD. 44 DD. 55 DD. 66 DD. 77 DD. 88 DD. 99 DD. 1010 DD. 1111 DD. 1212 DD. 1313 == 11 00 11 -- 11 00 11 -- 11 00 11 -- 11 00 11 -- 11 00 11 11 11 00 00 00 11 11 11 -- 11 -- 11 -- 11 00 00 00 00 11 11 11 11 11 11 11 11 11 11 11 -- 11 00 11 11 -- 11 11 -- 11 00 -- 11 00 11 11 00 11 -- 11 11 -- 11 00 11 -- 11 00 11 -- 11 00 00 11 11 11 11 11 11 -- 11 -- 11 -- 11 00 00 00 11 -- 11 00 11 00 11 -- 11 -- 11 00 11 11 -- 11 11 11 00 11 -- 11 -- 11 11 -- 11 00 00 11 -- 11 00 11 00 11 11 11 -- 11 -- 11 -- 11 00 00 11 00 11 11 11 11 -- 11 00 11 -- 11 00 -- 11 00 11 00 11 -- 11 11 -- 11 00 11 11 -- 11 00 00 11 -- 11 -- 11 00 11 11 -- 11 00 11 11 -- 11 00 00 11 -- 11 -- 11 00 11 11 11 -- 11 00 -- 11 00 11 00 11 -- 11 11 -- 11 00 dd 11 dd 22 dd 33 dd 44 dd 55 dd 66 dd 77 dd 88 dd 99 dd 1010 dd 1111 dd 1212 dd 1313 -- -- -- (( 1111 ))

计算A0(k1,k2,k3),Ai(k1,k2,k3),Bi(k1,k2,k3),i=1,2,3,...,13。Calculate A 0 (k 1 ,k 2 ,k 3 ), A i (k 1 ,k 2 ,k 3 ),B i (k 1 ,k 2 ,k 3 ),i=1,2,3,.. .,13.

1)计算A0(k1,k2,k3)=X(3k1,3k2,3k3)1) Calculate A 0 (k 1 ,k 2 ,k 3 )=X(3k 1 ,3k 2 ,3k 3 )

Figure BDA00003062189600052
Figure BDA00003062189600052

其中

Figure BDA00003062189600053
in
Figure BDA00003062189600053

这样N×N×N点的DHT计算就转化成了

Figure BDA00003062189600054
点序列S的DHT的计算。In this way, the DHT calculation of N×N×N points is transformed into
Figure BDA00003062189600054
Computation of the DHT of the point sequence S.

2)计算A1(k1,k2,k3)和B1(k1,k2,k3)2) Calculate A 1 (k 1 ,k 2 ,k 3 ) and B 1 (k 1 ,k 2 ,k 3 )

Figure BDA00003062189600055
Figure BDA00003062189600055

其中 θ 1 = 2 π n 3 N . in θ 1 = 2 π no 3 N .

从上式可以看到,N×N×N点序列x(n1,n2,n3)的DHT就转化成了

Figure BDA00003062189600057
点的序列 ( S 1 cos θ 1 - 3 D 1 sin θ 1 ) 的DHT计算。It can be seen from the above formula that the DHT of the N×N×N point sequence x(n 1 ,n 2 ,n 3 ) is transformed into
Figure BDA00003062189600057
sequence of points ( S 1 cos θ 1 - 3 D. 1 sin θ 1 ) DHT calculation.

下面计算B1(k1,k2,k3)Calculate B 1 (k 1 ,k 2 ,k 3 ) below

Figure BDA00003062189600061
Figure BDA00003062189600061

Figure BDA00003062189600063
Figure BDA00003062189600063

Figure BDA00003062189600064
Figure BDA00003062189600064

Figure BDA00003062189600065
Figure BDA00003062189600065

Figure BDA00003062189600067
Figure BDA00003062189600067

但上式的形式并不是

Figure BDA00003062189600068
点的DHT形式。根据式三角函数性质可以知道:But the form of the above formula is not
Figure BDA00003062189600068
The DHT form of the point. According to the properties of trigonometric functions, we can know:

BB 11 (( NN 33 -- kk 11 ,, NN 33 -- kk 22 ,, NN 33 -- kk 33 )) == BB 11 (( -- kk 11 ,, -- kk 22 ,, -- kk 33 ))

因此只要求出的值,再做反褶运算,同样能够得到B1(k1,k2,k3)。Therefore only ask for The value of B 1 (k 1 ,k 2 ,k 3 ) can also be obtained by defolding operation.

下面求 B 1 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) : Seek below B 1 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) :

Figure BDA000030621896000613
Figure BDA000030621896000613

Figure BDA000030621896000614
Figure BDA000030621896000614

Figure BDA000030621896000615
Figure BDA000030621896000615

Figure BDA000030621896000616
Figure BDA000030621896000616

得出:inferred:

BB 11 (( NN 33 -- kk 11 ,, NN 33 -- kk 22 ,, NN 33 -- kk 33 )) == ΣΣ nno 11 == 00 NN // 33 -- 11 ΣΣ nno 22 == 00 NN // 33 -- 11 ΣΣ nno 33 == 00 NN // 33 -- 11 (( SS 11 coscos θθ 11 -- 33 DD. 11 sinsin θθ 11 )) casφcasφ

这样N×N×N点x(n1,n2,n3)的DHT也转化成为

Figure BDA000030621896000619
点序列的DHT。再对输出序列做反褶运算,就可以得到B1(k1,k2,k3)。In this way, the DHT of N×N×N point x(n1,n2,n3) is also transformed into
Figure BDA000030621896000619
point sequence DHT. Then defold the output sequence to obtain B 1 (k 1 ,k 2 ,k 3 ).

根据三角函数性质可以得到According to the properties of trigonometric functions, we can get

Xx (( 33 kk 11 ,, 33 kk 22 ,, 33 kk 33 ++ 11 )) == 11 22 [[ AA 11 (( kk 11 ,, kk 22 ,, kk 33 )) ++ BB 11 (( kk 11 ,, kk 22 ,, kk 33 )) ]]

Xx (( 33 kk 11 ,, 33 kk 22 ,, 33 kk 33 -- 11 )) == 11 22 [[ AA 11 (( kk 11 ,, kk 22 ,, kk 33 )) -- BB 11 (( kk 11 ,, kk 22 ,, kk 33 )) ]]

这样N×N×N点的DHT变换就可以通过

Figure BDA00003062189600072
点DHT变换求得。In this way, the DHT transformation of N×N×N points can be passed
Figure BDA00003062189600072
Obtained by point DHT transformation.

3)同理,计算Ai(k1,k2,k3),Bi(k1,k2,k3),i=1,2,3,...,133) Similarly, calculate A i (k 1 ,k 2 ,k 3 ), B i (k 1 ,k 2 ,k 3 ), i=1,2,3,...,13

Figure BDA00003062189600073
Figure BDA00003062189600073

Figure BDA00003062189600074
Figure BDA00003062189600074

其中

Figure BDA00003062189600075
in
Figure BDA00003062189600075

θθ 11 θθ 22 θθ 33 θθ 44 θθ 55 θθ 66 θθ 77 θθ 88 θθ 99 θθ 1010 θθ 1111 θθ 1212 θθ 1313 == 22 ππ NN 00 00 11 00 11 00 11 00 00 00 11 11 11 00 11 11 11 00 00 11 -- 11 11 00 -- 11 11 -- 11 00 11 11 11 11 11 -- 11 11 -- 11 11 -- 11 11 11 nno 11 nno 22 nno 33 -- -- -- (( 1717 ))

从式(12)(15)(16)(17)可以看到,N×N×N序列x(n1,n2,n3)的3-D DHT转化成了27个长度

Figure BDA00003062189600077
序列的DHT变换,这样不断分解直至分解到3×3×3的序列。From equations (12)(15)(16)(17), it can be seen that the 3-D DHT of the N×N×N sequence x(n 1 ,n 2 ,n 3 ) is transformed into 27 length
Figure BDA00003062189600077
The DHT transformation of the sequence is continuously decomposed until it is decomposed into a 3×3×3 sequence.

有益效果:本发明提供的三维离散Hartley变换的快速方法,针对长度为的3m×3m×3m序列的处理十分有效,若数据长度不为3m×3m×3m可以进行补零;本方法基于蝶形结构,具有简单、规整的结构;本方法在保证精度与背景技术中的方法基本相同的情况下,有效的减少了运算量。Beneficial effects: the fast method of three-dimensional discrete Hartley transform provided by the present invention is very effective for the processing of 3 m × 3 m × 3 m sequence, if the data length is not 3 m × 3 m × 3 m , zero padding can be performed ; This method is based on the butterfly structure and has a simple and regular structure; this method effectively reduces the amount of computation while ensuring that the accuracy is basically the same as the method in the background technology.

附图说明Description of drawings

图1为本发明实施例的基-3的3D DHT变换计算结构图。Fig. 1 is the 3D DHT transformation calculation structural diagram of base-3 of the embodiment of the present invention.

具体实施方式Detailed ways

下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。Below in conjunction with specific embodiment, further illustrate the present invention, should be understood that these embodiments are only used to illustrate the present invention and are not intended to limit the scope of the present invention, after having read the present invention, those skilled in the art will understand various equivalent forms of the present invention All modifications fall within the scope defined by the appended claims of this application.

实施例1:Example 1:

采用图1所示的三维离散Hartley变换的快速方法结构。A fast method structure using the three-dimensional discrete Hartley transform shown in Fig. 1.

三维离散Hartley变换的快速方法变换过程如下:The fast method transformation process of three-dimensional discrete Hartley transformation is as follows:

先将输入序列进行线性组合和三角函数变换,得到中间变量Si,Di,然后再将Si,Di进行线性组合和三角函数变换得到频域数据。First, the input sequence is linearly combined and transformed by trigonometric functions to obtain intermediate variables S i and D i , and then linearly combined and transformed by S i and D i to obtain frequency domain data.

输入3×3×3序列:Enter a 3×3×3 sequence:

Figure BDA00003062189600081
Figure BDA00003062189600081

将输入序列利用公式Convert the input sequence using the formula

a0=x(n1,n2,n3), a 1 = x ( n 1 , n 2 , n 3 + N 3 ) , a 2 = x ( n 1 , n 2 , n 3 + 2 N 3 ) , a 0 =x(n 1 ,n 2 ,n 3 ), a 1 = x ( no 1 , no 2 , no 3 + N 3 ) , a 2 = x ( no 1 , no 2 , no 3 + 2 N 3 ) ,

aa 33 == xx (( nno 11 ,, nno 22 ++ NN 33 ,, nno 33 )) ,, aa 44 == xx (( nno 11 ,, nno 22 ++ NN 33 ,, nno 33 ++ NN 33 )) ,, aa 55 == xx (( nno 11 ,, nno 22 ++ NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

aa 66 == xx (( nno 11 ,, nno 22 ++ 22 NN 33 ,, nno 33 )) ,, aa 77 == xx (( nno 11 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ NN 33 )) ,, aa 88 == xx (( nno 11 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

aa 99 == xx (( nno 11 ++ NN 33 ,, nno 22 ,, nno 33 )) ,, aa 1010 == xx (( nno 11 ++ NN 33 ,, nno 22 ,, nno 33 ++ NN 33 )) ,, aa 1111 == xx (( nno 11 ++ NN 33 ,, nno 22 ,, nno 33 ++ 22 NN 33 )) ,,

aa 1212 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ NN 33 ,, nno 33 )) ,, aa 1313 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ NN 33 ,, nno 33 ++ NN 33 )) ,,

aa 1414 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ NN 33 ,, nno 33 ++ 22 NN 33 )) ,, aa 1515 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 )) ,,

aa 1616 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ NN 33 )) ,, aa 1717 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

aa 1818 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ,, nno 33 )) ,, aa 1919 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ,, nno 33 ++ NN 33 )) ,,

aa 2020 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ,, nno 33 ++ 22 NN 33 )) ,, aa 21twenty one == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ NN 33 ,, nno 33 )) ,,

aa 22twenty two == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ NN 33 ,, nno 33 ++ NN 33 )) ,, aa 23twenty three == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

aa 24twenty four == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 )) ,, aa 2525 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ NN 33 )) ,,

aa 2626 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

进行符号化,得到:Symbolize to get:

a0 a 0 a1 a 1 a2 a 2 a3 a 3 a4 a 4 a5 a 5 a6 a 6 00 11 22 33 44 55 66 a7 a 7 a8 a 8 a9 a 9 a10 a 10 a11 a 11 a12 a 12 a13 a 13 77 88 99 1010 1111 1212 1313 a14 a 14 a15 a 15 a16 a 16 a17 a 17 a18 a 18 a19 a 19 a20 a 20 1414 1515 1616 1717 1818 1919 2020 a21 a 21 a22 a 22 a23 a 23 a24 a 24 a25 a 25 a26 a 26 21twenty one 22twenty two 23twenty three 24twenty four 2525 2626

利用公式use the formula

c1=a1+a2,c2=a3+a6,c3=a4+a8,c4=a5+a7,c5=a9+a18,c6=a10+a20,c7=a11+a19,c8=a12+a24,c9=a13+a26,c10=a14+a25,c11=a15+a21,a12=a16+a23,c13=a17+a22.c 1 =a 1 +a 2 ,c 2 =a 3 +a 6 ,c 3 =a 4 +a 8 ,c 4 =a 5 +a 7 ,c 5 =a 9 +a 18 ,c 6 =a 10 +a 20 ,c 7 =a 11 +a 19 ,c 8 =a 12 +a 24 ,c 9 =a 13 +a 26 ,c 10 =a 14 +a 25 ,c 11 =a 15 +a 21 ,a 12 =a 16 +a 23 ,c 13 =a 17 +a 22 .

and

d1=a1-a2,d2=a3-a6,d3=a4-a8,d4=a5-a7,d5=a9-a18,d6=a10-a20,d7=a11-a19,d8=a12-a24,d9=a13-a26,d10=a14-a25,d11=a15-a21,d12=a16-a23,d13=a17-a22.d 1 =a 1 -a 2 ,d 2 =a 3 -a 6 ,d 3 =a 4 -a 8 ,d 4 =a 5 -a 7 ,d 5 =a 9 -a 18 ,d 6 =a 10 -a 20 ,d 7 =a 11 -a 19 ,d 8 =a 12 -a 24 ,d 9 =a 13 -a 26 ,d 10 =a 14 -a 25 ,d 11 =a 15 -a 21 ,d 12 =a 16 -a 23 ,d 13 =a 17 -a 22 .

进行线性组合,得:Perform linear combination to get:

c1 c 1 c2 c 2 c3 c 3 c4 c 4 c5 c 5 c6 c 6 c7 c 7 c8 c 8 c9 c 9 c10 c 10 c11 c 11 c12 c 12 c13 c 13 33 99 1212 1212 2727 3030 3030 3636 3939 3939 3636 3939 3939 d1 d 1 d2 d 2 d3 d 3 d4 d 4 d5 d 5 d6 d 6 d7 d 7 d8 d 8 d9 d 9 d10 d 10 d11 d 11 d12 d 12 d13 d 13 -1-1 -3-3 -4-4 -2-2 -9-9 -10-10 -8-8 -12-12 -13-13 -11-11 -6-6 -7-7 -5-5

利用公式:Use the formula:

SS == ΣΣ ii == 00 2626 aa ii == aa 00 ++ ΣΣ ii == 11 1313 cc ii

SS 11 SS 22 SS 33 SS 44 SS 55 SS 66 SS 77 SS 88 SS 99 SS 1010 SS 1111 SS 1212 SS 1313 ]] == 33 00 11 00 00 11 00 00 11 00 00 11 00 00 11 00 00 00 11 11 11 00 00 00 00 00 00 11 11 11 11 00 00 00 00 00 00 00 00 00 00 00 00 11 11 00 00 00 00 11 00 11 00 00 11 00 00 00 00 11 00 00 11 00 00 11 11 00 00 00 00 00 00 00 00 00 11 11 11 00 00 11 00 11 00 00 00 00 11 00 00 11 00 11 00 00 00 11 00 00 11 00 00 11 00 11 00 00 00 00 00 00 11 11 11 00 00 00 11 00 00 00 00 00 00 11 11 11 00 00 00 11 00 00 00 00 00 00 11 11 11 00 00 00 11 00 00 00 00 00 00 11 11 11 00 00 00 11 00 00 00 00 00 00 11 11 11 00 00 00 cc 11 cc 22 cc 33 cc 44 cc 55 cc 66 cc 77 cc 88 cc 99 cc 1010 cc 1111 cc 1212 cc 1313 ++ 33 aa 00 -- SS

DD. 11 DD. 22 DD. 33 DD. 44 DD. 55 DD. 66 DD. 77 DD. 88 DD. 99 DD. 1010 DD. 1111 DD. 1212 DD. 1313 == 11 00 11 -- 11 00 11 -- 11 00 11 -- 11 00 11 -- 11 00 11 11 11 00 00 00 11 11 11 -- 11 -- 11 -- 11 00 00 00 00 11 11 11 11 11 11 11 11 11 11 11 -- 11 00 11 11 -- 11 11 -- 11 00 -- 11 00 11 11 00 11 -- 11 11 -- 11 00 11 -- 11 00 11 -- 11 00 00 11 11 11 11 11 11 -- 11 -- 11 -- 11 00 00 00 11 -- 11 00 11 00 11 -- 11 -- 11 00 11 11 -- 11 11 11 00 11 -- 11 -- 11 11 -- 11 00 00 11 -- 11 00 11 00 11 11 11 -- 11 -- 11 -- 11 00 00 11 00 11 11 11 11 -- 11 00 11 -- 11 00 -- 11 00 11 00 11 -- 11 11 -- 11 00 11 11 -- 11 00 00 11 -- 11 -- 11 00 11 11 -- 11 00 11 11 -- 11 00 00 11 -- 11 -- 11 00 11 11 11 -- 11 00 -- 11 00 11 00 11 -- 11 11 -- 11 00 dd 11 dd 22 dd 33 dd 44 dd 55 dd 66 dd 77 dd 88 dd 99 dd 1010 dd 1111 dd 1212 dd 1313

得到中间变量Si,DiGet intermediate variables S i , D i :

然后再将Si,Di利用公式,Then S i , D i use the formula,

Figure BDA00003062189600113
Figure BDA00003062189600113

Figure BDA00003062189600115
Figure BDA00003062189600115

其中

Figure BDA00003062189600116
in
Figure BDA00003062189600116

θθ 11 θθ 22 θθ 33 θθ 44 θθ 55 θθ 66 θθ 77 θθ 88 θθ 99 θθ 1010 θθ 1111 θθ 1212 θθ 1313 == 22 ππ NN 00 00 11 00 11 00 11 00 00 00 11 11 11 00 11 11 11 00 00 11 -- 11 11 00 -- 11 11 -- 11 00 11 11 11 11 11 -- 11 11 -- 11 11 -- 11 11 11 nno 11 nno 22 nno 33

AA ii (( kk 11 ,, kk 22 ,, kk 33 )) BB ii (( kk 11 ,, kk 22 ,, kk 33 )) == 11 11 11 -- 11 Xx (( 33 kk 11 ++ pp ii ,, 33 kk 22 ++ qq ii ,, 33 kk 33 ++ rr ii )) Xx (( 33 kk 11 -- pp ii ,, 33 kk 22 -- qq ii ,, 33 kk 33 -- rr ii ))

进行线性组合和三角函数变换得到频域数据,并与通过定义式(0)计算得出的结果对比:Perform linear combination and trigonometric function transformation to obtain frequency domain data, and compare it with the result calculated by definition (0):

Figure BDA00003062189600123
Figure BDA00003062189600123

Figure BDA00003062189600131
Figure BDA00003062189600131

实施例2Example 2

采用图1所示的三维离散Hartley变换的快速方法结构。A fast method structure using the three-dimensional discrete Hartley transform shown in Figure 1.

三维离散Hartley变换的快速方法变换过程如下:The fast method transformation process of three-dimensional discrete Hartley transformation is as follows:

先将输入序列进行线性组合和三角函数变换,得到中间变量Si,Di,然后再将Si,Di进行线性组合和三角函数变换得到频域数据。First, the input sequence is linearly combined and transformed by trigonometric functions to obtain intermediate variables S i and D i , and then linearly combined and transformed by S i and D i to obtain frequency domain data.

输入3×3×3序列:Enter a 3×3×3 sequence:

Figure BDA00003062189600132
Figure BDA00003062189600132

将输入序列利用公式Convert the input sequence using the formula

a0=x(n1,n2,n3), a 1 = x ( n 1 , n 2 , n 3 + N 3 ) , a 2 = x ( n 1 , n 2 , n 3 + 2 N 3 ) , a 0 =x(n 1 ,n 2 ,n 3 ), a 1 = x ( no 1 , no 2 , no 3 + N 3 ) , a 2 = x ( no 1 , no 2 , no 3 + 2 N 3 ) ,

aa 33 == xx (( nno 11 ,, nno 22 ++ NN 33 ,, nno 33 )) ,, aa 44 == xx (( nno 11 ,, nno 22 ++ NN 33 ,, nno 33 ++ NN 33 )) ,, aa 55 == xx (( nno 11 ,, nno 22 ++ NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

aa 66 == xx (( nno 11 ,, nno 22 ++ 22 NN 33 ,, nno 33 )) ,, aa 77 == xx (( nno 11 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ NN 33 )) ,, aa 88 == xx (( nno 11 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

aa 99 == xx (( nno 11 ,, nno 22 ++ NN 33 ,, nno 33 )) ,, aa 1010 == xx (( nno 11 ++ NN 33 ,, nno 22 ,, nno 33 ++ NN 33 )) ,, aa 1111 == xx (( nno 11 ++ NN 33 ,, nno 22 ,, nno 33 ++ 22 NN 33 )) ,,

aa 1212 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ NN 33 ,, nno 33 )) ,, aa 1313 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ NN 33 ,, nno 33 ++ NN 33 )) ,,

aa 1414 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ NN 33 ,, nno 33 ++ 22 NN 33 )) ,, aa 1515 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 )) ,,

aa 1616 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ NN 33 )) ,, aa 1717 == xx (( nno 11 ++ NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

aa 1818 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ,, nno 33 )) ,, aa 1919 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ,, nno 33 ++ NN 33 )) ,,

aa 2020 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ,, nno 33 ++ 22 NN 33 )) ,, aa 21twenty one == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ NN 33 ,, nno 33 )) ,,

aa 22twenty two == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ NN 33 ,, nno 33 ++ NN 33 )) ,, aa 23twenty three == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

aa 24twenty four == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 )) ,, aa 2525 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ NN 33 )) ,,

aa 2626 == xx (( nno 11 ++ 22 NN 33 ,, nno 22 ++ 22 NN 33 ,, nno 33 ++ 22 NN 33 )) ,,

进行符号化,得到:Symbolize to get:

a0 a 0 a1 a 1 a2 a 2 a3 a 3 a4 a 4 a5 a 5 a6 a 6 00 11 00 00 00 00 00 a7 a 7 a8 a 8 a9 a 9 a10 a 10 a11 a 11 a12 a 12 a13 a 13 00 00 00 00 00 00 00 a14 a 14 a15 a 15 a16 a 16 a17 a 17 a18 a 18 a19 a 19 a20 a 20 00 00 00 00 00 00 00 a21 a 21 a22 a 22 a23 a 23 a24 a 24 a25 a 25 a26 a 26 00 00 00 00 00 00

利用公式: S = Σ i = 0 26 a i = a 0 + Σ i = 1 13 c i Use the formula: S = Σ i = 0 26 a i = a 0 + Σ i = 1 13 c i

SS 11 SS 22 SS 33 SS 44 SS 55 SS 66 SS 77 SS 88 SS 99 SS 1010 SS 1111 SS 1212 SS 1313 ]] == 33 00 11 00 00 11 00 00 11 00 00 11 00 00 11 00 00 00 11 11 11 00 00 00 00 00 00 11 11 11 11 00 00 00 00 00 00 00 00 00 00 00 00 11 11 00 00 00 00 11 00 11 00 00 11 00 00 00 00 11 00 00 11 00 00 11 11 00 00 00 00 00 00 00 00 00 11 11 11 00 00 11 00 11 00 00 00 00 11 00 00 11 00 11 00 00 00 11 00 00 11 00 00 11 00 11 00 00 00 00 00 00 11 11 11 00 00 00 11 00 00 00 00 00 00 11 11 11 00 00 00 11 00 00 00 00 00 00 11 11 11 00 00 00 11 00 00 00 00 00 00 11 11 11 00 00 00 11 00 00 00 00 00 00 11 11 11 00 00 00 cc 11 cc 22 cc 33 cc 44 cc 55 cc 66 cc 77 cc 88 cc 99 cc 1010 cc 1111 cc 1212 cc 1313 ++ 33 aa 00 -- SS

DD. 11 DD. 22 DD. 33 DD. 44 DD. 55 DD. 66 DD. 77 DD. 88 DD. 99 DD. 1010 DD. 1111 DD. 1212 DD. 1313 == 11 00 11 -- 11 00 11 -- 11 00 11 -- 11 00 11 -- 11 00 11 11 11 00 00 00 11 11 11 -- 11 -- 11 -- 11 00 00 00 00 11 11 11 11 11 11 11 11 11 11 11 -- 11 00 11 11 -- 11 11 -- 11 00 -- 11 00 11 11 00 11 -- 11 11 -- 11 00 11 -- 11 00 11 -- 11 00 00 11 11 11 11 11 11 -- 11 -- 11 -- 11 00 00 00 11 -- 11 00 11 00 11 -- 11 -- 11 00 11 11 -- 11 11 11 00 11 -- 11 -- 11 11 -- 11 00 00 11 -- 11 00 11 00 11 11 11 -- 11 -- 11 -- 11 00 00 11 00 11 11 11 11 -- 11 00 11 -- 11 00 -- 11 00 11 00 11 -- 11 11 -- 11 00 11 11 -- 11 00 00 11 -- 11 -- 11 00 11 11 -- 11 00 11 11 -- 11 00 00 11 -- 11 -- 11 00 11 11 11 -- 11 00 -- 11 00 11 00 11 -- 11 11 -- 11 00 dd 11 dd 22 dd 33 dd 44 dd 55 dd 66 dd 77 dd 88 dd 99 dd 1010 dd 1111 dd 1212 dd 1313

得到中间变量Si,DiGet intermediate variables S i , D i :

然后再将Si,Di利用公式Then S i , D i use the formula

其中 in

θθ 11 θθ 22 θθ 33 θθ 44 θθ 55 θθ 66 θθ 77 θθ 88 θθ 99 θθ 1010 θθ 1111 θθ 1212 θθ 1313 == 22 ππ NN 00 00 11 00 11 00 11 00 00 00 11 11 11 00 11 11 11 00 00 11 -- 11 11 00 -- 11 11 -- 11 00 11 11 11 11 11 -- 11 11 -- 11 11 -- 11 11 11 nno 11 nno 22 nno 33

AA ii (( kk 11 ,, kk 22 ,, kk 33 )) BB ii (( kk 11 ,, kk 22 ,, kk 33 )) == 11 11 11 -- 11 Xx (( 33 kk 11 ++ pp ii ,, 33 kk 22 ++ qq ii ,, 33 kk 33 ++ rr ii )) Xx (( 33 kk 11 -- pp ii ,, 33 kk 22 -- qq ii ,, 33 kk 33 -- rr ii ))

进行线性组合和三角函数变换得到频域数据,并与通过定义式(0)计算得出的结果对比:Perform linear combination and trigonometric function transformation to obtain frequency domain data, and compare it with the result calculated by definition (0):

Figure BDA00003062189600166
Figure BDA00003062189600166

Figure BDA00003062189600171
Figure BDA00003062189600171

Claims (4)

1. the fast method of 3 d-dem Hartley conversion is characterized in that: be 3 with size of data m* 3 m* 3 mData block, extract by frequency domain data be decomposed into 27 3 by linear transformation and trigonometric function conversion character with data block M-1* 3 M-1* 3 M-1Submodule only comprises 3 * 3 * 3 data until each subdata, last several 3 * 3 * 3 data blocks of calculating that only need; This method divided for three steps realized:
1) list entries is utilized trigonometric function conversion character and linear combination calculate intermediate variable S, S i, D iI=1,2 ... 13;
2) output sequence is resolved into
Figure FDA00003062189500011
The calculating of S sequence, wherein N is the size of each dimension of data;
3) return the 1st) step right
Figure FDA00003062189500012
Sequence is carried out decomposition computation, is 3 * 3 * 3 data blocks until sequence size.
2. the fast method of 3 d-dem Hartley according to claim 1 conversion is characterized in that: utilize trigonometric function conversion character with the k of N * N * N Discrete Hartley Transform sequence according to output sequence 1, k 2, k 3K is asked in non-negative remainder grouping divided by 3 1, k 2, k 3Be the sequence coordinate, X is the Discrete Hartley Transform sequence data, by following or represent with the formula of following equivalence:
A 0(k 1,k 2,k 3)=X(3k 1,3k 2,3k 3)
A 1(k 1,k 2,k 3)=X(3k 1,3k 2,3k 3+1)+X(3k 1,3k 2,3k 3-1)
B 1(k 1,k 2,k 3)=X(3k 1,3k 2,3k 3+1)-X(3k 1,3k 2,3k 3-1)
A 2(k 1,k 2,k 3)=X(3k 1,3k 2+1,3k 3)+X(3k 1,3k 2-1,3k 3)
B 2(k 1,k 2,k 3)=X(3k 1,3k 2+1,3k 3)-X(3k 1,3k 2-1,3k 3)
A 3(k 1,k 2,k 3)=X(3k 1+1,3k 2,3k 3)+X(3k 1-1,3k 2,3k 3)
B 3(k 1,k 2,k 3)=X(3k 1+1,3k 2,3k 3)-X(3k 1-1,3k 2,3k 3)
A 4(k 1,k 2,k 3)=X(3k 1,3k 2+1,3k 3+1)+X(3k 1,3k 2-1,3k 3-1)
B 4(k 1,k 2,k 3)=X(3k 1,3k 2+1,3k 3+1)-X(3k 1,3k 2-1,3k 3-1)
A 5(k 1,k 2,k 3)=X(3k 1+1,3k 2,3k 3+1)+X(3k 1-1,3k 2,3k 3-1)
B 5(k 1,k 2,k 3)=X(3k 1+1,3k 2,3k 3+1)-X(3k 1-1,3k 2,3k 3-1)
A 6(k 1,k 2,k 3)=X(3k 1+1,3k 2+1,3k 3)+X(3k 1-1,3k 2-1,3k 3)
B 6(k 1,k 2,k 3)=X(3k 1+1,3k 2+1,3k 3)-X(3k 1-1,3k 2-1,3k 3)
A 7(k 1,k 2,k 3)=X(3k 1,3k 2+1,3k 3-1)+X(3k 1,3k 2-1,3k 3+1)
B 7(k 1,k 2,k 3)=X(3k 1,3k 2+1,3k 3-1)-X(3k 1,3k 2-1,3k 3+1)
A 8(k 1,k 2,k 3)=X(3k 1+1,3k 2,3k 3-1)+X(3k 1-1,3k 2,3k 3+1)
B 8(k 1,k 2,k 3)=X(3k 1+1,3k 2,3k 3-1)-X(3k 1-1,3k 2,3k 3+1)
A 9(k 1,k 2,k 3)=X(3k 1+1,3k 2-1,3k 3)+X(3k 1-1,3k 2+1,3k 3)
B 9(k 1,k 2,k 3)=X(3k 1+1,3k 2-1,3k 3)-X(3k 1-1,3k 2+1,3k 3)
A 10(k 1,k 2,k 3)=X(3k 1+1,3k 2+1,3k 3+1)+X(3k 1-1,3k 2-1,3k 3-1)
B 10(k 1,k 2,k 3)=X(3k 1+1,3k 2+1,3k 3+1)-X(3k 1-1,3k 2-1,3k 3-1)
A 11(k 1,k 2,k 3)=X(3k 1+1,3k 2+1,3k 3-1)+X(3k 1-1,3k 2-1,3k 3+1)
B 11(k 1,k 2,k 3)=X(3k 1+1,3k 2+1,3k 3-1)-X(3k 1-1,3k 2-1,3k 3+1)
A 12(k 1,k 2,k 3)=X(3k 1+1,3k 2-1,3k 3+1)+X(3k 1-1,3k 2+1,3k 3-1)
B 12(k 1,k 2,k 3)=X(3k 1+1,3k 2-1,3k 3+1)-X(3k 1-1,3k 2+1,3k 3-1)
A 13(k 1,k 2,k 3)=X(3k 1-1,3k 2+1,3k 3+1)+X(3k 1+1,3k 2-1,3k 3-1)
A 13(k 1,k 2,k 3)=X(3k 1-1,3k 2+1,3k 3+1)-X(3k 1+1,3k 2-1,3k 3-1)
Following formula can be unified to be write as:
A i ( k 1 , k 2 , k 3 ) B i ( k 1 , k 2 , k 3 ) = 1 1 1 - 1 X ( 3 k 1 + p i , 3 k 2 + q i , 3 k 3 + r i ) X ( 3 k 1 - p i , 3 k 2 - q i , 3 k 3 - r i )
Wherein
[pqr] i=[001,010,100,011,101,110,01(-1),10(-1),1(-1)0,111,11(-1),1(-1)1,(-1)11],i=1,2,3,...,13。
3. the fast method of 3 d-dem Hartley according to claim 2 conversion is characterized in that: in order to write conveniently, calculating A i(k 1, k 2, k 3), B i(k 1, k 2, k 3) time define symbol a 1~a 26, c 1~c 13, d 1~d 13, and utilize trigonometric function character to a 1~a 26, c 1~c 13, d 1~d 13Linear combination obtains S 1~S 13, D 1~D 13Wherein, x is the list entries data; By following or represent with the formula of following equivalence:
a 0=x(n 1,n 2,n 3), a 1 = x ( n 1 , n 2 , n 3 + N 3 ) , a 2 = x ( n 1 , n 2 , n 3 + 2 N 3 ) ,
a 3 = x ( n 1 , n 2 + N 3 , n 3 ) , a 4 = x ( n 1 , n 2 + N 3 , n 3 + N 3 ) , a 5 = x ( n 1 , n 2 + N 3 , n 3 + 2 N 3 ) ,
a 6 = x ( n 1 , n 2 + 2 N 3 , n 3 ) , a 7 = x ( n 1 , n 2 + 2 N 3 , n 3 + N 3 ) , a 8 = x ( n 1 , n 2 + 2 N 3 , n 3 + 2 N 3 ) ,
a 9 = x ( n 1 + N 3 , n 2 , n 3 ) , a 10 = x ( n 1 + N 3 , n 2 , n 3 + N 3 ) , a 11 = x ( n 1 + N 3 , n 2 , n 3 + 2 N 3 ) ,
a 12 = x ( n 1 + N 3 , n 2 + N 3 , n 3 ) , a 13 = x ( n 1 + N 3 , n 2 + N 3 , n 3 + N 3 ) ,
a 14 = x ( n 1 + N 3 , n 2 + N 3 , n 3 + 2 N 3 ) , a 15 = x ( n 1 + N 3 , n 2 + 2 N 3 , n 3 ) ,
a 16 = x ( n 1 + N 3 , n 2 + 2 N 3 , n 3 + N 3 ) , a 17 = x ( n 1 + N 3 , n 2 + 2 N 3 , n 3 + 2 N 3 ) ,
a 18 = x ( n 1 + 2 N 3 , n 2 , n 3 ) , a 19 = x ( n 1 + 2 N 3 , n 2 , n 3 + N 3 ) ,
a 20 = x ( n 1 + 2 N 3 , n 2 , n 3 + 2 N 3 ) , a 21 = x ( n 1 + 2 N 3 , n 2 + N 3 , n 3 ) ,
a 22 = x ( n 1 + 2 N 3 , n 2 + N 3 , n 3 + N 3 ) , a 23 = x ( n 1 + 2 N 3 , n 2 + N 3 , n 3 + 2 N 3 ) ,
a 24 = x ( n 1 + 2 N 3 , n 2 + 2 N 3 , n 3 ) , a 25 = x ( n 1 + 2 N 3 , n 2 + 2 N 3 , n 3 + N 3 ) ,
a 26 = x ( n 1 + 2 N 3 , n 2 + 2 N 3 , n 3 + 2 N 3 ) ,
c 1=a 1+a 2,c 2=a 3+a 6,c 3=a 4+a 8,c 4=a 5+a 7,c 5=a 9+a 18,c 6=a 10+a 20,c 7=a 11+a 19,c 8=a 12+a 24,c 9=a 13+a 26,c 10=a 14+a 25,c 11=a 15+a 21,a 12=a 16+a 23,c 13=a 17+a 22.
S = Σ i = 0 26 a i = a 0 + Σ i = 1 13 c i
S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 ] = 3 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 10 c 11 c 12 c 13 + 3 a 0 - S
And
d 1=a 1-a 2,d 2=a 3-a 6,d 3=a 4-a 8,d 4=a 5-a 7,d 5=a 9-a 18,d 6=a 10-a 20,d 7=a 11-a 19,d 8=a 12-a 24,d 9=a 13-a 26,d 10=a 14-a 25,d 11=a 15-a 21,d 12=a 16-a 23,d 13=a 17-a 22
With
D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 10 D 11 D 12 D 13 = 1 0 1 - 1 0 1 - 1 0 1 - 1 0 1 - 1 0 1 1 1 0 0 0 1 1 1 - 1 - 1 - 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 - 1 0 1 1 - 1 1 - 1 0 - 1 0 1 1 0 1 - 1 1 - 1 0 1 - 1 0 1 - 1 0 0 1 1 1 1 1 1 - 1 - 1 - 1 0 0 0 1 - 1 0 1 0 1 - 1 - 1 0 1 1 - 1 1 1 0 1 - 1 - 1 1 - 1 0 0 1 - 1 0 1 0 1 1 1 - 1 - 1 - 1 0 0 1 0 1 1 1 1 - 1 0 1 - 1 0 - 1 0 1 0 1 - 1 1 - 1 0 1 1 - 1 0 0 1 - 1 - 1 0 1 1 - 1 0 1 1 - 1 0 0 1 - 1 - 1 0 1 1 1 - 1 0 - 1 0 1 0 1 - 1 1 - 1 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d 8 d 9 d 10 d 11 d 12 d 13
4. the fast method of 3 d-dem Hartley according to claim 3 conversion is characterized in that: described intermediate variable, utilize trigonometric function conversion character, and the Discrete Hartley Transform sequence that N * N * N is ordered is calculated and has just been changed into
Figure FDA00003062189500051
The calculating of the Discrete Hartley Transform of some intermediate variable sequence S; In other words, calculate A exactly 0(k 1, k 2, k 3), A i(k 1, k 2, k 3), B i(k 1, k 2, k 3), i=1,2,3 ..., 13; By following or represent with the formula of following equivalence:
1) calculates A 0(k 1, k 2, k 3)=X (3k 1, 3k 2, 3k 3)
A 0 ( k 1 , k 2 , k 3 ) = Σ n 1 = 0 N - 1 Σ n 2 = 0 N - 1 Σ n 3 = 0 N - 1 x ( n 1 , n 2 , n 3 ) cas 2 π N / 3 ( n 1 k 1 + n 2 k 2 + n 3 k 3 )
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 Σ i = 0 2 Σ j = 0 2 Σ k = 0 2
x ( n 1 + i N 3 , n 2 + j N 3 , n 3 + k N 3 ) cas 2 π N / 3 ( n 1 k 1 + n 2 k 2 + n 3 k 3 )
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 S · cas ( φ )
Wherein
Figure FDA00003062189500056
N * N * N DHT of ordering calculates and has just changed into like this
Figure FDA00003062189500057
The calculating of the DHT of point sequence S;
2) calculate A 1(k 1, k 2, k 3) and B 1(k 1, k 2, k 3)
A 1 ( k 1 , k 2 , k 3 ) = X ( 3 k 1 , 3 k 2 , 3 k 3 + 1 ) + X ( 3 k 1 , 3 k 2 , 3 k 3 - 1 )
= Σ n 1 = 0 N - 1 Σ n 2 = 0 N - 1 Σ n 3 = 0 N - 1 x ( n 1 , n 2 , n 3 ) { cas 2 π N [ 3 n 1 k 1 + 3 n 2 k 2 + n 3 ( 3 k 3 + 1 ) ]
+ cas 2 π N [ 3 n 1 k 1 + 3 n 2 k 2 + n 3 ( 3 k 3 - 1 ) ] }
= 2 Σ n 1 = 0 N - 1 Σ n 2 = 0 N - 1 Σ n 3 = 0 N - 1 x ( n 1 , n 2 , n 3 ) cos 2 π n 3 N cas ( φ )
Use the character of trigonometric function:
cas(θ+C)-cas(θ-C)=2sinCcas(-θ)
cas(θ+C)+cas(θ-C)=2cosCcas(-θ)
Can further put in order and be:
Figure FDA00003062189500061
Figure FDA00003062189500062
Figure FDA00003062189500063
Figure FDA00003062189500064
Figure FDA00003062189500065
Figure FDA00003062189500066
Figure FDA00003062189500067
Wherein θ 1 = 2 πn 3 N ;
As can be seen from the above equation, (DHT n3) has just changed into N * N * N point sequence x for n1, n2 The sequence of point ( S 1 cos θ 1 - 3 D 1 sin θ 1 ) DHT calculate;
Calculate B below 1(k 1, k 2, k 3):
Figure FDA000030621895000611
Figure FDA000030621895000612
Figure FDA000030621895000613
Figure FDA000030621895000614
Figure FDA000030621895000615
Figure FDA000030621895000616
Figure FDA000030621895000617
But the form of following formula is not
Figure FDA000030621895000618
The DHT form of point; Can know according to formula trigonometric function character:
B 1 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = B 1 ( - k 1 , - k 2 , - k 3 )
As long as therefore obtain
Figure FDA000030621895000620
Value, do anti-pleat computing again, can access B equally 1(k 1, k 2, k 3).
Ask below B 1 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) :
Figure FDA00003062189500072
Figure FDA00003062189500073
Figure FDA00003062189500074
Figure FDA00003062189500075
Figure FDA00003062189500076
Draw:
B 1 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 1 sin θ 1 + 3 D 1 cos θ 1 ) casφ
N * N * (DHT n3) also transforms into N point x for n1, n2 like this
Figure FDA00003062189500078
Point sequence ( S 1 sin θ 1 + 3 D 1 cos θ 1 ) DHT; Again output sequence is done anti-pleat computing, just can obtain B 1(k 1, k 2, k 3);
According to above-mentioned A 1(k 1, k 2, k 3) and
Figure FDA000030621895000710
Calculating formula can obtain:
X ( 3 k 1 , 3 k 2 , 3 k 3 + 1 ) = 1 2 [ A 1 ( k 1 , k 2 , k 3 ) + B 1 ( k 1 , k 2 , k 3 ) ]
X ( 3 k 1 , 3 k 2 , 3 k 3 - 1 ) = 1 2 [ A 1 ( k 1 , k 2 , k 3 ) - B 1 ( k 1 , k 2 , k 3 ) ]
N * N * N DHT conversion of ordering just can be passed through like this
Figure FDA000030621895000713
Point DHT conversion is tried to achieve;
3) calculate A 2(k 1, k 2, k 3) and B 2(k 1, k 2, k 3)
Figure FDA000030621895000714
Figure FDA000030621895000715
Figure FDA000030621895000716
Figure FDA000030621895000718
Figure FDA000030621895000720
Figure FDA000030621895000722
Wherein θ 2 = 2 πn 2 N ,
B 2 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 2 sin θ 2 + 3 D 2 cos θ 2 ) casφ
4) calculate A 3(k 1, k 2, k 3) and B 3(k 1, k 2, k 3)
A 3 ( k 1 , k 2 , k 3 )
= X ( 3 k 1 + 1 , 3 k 2 , 3 k 3 ) + X ( 3 k 1 - 1 , 3 k 2 , 3 k 3 )
= 2 Σ n 1 = 0 N - 1 Σ n 2 = 0 N - 1 Σ n 3 = 0 N - 1 x ( n 1 , n 2 , n 3 ) cos 2 πn 1 N casφ
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 { [ 2 a 0 + 2 a 1 + 2 a 2 + 2 a 3 + 2 a 4 + 2 a 5 + 2 a 6 + 2 a 7 + 2 a 8 - a 9
- a 10 - a 11 - a 12 - a 13 - a 14 - a 15 - a 16 - a 17 - a 18 - a 19 - a 20
- a 21 - a 22 - a 23 + 2 a 24 - a 25 - a 26 ] cos 2 πn 1 N
- 3 [ a 9 + a 10 + a 11 + a 12 + a 13 + a 14 + a 15 + a 16 + a 17 - a 18 - a 19 - a 20
- a 21 - a 22 - a 23 - a 24 - a 25 - a 26 ] sin 2 π n 1 N } casφ
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 3 cos θ 3 - 3 D 3 sin θ 3 ) casφ
Wherein θ 3 = 2 πn 1 N ;
B 3 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 3 cos θ 3 + 3 D 3 sin θ 3 ) casφ
5) calculate A 4(k 1, k 2, k 3) and B 4(k 1, k 2, k 3)
A 4 ( k 1 , k 2 , k 3 )
= X ( 3 k 1 , 3 k 2 + 1 , 3 k 3 + 1 ) + X ( 3 k 1 , 3 k 2 - 1 , 3 k 3 - 1 )
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 { [ 2 a 0 - a 1 - a 2 - a 3 - a 4 + 2 a 5 - a 6 + 2 a 7 - a 8 + 2 a 9 - a 10 - a 11
- a 12 - a 13 + 2 a 14 - a 15 + 2 a 16 - a 17 + 2 a 18 - a 19 - a 20
- a 21 - a 22 + 2 a 23 - a 24 + 2 a 25 - a 26 ] cos 2 ( n 2 + n 3 ) π N
- 3 [ a 1 - a 2 + a 3 - a 4 - a 6 + a 8 + a 10 - a 11 + a 12 - a 13 - a 15 + a 17
+ a 19 - a 20 + a 21 - a 22 - a 24 + a 26 ] sin 2 ( n 2 + n 3 ) π N } casφ
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 4 cos θ 4 - 3 D 4 sin θ 4 ) casφ
Wherein θ 4 = 2 π ( n 2 + n 3 ) N ;
B 4 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 4 cos θ 4 + 3 D 4 sin θ 4 ) casφ
6) A 5(k 1, k 2, k 3) and B 5(k 1, k 2, k 3)
A 5 ( k 1 , k 2 , k 3 )
= X ( 3 k 1 + 1 , 3 k 2 , 3 k 3 + 1 ) + X ( 3 k 1 - 1 , 3 k 2 , 3 k 3 - 1 )
= 2 Σ n 1 = 0 N - 1 Σ n 2 = 0 N - 1 Σ n 3 = 0 N - 1 x ( n 1 , n 2 , n 3 ) cos 2 π ( n 1 + n 3 ) N cas 2 π N / 3 ( n 1 k 1 + n 2 k 2 + n 3 k 3 )
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 { [ 2 a 0 - a 1 - a 2 + 2 a 3 - a 4 - a 5 + 2 a 6 - a 7 - a 8 - a 9 - a 10 + 2 a 11
- a 12 - a 13 + 2 a 14 - a 15 - a 16 + 2 a 17 - a 18 + 2 a 19 - a 20
- a 21 + 2 a 22 - a 23 - a 24 + 2 a 25 - a 26 ] cos 2 ( n 1 + n 3 ) π N
- 3 [ a 1 - a 2 + a 4 - a 5 + a 7 - a 8 + a 9 - a 10 + a 12 - a 13 + a 15 - a 16
- a 18 + a 20 - a 21 + a 23 - a 24 + a 26 ] sin 2 ( n 1 + n 3 ) π N } casφ
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 5 cos θ 5 - 3 D 5 sin θ 5 ) casφ
Wherein θ 5 = 2 π ( n 1 + n 3 ) N
B 5 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 5 cos θ 5 + 3 D 5 sin θ 5 ) casφ
7) calculate A 6(k 1, k 2, k 3) and B 6(k 1, k 2, k 3)
A 6 ( k 1 , k 2 , k 3 )
= X ( 3 k 1 + 1 , 3 k 2 + 1 , 3 k 3 ) + X ( 3 k 1 - 1 , 3 k 2 - 1 , 3 k 3 )
= 2 Σ n 1 = 0 N - 1 Σ n 2 = 0 N - 1 Σ n 3 = 0 N - 1 x ( n 1 , n 2 , n 3 ) cos 2 π ( n 1 + n 2 ) N casφ
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 { [ 2 a 0 + 2 a 1 + 2 a 2 - a 3 - a 4 - a 5 - a 6 - a 7 - a 8 - a 9 - a 10 - a 11
- a 12 - a 13 - a 14 + 2 a 15 + 2 a 16 + 2 a 17 - a 18 - a 19 - a 20
+ 2 a 21 + 2 a 22 + 2 a 23 - a 24 - a 25 - a 26 ] cos 2 ( n 1 + n 2 ) π N
+ 3 [ a 3 + a 4 + a 5 - a 6 - a 7 - a 8 + a 9 + a 10 + a 11 - a 12 + a 13 - a 14
- a 18 - a 19 - a 20 + a 24 + a 25 + a 26 ] sin 2 ( n 1 + n 2 ) π N } casφ
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 6 cos θ 6 - 3 D 6 sin θ 6 ) casφ
Wherein: θ 6 = 2 π ( n 1 + n 2 ) N
B 6 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 6 cos θ 6 + 3 D 6 sin θ 6 ) casφ
8) calculate A 7(k 1, k 2, k 3) and B 7(k 1, k 2, k 3)
A 7 ( k 1 , k 2 , k 3 )
= X ( 3 k 1 , 3 k 2 + 1 , 3 k 3 - 1 ) + X ( 3 k 1 , 3 k 2 - 1 , 3 k 3 + 1 )
= 2 Σ n 1 = 0 N - 1 Σ n 2 = 0 N - 1 Σ n 3 = 0 N - 1 x ( n 1 , n 2 , n 3 ) cos 2 π ( n 2 - n 3 ) N cas 2 π N / 3 ( n 1 k 1 + n 2 k 2 + n 3 k 3 )
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 { [ 2 a 0 - a 1 - a 2 - a 3 + 2 a 4 - a 5 - a 6 - a 7 + 2 a 8 + 2 a 9 - a 10 - a 11
- a 12 + 2 a 13 - a 14 - a 15 - a 16 + 2 a 17 + 2 a 18 - a 19 - a 20
- a 21 + 2 a 22 - a 23 - a 24 - a 25 + 2 a 26 ] cos 2 ( n 2 - n 3 ) π N
+ 3 [ a 1 - a 2 - a 3 + a 5 + a 6 - a 7 + a 10 - a 11 - a 12 + a 14 + a 15 - a 16
+ a 19 - a 20 - a 21 + a 23 + a 24 - a 25 ] sin 2 ( n 2 - n 3 ) π N } casφ
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 7 cos θ 7 - 3 D 7 sin θ 7 ) casφ
B 7 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 7 cos θ 7 + 3 D 7 sin θ 7 ) casφ
Wherein θ 7 = 2 π ( n 2 - n 3 ) N
9) calculate A 8(k 1, k 2, k 3) and B 8(k 1, k 2, k 3)
A 8 ( k 1 , k 2 , k 3 )
= X ( 3 k 1 + 1 , 3 k 2 , 3 k 3 - 1 ) + X ( 3 k 1 - 1 , 3 k 2 , 3 k 3 + 1 )
= 2 Σ n 1 = 0 N - 1 Σ n 2 = 0 N - 1 Σ n 3 = 0 N - 1 x ( n 1 , n 2 , n 3 ) cos 2 π ( n 1 - n 3 ) N cas 2 π N / 3 ( n 1 k 1 + n 2 k 2 + n 3 k 3 )
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 { [ 2 a 0 - a 1 - a 2 + 2 a 3 - a 4 - a 5 + 2 a 6 - a 7 - a 8 - a 9 + 2 a 10 - a 11
- a 12 + 2 a 13 - a 14 - a 15 + 2 a 16 - a 17 - a 18 - a 19 + 2 a 20
- a 21 - a 22 + 2 a 23 - a 24 - a 25 + 2 a 26 ] cos 2 ( n 1 - n 3 ) π N
+ 3 [ a 1 - a 2 + a 4 - a 5 + a 7 - a 8 - a 9 + a 11 - a 12 + a 14 - a 15 + a 17
+ a 18 - a 19 + a 21 - a 22 + a 24 - a 25 ] sin 2 ( n 1 - n 3 ) π N } casφ
Wherein θ 8 = 2 π ( n 1 - n 3 ) N ;
B 8 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 8 cos θ 8 + 3 D 8 sin θ 8 ) casφ
10) calculate A 9(k 1, k 2, k 3) and B 9(k 1, k 2, k 3)
A 9 ( k 1 , k 2 , k 3 )
= X ( 3 k 1 + 1 , 3 k 2 - 1 , 3 k 3 ) + X ( 3 k 1 - 1 , 3 k 2 + 1 , 3 k 3 )
= 2 Σ n 1 = 0 N - 1 Σ n 2 = 0 N - 1 Σ n 3 = 0 N - 1 x ( n 1 , n 2 , n 3 ) cos 2 π ( n 1 - n 2 ) N casφ
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 { [ 2 a 0 + 2 a 1 + 2 a 2 - a 3 - a 4 - a 5 - a 6 - a 7 - a 8 - a 9 - a 10 - a 11
+ 2 a 12 + 2 a 13 + 2 a 14 - a 15 - a 16 - a 17 - a 18 - a 19 - a 20
- a 21 - a 22 - a 23 + 2 a 24 + 2 a 25 + 2 a 26 ] cos 2 ( n 1 - n 2 ) π N
+ 3 [ a 3 + a 4 + a 5 - a 6 - a 7 - a 8 - a 9 - a 10 - a 11 + a 15 + a 16 + a 17
+ a 18 + a 19 + a 20 - a 21 - a 22 - a 23 ] sin 2 ( n 1 - n 2 ) π N } casφ
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 9 cos θ 9 - 3 D 9 sin θ 9 ) casφ
Wherein θ 9 = 2 π ( n 1 - n 2 ) N ;
B 9 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 9 cos θ 9 + 3 D 9 sin θ 9 ) casφ
11) calculate A 10(k 1, k 2, k 3) and B 10(k 1, k 2, k 3)
A 10 ( k 1 , k 2 , k 3 )
= X ( 3 k 1 + 1 , 3 k 2 + 1 , 3 k 3 + 1 ) + X ( 3 k 1 - 1 , 3 k 2 - 1 , 3 k 3 - 1 )
= 2 Σ n 1 = 0 N - 1 Σ n 2 = 0 N - 1 Σ n 3 = 0 N - 1 x ( n 1 , n 2 , n 3 ) cos 2 π ( n 1 + n 2 + n 3 ) N cas 2 π N / 3 ( n 1 k 1 + n 2 k 2 + n 3 k 3 )
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 { [ 2 a 0 - a 1 - a 2 - a 3 - a 4 + 2 a 5 - a 6 + 2 a 7 - a 8 - a 9 - a 10 + 2 a 11
- a 12 + 2 a 13 - a 14 + 2 a 15 - a 16 - a 17 - a 18 + 2 a 19 - a 20
+ 2 a 21 - a 22 - a 23 - a 24 - a 25 + 2 a 26 ] cos 2 π ( n 1 + n 2 + n 3 ) N
- 3 [ a 1 - a 2 + a 3 - a 4 - a 6 + a 8 + a 9 - a 10 - a 12 + a 14 + a 16 - a 17
- a 18 + a 20 + a 22 - a 23 + a 24 - a 25 ] sin 2 π ( n 1 + n 2 + n 3 ) N } casφ
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 10 cos θ 10 - 3 D 10 sin θ 10 ) casφ
Wherein θ 10 = 2 π ( n 1 + n 2 + n 3 ) N ;
B 10 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 10 cos θ 10 + 3 D 10 sin θ 10 ) casφ
12) calculate A 11(k 1, k 2, k 3) and B 11(k 1, k 2, k 3)
A 11 ( k 1 , k 2 , k 3 )
= X ( 3 k 1 + 1 , 3 k 2 + 1 , 3 k 3 - 1 ) + X ( 3 k 1 - 1 , 3 k 2 - 1 , 3 k 3 + 1 )
= 2 Σ n 1 = 0 N - 1 Σ n 2 = 0 N - 1 Σ n 3 = 0 N - 1 x ( n 1 , n 2 , n 3 ) cos 2 π ( n 1 + n 2 - n 3 ) N casφ
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 { [ 2 a 0 - a 1 - a 2 - a 3 + 2 a 4 - a 5 - a 6 - a 7 + 2 a 8 - a 9 + 2 a 10 - a 11
- a 12 - a 13 + 2 a 14 + 2 a 15 - a 16 - a 17 - a 18 - a 19 + 2 a 20
+ 2 a 21 - a 22 - a 23 - a 24 + 2 a 25 - a 26 ] cos 2 π ( n 1 + n 2 - n 3 ) N
+ 3 [ a 1 - a 2 - a 3 + a 5 + a 6 - a 7 - a 9 + a 11 + a 12 - a 13 + a 16 - a 17
+ a 18 - a 19 + a 22 - a 23 - a 24 + a 26 ] sin 2 π ( n 1 + n 2 - n 3 ) N } casφ
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 11 cos θ 11 - 3 D 11 sin θ 11 ) casφ
Wherein θ 11 = 2 π ( n 1 + n 2 - n 3 ) N ;
B 11 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 11 cos θ 11 + 3 D 11 sin θ 11 ) casφ
13) calculate A 12(k 1, k 2, k 3) and B 12(k 1, k 2, k 3)
A 12 ( k 1 , k 2 , k 3 ) = X ( 3 k 1 + 1 , 3 k 2 - 1 , 3 k 3 + 1 ) + X ( 3 k 1 - 1 , 3 k 2 + 1 , 3 k 3 - 1 )
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 12 cos θ 12 - 3 D 12 sin θ 12 ) casφ
Wherein θ 12 = 2 π ( n 1 - n 2 + n 3 ) N ;
B 12 ( N 3 - k 1 , N 3 - k 2 , N 3 - k 3 ) = Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 12 cos θ 12 + 3 D 12 sin θ 12 ) casφ
14) calculate A 13(k 1, k 2, k 3) and B 13(k 1, k 2, k 3)
A 13 ( k 1 , k 2 , k 3 ) = X ( 3 k 1 - 1 , 3 k 2 + 1 , 3 k 3 + 1 ) + X ( 3 k 1 + 1 , 3 k 2 - 1 , 3 k 3 - 1 )
= Σ n 1 = 0 N / 3 - 1 Σ n 2 = 0 N / 3 - 1 Σ n 3 = 0 N / 3 - 1 ( S 13 cos θ 13 - 3 D 13 sin θ 13 ) casφ
Wherein θ 13 = 2 π ( - n 1 + n 2 + n 3 ) N ;
Figure FDA00003062189500149
Can see N * N * N sequence x (n from above-mentioned 1, n 2, n 3) 3-D DHT changed into 27 length
Figure FDA000030621895001410
The DHT conversion of sequence, so continuous decomposition is until the sequence that decomposes 3 * 3 * 3.
CN2013101350991A 2013-04-17 2013-04-17 Fast method for three-dimensional discrete Hartley transformation Pending CN103279450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101350991A CN103279450A (en) 2013-04-17 2013-04-17 Fast method for three-dimensional discrete Hartley transformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101350991A CN103279450A (en) 2013-04-17 2013-04-17 Fast method for three-dimensional discrete Hartley transformation

Publications (1)

Publication Number Publication Date
CN103279450A true CN103279450A (en) 2013-09-04

Family

ID=49061975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101350991A Pending CN103279450A (en) 2013-04-17 2013-04-17 Fast method for three-dimensional discrete Hartley transformation

Country Status (1)

Country Link
CN (1) CN103279450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107436883A (en) * 2016-05-26 2017-12-05 北京京东尚科信息技术有限公司 The method, apparatus and system of data pick-up based on complementation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236804A1 (en) * 2002-06-19 2003-12-25 Hou Hsieh S. Merge and split fast hartley block transform method
CN102384747A (en) * 2011-09-20 2012-03-21 西安费斯达自动化工程有限公司 Hartley output method of rigid body space motion states

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236804A1 (en) * 2002-06-19 2003-12-25 Hou Hsieh S. Merge and split fast hartley block transform method
CN102384747A (en) * 2011-09-20 2012-03-21 西安费斯达自动化工程有限公司 Hartley output method of rigid body space motion states

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALSHIBAMI O ET AL: "Fast 3-D decimation-in-frequency algorithm for 3-D Hartley transform", 《SIGNAL PROCESS》 *
TINGHUAN CHEN ET AL: "《2012 Second International Conference on Instrumentation & Measurement, Computer, Communication and Control》", 10 December 2012 *
董志芳等: "一种新的二维离散Hartley变换算法", 《计算物理》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107436883A (en) * 2016-05-26 2017-12-05 北京京东尚科信息技术有限公司 The method, apparatus and system of data pick-up based on complementation
CN107436883B (en) * 2016-05-26 2020-06-30 北京京东尚科信息技术有限公司 Data extraction method, device and system based on remainder

Similar Documents

Publication Publication Date Title
CN109033030B (en) Tensor decomposition and reconstruction method based on GPU
CN101739666B (en) One-dimensional Hartley transform and match tracing based image sparse decomposition fast method
US8582869B2 (en) Finite dataset interpolation method
Park 2D discrete Fourier transform on sliding windows
CN112511824B (en) Image compression sampling method and assembly
CN102075749B (en) Image compression reconstruction method under compressed sensing frame based on non-convex model
Xu et al. Singular vector sparse reconstruction for image compression
CN103955904A (en) Method for reconstructing signal based on dispersed fractional order Fourier transform phase information
Stone Progressive wavelet correlation using Fourier methods
García-García et al. Matrix models for classical groups and Toeplitz±Hankel minors with applications to Chern–Simons theory and fermionic models
Pandey et al. Image transformation and compression using Fourier transformation
CN113689513A (en) SAR image compression method based on robust tensor decomposition
Bouguezel et al. New parametric discrete Fourier and Hartley transforms, and algorithms for fast computation
CN100517382C (en) VLSI structure for parallel lifting 9/7 wavelet base
Lun et al. Orthogonal discrete periodic Radon transform. Part I: theory and realization
CN103279450A (en) Fast method for three-dimensional discrete Hartley transformation
CN103606189B (en) A kind of track base system of selection towards non-rigid three-dimensional reconstruction
Yuan et al. Ichv: A new compression approach for industrial images
CN101957738A (en) Digital inner product calculator based on first moment
Patra et al. Discrete Hartley Transform and its applications-A review
Grigoryan Efficient algorithms for computing the 2-D hexagonal Fourier transforms
Pei et al. Binary signal perfect recovery from partial DFT coefficients
Malakooti et al. Image Recognition Method based on Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD)
Liu et al. The lifting factorization of 2D 4-channel nonseparable wavelet transforms
Peng et al. Combined data distortion strategies for privacy-preserving data mining

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130904