CN103267304B - Burning control system of large-sized thermal power generating unit - Google Patents
Burning control system of large-sized thermal power generating unit Download PDFInfo
- Publication number
- CN103267304B CN103267304B CN201310111806.3A CN201310111806A CN103267304B CN 103267304 B CN103267304 B CN 103267304B CN 201310111806 A CN201310111806 A CN 201310111806A CN 103267304 B CN103267304 B CN 103267304B
- Authority
- CN
- China
- Prior art keywords
- module
- input
- output
- boiler
- proportional integral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
- Regulation And Control Of Combustion (AREA)
Abstract
本发明公开了一种大型火电机组的燃烧控制系统,解决了现有的运行人员采用手动调节锅炉燃烧系统的控制方法不能达到对大型机组锅炉燃烧控制系统进行快速负荷响应和稳定控制的问题。包括PID模块、加减模块、大选模块、小选模块、函数模块、微分模块、燃料主控制器、燃油压力调节系统、给煤机、锅炉负荷指令、总风量、总燃料量、烟气含氧量、炉膛压力、一次风机导叶、送风机导叶和引风机导叶等搭建成实时在线优化电路,构成一个独立的动态跟踪和稳定控制的自动控制系统,解决了对大型锅炉燃烧系统的动态跟综和稳定控制的技术问题,可提高锅炉的热经济性指标并达到节能减排的目的。
The invention discloses a combustion control system of a large-scale thermal power unit, which solves the problem that the existing control method of operating personnel manually adjusting the boiler combustion system cannot achieve rapid load response and stable control of the combustion control system of the large-scale unit boiler. Including PID module, addition and subtraction module, general selection module, small selection module, function module, differential module, main fuel controller, fuel oil pressure regulation system, coal feeder, boiler load command, total air volume, total fuel volume, oxygen content in flue gas The real-time on-line optimization circuit is set up to form an independent dynamic tracking and stable control automatic control system, which solves the dynamic tracking of the combustion system of large boilers. Integrating and stabilizing the technical issues of control can improve the boiler's thermal economy index and achieve the purpose of energy saving and emission reduction.
Description
技术领域 technical field
本发明涉及一种火力发电厂的自动控制系统,特别涉及一种大型火力发电机组的燃烧控制系统的PID自动控制系统。 The invention relates to an automatic control system of a thermal power plant, in particular to a PID automatic control system of a combustion control system of a large thermal power generating set.
背景技术 Background technique
随着工业现代化的快速发展,大型火电机组在电网中所占的比例愈来愈大,由于用电结构发生变化,电网日负荷曲线的高峰与低谷之差增大,有些地区的用电峰谷差已达50%以上,而且还有继续增大的趋势。因此,要求大型火电机组的单元机组都具有参与电网调峰、调频的能力,因而,锅炉燃烧控制系统就成为完成大型火电机组全协调自动控制任务重要的组成部分。随着大型火力发电机组容量的增大,锅炉负荷、给水量、主蒸汽温度、燃烧和主汽压力等的变化和其它干扰因素的影响,现有的运行人员采用手动调节锅炉燃烧系统的控制方法已经很难满足电力生产质量的需求,达不到快速负荷响应和稳定控制的要求,从而直接影响机组的安全及经济运行。 With the rapid development of industrial modernization, the proportion of large-scale thermal power units in the power grid is increasing. Due to changes in the power consumption structure, the difference between the peak and the trough of the daily load curve of the power grid has increased. The difference has reached more than 50%, and there is a tendency to continue to increase. Therefore, the unit units of large thermal power units are required to have the ability to participate in peak regulation and frequency regulation of the power grid. Therefore, the boiler combustion control system has become an important part of completing the task of fully coordinated automatic control of large thermal power units. With the increase of the capacity of large-scale thermal power generating units, the boiler load, water supply, main steam temperature, combustion and main steam pressure, etc. are affected by changes and other disturbance factors, the existing operators adopt the control method of manually adjusting the boiler combustion system It has been difficult to meet the demand for power production quality, and cannot meet the requirements of fast load response and stable control, which directly affects the safe and economical operation of the unit.
发明内容 Contents of the invention
本发明提供了一种大型火电机组的燃烧控制系统,解决了现有的运行人员采用手动调节锅炉燃烧系统的控制方法不能达到对大型机组锅炉燃烧控制系统进行快速负荷响应和稳定控制的技术问题。 The invention provides a combustion control system of a large-scale thermal power unit, which solves the technical problem that the existing control method of operating personnel manually adjusting the boiler combustion system cannot achieve rapid load response and stable control of the combustion control system of the large-scale unit boiler.
本发明是通过以下方案解决以上问题的: The present invention solves the above problems through the following solutions:
一种大型火电机组的燃烧控制系统,包括燃料主控制器、燃油压力调节系统、给煤机、加减模块、函数模块和比例微分积分调节模块,小选模块的输入端C1与锅炉所在机组的总风量信号V连接,小选模块的输入端C2与锅炉所在机组的锅炉负荷指令MB连接,小选模块的输出端O1与第一加减模块的输入端C3连接,第一加减模块的输入端C18与锅炉总燃料量信号B连接,第一加减模块的输出端O2与燃料主控制器的输入端C4连接,燃料主控制器的输出端O3与给煤机A的输入端C5连接,给煤机A的输出端O30分别与第四比例微分积分调节器的输入端E1和第五比例微分积分调节器的输入端D2连接,第四比例微分积分调节器的输入端D1连有锅炉A磨一次风量信号F1,第五比例微分积分调节器的输入端E2上连接有锅炉A磨出力信号U1,第四比例微分积分调节器的输出端O4与第二大选模块的输入端C10连接,第五比例微分积分调节器(PID5)的输出端与锅炉A磨碾压力控制端P1连接,第二大选模块的输出端O14与第二函数模块的输入端C38连接,第二函数模块的输出端O15与第五加减模块的输入端C15连接,第五加减模块的输出端O16与比例微分调节模块的输入端C16连接,比例微分调节模块的输出端O17分别与一次风机入口导叶控制端A1和一次风机入口导叶控制端A2连接;第一函数模块的输入端C20与机组的主蒸汽流量信号D连接,第一函数模块的输出端O21与第二加减模块的输入端C21连接,第二加减模块的输入端C22上连接有锅炉的烟气含氧量O2%信号,第二加减模块的输出端O22与第一比例微分积分调节模块的输入端C25连接,第一比例微分积分调节模块的输出端O19与第三加法模块的输入端C24连接,第三加法模块的输入端C23与第一大选模块的输出端O18连接,第一大选模块的输入端C19与锅炉所在机组的锅炉负荷指令MB连接,第一大选模块的输入端C17与锅炉总燃料量信号B连接,第三加法模块的输出端O28与第二比例微分积分调节模块的输入端C36连接,第二比例微分积分调节模块的输入端C37与第一加法模块加法模块的输出端O20连接,第一加法模块加法模块的输入端C26与锅炉的总一次风量信号V1连接,第一加法模块加法模块的输入端C27与锅炉的总二次风量信号V2连接,第二比例微分积分调节模块PID2的输出端O25分别与送风机入口导叶控制端A3和送风机入口导叶控制端A4连接,第二比例微分积分调节模块PID2的输出端O25还与微分模块WF的输入端C33连接,炉膛压力设定值模块的输出端O23与第六加减模块的输入端C28连接, 第六加减模块的输入端C29连接有锅炉的炉膛压力信号PS,第六加减模块的输出端O27与第三比例微分积分调节模块的输入端C30连接,第三比例微分积分调节模块的输出端O24与第二加法模块的输入端C31连接,第二加法模块的输入端C32与微分模块的输出端O29连接,第二加法模块的输出端O26分别与第三加减模块的输入端C34和第四加减模块的输入端C35连接,第三加减模块的减数输入端上连接有超驰信号X1,第四加减模块的减数输入端上连接有另一超驰信号X2,第三加减模块的输出端上连接有引风机的入口导叶控制端A5,第四加减模块的输出端上连接有引风机的入口导叶控制端A6。 A combustion control system for a large-scale thermal power unit, including a main fuel controller, a fuel oil pressure adjustment system, a coal feeder, an addition and subtraction module, a function module and a proportional differential integral adjustment module, the input terminal C1 of the small selection module is connected to the unit where the boiler is located The total air volume signal V is connected, the input terminal C2 of the small selection module is connected with the boiler load command M B of the unit where the boiler is located, the output terminal O1 of the small selection module is connected with the input terminal C3 of the first addition and subtraction module, and the first addition and subtraction module’s The input terminal C18 is connected to the boiler total fuel quantity signal B, the output terminal O2 of the first addition and subtraction module is connected to the input terminal C4 of the main fuel controller, and the output terminal O3 of the main fuel controller is connected to the input terminal C5 of the coal feeder A , the output terminal O30 of the coal feeder A is respectively connected to the input terminal E1 of the fourth proportional differential integral regulator and the input terminal D2 of the fifth proportional differential integral regulator, and the input terminal D1 of the fourth proportional differential integral regulator is connected to the boiler The primary air volume signal F1 of the mill A, the input terminal E2 of the fifth proportional differential integral regulator is connected to the boiler A mill output signal U1, the output terminal O4 of the fourth proportional differential integral regulator is connected to the input terminal C10 of the second selection module, The output terminal of the fifth proportional differential integral regulator (PID5) is connected to the grinding pressure control terminal P1 of boiler A, the output terminal O14 of the second selection module is connected to the input terminal C38 of the second function module, and the output terminal of the second function module The terminal O15 is connected to the input terminal C15 of the fifth addition and subtraction module, the output terminal O16 of the fifth addition and subtraction module is connected to the input terminal C16 of the proportional differential adjustment module, and the output terminal O17 of the proportional differential adjustment module is respectively connected to the primary fan inlet guide vane control Terminal A1 is connected to the primary fan inlet guide vane control terminal A2; the input terminal C20 of the first function module is connected to the main steam flow signal D of the unit, and the output terminal O21 of the first function module is connected to the input terminal C21 of the second addition and subtraction module , the input terminal C22 of the second addition and subtraction module is connected with the flue gas oxygen content O 2 % signal of the boiler, the output terminal O22 of the second addition and subtraction module is connected with the input terminal C25 of the first proportional differential integral adjustment module, the first The output terminal O19 of the proportional differential integral adjustment module is connected to the input terminal C24 of the third addition module, the input terminal C23 of the third addition module is connected to the output terminal O18 of the first general selection module, and the input terminal C19 of the first general selection module is connected to the boiler where the The boiler load command M B of the unit is connected, the input terminal C17 of the first general selection module is connected with the boiler total fuel quantity signal B, the output terminal O28 of the third adding module is connected with the input terminal C36 of the second proportional differential integral adjustment module, and the second The input terminal C37 of the proportional differential integral adjustment module is connected with the output terminal O20 of the first addition module addition module, the input terminal C26 of the first addition module addition module is connected with the total primary air volume signal V1 of the boiler, and the input of the first addition module addition module Terminal C27 is connected to the total secondary air volume signal V2 of the boiler, and the output terminal O25 of the second proportional differential integral adjustment module PID2 is respectively connected to the control terminal A3 of the inlet guide vane of the blower and the control terminal A4 of the guide vane of the blower inlet. For example, the output terminal O25 of the differential and integral adjustment module PID2 is also connected to the input terminal C33 of the differential module WF, the output terminal O23 of the furnace pressure setting value module is connected to the input terminal C28 of the sixth addition and subtraction module, and the input terminal of the sixth addition and subtraction module The end C29 is connected with the furnace pressure signal PS of the boiler, the output end O27 of the sixth addition and subtraction module is connected with the input end C30 of the third proportional differential integral adjustment module, the output end O24 of the third proportional differential integral adjustment module is connected with the second addition module The input terminal C31 of the second addition module is connected, the input terminal C32 of the second addition module is connected with the output terminal O29 of the differential module, the output terminal O26 of the second addition module is respectively connected with the input terminal C34 of the third addition and subtraction module and the input of the fourth addition and subtraction module The terminal C35 is connected, the subtrahend input terminal of the third addition and subtraction module is connected with an overriding signal X1, the subtrahend input terminal of the fourth addition and subtraction module is connected with another overriding signal X2, and the output terminal of the third addition and subtraction module The inlet guide vane control terminal A5 of the induced draft fan is connected to the above, and the inlet guide vane control terminal A6 of the induced draft fan is connected to the output terminal of the fourth addition and subtraction module.
燃料主控制器的输出端O3与给煤机B的输入端C6连接,给煤机B的输出端O31分别与第六比例微分积分调节器的输入端E3和第七比例微分积分调节器的输入端D4连接,第六比例微分积分调节器的输入端D3连有锅炉B磨一次风量信号F2,第七比例微分积分调节器的输入端E4上连接有锅炉B磨出力信号U2,第六比例微分积分调节器的输出端O6与第二大选模块的输入端C11连接,第七比例微分积分调节器的输出端与锅炉B磨碾压力控制端P2连接。 The output terminal O3 of the main fuel controller is connected to the input terminal C6 of the coal feeder B, and the output terminal O31 of the coal feeder B is respectively connected to the input terminal E3 of the sixth proportional differential integral regulator and the input of the seventh proportional differential integral regulator Terminal D4 is connected, the input terminal D3 of the sixth proportional differential integral regulator is connected with the primary air volume signal F2 of boiler B mill, the input terminal E4 of the seventh proportional differential integral regulator is connected with the output signal U2 of boiler B mill, the sixth proportional differential The output terminal O6 of the integral regulator is connected to the input terminal C11 of the second major selection module, and the output terminal of the seventh proportional differential integral regulator is connected to the milling pressure control terminal P2 of boiler B.
本发明解决了对大型锅炉燃烧控制系统的动态跟综和稳定控制的技术问题,可提高机组的热经济性指标和性能指标并达到节能减排的目的。 The invention solves the technical problem of dynamic follow-up and stable control of a large-scale boiler combustion control system, can improve the thermal economic index and performance index of the unit, and achieve the purpose of energy saving and emission reduction.
附图说明 Description of drawings
图1是本发明的结构框图。 Fig. 1 is a structural block diagram of the present invention.
具体实施方式 Detailed ways
一种大型火电机组的燃烧控制系统,包括燃料主控制器、燃油压力调节系统、给煤机、加减模块、函数模块和比例微分积分调节模块,在燃料主控制器的输出端O3上连接有燃油压力调节系统,小选模块XX的输入端C1与锅炉所在机组的总风量信号V连接,小选模块XX的输入端C2与锅炉所在机组的锅炉负荷指令MB连接,小选模块XX的输出端O1与第一加减模块J1的输入端C3连接,第一加减模块J1的输入端C18与锅炉总燃料量信号B连接,第一加减模块J1的输出端O2与燃料主控制器的输入端C4连接,燃料主控制器的输出端O3与给煤机A的输入端C5连接,给煤机A的输出端O30分别与第四比例微分积分调节器PID4的输入端E1和第五比例微分积分调节器PID5的输入端D2连接,第四比例微分积分调节器PID4的输入端D1连有锅炉A磨一次风量信号F1,第五比例微分积分调节器PID5的输入端E2上连接有锅炉A磨出力信号U1,第四比例微分积分调节器PID4的输出端O4与第二大选模块DX2的输入端C10连接,第五比例微分积分调节器PID5的输出端与锅炉A磨碾压力控制端P1连接,第二大选模块DX2的输出端014与第二函数模块F2(X)的输入端C38连接,第二函数模块F2(X)的输出端O15与第五加减模块J7的输入端C15连接,第五加减模块J7的输出端O16与比例微分调节模块PI的输入端C16连接,比例微分调节模块PI的输出端O17分别与一次风机入口导叶控制端A1和一次风机入口导叶控制端A2连接;第一函数模块F1(X)的输入端C20与机组的主蒸汽流量信号D连接,第一函数模块F1(X)的输出端O21与第二加减模块J2的输入端C21连接,第二加减模块J2的输入端C22上连接有锅炉的烟气含氧量O2%信号,第二加减模块J2的输出端O22与第一比例微分积分调节模块PID1的输入端C25连接,第一比例微分积分调节模块PID1的输出端019与第三加法模块J8的输入端C24连接,第三加法模块J8的输入端C23与第一大选模块DX1的输出端O18连接,第一大选模块DX1的输入端C19与锅炉所在机组的锅炉负荷指令MB连接,第一大选模块DX1的输入端C17与锅炉总燃料量信号B连接,第三加法模块J8的输出端O28与第二比例微分积分调节模块PID2的输入端C36连接,第二比例微分积分调节模块PID2的输入端C37与第一加法模块加法模块J3的输出端O20连接,第一加法模块加法模块J3的输入端C26与锅炉的总一次风量信号V1连接,第一加法模块加法模块J3的输入端C27与锅炉的总二次风量信号V2连接,第二比例微分积分调节模块PID2的输出端O25分别与送风机入口导叶控制端A3和送风机入口导叶控制端A4连接,第二比例微分积分调节模块PID2的输出端O25还与微分模块(WF)的输入端C33连接,炉膛压力设定值模块P0的输出端O23与第六加减模块J9的输入端C28连接, 第六加减模块J9的输入端C29连接有锅炉的炉膛压力信号PS,第六加减模块J9的输出端O27与第三比例微分积分调节模块PID3的输入端C30连接,第三比例微分积分调节模块PID3的输出端O24与第二加法模块J4的输入端C31连接,第二加法模块J4的输入端C32与微分模块WF的输出端O29连接,第二加法模块J4的输出端O26分别与第三加减模块J5的输入端C34和第四加减模块J6的输入端C35连接,第三加减模块J5的减数输入端上连接有超驰信号X1,第四加减模块J6的减数输入端上连接有另一超驰信号X2,第三加减模块J5的输出端上连接有引风机的入口导叶控制端A5,第四加减模块J6的输出端上连接有引风机的入口导叶控制端A6。 A combustion control system for a large-scale thermal power unit, including a main fuel controller, a fuel oil pressure regulation system, a coal feeder, an addition and subtraction module, a function module, and a proportional-differential-integral adjustment module. The output terminal O3 of the main fuel controller is connected with For the fuel pressure regulating system, the input terminal C1 of the small selection module XX is connected to the total air volume signal V of the unit where the boiler is located, the input terminal C2 of the small selection module XX is connected to the boiler load command M B of the unit where the boiler is located, and the output of the small selection module XX The terminal O1 is connected to the input terminal C3 of the first addition and subtraction module J1, the input terminal C18 of the first addition and subtraction module J1 is connected to the boiler total fuel quantity signal B, and the output terminal O2 of the first addition and subtraction module J1 is connected to the main fuel controller. The input terminal C4 is connected, the output terminal O3 of the main fuel controller is connected to the input terminal C5 of the coal feeder A, and the output terminal O30 of the coal feeder A is respectively connected to the input terminal E1 of the fourth proportional differential integral regulator PID4 and the fifth proportional The input terminal D2 of the differential-integral regulator PID5 is connected, the input terminal D1 of the fourth proportional differential-integral regulator PID4 is connected to the primary air volume signal F1 of boiler A, and the input terminal E2 of the fifth proportional differential-integral regulator PID5 is connected to boiler A Grinding output signal U1, the output terminal O4 of the fourth proportional differential integral regulator PID4 is connected to the input terminal C10 of the second selection module DX2, the output terminal of the fifth proportional differential integral regulator PID5 is connected to the grinding pressure control terminal P1 of boiler A connection, the output terminal 014 of the second selection module DX2 is connected to the input terminal C38 of the second function module F2 (X), and the output terminal O15 of the second function module F2 (X) is connected to the input terminal C15 of the fifth addition and subtraction module J7 , the output terminal O16 of the fifth addition and subtraction module J7 is connected to the input terminal C16 of the proportional differential adjustment module PI, and the output terminal O17 of the proportional differential adjustment module PI is connected to the primary fan inlet guide vane control terminal A1 and the primary fan inlet guide vane control terminal respectively A2 connection; the input terminal C20 of the first function module F1 (X) is connected to the main steam flow signal D of the unit, the output terminal O21 of the first function module F1 (X) is connected to the input terminal C21 of the second addition and subtraction module J2, The input terminal C22 of the second addition and subtraction module J2 is connected with the flue gas oxygen content O 2 % signal of the boiler, and the output terminal O22 of the second addition and subtraction module J2 is connected with the input terminal C25 of the first proportional differential integral adjustment module PID1, The output terminal 019 of the first proportional differential integral adjustment module PID1 is connected with the input terminal C24 of the third adding module J8, and the input terminal C23 of the third adding module J8 is connected with the output terminal O18 of the first general election module DX1, and the first general election module DX1 The input terminal C19 of the boiler is connected to the boiler load command M B of the unit where the boiler is located, the input terminal C17 of the first selection module DX1 is connected to the boiler total fuel quantity signal B, and the output terminal O28 of the third adding module J8 is connected to the second proportional differential integral adjustment The input terminal C36 of the module PID2 is connected, the input terminal C37 of the second proportional differential integral adjustment module PID2 is connected with the output terminal of the first adding module adding module J3 O20 connection, the input terminal C26 of the first adding module adding module J3 is connected with the total primary air volume signal V1 of the boiler, the input terminal C27 of the first adding module adding module J3 is connected with the total secondary air volume signal V2 of the boiler, and the second proportional differential The output terminal O25 of the integral adjustment module PID2 is respectively connected with the control terminal A3 of the inlet guide vane of the blower and the control terminal A4 of the inlet guide vane of the blower, and the output terminal O25 of the second proportional differential integral adjustment module PID2 is also connected with the input terminal C33 of the differential module (WF) connection, the output terminal O23 of the furnace pressure setting value module P0 is connected to the input terminal C28 of the sixth addition and subtraction module J9, the input terminal C29 of the sixth addition and subtraction module J9 is connected to the furnace pressure signal PS of the boiler, and the sixth addition and subtraction module The output terminal O27 of the module J9 is connected with the input terminal C30 of the third proportional differential integral adjustment module PID3, the output terminal O24 of the third proportional differential integral adjustment module PID3 is connected with the input terminal C31 of the second adding module J4, and the second adding module J4 The input terminal C32 of the input terminal C32 is connected with the output terminal O29 of the differential module WF, the output terminal O26 of the second addition module J4 is respectively connected with the input terminal C34 of the third addition and subtraction module J5 and the input terminal C35 of the fourth addition and subtraction module J6, and the third The subtrahend input of the addition and subtraction module J5 is connected with an overriding signal X1, the subtrahend input of the fourth addition and subtraction module J6 is connected with another overriding signal X2, and the output of the third addition and subtraction module J5 is connected with a The inlet guide vane control terminal A5 of the induced draft fan, and the output terminal A6 of the inlet guide vane of the induced draft fan is connected to the output terminal of the fourth addition and subtraction module J6.
燃料主控制器的输出端O3与给煤机B的输入端C6连接,给煤机B的输出端O31分别与第六比例微分积分调节器PID6的输入端E3和第七比例微分积分调节器PID7的输入端D4连接,第六比例微分积分调节器PID6的输入端D3连有锅炉B磨一次风量信号F2,第七比例微分积分调节器PID7的输入端E4上连接有锅炉B磨出力信号U2,第六比例微分积分调节器PID6的输出端O6与第二大选模块DX2的输入端C11连接,第七比例微分积分调节器PID7的输出端与锅炉B磨碾压力控制端P2连接。 The output terminal O3 of the main fuel controller is connected to the input terminal C6 of the coal feeder B, and the output terminal O31 of the coal feeder B is respectively connected to the input terminal E3 of the sixth proportional differential integral regulator PID6 and the seventh proportional differential integral regulator PID7 The input terminal D4 of the sixth proportional differential integral regulator PID6 is connected to the input terminal D3 of the boiler B mill primary air volume signal F2, and the input terminal E4 of the seventh proportional differential integral regulator PID7 is connected to the boiler B mill output signal U2. The output terminal O6 of the sixth proportional differential integral regulator PID6 is connected to the input terminal C11 of the second selection module DX2, and the output terminal of the seventh proportional differential integral regulator PID7 is connected to the milling pressure control terminal P2 of boiler B.
燃料主控制器的输出端O3与给煤机C的输入端C7连接,给煤机C的输出端O32分别与第八比例微分积分调节器PID8的输入端E5和第九比例微分积分调节器PID9的输入端D6连接,第八比例微分积分调节器PID8的输入端D5连有锅炉C磨一次风量信号F3,第九比例微分积分调节器PID9的输入端E6上连接有锅炉C磨出力信号U3,第八比例微分积分调节器PID8的输出端O8与第二大选模块DX2的输入端C12连接,第九比例微分积分调节器PID9的输出端与锅炉C磨碾压力控制端P3连接。 The output terminal O3 of the main fuel controller is connected to the input terminal C7 of the coal feeder C, and the output terminal O32 of the coal feeder C is respectively connected to the input terminal E5 of the eighth proportional differential integral regulator PID8 and the ninth proportional differential integral regulator PID9 The input terminal D6 of the eighth proportional differential integral regulator PID8 is connected to the input terminal D5 of the boiler C mill primary air volume signal F3, and the input terminal E6 of the ninth proportional differential integral regulator PID9 is connected to the boiler C mill output signal U3. The output terminal O8 of the eighth proportional differential integral regulator PID8 is connected to the input terminal C12 of the second selection module DX2, and the output terminal of the ninth proportional differential integral regulator PID9 is connected to the boiler C grinding pressure control terminal P3.
燃料主控制器的输出端O3与给煤机D的输入端C8连接,给煤机D的输出端O33分别与第十比例微分积分调节器PID10的输入端E7和第十一比例微分积分调节器PID11的输入端D8连接,第十比例微分积分调节器PID10的输入端D7连有锅炉D磨一次风量信号F4,第十一比例微分积分调节器PID11的输入端E8上连接有锅炉D磨出力信号U4,第十比例微分积分调节器PID10的输出端10与第二大选模块DX2的输入端C13连接,第十一比例微分积分调节器PID11的输出端与锅炉D磨碾压力控制端P4连接。 The output terminal O3 of the main fuel controller is connected to the input terminal C8 of the coal feeder D, and the output terminal O33 of the coal feeder D is respectively connected to the input terminal E7 of the tenth proportional differential integral regulator PID10 and the eleventh proportional differential integral regulator The input terminal D8 of PID11 is connected, the input terminal D7 of the tenth proportional differential integral regulator PID10 is connected with the primary air volume signal F4 of the boiler D mill, and the input terminal E8 of the eleventh proportional differential integral regulator PID11 is connected with the output signal of the boiler D mill U4, the output terminal 10 of the tenth proportional differential integral regulator PID10 is connected to the input terminal C13 of the second selection module DX2, and the output terminal of the eleventh proportional differential integral regulator PID11 is connected to the boiler D milling pressure control terminal P4.
燃料主控制器的输出端O3与给煤机E的输入端C6连接,给煤机E的输出端O34分别与第十二比例微分积分调节器PID12的输入端E9和第十三比例微分积分调节器PID13的输入端D10连接,第十二比例微分积分调节器PID12的输入端D9连有锅炉E磨一次风量信号F5,第十三比例微分积分调节器PID13的输入端E10上连接有锅炉E磨出力信号U5,第十二比例微分积分调节器PID12的输出端O12与第二大选模块DX2的输入端C14连接,第十三比例微分积分调节器PID13的输出端与锅炉E磨碾压力控制端P5连接。 The output terminal O3 of the main fuel controller is connected to the input terminal C6 of the coal feeder E, and the output terminal O34 of the coal feeder E is respectively connected to the input terminal E9 of the twelfth proportional differential integral regulator PID12 and the thirteenth proportional differential integral regulator The input terminal D10 of the controller PID13 is connected, the input terminal D9 of the twelfth proportional differential integral regulator PID12 is connected to the primary air volume signal F5 of the boiler E mill, and the input terminal E10 of the thirteenth proportional differential integral regulator PID13 is connected to the boiler E mill The output signal U5, the output terminal O12 of the twelfth proportional differential integral regulator PID12 is connected to the input terminal C14 of the second selection module DX2, the output terminal of the thirteenth proportional differential integral regulator PID13 is connected to the boiler E grinding pressure control terminal P5 connection.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310111806.3A CN103267304B (en) | 2013-04-02 | 2013-04-02 | Burning control system of large-sized thermal power generating unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310111806.3A CN103267304B (en) | 2013-04-02 | 2013-04-02 | Burning control system of large-sized thermal power generating unit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103267304A CN103267304A (en) | 2013-08-28 |
CN103267304B true CN103267304B (en) | 2015-03-11 |
Family
ID=49010947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310111806.3A Active CN103267304B (en) | 2013-04-02 | 2013-04-02 | Burning control system of large-sized thermal power generating unit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103267304B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107795982B (en) * | 2017-10-29 | 2020-07-17 | 农业部规划设计研究院 | Biomass pyrolysis oil and pyrolysis gas mixed combustion process |
CN107969727A (en) * | 2017-11-20 | 2018-05-01 | 浙江中烟工业有限责任公司 | A kind of multichannel PID control method for automatically switching suitable for throwing smoke machine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101334666A (en) * | 2008-07-15 | 2008-12-31 | 西安艾贝尔科技发展有限公司 | Double-inlet double-outlet steel ball coal mill straight blowing type milling system optimized control method |
CN102298321A (en) * | 2011-06-16 | 2011-12-28 | 西安交通大学 | Energy conservation optimizing method of heat-engine plant ball mill pulverizing system based on sequential pattern mining |
US8246718B2 (en) * | 2010-09-13 | 2012-08-21 | Membrane Technology And Research, Inc | Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps |
CN202486521U (en) * | 2012-03-06 | 2012-10-10 | 山西省电力公司电力科学研究院 | Boiler main control system of large thermal power unit |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110283705A1 (en) * | 2006-07-24 | 2011-11-24 | Troy Oliver | EXPLO-DYNAMICS™: a method, system, and apparatus for the containment and conversion of explosive force into a usable energy resource |
-
2013
- 2013-04-02 CN CN201310111806.3A patent/CN103267304B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101334666A (en) * | 2008-07-15 | 2008-12-31 | 西安艾贝尔科技发展有限公司 | Double-inlet double-outlet steel ball coal mill straight blowing type milling system optimized control method |
US8246718B2 (en) * | 2010-09-13 | 2012-08-21 | Membrane Technology And Research, Inc | Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps |
CN102298321A (en) * | 2011-06-16 | 2011-12-28 | 西安交通大学 | Energy conservation optimizing method of heat-engine plant ball mill pulverizing system based on sequential pattern mining |
CN202486521U (en) * | 2012-03-06 | 2012-10-10 | 山西省电力公司电力科学研究院 | Boiler main control system of large thermal power unit |
Also Published As
Publication number | Publication date |
---|---|
CN103267304A (en) | 2013-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104390234B (en) | Ultra supercritical unit control method for coordinating with double inlet and outlet coal mill | |
CN206429276U (en) | A kind of thermal power plant's clean energy resource utilizes system | |
CN103423740B (en) | Process of Circulating Fluidized Bed Boiler automatic control system and method | |
CN106594793B (en) | Fired power generating unit medium-speed pulverizer outlet temperature controls optimization method | |
CN212482146U (en) | Waste gas waste heat utilization device of mineral powder vertical mill system | |
CN113819479B (en) | System and method for increasing drying output of medium-speed coal mill based on high temperature furnace smoke | |
CN103267304B (en) | Burning control system of large-sized thermal power generating unit | |
Bhuiyan et al. | Modeling of solid and bio-fuel combustion technologies | |
CN108537406A (en) | Power plant boiler uses more coal Analysis of Economy Benefit Evaluation Methods | |
CN201555238U (en) | A device for local oxygen-enriched combustion of boilers | |
CN105318349B (en) | Fired power generating unit Primary air flow control method based on power grid frequency modulation peak regulation | |
CN104949534A (en) | Cement kiln head waste heat power generation method and system | |
CN101865457B (en) | Circulating fluidized bed boiler | |
CN203771438U (en) | High-moisture lignite medium speed mill coal pulverizing system using coal gas combustion heating primary air | |
CN201858899U (en) | Improved Power Generation System for Cement Industry | |
CN107166428B (en) | Layer combustion boiler flue gas oxygen content control system based on flue gas recirculation | |
CN101430098B (en) | A method and device for increasing the temperature of the primary air pulverized coal flow of a W-shaped flame boiler | |
CN201159452Y (en) | Once-through Boiler Adaptive Ignition Burner | |
CN103353123A (en) | Synchronous Gas Supply Method and Structure for Two Beds of Updraft Fixed Bed Gasifier | |
CN108722565A (en) | The medium-speed pulverizer of the external recirculating system of hot wind is set | |
CN202562305U (en) | Heating furnace flue gas waste heat recovery and power generation system | |
CN205999344U (en) | A kind of unistage type coal gas producer furnace bottom saturated vapor automatic regulating system | |
CN204872264U (en) | Take heating device's former coal bunker | |
CN205988806U (en) | The fan mill arrangement system of tower 350MW super critical boiler | |
CN205402657U (en) | Biomass gasification steam boiler control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |