CN103278148B - Two-axis microgyroscope of magnetostrictive solid oscillator - Google Patents
Two-axis microgyroscope of magnetostrictive solid oscillator Download PDFInfo
- Publication number
- CN103278148B CN103278148B CN201310165090.5A CN201310165090A CN103278148B CN 103278148 B CN103278148 B CN 103278148B CN 201310165090 A CN201310165090 A CN 201310165090A CN 103278148 B CN103278148 B CN 103278148B
- Authority
- CN
- China
- Prior art keywords
- magnetic field
- solid
- axis
- vibrator
- micro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007787 solid Substances 0.000 title claims abstract description 60
- 230000008859 change Effects 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims abstract description 23
- 238000005516 engineering process Methods 0.000 claims abstract description 16
- 238000005259 measurement Methods 0.000 claims abstract description 7
- 238000012544 monitoring process Methods 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 36
- 230000004907 flux Effects 0.000 claims description 19
- 238000000206 photolithography Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000004544 sputter deposition Methods 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 238000009713 electroplating Methods 0.000 claims description 6
- 239000010408 film Substances 0.000 claims description 6
- 239000002356 single layer Substances 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 5
- 239000000696 magnetic material Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 5
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 229910000807 Ga alloy Inorganic materials 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 3
- QUSDAWOKRKHBIV-UHFFFAOYSA-N dysprosium iron terbium Chemical compound [Fe].[Tb].[Dy] QUSDAWOKRKHBIV-UHFFFAOYSA-N 0.000 claims description 3
- 238000004663 powder metallurgy Methods 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims description 2
- 239000004575 stone Substances 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 17
- 230000000694 effects Effects 0.000 abstract description 13
- 230000035945 sensitivity Effects 0.000 abstract description 11
- 230000001133 acceleration Effects 0.000 abstract description 6
- 230000009977 dual effect Effects 0.000 abstract description 3
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000005284 excitation Effects 0.000 description 5
- 238000005459 micromachining Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910001329 Terfenol-D Inorganic materials 0.000 description 3
- 238000007630 basic procedure Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000006355 external stress Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000009916 joint effect Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Micromachines (AREA)
Abstract
一种微机电技术领域的磁致伸缩固体振子双轴微陀螺,包括:固体振子、用于驱动固体振子振动的下定子、上定子以及三个磁敏传感器,其中:下定子和上定子对称设置于固体振子的上端面和下端面,三个磁敏传感器分别设置于固体振子的三个侧面上且分别感应固体振子的X轴向磁场变化、Y轴向磁场变化和Z轴向磁场变化,输出相应的电信号以对应实现微陀螺的Y轴向输入角速率的测量、X轴向输入角速率的测量和Z轴向参考振动的监测。本发明微陀螺利用整体式磁致伸缩材料的固体振子同时实现科氏加速度效应耦合微陀螺的驱动振动和检测振动,且能同时测量双输入轴角速率,灵敏度高;采用MEMS技术制造,体积小。
A magnetostrictive solid vibrator biaxial microgyroscope in the field of micro-electromechanical technology, comprising: a solid vibrator, a lower stator for driving the solid vibrator to vibrate, an upper stator, and three magnetic sensors, wherein: the lower stator and the upper stator are arranged symmetrically On the upper end surface and the lower end surface of the solid vibrator, three magnetic sensors are respectively arranged on the three sides of the solid vibrator and respectively sense the X-axis magnetic field change, the Y-axis magnetic field change and the Z-axis magnetic field change of the solid-state vibrator, and output Corresponding electrical signals are used to realize the measurement of the Y-axis input angular rate, the X-axis input angular rate and the monitoring of the Z-axis reference vibration of the microgyroscope. The microgyroscope of the present invention utilizes the solid vibrator of the integral magnetostrictive material to simultaneously realize the driving vibration and detection vibration of the Coriolis acceleration effect coupling microgyroscope, and can simultaneously measure the angular rate of the dual input shafts, with high sensitivity; it is manufactured by MEMS technology and has a small volume .
Description
技术领域technical field
本发明涉及的是一种微机电技术领域的装置,具体是一种磁致伸缩固体振子双轴微陀螺。The invention relates to a device in the field of micro-electromechanical technology, in particular to a magnetostrictive solid vibrator biaxial micro-gyroscope.
背景技术Background technique
目前报道的MEMS(微机电系统)陀螺仪绝大多数为振动式微陀螺,它基本上都是利用弹性梁支悬检测质量,基于科氏加速度(Coriolis acceleration)引起的结构驱动振动模态和检测振动模态之间能量的转移来检测角速度的。这种检测质量通过连附于衬底上的挠性支撑梁支悬的振动式微陀螺,由于存在活动质量,其工作性能精度易受微制造缺陷和工作环境变化的影响。近年来出现了一类新的全固态微陀螺,如光学微陀螺、微型表面波陀螺、压电固体模态微陀螺等;由于其陀螺结构中不存在作整体运动的部件和弹性支撑结构,因此抗冲击,抗振动能力强。Most of the currently reported MEMS (micro-electromechanical systems) gyroscopes are vibrating micro-gyroscopes, which basically use elastic beams to support the detection mass, and are based on the structure-driven vibration mode and detection vibration caused by Coriolis acceleration. The transfer of energy between modes is used to detect angular velocity. This kind of vibrating micro-gyroscope whose detection quality is supported by a flexible support beam attached to the substrate, due to the existence of active mass, its working performance accuracy is easily affected by micro-manufacturing defects and changes in the working environment. In recent years, a new class of all-solid-state micro-gyroscopes has emerged, such as optical micro-gyroscopes, micro-surface wave gyroscopes, piezoelectric solid-mode micro-gyroscopes, etc. Strong shock and vibration resistance.
以稀土-铁系合金Terfenol-D(铽镝铁合金)为代表的超磁致伸缩材料(简称GMM)是近年来发展起来的可以实现电磁能-机械能高效转换的新型功能材料。GMM除了在室温下的应变高达1500~2000ppm以外,还具有输出功率大、能量密度高、响应速度快等特点,在国防、航空航天和高技术领域表现出极好的应用前景。借助于磁致伸缩材料的优异特性尤其是大伸缩性来增大驱动振动模态的幅值,能提高振动微陀螺的检测灵敏度。Giant magnetostrictive materials (GMM for short), represented by the rare earth-iron alloy Terfenol-D (terbium-dysprosium-iron alloy), are new functional materials developed in recent years that can realize efficient conversion of electromagnetic energy to mechanical energy. In addition to the high strain of 1500-2000ppm at room temperature, GMM also has the characteristics of high output power, high energy density, and fast response speed. It shows excellent application prospects in the fields of national defense, aerospace and high technology. The detection sensitivity of the vibrating micro-gyroscope can be improved by using the excellent characteristics of the magnetostrictive material, especially the large stretchability, to increase the amplitude of the driving vibration mode.
经文献检索,Jin-Hyeong Yoo等人在SPIE国际会议论文集上发表的“用于磁致弹性陀螺传感器设计的机电网络建模”(Proc.of SPIE,Vol.7647:76472s-1~9,Electromechanical NetworkModeling Applied to Magnetoelastic Gyro Sensor Design)一文中,阐述了一种将片条状Galfenol(铁镓合金)磁致伸缩材料用于驱动和检测的振动音叉式陀螺仪。该陀螺仪音叉的两叉指(即驱动叉指和检测叉指)及其基座均由铝制成,叉指下放置永磁体提供偏置磁场。驱动用Galfenol磁致伸缩条贴于驱动叉指的内侧面,由环绕的驱动线圈激励音叉在平面内以驱动模态振动,当沿音叉主轴方向输入角速度时,由科氏加速度引起音叉以检测模态振动,并使贴于检测叉指侧面的Galfenol磁致伸缩条发生应变变形,从而由于压磁效应产生正比于输入角速度的磁场强度变化,该变化信号由检测线圈敏感。该陀螺仪为单输入轴角速率传感器;由于采用两片长条形磁致伸缩材料分别贴于两个铝音叉指上,且驱动和检测线圈采用绕线结构,其整体尺寸较大,不易微加工集成制造,工作时的抗冲击抗震能力有限。After literature search, Jin-Hyeong Yoo et al. published "Electromechanical Network Modeling for Magnetoelastic Gyro Sensor Design" (Proc.of SPIE, Vol.7647:76472s-1~9, Electromechanical Network Modeling Applied to Magnetoelastic Gyro Sensor Design) describes a vibrating tuning fork gyroscope that uses strip-shaped Galfenol (iron-gallium alloy) magnetostrictive materials for driving and detection. The two fingers of the gyroscope tuning fork (that is, the driving finger and the detecting finger) and their base are made of aluminum, and a permanent magnet is placed under the fingers to provide a bias magnetic field. The driving Galfenol magnetostrictive strip is attached to the inner surface of the driving fork finger, and the surrounding driving coil excites the tuning fork to drive the mode vibration in the plane. When the angular velocity is input along the main axis of the tuning fork, the Coriolis acceleration causes the tuning fork to detect the mode. State vibration, and strain deformation of the Galfenol magnetostrictive strip attached to the side of the detection finger, so that due to the piezomagnetic effect, a change in the magnetic field strength proportional to the input angular velocity is generated, and the change signal is sensitive to the detection coil. The gyroscope is a single-input-axis angular rate sensor; since two strips of magnetostrictive material are respectively pasted on the two aluminum tuning fork fingers, and the driving and detection coils adopt a winding structure, its overall size is relatively large, and it is not easy to micro Processing integrated manufacturing, limited impact and shock resistance during work.
发明内容Contents of the invention
本发明针对现有技术存在的上述不足,提供一种磁致伸缩固体振子双轴微陀螺,利用磁致伸缩材料整体作为固体振子,借助磁致伸缩效应(Joule效应)驱动产生参考振动,并利用逆磁致伸缩效应(Villari效应)通过巨磁阻(GMR)磁敏传感器来检测双输入轴角速率。Aiming at the above-mentioned deficiencies in the prior art, the present invention provides a magnetostrictive solid vibrator biaxial micro-gyroscope, which uses the whole magnetostrictive material as a solid vibrator to generate reference vibration by means of the magnetostrictive effect (Joule effect), and utilizes The inverse magnetostrictive effect (Villari effect) detects the dual input shaft angular rate through a giant magnetoresistance (GMR) magnetosensitive sensor.
本发明是通过以下技术方案实现的,本发明包括:上、下端面为正方形的长方体形状的固体振子、用于驱动固体振子振动的下定子、上定子以及三个磁敏传感器,其中:下定子和上定子对称设置于固体振子的上端面和下端面,设固体振子的中心为惯性坐标系OXYZ的原点O,OZ方向垂直于上定子或下定子所在的平面,三个磁敏传感器分别设置于固体振子的三个侧面上且分别感应固体振子的X轴向磁场变化、Y轴向磁场变化和Z轴向磁场变化,输出相应的电信号以对应实现微陀螺的Y轴向输入角速率的测量、X轴向输入角速率的测量和Z轴向参考振动的监测;The present invention is achieved through the following technical solutions. The present invention includes: a cuboid solid vibrator whose upper and lower end surfaces are square, a lower stator for driving the solid vibrator to vibrate, an upper stator and three magnetic sensors, wherein: the lower stator Set symmetrically with the upper stator on the upper and lower end surfaces of the solid vibrator, set the center of the solid vibrator as the origin O of the inertial coordinate system OXYZ, the OZ direction is perpendicular to the plane where the upper stator or the lower stator is located, and the three magnetic sensors are respectively set on On the three sides of the solid vibrator, the X-axis magnetic field change, the Y-axis magnetic field change and the Z-axis magnetic field change of the solid vibrator are respectively sensed, and the corresponding electrical signals are output to correspond to the measurement of the Y-axis input angular rate of the micro gyroscope. , Measurement of X-axis input angular rate and monitoring of Z-axis reference vibration;
所述的下定子和上定子的结构相同,包括:对固体振子产生偏置静磁场的永磁体和对固体振子产生叠加的变化磁场的驱动平面线圈。The lower stator and the upper stator have the same structure, including: a permanent magnet generating a bias static magnetic field to the solid oscillator and a driving planar coil generating a superimposed changing magnetic field to the solid oscillator.
所述的下定子和上定子的端面形状与固体振子的端面形状相同,配合固体振子使其发挥最大功能。The shape of the end faces of the lower stator and the upper stator is the same as that of the solid vibrator, and the solid vibrator can be used to maximize its function.
所述的固体振子由单晶或多晶磁致伸缩材料铽镝铁合金Terfenol-D或铁镓合金Galfenol加工而成,或由磁致伸缩材料经粉末冶金工艺烧结制成。固体振子同时具有在激励磁场下伸缩变形和受外部应力变形产生磁导率变化的特性,其最大磁致伸缩量方向是沿固体振子的高度方向即OZ方向。The solid vibrator is processed from a single crystal or polycrystalline magnetostrictive material Terfenol-D or Galfenol alloy, or is sintered from a magnetostrictive material through a powder metallurgy process. The solid vibrator has the characteristics of stretching and deforming under the excitation magnetic field and changing the magnetic permeability due to external stress deformation. The direction of the maximum magnetostriction is along the height direction of the solid vibrator, that is, the OZ direction.
作为优选的方案,所述的驱动平面线圈设置于方形的衬底上,永磁体设置于驱动平面线圈的外侧。As a preferred solution, the driving planar coil is arranged on a square substrate, and the permanent magnet is arranged outside the driving planar coil.
作为另一种方案,所述的驱动平面线圈集成于固体振子的上、下端面上,永磁体设置于驱动平面线圈的外侧。As another solution, the driving planar coil is integrated on the upper and lower end surfaces of the solid vibrator, and the permanent magnet is arranged outside the driving planar coil.
永磁体分布于微陀螺Z轴向的最外侧,双侧布置的永磁体产生的偏置静磁场保证固体振子工作在线性振动范围,两个永磁体之间产生的磁场吸力又可对固体振子产生一定的预紧力。The permanent magnets are distributed on the outermost side of the Z-axis of the microgyroscope. The bias static magnetic field generated by the permanent magnets arranged on both sides ensures that the solid-state vibrator works in the linear vibration range, and the magnetic field attraction generated between the two permanent magnets can also generate vibration for the solid-state vibrator. A certain amount of preload.
驱动平面线圈由高频正弦信号激励,对固体振子产生叠加的变化磁场。这样,固体振子在永磁体偏置磁场和线圈交流磁场的共同作用下以交流激励信号的频率作伸缩参考振动。The driving planar coil is excited by a high-frequency sinusoidal signal, which generates a superimposed and changing magnetic field on the solid oscillator. In this way, under the joint action of the bias magnetic field of the permanent magnet and the AC magnetic field of the coil, the solid vibrator performs stretching reference vibration at the frequency of the AC excitation signal.
所述的驱动平面线圈为单层或多层多匝螺旋线圈,包括:底层引线、连通柱、单层或若干层平行设置的线圈层、引脚和绝缘介质,其中:连通柱分别与底层引线、各层线圈层和引脚相连,绝缘介质充满于底层引线、连通柱和线圈层中;该驱动平面线圈采用MEMS加工工艺制造,所述的MEMS加工工艺包括溅射沉积、光刻、刻蚀、电镀、切片等基本工序。The driving planar coil is a single-layer or multi-layer multi-turn spiral coil, including: bottom leads, connecting columns, single or several layers of coil layers arranged in parallel, pins and insulating media, wherein: the connecting columns are respectively connected to the bottom leads 1. The coil layers of each layer are connected to the pins, and the insulating medium is filled in the bottom lead, the connecting column and the coil layer; the driving planar coil is manufactured by MEMS processing technology, and the MEMS processing technology includes sputtering deposition, photolithography, etching , electroplating, slicing and other basic processes.
所述的底层引线、连通柱、线圈和引脚的主要材料为金属铜。The main material of the bottom lead wires, connecting columns, coils and pins is metallic copper.
所述的磁敏传感器是只对一个轴向磁场敏感的巨磁阻传感器,包括:两个用于感应同一区域的外部磁场的磁场传感电阻、两个参考电阻以及分别覆盖于参考电阻外部的两个磁通汇聚器,其中:两个磁场传感电阻、两个参考电阻的电阻值均相同,两种电阻分别交错布置且首尾相连形成惠斯通电桥,四个连接端分别为电桥供电电压端、两个感应电压输出端和接地端。The magnetosensitive sensor is a giant magnetoresistive sensor sensitive to only one axial magnetic field, including: two magnetic field sensing resistors for inducing an external magnetic field in the same area, two reference resistors, and two external resistors respectively covering the reference resistors. Two magnetic flux concentrators, in which: the resistance values of the two magnetic field sensing resistors and the two reference resistors are the same, and the two resistors are arranged alternately and connected end to end to form a Wheatstone bridge, and the four connection terminals are respectively powered by the bridge Voltage terminal, two sense voltage output terminals and ground terminal.
所述的磁场传感电阻位于整个磁敏传感器的中间位置,两对参考电阻和磁通汇聚器分别位于磁场传感电阻的两边。The magnetic field sensing resistor is located in the middle of the entire magnetic sensor, and two pairs of reference resistors and flux concentrators are respectively located on both sides of the magnetic field sensing resistor.
所述的磁场传感电阻和参考电阻均为多层膜巨磁阻材料制备。Both the magnetic field sensing resistor and the reference resistor are made of multilayer film giant magnetoresistance material.
所述的磁通汇聚器为软磁材料薄膜制备,使参考电阻的阻值不受外部磁场影响,还对放置其间的磁场传感电阻有磁通汇聚的作用,增强磁敏传感器对外磁场的检测灵敏度。通过调整两个磁通汇聚器与两个磁场传感电阻的相对位置,可使磁敏传感器的磁场检测灵敏度提高,例如,灵敏度与磁通汇聚器的长度L和两个磁通汇聚器间隙d的比值L/d成正比,即通过不同的L/d可设计不同灵敏度的磁敏传感器。The magnetic flux concentrator is made of a thin film of soft magnetic material, so that the resistance of the reference resistor is not affected by the external magnetic field, and also has the effect of converging the magnetic flux on the magnetic field sensing resistor placed therein, thereby enhancing the detection of the external magnetic field by the magnetic sensor sensitivity. By adjusting the relative positions of the two magnetic flux concentrators and the two magnetic field sensing resistors, the magnetic field detection sensitivity of the magnetic sensor can be improved, for example, the sensitivity is related to the length L of the magnetic flux concentrator and the gap d between the two magnetic flux concentrators The ratio L/d is directly proportional, that is, magnetic sensors with different sensitivities can be designed through different L/d.
所述的磁敏传感器输出的电信号为:Vo2-Vo1=Vbδ/(2+δ),δ=△R/R,其中:Vo2、Vo1分别为感应电压输出端的电压值,Vb为电桥供电电压端的电压值,δ为磁阻变化率,△R为磁场传感电阻的阻值减小量,R为磁场传感电阻和参考电阻于零磁场下的初始值。The electrical signal output by the magnetic sensitive sensor is: V o2 -V o1 =V b δ/(2+δ), δ=△R/R, wherein: V o2 and V o1 are the voltage values of the induced voltage output terminals respectively , V b is the voltage value of the power supply voltage terminal of the bridge, δ is the rate of change of reluctance, △R is the decrease of the resistance value of the magnetic field sensing resistor, R is the initial value of the magnetic field sensing resistor and the reference resistor under zero magnetic field.
所述的磁场传感电阻和参考电阻的形状为:若干次弯折的条状结构,该结构增大零磁场下的初始电阻值以提高磁场检测的分辨率,并使得电阻结构布置得更加紧凑。The shape of the magnetic field sensing resistor and reference resistor is: a strip structure bent several times, which increases the initial resistance value under zero magnetic field to improve the resolution of magnetic field detection, and makes the resistor structure more compact .
所述的GMR磁敏传感器采用MEMS微加工工艺制造,所述的MEMS微加工工艺包括溅射沉积、光刻、刻蚀、电镀、切片等基本工序。The GMR magnetic sensitive sensor is manufactured by MEMS micromachining technology, and the MEMS micromachining technology includes sputtering deposition, photolithography, etching, electroplating, slicing and other basic procedures.
技术效果technical effect
与现有技术相比,本发明的优点在于:利用整体式磁致伸缩材料的固体振子同时实现科氏加速度效应耦合微陀螺的驱动振动和检测振动,且能同时进行双输入轴角速率的测量;采用驱动平面线圈激振结构和巨磁阻磁敏传感器,并利用MEMS微加工技术制造;本发明微陀螺的整体体积小,检测灵敏度高,抗冲击振动能力更强。Compared with the prior art, the present invention has the advantages of: using the solid vibrator of integral magnetostrictive material to simultaneously realize the driving vibration and detection vibration of the Coriolis acceleration effect coupled micro-gyroscope, and can simultaneously measure the angular rate of the dual input shafts ; Drive planar coil excitation structure and giant magnetoresistive magnetic sensor, and use MEMS micro-processing technology to manufacture; the micro gyroscope of the present invention has small overall volume, high detection sensitivity, and stronger shock and vibration resistance.
附图说明Description of drawings
图1为微陀螺实施例1的分解立体结构示意图;Fig. 1 is the exploded three-dimensional structure schematic diagram of microgyroscope embodiment 1;
图2为图1微陀螺组装结构的XZ侧面示意图;Fig. 2 is the XZ side schematic diagram of Fig. 1 microgyroscope assembly structure;
图3为驱动平面线圈的微制造结构示意图;Fig. 3 is the schematic diagram of the microfabrication structure of driving planar coil;
图4为磁敏传感器的平面结构;Fig. 4 is the planar structure of magnetic sensitive sensor;
图5为磁敏传感器的惠斯通电桥电路示意图;Fig. 5 is the Wheatstone bridge circuit schematic diagram of magnetic sensitive sensor;
图6为微陀螺实施例2的分解立体结构示意图。Fig. 6 is a schematic diagram of an exploded three-dimensional structure of the second embodiment of the micro-gyroscope.
具体实施方式Detailed ways
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below. This embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following implementation example.
实施例1Example 1
如图1、图2所示,本实施例的磁致伸缩固体振子双轴微陀螺包括:长方体形状的固体振子1、用于驱动固体振子1振动的下定子2、上定子3以及三个磁敏传感器,其中:下定子2和上定子3对称设置于固体振子1的上端面和下端面,设固体振子1的中心为惯性坐标系OXYZ的原点O,OZ方向垂直于上定子3或下定子2所在的平面,三个磁敏传感器分别设置于固体振子1的三个侧面上且分别感应固体振子1的X轴向磁场变化、Y轴向磁场变化和Z轴向磁场变化,输出相应的电信号以对应实现微陀螺的Y轴向输入角速率的测量、X轴向输入角速率的测量和Z轴向参考振动的监测;As shown in Fig. 1 and Fig. 2, the magnetostrictive solid vibrator biaxial micro-gyroscope of this embodiment includes: a cuboid solid vibrator 1, a lower stator 2 for driving the solid vibrator 1 to vibrate, an upper stator 3 and three magnets. Sensitive sensor, wherein: the lower stator 2 and the upper stator 3 are symmetrically arranged on the upper end surface and the lower end surface of the solid vibrator 1, the center of the solid vibrator 1 is set as the origin O of the inertial coordinate system OXYZ, and the OZ direction is perpendicular to the upper stator 3 or the lower stator 2, three magnetic sensors are respectively arranged on the three sides of the solid-state vibrator 1 and respectively sense the X-axis magnetic field change, the Y-axis magnetic field change and the Z-axis magnetic field change of the solid-state vibrator 1, and output corresponding electric currents. The signal corresponds to the measurement of the Y-axis input angular rate of the microgyroscope, the measurement of the X-axis input angular rate and the monitoring of the Z-axis reference vibration;
所述的下定子2和上定子3的结构相同,包括:对固体振子1产生偏置静磁场的永磁体7和对固体振子1产生叠加的变化磁场的驱动平面线圈8。The structure of the lower stator 2 and the upper stator 3 is the same, including: a permanent magnet 7 that generates a bias static magnetic field for the solid state oscillator 1 and a driving planar coil 8 that generates a superimposed changing magnetic field for the solid state oscillator 1 .
固体振子1由单晶或多晶磁致伸缩合金材料如铽镝铁合金Terfenol-D、铁镓合金Galfenol等加工而成,或由磁致伸缩材料经粉末冶金工艺烧结制成。该固体振子1同时具有在激励磁场下伸缩变形和受外部应力变形产生磁导率变化的特性,其最大磁致伸缩量方向是沿方体振子的高度方向即OZ方向。The solid vibrator 1 is processed by single crystal or polycrystalline magnetostrictive alloy materials such as terbium dysprosium iron alloy Terfenol-D, iron gallium alloy Galfenol, etc., or by powder metallurgy sintering of magnetostrictive materials. The solid vibrator 1 has the characteristics of stretching and deforming under the excitation magnetic field and changing the magnetic permeability due to external stress deformation, and the direction of the maximum magnetostriction is along the height direction of the square vibrator, that is, the OZ direction.
所述的固体振子1的两个端面的长度和宽度相等,或者固体振子1的高度、其两个端面的长度和宽度均相等。The length and width of the two end faces of the solid vibrator 1 are equal, or the height of the solid vibrator 1 and the length and width of the two end faces of the solid vibrator 1 are equal.
永磁体7为方形块状,分布于微陀螺Z轴向的最外侧。双侧布置的永磁体7产生的偏置静磁场保证固体振子1工作在线性振动范围,两个永磁体7之间产生的磁场吸力又可对固体振子1产生一定的预紧力。The permanent magnet 7 is in the shape of a square block, and is distributed on the outermost side of the Z-axis of the micro-gyroscope. The bias static magnetic field generated by the permanent magnets 7 arranged on both sides ensures that the solid-state oscillator 1 works in the linear vibration range, and the magnetic field attraction generated between the two permanent magnets 7 can generate a certain pre-tightening force on the solid-state oscillator 1 .
本实施例中,所述的驱动平面线圈8设置在衬底9,该衬底9的形状为方形,材料为玻璃、硅或陶瓷,位于驱动平面线圈8和永磁体7之间。In this embodiment, the driving planar coil 8 is arranged on the substrate 9 , which is square in shape and made of glass, silicon or ceramics, and located between the driving planar coil 8 and the permanent magnet 7 .
驱动平面线圈8由高频正弦信号激励,对固体振子1产生叠加的变化磁场。这样,固体振子1在永磁体7偏置磁场和线圈交流磁场的共同作用下以交流激励信号的频率作伸缩参考振动。The driving planar coil 8 is excited by a high-frequency sinusoidal signal to generate a superimposed changing magnetic field on the solid vibrator 1 . In this way, the solid vibrator 1 performs stretching reference vibration at the frequency of the AC excitation signal under the joint action of the bias magnetic field of the permanent magnet 7 and the AC magnetic field of the coil.
如图3所示,所述的驱动平面线圈8为单层或多层多匝螺旋线圈,使用MEMS加工工艺,其结构包括:底层引线、连通柱、单层或若干层平行设置的线圈层、引脚和绝缘介质等基本构造元素,其中所述的底层引线、连通柱、线圈和引脚的主要材料为金属铜,绝缘介质填充于其中。所述的MEMS加工工艺包括溅射沉积、光刻、刻蚀、电镀、切片等基本工序。以二层方形螺旋线圈微制造结构为例,其结构剖面示意图如图3所示,包括:底层引线81、连通柱82、第一层线圈83、连通柱84、第二层线圈85、引脚86和绝缘介质87,其中:连通柱82的两端分别连接底层引线81和第一层线圈83,连通柱84两端分别连接第一层线圈83和第二层线圈85,各层线圈层中分别设有若干相连的螺旋线圈,绝缘介质87充满于底层引线81、连通柱82、84和线圈的周围,引脚86的最上层为可焊性好的电镀金属金或镍材料,设置与绝缘介质87外部、或者磨平、或者刻露。As shown in Figure 3, the driving planar coil 8 is a single-layer or multi-layer multi-turn spiral coil, using MEMS processing technology, its structure includes: bottom leads, connecting columns, single-layer or several layers of coil layers arranged in parallel, Basic structural elements such as pins and insulating media, wherein the main material of the bottom leads, connecting columns, coils and pins is metallic copper, and the insulating media is filled therein. The MEMS processing technology includes basic procedures such as sputtering deposition, photolithography, etching, electroplating, and slicing. Taking the micro-manufactured structure of a two-layer square spiral coil as an example, the schematic cross-sectional view of the structure is shown in Figure 3, including: the bottom lead wire 81, the connecting column 82, the first layer coil 83, the connecting column 84, the second layer coil 85, the pin 86 and an insulating medium 87, wherein: the two ends of the connecting column 82 are respectively connected to the bottom lead wire 81 and the first layer coil 83, and the two ends of the connecting column 84 are respectively connected to the first layer coil 83 and the second layer coil 85, and the coil layers of each layer A number of connected spiral coils are respectively provided, and the insulating medium 87 is filled with the bottom lead wires 81, the connecting columns 82, 84 and the coils. The uppermost layer of the pins 86 is an electroplated metal gold or nickel material with good solderability, and the setting and insulation The outside of the medium 87 is either ground flat or exposed.
如图4、图5所示,所述的三个磁敏传感器,包括X轴向磁敏传感器5、Y轴向磁敏传感器4和Z轴向磁敏传感器6。其中,X轴向磁敏传感器5敏感固体振子1X轴向的磁场变化,用于测量微陀螺Y轴向的输入角速率;Y轴向磁敏传感器4敏感固体振子1Y轴向的磁场变化,用于测量微陀螺X轴向的输入角速率;Z轴向磁敏传感器6敏感固体振子1Z轴向的磁场变化信号,用于微陀螺Z轴向参考振动的监测,以确定固体振子1的参考谐振频率。As shown in FIGS. 4 and 5 , the three magnetic sensors include an X-axis magnetic sensor 5 , a Y-axis magnetic sensor 4 and a Z-axis magnetic sensor 6 . Among them, the X-axis magnetic sensor 5 is sensitive to the magnetic field change in the X-axis of the solid-state oscillator 1, which is used to measure the input angular rate of the micro-gyroscope in the Y-axis; the Y-axis magnetic sensor 4 is sensitive to the magnetic field change in the Y-axis of the solid-state oscillator 1, using It is used to measure the input angular rate of the X-axis of the micro-gyroscope; the Z-axis magnetic sensor 6 is sensitive to the magnetic field change signal of the Z-axis of the solid-state oscillator 1, and is used for monitoring the reference vibration of the Z-axis of the micro-gyroscope to determine the reference resonance of the solid-state oscillator 1 frequency.
所述的磁敏传感器是只对一个轴向磁场敏感的巨磁阻传感器,包括:两个用于感应同一区域的外部磁场的磁场传感电阻41、42、两个参考电阻43、44以及分别覆盖于参考电阻外部的两个磁通汇聚器45、46,其中:两个磁场传感电阻41、42、两个参考电阻43、44的电阻值均相同,两种电阻分别交错布置且由互联线47首尾相连形成惠斯通电桥,四个连接端48分别为电桥供电电压端Vb、两个感应电压输出端Vo1、Vo2和接地端GND。The magnetosensitive sensor is a giant magnetoresistive sensor sensitive to only one axial magnetic field, including: two magnetic field sensing resistors 41, 42 for sensing the external magnetic field in the same area, two reference resistors 43, 44 and The two magnetic flux concentrators 45, 46 covering the outside of the reference resistor, wherein: the resistance values of the two magnetic field sensing resistors 41, 42 and the two reference resistors 43, 44 are the same, and the two resistors are arranged alternately and interconnected The wires 47 are connected end to end to form a Wheatstone bridge, and the four connection terminals 48 are the bridge power supply voltage terminal V b , two induced voltage output terminals V o1 , V o2 and the ground terminal GND.
所述的磁场传感电阻41、42位于整个磁敏传感器的中间位置,两对参考电阻43、44和磁通汇聚器45、46分别位于磁场传感电阻的两边。The magnetic field sensing resistors 41, 42 are located in the middle of the entire magnetic sensor, and two pairs of reference resistors 43, 44 and magnetic flux concentrators 45, 46 are located on both sides of the magnetic field sensing resistors.
两个磁场传感电阻41、42、两个参考电阻43、44均为多层膜巨磁阻GMR材料制备;The two magnetic field sensing resistors 41, 42 and the two reference resistors 43, 44 are made of multilayer giant magnetoresistance GMR materials;
磁通汇聚器45、46为磁屏蔽软磁材料薄膜,使参考电阻43、44的阻值不受外部磁场影响。磁通汇聚器45、46还对放置其间的磁场传感电阻41、42具有磁通汇聚的作用,增强磁敏传感器对外磁场的检测灵敏度。The magnetic flux concentrators 45 and 46 are thin films of magnetic shielding soft magnetic material, so that the resistance values of the reference resistors 43 and 44 are not affected by the external magnetic field. The magnetic flux concentrators 45 and 46 also have the effect of converging magnetic flux on the magnetic field sensing resistors 41 and 42 placed therebetween, enhancing the detection sensitivity of the magnetic sensor to an external magnetic field.
通过调整两个磁通汇聚器45、46与两个磁场传感电阻41、42的相对位置,可使磁敏传感器的磁场检测灵敏度提高,例如,灵敏度与磁通汇聚器45、46的长度L和两个磁通汇聚器45、46间隙d的比值L/d成正比,即通过不同的L/d可设计不同灵敏度的磁敏传感器。By adjusting the relative positions of two magnetic flux concentrators 45,46 and two magnetic field sensing resistors 41,42, the magnetic field detection sensitivity of the magnetic sensor can be improved, for example, the sensitivity and the length L of the magnetic flux converging devices 45,46 It is proportional to the ratio L/d of the gap d between the two magnetic flux concentrators 45, 46, that is, magnetic sensors with different sensitivities can be designed by using different L/d.
所述的磁敏传感器输出的电信号为:Vo2-Vo1=Vbδ/(2+δ),δ=△R/R,其中:Vo2、Vo1分别为感应电压输出端的电压值,Vb为电桥供电电压端的电压值,δ为磁阻变化率,△R为磁场传感电阻的阻值减小量,R为磁场传感电阻和参考电阻于零磁场下的初始值。The electrical signal output by the magnetic sensitive sensor is: V o2 -V o1 =V b δ/(2+δ), δ=△R/R, wherein: V o2 and V o1 are the voltage values of the induced voltage output terminals respectively , V b is the voltage value of the power supply voltage terminal of the bridge, δ is the rate of change of reluctance, △R is the decrease of the resistance value of the magnetic field sensing resistor, R is the initial value of the magnetic field sensing resistor and the reference resistor under zero magnetic field.
所述的磁场传感电阻41、42和参考电阻43、44的形状为:若干次弯折的条状结构,该结构增大零磁场下的初始电阻值以提高磁场检测的分辨率,并使得电阻布置得更加紧凑。The shapes of the magnetic field sensing resistors 41, 42 and reference resistors 43, 44 are: a strip structure bent several times, which increases the initial resistance value under zero magnetic field to improve the resolution of magnetic field detection, and makes The resistors are arranged more compactly.
所述的GMR磁敏传感器采用MEMS微加工工艺制造,所述的MEMS微加工工艺包括溅射沉积、光刻、刻蚀、电镀、切片等基本工序。GMR磁敏传感器的MEMS微加工工艺制造方法,具体如下:The GMR magnetic sensitive sensor is manufactured by MEMS micromachining technology, and the MEMS micromachining technology includes sputtering deposition, photolithography, etching, electroplating, slicing and other basic procedures. The manufacturing method of the MEMS micromachining process of the GMR magnetic sensitive sensor is as follows:
1)在基底49上通过磁控溅射沉积多层巨磁阻材料薄膜;1) Depositing a multi-layer giant magnetoresistive material film on the substrate 49 by magnetron sputtering;
2)光刻或干法刻蚀出磁场传感电阻41、42和参考电阻43、44的图形;2) Photoetching or dry etching the patterns of the magnetic field sensing resistors 41, 42 and reference resistors 43, 44;
3)光刻或溅射Cr/Au薄膜,湿法刻蚀光刻胶得到连接磁场传感电阻41、42、参考电阻43、44的互联线47以及连接端48的底层金属图形;3) photolithography or sputtering Cr/Au film, wet etching photoresist to obtain the underlying metal pattern of the interconnection wire 47 connecting the magnetic field sensing resistors 41, 42, the reference resistors 43, 44 and the connecting terminal 48;
4)沉积绝缘层,光刻或湿法腐蚀绝缘层露出引脚金属;4) Deposit the insulating layer, photolithography or wet etching the insulating layer to expose the pin metal;
5)溅射金属种子层,光刻电镀软磁材料形成磁通汇聚器45、46和连接端48。5) Sputtering the metal seed layer, photolithography and electroplating soft magnetic materials to form magnetic flux concentrators 45 , 46 and connection ends 48 .
所述的基底49的材料为硅片或玻璃片。The material of the substrate 49 is a silicon wafer or a glass wafer.
所述的多层巨磁阻材料薄膜为:[NiFeCo/Cu]多层膜或[Fe/Cr]多层膜。The multilayer giant magnetoresistance material thin film is: [NiFeCo/Cu] multilayer film or [Fe/Cr] multilayer film.
所述的绝缘层为氧化硅或氧化铝绝缘层。The insulating layer is a silicon oxide or aluminum oxide insulating layer.
所述的电镀软磁材料为坡莫合金。The electroplated soft magnetic material is permalloy.
6)最后切片,获得巨磁阻磁敏传感器。6) Finally slice to obtain giant magnetoresistive magnetic sensor.
本实施例微陀螺的工作原理为:在永磁体7提供偏置磁场工作点的前提下,驱动平面线圈8中施加正弦交流信号产生的交变磁场,使固体振子1在Z轴方向上以谐振频率作伸缩参考振动。若固体振子1沿Z轴方向伸长,则沿X、Y轴方向收缩;同样,若Z轴沿Z轴方向收缩,则沿X、Y轴方向伸长;即固体振子1对于X、Y、Z轴方向分别反复作伸缩振动。微陀螺工作的参考谐振振动由Z轴方向上的磁敏传感器6通过电桥输出电压信号的变化进行监测。当垂直于该Z轴向参考振动的一体轴方向上如X轴输入角速率时,由于科氏加速度引起的科氏力的作用,在固体振子1的另一体轴,即Y轴方向上的振动形态发生变化,根据磁致伸缩体的逆磁致伸缩效应将产生磁化强度的变化即引起磁导率的变化,该Y轴向的磁场变化通过xz面上的磁敏传感器5检测并转化为惠斯通电桥的输出电压。同理,当另一体轴方向即Y轴向输入角速率时,科氏加速度效应使固体振子1的X轴向振动形态发生变化,并由逆磁致伸缩效应引起磁致伸缩振子X轴向磁导率的变化即X轴向的磁场变化,并通过yz面上的磁敏传感器4转化为惠斯通电桥的输出电压来检测。当X轴向和Y轴向同时输入角速率时,由xz面上的磁敏传感器5和yz面上的磁敏传感器4可分别输出正比于输入角速率大小的电桥输出电压,从而实现该微陀螺的二轴陀螺仪功能。The working principle of the micro-gyroscope in this embodiment is: on the premise that the permanent magnet 7 provides the working point of the bias magnetic field, the alternating magnetic field generated by applying a sinusoidal AC signal to the driving planar coil 8 makes the solid vibrator 1 resonate in the Z-axis direction. The frequency is used as the stretching reference vibration. If the solid vibrator 1 stretches along the Z-axis direction, it will shrink along the X-axis and Y-axis directions; similarly, if the Z-axis shrinks along the Z-axis direction, it will elongate along the X-axis and Y-axis directions; Repeat stretching vibration in the Z-axis direction respectively. The reference resonant vibration of the micro-gyroscope is monitored by the magnetic sensor 6 in the Z-axis direction through the change of the output voltage signal of the bridge. When the angular rate is input in the direction of the integral axis perpendicular to the Z-axis reference vibration, such as the X-axis, due to the Coriolis force caused by the Coriolis acceleration, the vibration on the other axis of the solid vibrator 1, that is, the direction of the Y-axis The shape changes, according to the inverse magnetostrictive effect of the magnetostrictive body, the change of the magnetization intensity will be caused, that is, the change of the magnetic permeability. The change of the magnetic field in the Y axis is detected by the magnetic sensor 5 on the xz surface and converted into The output voltage of the Stone bridge. Similarly, when the angular rate is input in the other body axis direction, that is, the Y axis, the Coriolis acceleration effect changes the X-axis vibration form of the solid vibrator 1, and the reverse magnetostrictive effect causes the magnetostrictive vibrator X-axis magnetic The change of the conductivity is the change of the magnetic field in the X-axis, and is detected by converting the magnetic sensor 4 on the yz surface into the output voltage of the Wheatstone bridge. When the X-axis and Y-axis input the angular rate at the same time, the magnetic sensor 5 on the xz surface and the magnetic sensor 4 on the yz surface can respectively output the bridge output voltage proportional to the input angular rate, so as to realize this The two-axis gyroscope function of the micro gyroscope.
实施例2Example 2
本发明的磁致伸缩固体振子双轴微陀螺并不限于实施例1所涉及的结构。The magnetostrictive solid state oscillator biaxial micro-gyroscope of the present invention is not limited to the structure involved in the first embodiment.
如图6所示,本实施例中驱动平面线圈8直接集成制造在磁致伸缩材料的固体振子1上。所述的驱动平面线圈8同实施例1,同样为单层或多层多匝螺旋线圈,使用MEMS加工工艺。以二层方形螺旋线圈微制造结构为例,其MEMS加工工艺制造方法为:采用固体振子1的磁致伸缩材料圆片为基底,在基底的一面,首先在圆片上沉积氧化硅或氧化铝绝缘层,然后如图3制造结构剖面示意图所示,通过溅射沉积、光刻、电镀、磨抛等基本工序来制造底层引线81、连通柱82、第一层线圈层83、连通柱84、第二层线圈层85、引脚86和绝缘介质87;固体振子1两个端面上的驱动平面线圈8均相同方法制备,并且通过双面对准光刻可实现上、下面驱动平面线圈8的精确位置对准。As shown in FIG. 6 , in this embodiment, the driving planar coil 8 is directly integrated and manufactured on the solid vibrator 1 made of magnetostrictive material. The driving planar coil 8 is the same as the embodiment 1, and is also a single-layer or multi-layer multi-turn spiral coil, using MEMS processing technology. Taking the two-layer square spiral coil microfabrication structure as an example, its MEMS manufacturing method is as follows: use the magnetostrictive material disc of the solid vibrator 1 as the base, and first deposit silicon oxide or aluminum oxide insulation on the wafer on one side of the base. layer, and then as shown in the cross-sectional schematic diagram of the manufacturing structure in Figure 3, the bottom lead 81, the connecting column 82, the first coil layer 83, the connecting column 84, the first Two-layer coil layer 85, pins 86 and insulating medium 87; the driving planar coils 8 on both end faces of the solid vibrator 1 are prepared by the same method, and the precision of the upper and lower driving planar coils 8 can be realized by double-sided alignment photolithography position alignment.
其他结构与实施例1相同。Other structures are the same as in Embodiment 1.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310165090.5A CN103278148B (en) | 2013-05-07 | 2013-05-07 | Two-axis microgyroscope of magnetostrictive solid oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310165090.5A CN103278148B (en) | 2013-05-07 | 2013-05-07 | Two-axis microgyroscope of magnetostrictive solid oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103278148A CN103278148A (en) | 2013-09-04 |
CN103278148B true CN103278148B (en) | 2015-05-27 |
Family
ID=49060736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310165090.5A Expired - Fee Related CN103278148B (en) | 2013-05-07 | 2013-05-07 | Two-axis microgyroscope of magnetostrictive solid oscillator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103278148B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104358674A (en) * | 2014-10-24 | 2015-02-18 | 安徽理工大学 | Biplane oil driven micropump based on giant magnetostrictive film driver |
CN106353702B (en) * | 2016-09-14 | 2018-11-13 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | A kind of MEMS magnetic field sensors and preparation method based on the modal resonance device that stretches in face |
CN107292005B (en) * | 2017-06-08 | 2021-02-05 | 株洲中车时代电气股份有限公司 | Track traffic converter vibration optimization method based on modal decoupling technology |
CN110806529A (en) * | 2019-11-27 | 2020-02-18 | 云南电网有限责任公司电力科学研究院 | An online monitoring system for insulation performance of capacitive equipment |
CN110940328A (en) * | 2019-12-13 | 2020-03-31 | 中北大学 | A Micro Gyroscope Based on Planar Coil In-Plane Detection |
CN115166041A (en) * | 2022-07-28 | 2022-10-11 | 清华大学 | Magnetostrictive guided wave transducer for pipeline detection and pipeline detection system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1768247A (en) * | 2003-03-31 | 2006-05-03 | Tdk股份有限公司 | Gyro sensor |
CN101145426A (en) * | 2006-08-28 | 2008-03-19 | 富士通株式会社 | Inductive components and integrated electronic assemblies |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09196686A (en) * | 1996-01-19 | 1997-07-31 | Sony Corp | Angular velocity sensor |
JP2001174263A (en) * | 1999-12-15 | 2001-06-29 | Toyota Motor Corp | Angular velocity detector |
-
2013
- 2013-05-07 CN CN201310165090.5A patent/CN103278148B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1768247A (en) * | 2003-03-31 | 2006-05-03 | Tdk股份有限公司 | Gyro sensor |
CN101145426A (en) * | 2006-08-28 | 2008-03-19 | 富士通株式会社 | Inductive components and integrated electronic assemblies |
Non-Patent Citations (1)
Title |
---|
超磁致伸缩振子微陀螺的设计;都晰翚;《中国优秀硕士论文全文数据库》;20120715;正文2.3节、图2-15 * |
Also Published As
Publication number | Publication date |
---|---|
CN103278148A (en) | 2013-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103278148B (en) | Two-axis microgyroscope of magnetostrictive solid oscillator | |
CN102645565B (en) | Micro machinery magnetic field sensor and preparation method thereof | |
CN103105592B (en) | Single-chip three-shaft magnetic field sensor and production method | |
CN101320081B (en) | Micro electro-mechanical system magnetic field sensor and measuring method | |
US20150033856A1 (en) | Mems gyroscope | |
CN103116144B (en) | Z-direction magnetic field sensor with magnetic orbit structure | |
CN101533075A (en) | MEMS horizontal resonant mode gauss meter | |
CN101515026A (en) | Resonance micro electromechanical system magnetic field sensor and measuring method thereof | |
CN102914750B (en) | Micromechanical magnetic field sensor and application thereof | |
CN102914749B (en) | Micromechanical magnetic field sensor and application thereof | |
CN107894576B (en) | Integrated low-power-consumption three-axis magnetic field sensor with high Z-direction resolution | |
JPH11352143A (en) | Acceleration sensor | |
WO2013159584A1 (en) | Micro-mechanical magnetic field sensor and preparation method thereof | |
CN105988090B (en) | Micro-mechanical magnetic field sensor and its application | |
CN102353913A (en) | Measuring transducer driven by monoaxial piezoelectricity for low-intensity magnetic field | |
CN107449410A (en) | Microthrust test device is detected in electromagnetic drive type tunnel magnetoresistive face | |
CN110068318A (en) | A kind of tunnel magnetoresistive microthrust test device based on snakelike hot-wire coil | |
CN103322996B (en) | Electromagnetic drive electrostatic detection bodies sound wave resonance three axle microthrust test and preparation method thereof | |
CN113109636B (en) | A single-chip three-dimensional electric field sensor | |
CN111521842A (en) | Z-axis resonant micro-accelerometer with electrostatic stiffness adjustment based on tunnel magnetoresistance detection | |
CN106443525B (en) | Torsion type micromachined magnetic field sensor and preparation method thereof | |
CN102928793B (en) | Micromechanical magnetic field sensor and application thereof | |
CN103697875A (en) | Pin-type piezoelectric gyroscope for matching solid fluctuation modes | |
JPH1019577A (en) | Angular velocity sensor | |
CN207395750U (en) | Microthrust test device is detected in electromagnetic drive type tunnel magnetoresistive face |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150527 Termination date: 20180507 |