CN103267522A - Bidirectional locking frequency switching method for eliminating nonreciprocal error of optical microwave gyroscope - Google Patents
Bidirectional locking frequency switching method for eliminating nonreciprocal error of optical microwave gyroscope Download PDFInfo
- Publication number
- CN103267522A CN103267522A CN201310171209XA CN201310171209A CN103267522A CN 103267522 A CN103267522 A CN 103267522A CN 201310171209X A CN201310171209X A CN 201310171209XA CN 201310171209 A CN201310171209 A CN 201310171209A CN 103267522 A CN103267522 A CN 103267522A
- Authority
- CN
- China
- Prior art keywords
- optical
- frequency
- microwave
- output
- sent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000003287 optical effect Effects 0.000 title claims description 123
- 230000002457 bidirectional effect Effects 0.000 title description 3
- 238000001514 detection method Methods 0.000 claims description 32
- 239000013307 optical fiber Substances 0.000 claims description 16
- 239000000835 fiber Substances 0.000 claims description 13
- 230000010355 oscillation Effects 0.000 claims description 12
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Gyroscopes (AREA)
Abstract
本发明公开了一种用于消除光载微波陀螺非互易性误差的双向锁频交换方法。该方法通过交换产生非互易性误差的部分器件与回路,将正反向光电振荡器的频率交替地锁定到高稳定度时钟源上,实现正反向回路的相对腔长的交替,从而达到补偿非互易性误差的目的。该方法能够有效提高光载微波陀螺的精度。
The invention discloses a two-way frequency-locked exchange method for eliminating the non-reciprocity error of an optical-carrying microwave gyroscope. This method alternately locks the frequency of the forward and reverse photoelectric oscillators to a high-stability clock source by exchanging some devices and circuits that generate non-reciprocity errors, and realizes the alternation of the relative cavity lengths of the forward and reverse circuits, thereby achieving The purpose of compensating for non-reciprocity errors. This method can effectively improve the precision of optical-borne microwave gyroscope.
Description
技术领域 technical field
本发明涉及一种测量技术,尤其涉及一种用于消除光载微波陀螺非互易性误差的双向锁频交换方法。 The invention relates to a measurement technology, in particular to a two-way frequency-locked exchange method for eliminating the non-reciprocity error of an optical-carrying microwave gyroscope.
背景技术 Background technique
在惯性导航领域,通常采用陀螺仪进行惯性角速度的测量。陀螺仪被广泛应用于空间飞行器、飞机、导弹、潜艇、舰船等制导控制,在军事、工业、科学等领域里的精密测量有重要作用。常见的高精度陀螺仪主要有三种类型:机械陀螺、激光陀螺和光纤陀螺。激光陀螺和光纤陀螺皆为光学陀螺仪,虽然稳定度还不及机械陀螺,但是具有结构紧凑、灵敏度高等特点,目前占据高精度陀螺的大部分市场份额。 In the field of inertial navigation, gyroscopes are usually used to measure the inertial angular velocity. Gyroscopes are widely used in the guidance and control of space vehicles, aircraft, missiles, submarines, ships, etc., and play an important role in precision measurement in military, industrial, and scientific fields. There are three main types of common high-precision gyroscopes: mechanical gyroscopes, laser gyroscopes, and fiber optic gyroscopes. Both laser gyroscopes and fiber optic gyroscopes are optical gyroscopes. Although they are not as stable as mechanical gyroscopes, they have the characteristics of compact structure and high sensitivity. They currently occupy most of the market share of high-precision gyroscopes.
光学陀螺检测角速度的原理基于萨格纳克效应。在闭合光路中,由同一光源发出的光需要同时沿顺时针和逆时针方向进行双向传输。由于顺时针和逆时针回路的光路相同,这两束光产生的光程差只源于角度变化。光程差将引起相位差或频率差。通过检测相位或频率差进行角速度检测。 The principle of optical gyroscope detecting angular velocity is based on the Sagnac effect. In a closed optical path, the light emitted by the same light source needs to be bidirectionally transmitted in both clockwise and counterclockwise directions. Since the optical paths of the clockwise and counterclockwise circuits are the same, the optical path difference between the two beams is only due to the angle change. Optical path difference will cause phase difference or frequency difference. Angular velocity detection is performed by detecting phase or frequency difference.
光载微波陀螺同样需要实现双向的微波谐振,从而通过频率差进行角速度检测。目前没有单独的一个放大器可以实现电信号的双向放大,因此需要使用两套装置实现双向的微波谐振。这中间就存在电回路不完全相同的问题,从而引入非互易性误差,降低光载微波陀螺的精度。 The optical-borne microwave gyroscope also needs to realize two-way microwave resonance, so as to detect the angular velocity through the frequency difference. At present, there is no single amplifier that can achieve bidirectional amplification of electrical signals, so two sets of devices need to be used to realize bidirectional microwave resonance. In the middle, there is the problem that the electrical circuits are not exactly the same, which introduces non-reciprocity errors and reduces the accuracy of the optical microwave gyroscope.
发明内容 Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种用于消除光载微波陀螺非互易性误差的双向锁频交换方法。 The purpose of the present invention is to overcome the deficiencies of the prior art, and provide a two-way frequency-locked exchange method for eliminating the non-reciprocity error of the light-borne microwave gyroscope.
本发明的目的是通过以下技术方案来实现的:一种双向锁频交换方法,该方法在光载微波陀螺上实现,所述的消除非互易性误差的光载微波陀螺包括:激光器、光分束器、第一电光调制器、第一光耦合器、频率调节器、光纤环形腔、第二光耦合器、第一光电探测器、第一电滤波器、第一微波功分器、第一电放大器、第二电光调制器、第二光电探测器、第二电滤波器、第二微波功分器、第二电放大器、差频检测电路、分频器、标准时间源、鉴相器、低通滤波器、第一2×2光开关、第二2×2光开关。 The object of the present invention is achieved through the following technical solutions: a two-way frequency-locked exchange method, which is implemented on an optical-borne microwave gyroscope, and the optical-borne microwave gyroscope for eliminating non-reciprocity errors includes: a laser, an optical Beam splitter, first electro-optic modulator, first optical coupler, frequency adjuster, fiber ring cavity, second optical coupler, first photodetector, first electric filter, first microwave power divider, second An electric amplifier, a second electro-optic modulator, a second photodetector, a second electric filter, a second microwave power divider, a second electric amplifier, a difference frequency detection circuit, a frequency divider, a standard time source, and a phase detector , a low-pass filter, a first 2×2 optical switch, and a second 2×2 optical switch.
该方法包括以下步骤: The method includes the following steps:
步骤1:在交换前,激光器输出的光经过光分束器,分为两束光,一束光沿顺时针方向送入第一电光调制器,经过调制后的光进入第一2×2光开关,光通过第一2×2光开关后进入第一光耦合器,从第一光耦合器输出的光经过频率调节器后进入光纤环形腔,从环形腔出射的光再经过第二光耦合器进入第二2×2光开关,然后进入第一光电探测器,将光信号转换成电信号,之后送入第一电滤波器,滤波后的微波电信号送入第一微波功分器,第一微波功分器有两路输出,第一路输出经过电放大器连接到第一电光调制器,形成一个正反馈振荡回路,第二路输出作为RF输出#1送入差频检测电路。
Step 1: Before the exchange, the light output by the laser passes through the optical beam splitter and is divided into two beams of light. One beam of light is sent to the first electro-optic modulator in a clockwise direction, and the modulated light enters the first 2×2 beam switch, the light enters the first optical coupler after passing through the first 2×2 optical switch, the light output from the first optical coupler enters the optical fiber ring cavity after passing through the frequency regulator, and the light emitted from the ring cavity passes through the second optical coupling The device enters the second 2×2 optical switch, then enters the first photodetector, converts the optical signal into an electrical signal, and then sends it to the first electrical filter, and the filtered microwave electrical signal is sent to the first microwave power splitter, The first microwave power divider has two outputs, the first output is connected to the first electro-optical modulator through the electric amplifier to form a positive feedback oscillation loop, and the second output is sent to the difference frequency detection circuit as
步骤2:光分束器分出的另一束光沿逆时针方向送入第二电光调制器,经过第一2×2光开关,再经过第二光耦合器进入光纤环形腔,从环形腔出射的光再经过频率调节器、第一光耦合器和第二2×2光开关送入第二光电探测器,将光信号转换成电信号,之后送入第二电滤波器,滤波后的微波电信号送入第二微波功分器,第二微波功分器有三路输出,第一路输出经过第二电放大器连接到第二电光调制器,形成另一个正反馈振荡回路,第二路输出作为RF输出#2送入差频检测电路,第三路输出经过分频器分频后同标准时间源一同送入鉴相器,鉴相输出经过低通滤波器后连接到频率调节器,用于调节谐振频率,从而形成一个单向锁频回路。 Step 2: Another beam of light split by the optical beam splitter is sent to the second electro-optic modulator in the counterclockwise direction, passes through the first 2×2 optical switch, and then enters the optical fiber ring cavity through the second optical coupler, from the ring cavity The outgoing light is sent to the second photodetector through the frequency regulator, the first optical coupler and the second 2×2 optical switch, and the optical signal is converted into an electrical signal, and then sent to the second electric filter, and the filtered The microwave electrical signal is sent to the second microwave power divider, the second microwave power divider has three outputs, the first output is connected to the second electro-optical modulator through the second electric amplifier, forming another positive feedback oscillation loop, the second output The output is sent to the difference frequency detection circuit as RF output #2, and the third output is sent to the phase detector together with the standard time source after being divided by the frequency divider. The phase detector output is connected to the frequency regulator after passing through the low-pass filter. It is used to adjust the resonant frequency to form a one-way frequency-locked loop.
步骤3:差频检测电路检测出步骤1获得的顺时针方向的谐振微波输出RF#1和步骤2获得的逆时针方向的谐振微波输出RF#2的频率差,记为 Step 3: The difference frequency detection circuit detects the frequency difference between the clockwise resonant microwave
步骤4:在交换后,第一2×2光开关和第二2×2光开关同时交换了光的通路。此时顺时针回路的第一电光调制器、第一光电探测器、第一电滤波器、第一微波功分器、第一电放大器变成逆时针回路的组成部分,而逆时针回路的第二电光调制器、第二光电探测器、第二电滤波器、第二微波功分器、第二电放大器、分频器、标准时间源、鉴相器、低通滤波器变成顺时针回路的组成部分。此时,差频检测电路17检测出的频率差,记为。
Step 4: After switching, the first 2×2 optical switch and the second 2×2 optical switch simultaneously switch optical paths. At this time, the first electro-optical modulator, the first photodetector, the first electric filter, the first microwave power divider, and the first electric amplifier of the clockwise loop become the components of the counterclockwise loop, and the first The second electro-optic modulator, the second photodetector, the second electric filter, the second microwave power divider, the second electric amplifier, the frequency divider, the standard time source, the phase detector, and the low-pass filter become a clockwise loop Part. At this time, the frequency difference detected by the difference
步骤5:根据步骤3获得的频率差和步骤4获得的频率差获得角速度: Step 5: According to the frequency difference obtained in step 3 and the frequency difference obtained in step 4 get angular velocity :
其中,为交换前测量的角速度,为交换后测量的角速度,为光纤环半径, in, is the angular velocity measured before the exchange, is the angular velocity measured after the exchange, is the fiber ring radius,
为光速,为回路长度,为p次谐波。 for the speed of light, is the loop length, is the pth harmonic.
the
本发明的目的也可以通过以下技术方案来实现:一种双向锁频交换方法,该方法在光载微波陀螺上实现,所述的消除非互易性误差的光载微波陀螺包括:激光器、光分束器、第一电光调制器、第一光耦合器、频率调节器、光纤环形腔、第二光耦合器、第一光电探测器、第一电滤波器、第一微波功分器、第一电放大器、第二电光调制器、第二光电探测器、第二电滤波器、第二微波功分器、第二电放大器、差频检测电路、分频器、标准时间源、鉴相器、低通滤波器、第一2×2微波开关、第二2×2微波开关。 The purpose of the present invention can also be achieved through the following technical solutions: a two-way frequency-locked exchange method, which is implemented on an optical-borne microwave gyroscope, and the optical-borne microwave gyroscope for eliminating non-reciprocity errors includes: a laser, an optical Beam splitter, first electro-optic modulator, first optical coupler, frequency adjuster, fiber ring cavity, second optical coupler, first photodetector, first electric filter, first microwave power divider, second An electric amplifier, a second electro-optic modulator, a second photodetector, a second electric filter, a second microwave power divider, a second electric amplifier, a difference frequency detection circuit, a frequency divider, a standard time source, and a phase detector , a low-pass filter, a first 2×2 microwave switch, and a second 2×2 microwave switch.
步骤1:激光器输出的光经过光分束器,分为两束光,一束光沿顺时针方向送入第一电光调制器,再进入第一光耦合器,从第一光耦合器输出的光经过频率调节器后进入光纤环形腔,从环形腔出射的光再经过第二光耦合器,然后进入第一光电探测器,将光信号转换成电信号,之后进入第二2×2微波开关,再进入第一电滤波器,滤波后的微波电信号送入第一微波功分器,第一微波功分器有两路输出,第一路输出经过电放大器、第一2×2微波开关,连接到第一电光调制器,形成一个正反馈振荡回路,第二路输出作为RF输出#1送入差频检测电路。
Step 1: The light output by the laser passes through the optical beam splitter and is divided into two beams of light. One beam of light is sent to the first electro-optic modulator in a clockwise direction, and then enters the first optical coupler. The output from the first optical coupler The light enters the optical fiber ring cavity after passing through the frequency regulator, and the light exiting from the ring cavity passes through the second optical coupler, and then enters the first photodetector to convert the optical signal into an electrical signal, and then enters the second 2×2 microwave switch , and then enter the first electric filter, the filtered microwave electric signal is sent to the first microwave power divider, the first microwave power divider has two outputs, the first output passes through the electric amplifier, the first 2×2 microwave switch , connected to the first electro-optic modulator to form a positive feedback oscillation loop, and the second output is sent to the difference frequency detection circuit as
步骤2:光分束器分出的另一束光沿逆时针方向送入第二电光调制器,经过第二光耦合器进入光纤环形腔,从环形腔出射的光再经过频率调节器、第一光耦合器送入第二光电探测器,将光信号转换成电信号,之后进入第二2×2微波开关,再进入第二电滤波器,滤波后的微波电信号送入第二微波功分器,第二微波功分器有三路输出,第一路输出经过第二电放大器、第一2×2微波开关,连接到第二电光调制器,形成另一个正反馈振荡回路,第二路输出作为RF输出#2送入差频检测电路,第三路输出经过分频器分频后同标准时间源一同送入鉴相器,鉴相输出经过低通滤波器后连接到频率调节器,用于调节谐振频率,从而形成一个单向锁频回路。 Step 2: Another beam of light split by the optical beam splitter is sent to the second electro-optic modulator in the counterclockwise direction, and enters the optical fiber ring cavity through the second optical coupler, and the light emitted from the ring cavity passes through the frequency regulator, the first An optical coupler is sent to the second photodetector to convert the optical signal into an electric signal, and then enters the second 2×2 microwave switch, and then enters the second electric filter, and the filtered microwave electric signal is sent to the second microwave power Divider, the second microwave power divider has three outputs, the first output passes through the second electric amplifier, the first 2×2 microwave switch, and is connected to the second electro-optical modulator to form another positive feedback oscillation loop, the second output The output is sent to the difference frequency detection circuit as RF output #2, and the third output is sent to the phase detector together with the standard time source after being divided by the frequency divider. The phase detector output is connected to the frequency regulator after passing through the low-pass filter. It is used to adjust the resonant frequency to form a one-way frequency-locked loop.
步骤3:差频检测电路检测出步骤1获得的顺时针方向的谐振微波输出RF#1和步骤2获得的逆时针方向的谐振微波输出RF#2的频率差,记为 Step 3: The difference frequency detection circuit detects the frequency difference between the clockwise resonant microwave
步骤4:第一2×2微波开关和第二2×2微波开关同时交换了光的通路。此时顺时针回路的第一电滤波器、第一微波功分器、第一电放大器变成逆时针回路的组成部分,而逆时针回路的第二电滤波器、第二微波功分器、第二电放大器、分频器、标准时间源、鉴相器、低通滤波器变成顺时针回路的组成部分。此时,差频检测电路检测出的频率差,记为。 Step 4: The first 2×2 microwave switch and the second 2×2 microwave switch switch the optical path at the same time. At this time, the first electric filter, the first microwave power divider, and the first electric amplifier of the clockwise loop become the components of the counterclockwise loop, while the second electric filter, the second microwave power divider, and The second electrical amplifier, frequency divider, standard time source, phase detector, and low-pass filter become components of the clockwise loop. At this time, the frequency difference detected by the difference frequency detection circuit is denoted as .
步骤5:根据步骤3获得的频率差和步骤4获得的频率差通过下式获得角速度: Step 5: According to the frequency difference obtained in step 3 and the frequency difference obtained in step 4 The angular velocity is obtained by :
其中,为交换前测量的角速度,为交换后测量的角速度,为光纤环半径, in, is the angular velocity measured before the exchange, is the angular velocity measured after the exchange, is the fiber ring radius,
为光速,为回路长度,为p次谐波。 for the speed of light, is the loop length, is the pth harmonic.
第一种交换方式是在光学部分进行交换、第二种交换方式是在电学部分进行交换。 The first exchange method is to exchange in the optical part, and the second exchange method is to exchange in the electrical part.
第一种交换方式可以补偿第一电光调制器、第一光电探测器、第一电滤波器、第一微波功分器、第一电放大器与第二电光调制器、第二光电探测器、第二电滤波器、第二微波功分器、第二电放大器部分的非互易性误差。第二种交换方式可以补偿第一电滤波器、第一微波功分器、第一电放大器与第二电滤波器、第二微波功分器、第二电放大器部分的非互易性误差。 The first exchange method can compensate the first electro-optic modulator, the first photodetector, the first electric filter, the first microwave power splitter, the first electric amplifier and the second electro-optic modulator, the second photodetector, the first The non-reciprocity error of the second electric filter, the second microwave power divider, and the second electric amplifier. The second exchange method can compensate the non-reciprocity errors of the first electric filter, the first microwave power divider, the first electric amplifier and the second electric filter, the second microwave power divider, and the second electric amplifier.
本发明的有益效果为:通过交换,补偿了光载微波陀螺的非互易性误差,提高了光载微波陀螺的测量精度。 The beneficial effect of the invention is: through the exchange, the non-reciprocity error of the light-borne microwave gyroscope is compensated, and the measurement accuracy of the light-borne microwave gyroscope is improved.
附图说明 Description of drawings
图1是本发明双向锁频交换方法改变光开关前的示意图; Fig. 1 is the schematic diagram before the optical switch is changed by the two-way frequency-locked switching method of the present invention;
图2是本发明双向锁频交换方法改变微波开关前的示意图; Fig. 2 is the schematic diagram before the microwave switch is changed by the two-way frequency-locked exchange method of the present invention;
图3是本发明双向锁频交换方法改变光开关后的示意图; Fig. 3 is the schematic diagram after the optical switch is changed by the two-way frequency-locked switching method of the present invention;
图4是本发明双向锁频交换方法改变微波开关后的示意图。 Fig. 4 is a schematic diagram of changing the microwave switch in the two-way frequency-locked switching method of the present invention.
图中,激光器1、光分束器2、第一电光调制器3、第一光耦合器4、频率调节器5、光纤环形腔6、第二光耦合器7、第一光电探测器8、第一电滤波器9、第一微波功分器10、第一电放大器11、第二电光调制器12、第二光电探测器13、第二电滤波器14、第二微波功分器15、第二电放大器16、差频检测电路17、分频器18、标准时间源19、鉴相器20、低通滤波器21、第一2×2光开关22、第二2×2光开关23、第一2×2微波开关24、第二2×2微波开关25。实线部分表示光路连接,是光通路;虚线部分表示电路连接,是电通路。
In the figure, a
具体实施方式 Detailed ways
实施例1Example 1
附图1和附图3是第一种具体的实施方式。
Accompanying
本发明的双向锁频交换方法在光载微波陀螺上实现,所述的消除非互易性误差的光载微波陀螺包括:激光器1、光分束器2、第一电光调制器3、第一光耦合器4、频率调节器5、光纤环形腔6、第二光耦合器7、第一光电探测器8、第一电滤波器9、第一微波功分器10、第一电放大器11、第二电光调制器12、第二光电探测器13、第二电滤波器14、第二微波功分器15、第二电放大器16、差频检测电路17、分频器18、标准时间源19、鉴相器20、低通滤波器21、第一2×2光开关22、第二2×2光开关23。
The two-way frequency-locking exchange method of the present invention is implemented on an optical-borne microwave gyroscope, and the optical-borne microwave gyroscope for eliminating non-reciprocity errors includes: a
该方法包括以下步骤: The method includes the following steps:
步骤1:如附图1,激光器1输出的光经过光分束器2,分为两束光,一束光沿顺时针方向送入第一电光调制器3,经过调制后的光进入第一2×2光开关22,光通过第一2×2光开关22后进入第一光耦合器4,从第一光耦合器4输出的光经过频率调节器5后进入光纤环形腔6,从环形腔出射的光再经过第二光耦合器7进入第二2×2光开关23,然后进入第一光电探测器8,将光信号转换成电信号,之后送入第一电滤波器9,滤波后的微波电信号送入第一微波功分器10,第一微波功分器10有两路输出,第一路输出经过电放大器11连接到第一电光调制器3,形成一个正反馈振荡回路,第二路输出作为RF输出#1送入差频检测电路17。
Step 1: As shown in Figure 1, the light output by the
步骤2:光分束器2分出的另一束光沿逆时针方向送入第二电光调制器12,经过第一2×2光开关22,再经过第二光耦合器7进入光纤环形腔6,从环形腔出射的光再经过频率调节器5、第一光耦合器4和第二2×2光开关23送入第二光电探测器13,将光信号转换成电信号,之后送入第二电滤波器14,滤波后的微波电信号送入第二微波功分器15,第二微波功分器15有三路输出,第一路输出经过第二电放大器16连接到第二电光调制器12,形成另一个正反馈振荡回路,第二路输出作为RF输出#2送入差频检测电路17,第三路输出经过分频器18分频后同标准时间源19一同送入鉴相器20,鉴相输出经过低通滤波器21后连接到频率调节器5,用于调节谐振频率,从而形成一个单向锁频回路。
Step 2: Another beam of light split by the optical beam splitter 2 is sent to the second electro-
步骤3:差频检测电路17检测出步骤1获得的顺时针方向的谐振微波输出RF#1和步骤2获得的逆时针方向的谐振微波输出RF#2的频率差,记为 Step 3: The difference
步骤4:如图3所示,第一2×2光开关22和第二2×2光开关23同时交换了光的通路。此时顺时针回路的第一电光调制器3、第一光电探测器8、第一电滤波器9、第一微波功分器10、第一电放大器11变成逆时针回路的组成部分,而逆时针回路的第二电光调制器12、第二光电探测器13、第二电滤波器14、第二微波功分器15、第二电放大器16、分频器18、标准时间源19、鉴相器20、低通滤波器21变成顺时针回路的组成部分。此时,差频检测电路17检测出的频率差,记为。
Step 4: As shown in FIG. 3 , the first 2×2
步骤5:根据步骤3获得的频率差和步骤4获得的频率差获得角速度: Step 5: According to the frequency difference obtained in step 3 and the frequency difference obtained in step 4 get angular velocity :
在初始静止状态下,通过使用长度相等的电缆、光纤进行连接的方式,保证顺时针回路和逆时针回路的长度基本相同,记为。交换前,逆时针回路受到频率调节器5的调节,频率被锁定,相对长度一直保持不变;顺时针回路的相对长度则受到真实旋转、频率调节器5的调节、以及自身回路腔长变化的影响而一直发生变化。 In the initial static state, the lengths of the clockwise loop and the counterclockwise loop are basically the same by using equal-length cables and optical fibers for connection, denoted as . Before the exchange, the counterclockwise loop is regulated by the frequency regulator 5, the frequency is locked, and the relative length is kept remains unchanged; the relative length of the clockwise loop is always changed due to the influence of the real rotation, the adjustment of the frequency regulator 5, and the change of the cavity length of the loop itself.
真实旋转引起的相对长度变化记为: The relative length change caused by the real rotation is recorded as :
其中:为真实运动角速度,为光纤环半径, 为光速 in: is the real angular velocity of motion, is the fiber ring radius, for the speed of light
频率调节器5的调节分为两部分:真实旋转引起的逆时针回路相对长度变化的补偿,同样为;逆时针回路腔长变化的补偿,记为。 The adjustment of the frequency regulator 5 is divided into two parts: the compensation of the relative length change of the counterclockwise loop caused by the real rotation, which is also ; The compensation for the change of the cavity length of the counterclockwise loop is denoted as .
自身顺时针回路腔长变化,记为。 The clockwise loop cavity length change by itself, denoted as .
逆时针方向回路中的标准锁定频率为: The standard locking frequency in a counterclockwise loop is:
其中:为p次谐波 in: is the pth harmonic
顺时针方向回路中的频率为: The frequencies in the clockwise loop are:
频率差与角速度之间关系为: The relationship between frequency difference and angular velocity is:
将公式(1)带入公式(4)并化简得到角速度为: Put formula (1) into formula (4) and simplify to get the angular velocity as:
交换后,顺时针回路受到频率调节器5的调节,频率被锁定,相对长度一直保持不变;逆时针回路的长度则受到真实旋转、频率调节器5的调节、以及自身回路腔长变化的影响而一直发生变化。 After the exchange, the clockwise loop is regulated by the frequency regulator 5, the frequency is locked, and the relative length is kept remains unchanged; the length of the counterclockwise loop is always changing due to the influence of the real rotation, the adjustment of the frequency regulator 5, and the change of the cavity length of the loop itself.
真实旋转引起的相对长度变化同公式(1),记为。 The relative length change caused by the real rotation is the same as formula (1), recorded as .
频率调节器5的调节分为两部分:真实旋转引起的顺时针回路相对长度变化的补偿,同样为;顺时针回路腔长变化的补偿(即交换前逆时针回路腔长变化),记为。 The adjustment of the frequency regulator 5 is divided into two parts: the compensation of the relative length change of the clockwise loop caused by the real rotation, which is also ; The compensation for the change of the cavity length of the clockwise loop (that is, the change of the cavity length of the counterclockwise loop before the exchange), denoted as .
自身逆时针回路腔长变化(即交换前顺时针回路腔长变化),记为。 The change of the cavity length of the counterclockwise loop by itself (that is, the change of the cavity length of the clockwise loop before the exchange), denoted as .
顺时针方向回路中的标准锁定频率为: The standard locking frequency in a clockwise loop is:
逆时针方向回路中的频率为:. The frequency in the counterclockwise loop is: .
频率差与角速度之间关系为: The relationship between frequency difference and angular velocity is:
将公式(1)带入公式(8)并化简得: Put formula (1) into formula (8) and simplify:
当交换过程高速进行时,在两次交换之间的腔长变化基本不变,因此交换前后的平均角速度可通过公式(5)和公式(9)相加得到: When the exchange process is carried out at a high speed, the change of the cavity length between two exchanges is basically unchanged, so the average angular velocity before and after exchange can be obtained by adding formula (5) and formula (9):
可见通过双向锁频交换的方式,可以补偿由于双向回路引起腔长不同而引入的非互易性误差。 It can be seen that the non-reciprocal error introduced by the difference in cavity length caused by the two-way loop can be compensated by the way of two-way frequency-locked exchange.
实施例2Example 2
附图2和附图4是第二种具体的实施方式。 Accompanying drawing 2 and accompanying drawing 4 are the second kind of specific embodiment.
本发明的双向锁频交换方法在光载微波陀螺上实现,所述的消除非互易性误差的光载微波陀螺包括:激光器1、光分束器2、第一电光调制器3、第一光耦合器4、频率调节器5、光纤环形腔6、第二光耦合器7、第一光电探测器8、第一电滤波器9、第一微波功分器10、第一电放大器11、第二电光调制器12、第二光电探测器13、第二电滤波器14、第二微波功分器15、第二电放大器16、差频检测电路17、分频器18、标准时间源19、鉴相器20、低通滤波器21、第一2×2微波开关24、第二2×2微波开关25。
The two-way frequency-locking exchange method of the present invention is implemented on an optical-borne microwave gyroscope, and the optical-borne microwave gyroscope for eliminating non-reciprocity errors includes: a
步骤1:如附图2,激光器1输出的光经过光分束器2,分为两束光,一束光沿顺时针方向送入第一电光调制器3,再进入第一光耦合器4,从第一光耦合器4输出的光经过频率调节器5后进入光纤环形腔6,从环形腔出射的光再经过第二光耦合器7,然后进入第一光电探测器8,将光信号转换成电信号,之后进入第二2×2微波开关25,再进入第一电滤波器9,滤波后的微波电信号送入第一微波功分器10,第一微波功分器10有两路输出,第一路输出经过电放大器11、第一2×2微波开关24,连接到第一电光调制器3,形成一个正反馈振荡回路,第二路输出作为RF输出#1送入差频检测电路17。
Step 1: As shown in Figure 2, the light output by the
步骤2:光分束器2分出的另一束光沿逆时针方向送入第二电光调制器12,经过第二光耦合器7进入光纤环形腔6,从环形腔出射的光再经过频率调节器5、第一光耦合器4送入第二光电探测器13,将光信号转换成电信号,之后进入第二2×2微波开关25,再进入第二电滤波器14,滤波后的微波电信号送入第二微波功分器15,第二微波功分器15有三路输出,第一路输出经过第二电放大器16、第一2×2微波开关24,连接到第二电光调制器12,形成另一个正反馈振荡回路,第二路输出作为RF输出#2送入差频检测电路17,第三路输出经过分频器18分频后同标准时间源19一同送入鉴相器20,鉴相输出经过低通滤波器21后连接到频率调节器5,用于调节谐振频率,从而形成一个单向锁频回路。 Step 2: Another beam of light split by the optical beam splitter 2 is sent to the second electro-optic modulator 12 in the counterclockwise direction, passes through the second optical coupler 7 and enters the optical fiber ring cavity 6, and the light emitted from the ring cavity passes through the frequency The regulator 5 and the first optical coupler 4 are sent to the second photodetector 13 to convert the optical signal into an electrical signal, and then enter the second 2×2 microwave switch 25, and then enter the second electric filter 14, and the filtered The microwave electric signal is sent into the second microwave power divider 15, and the second microwave power divider 15 has three outputs, the first output passes through the second electric amplifier 16 and the first 2×2 microwave switch 24, and is connected to the second electro-optical modulator 12, forming another positive feedback oscillation loop, the second output is sent to the difference frequency detection circuit 17 as RF output #2, and the third output is sent to the phase detector together with the standard time source 19 after being divided by the frequency divider by 18 20, the phase detector output is connected to the frequency regulator 5 after passing through the low-pass filter 21, and is used to adjust the resonant frequency, thereby forming a one-way frequency-locked loop.
步骤3:差频检测电路17检测出步骤1获得的顺时针方向的谐振微波输出RF#1和步骤2获得的逆时针方向的谐振微波输出RF#2的频率差,记为 Step 3: The difference
步骤4:如图4所示,第一2×2微波开关24和第二2×2微波开关25同时交换了光的通路。此时顺时针回路的第一电滤波器9、第一微波功分器10、第一电放大器11变成逆时针回路的组成部分,而逆时针回路的第二电滤波器14、第二微波功分器15、第二电放大器16、分频器18、标准时间源19、鉴相器20、低通滤波器21变成顺时针回路的组成部分。此时,差频检测电路17检测出的频率差,记为。
Step 4: As shown in FIG. 4 , the first 2×2
步骤5:根据步骤3获得的频率差和步骤4获得的频率差通过下式获得角速度: Step 5: According to the frequency difference obtained in step 3 and the frequency difference obtained in step 4 The angular velocity is obtained by :
其中,为交换前测量的角速度,为交换后测量的角速度,为光纤环半径, in, is the angular velocity measured before the exchange, is the angular velocity measured after the exchange, is the fiber ring radius,
为光速,为回路长度,为p次谐波。 for the speed of light, is the loop length, is the pth harmonic.
the
第一种实施方式是在光学部分进行交换、第二种实施方式是在电学部分进行交换。 The first implementation is switching in the optical part, and the second implementation is switching in the electrical part.
第一种实施方式可以补偿第一电光调制器3、第一光电探测器8、第一电滤波器9、第一微波功分器10、第一电放大器11与第二电光调制器12、第二光电探测器13、第二电滤波器14、第二微波功分器15、第二电放大器16部分的非互易性误差。第二种实施方式可以补偿第一电滤波器9、第一微波功分器10、第一电放大器11与第二电滤波器14、第二微波功分器15、第二电放大器16部分的非互易性误差。
The first embodiment can compensate the first electro-optic modulator 3, the first photodetector 8, the first electric filter 9, the first microwave power divider 10, the first
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310171209.XA CN103267522B (en) | 2013-05-10 | 2013-05-10 | The two-way frequency locking switching method of microwave gyroscope irreplaceable error is carried for eliminating light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310171209.XA CN103267522B (en) | 2013-05-10 | 2013-05-10 | The two-way frequency locking switching method of microwave gyroscope irreplaceable error is carried for eliminating light |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103267522A true CN103267522A (en) | 2013-08-28 |
CN103267522B CN103267522B (en) | 2015-08-12 |
Family
ID=49011163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310171209.XA Active CN103267522B (en) | 2013-05-10 | 2013-05-10 | The two-way frequency locking switching method of microwave gyroscope irreplaceable error is carried for eliminating light |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103267522B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103471579A (en) * | 2013-09-29 | 2013-12-25 | 浙江大学 | Angular velocity detection method adopting two-way full reciprocity coupling optoelectronic oscillator |
CN107084713A (en) * | 2017-05-26 | 2017-08-22 | 北京交通大学 | Method and device for measuring angular velocity based on photoelectric oscillator |
CN109357672A (en) * | 2018-10-31 | 2019-02-19 | 浙江大学 | A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity |
WO2020087423A1 (en) * | 2018-10-31 | 2020-05-07 | 浙江大学 | Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system |
WO2020087422A1 (en) * | 2018-10-31 | 2020-05-07 | 浙江大学 | Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof |
CN112740100A (en) * | 2017-12-28 | 2021-04-30 | 恩耐股份有限公司 | Wide field of view electro-optic modulators and methods and systems for making and using the same |
CN118137266A (en) * | 2024-05-10 | 2024-06-04 | 中北大学 | Photo-generated microwave source and method for inhibiting reciprocity noise based on crystal resonant cavity |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5636022A (en) * | 1994-07-29 | 1997-06-03 | Litton Systems, Inc. | Closed loop unmodulated fiber optic rate gyroscope with 3×3 coupler and method |
US5777737A (en) * | 1994-07-22 | 1998-07-07 | Litton Systems, Inc. | Apparatus and method for processing signals output from fiber optic rate gyroscope having 3×3 coupler |
WO1998058234A1 (en) * | 1997-06-19 | 1998-12-23 | Honeywell Inc. | Vibration error reduction servo for a fiber optic gyroscope |
CN101709971A (en) * | 2009-11-11 | 2010-05-19 | 哈尔滨工程大学 | Signal demodulating method for inhibiting vibration error of fiber optic gyro |
CN102706340A (en) * | 2012-05-14 | 2012-10-03 | 北京大学 | Interference optical fiber gyroscope |
-
2013
- 2013-05-10 CN CN201310171209.XA patent/CN103267522B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777737A (en) * | 1994-07-22 | 1998-07-07 | Litton Systems, Inc. | Apparatus and method for processing signals output from fiber optic rate gyroscope having 3×3 coupler |
US5636022A (en) * | 1994-07-29 | 1997-06-03 | Litton Systems, Inc. | Closed loop unmodulated fiber optic rate gyroscope with 3×3 coupler and method |
WO1998058234A1 (en) * | 1997-06-19 | 1998-12-23 | Honeywell Inc. | Vibration error reduction servo for a fiber optic gyroscope |
CN101709971A (en) * | 2009-11-11 | 2010-05-19 | 哈尔滨工程大学 | Signal demodulating method for inhibiting vibration error of fiber optic gyro |
CN102706340A (en) * | 2012-05-14 | 2012-10-03 | 北京大学 | Interference optical fiber gyroscope |
Non-Patent Citations (2)
Title |
---|
ZHENGFANG FAN等: "Online effective backscattering estimation for ring laser gyro", 《CHINESE OPTICS LETTERS》, 10 May 2012 (2012-05-10) * |
王淑敏等: "消偏光纤陀螺的非互易性相位误差的研究", 《激光与红外》, vol. 32, no. 5, 31 October 2002 (2002-10-31) * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103471579B (en) * | 2013-09-29 | 2016-02-17 | 浙江大学 | A kind of angular velocity detection method adopting two-way full reciprocity coupling light electrical oscillator |
US9568319B2 (en) | 2013-09-29 | 2017-02-14 | Zhejiang University | Angular velocity detection method adopting bi-directional full reciprocal coupling optoelectronic oscillator |
CN103471579A (en) * | 2013-09-29 | 2013-12-25 | 浙江大学 | Angular velocity detection method adopting two-way full reciprocity coupling optoelectronic oscillator |
CN107084713B (en) * | 2017-05-26 | 2019-08-06 | 北京交通大学 | Method and device for measuring angular velocity based on photoelectric oscillator |
CN107084713A (en) * | 2017-05-26 | 2017-08-22 | 北京交通大学 | Method and device for measuring angular velocity based on photoelectric oscillator |
CN112740100A (en) * | 2017-12-28 | 2021-04-30 | 恩耐股份有限公司 | Wide field of view electro-optic modulators and methods and systems for making and using the same |
WO2020087423A1 (en) * | 2018-10-31 | 2020-05-07 | 浙江大学 | Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system |
WO2020087422A1 (en) * | 2018-10-31 | 2020-05-07 | 浙江大学 | Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof |
CN109357672B (en) * | 2018-10-31 | 2020-11-27 | 浙江大学 | A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity |
CN109357672A (en) * | 2018-10-31 | 2019-02-19 | 浙江大学 | A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity |
US11378401B2 (en) | 2018-10-31 | 2022-07-05 | Zhejiang University | Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof |
US11874113B2 (en) | 2018-10-31 | 2024-01-16 | Zhejiang University | Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system |
CN118137266A (en) * | 2024-05-10 | 2024-06-04 | 中北大学 | Photo-generated microwave source and method for inhibiting reciprocity noise based on crystal resonant cavity |
CN118137266B (en) * | 2024-05-10 | 2024-07-02 | 中北大学 | Photo-generated microwave source and method for inhibiting reciprocity noise based on crystal resonant cavity |
Also Published As
Publication number | Publication date |
---|---|
CN103267522B (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103267522B (en) | The two-way frequency locking switching method of microwave gyroscope irreplaceable error is carried for eliminating light | |
CN103471579B (en) | A kind of angular velocity detection method adopting two-way full reciprocity coupling light electrical oscillator | |
CN103278150B (en) | A kind of light of detection angle speed carries microwave gyroscope method | |
CN102353373B (en) | Double-closed loop locking technology-based resonant optical gyro | |
CN103411599B (en) | A kind of difference double-interference type optical fiber gyroscope based on light path difference | |
CN109357672B (en) | A bidirectional optical carrier microwave resonance system based on circulator structure and method for detecting angular velocity | |
US11874113B2 (en) | Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system | |
CN107084713B (en) | Method and device for measuring angular velocity based on photoelectric oscillator | |
CN110470292B (en) | Self-injection frequency-locking resonant optical gyroscope and working method thereof | |
CN108332735B (en) | Resonance type fiber-optic gyroscope coherent demodulation system and method based on external beam interference | |
CN108168537A (en) | The detecting system and method for resonance type optical gyroscope based on quadrature demodulation | |
CN102331258B (en) | Two-path loop-locked resonant mode optical gyro | |
CN102032905B (en) | Optical fiber gyroscope with enhanced slow light effect | |
CN103712615B (en) | Single closed-loop resonant optical gyroscope with optical power feedback | |
CN102519445A (en) | Resonance optic gyro based on digital phase oblique wave frequency shift technology | |
CN103267521B (en) | Monocycle two-way two-way resonance light is adopted to carry the method for microwave detection angle speed | |
CN103411601A (en) | Modulate and demodulate method of double-interference type fiber optic gyroscope based on optical path differencing | |
CN102650523B (en) | Closed-loop differential dual-interference type optical fiber gyroscope based on optical isolator | |
CN103411600B (en) | A kind of two interferometric fiber optic gyroscopes ± pi/2 measurement method of parameters based on light path difference | |
CN112113556B (en) | A high-sensitivity resonant micro-optical gyroscope based on self-injection frequency locking and its detection method | |
CN104075703B (en) | Resonant optical gyroscope based on high-K fluoride resonant cavity | |
Ye et al. | High-sensitivity angular velocity measurement based on bidirectional coupled optoelectronic oscillator | |
US11378401B2 (en) | Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof | |
CN1382958A (en) | Beat frequency detection method for travelling-wave annular resonance cavity of non-mechanical gyro | |
CN102519446A (en) | Resonant optical gyroscope based on fast-speed high-precision frequency tracking and locking technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |