CN103265031B - A kind of method of carbothermic method low-temperature growth ZrC-WC or ZrC-TaC mixed powder - Google Patents
A kind of method of carbothermic method low-temperature growth ZrC-WC or ZrC-TaC mixed powder Download PDFInfo
- Publication number
- CN103265031B CN103265031B CN201310183378.5A CN201310183378A CN103265031B CN 103265031 B CN103265031 B CN 103265031B CN 201310183378 A CN201310183378 A CN 201310183378A CN 103265031 B CN103265031 B CN 103265031B
- Authority
- CN
- China
- Prior art keywords
- zrc
- mixed
- powder
- heating
- add
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000011812 mixed powder Substances 0.000 title claims abstract description 20
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000000843 powder Substances 0.000 claims abstract description 52
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 25
- 229930006000 Sucrose Natural products 0.000 claims abstract description 22
- 239000005720 sucrose Substances 0.000 claims abstract description 22
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 16
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims abstract description 9
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims description 58
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 23
- 239000010439 graphite Substances 0.000 claims description 22
- 229910002804 graphite Inorganic materials 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 18
- 239000000376 reactant Substances 0.000 claims description 17
- 239000003870 refractory metal Substances 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000003760 magnetic stirring Methods 0.000 claims description 5
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims 2
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 abstract description 12
- 229920001568 phenolic resin Polymers 0.000 abstract description 12
- 239000005011 phenolic resin Substances 0.000 abstract description 12
- 238000002156 mixing Methods 0.000 abstract description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 10
- 239000003822 epoxy resin Substances 0.000 abstract description 10
- 229920000647 polyepoxide Polymers 0.000 abstract description 10
- 238000006722 reduction reaction Methods 0.000 abstract description 10
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 abstract description 8
- 229910001930 tungsten oxide Inorganic materials 0.000 abstract description 8
- 239000010426 asphalt Substances 0.000 abstract description 6
- 229910052786 argon Inorganic materials 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 4
- 238000003786 synthesis reaction Methods 0.000 abstract description 4
- 239000000919 ceramic Substances 0.000 abstract description 3
- 239000011295 pitch Substances 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 13
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 238000000498 ball milling Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical group C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000011215 ultra-high-temperature ceramic Substances 0.000 description 2
- -1 W 5+ Chemical class 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005049 combustion synthesis Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 125000000185 sucrose group Chemical group 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明涉及一种碳热还原法低温制备ZrC-WC或ZrC-TaC混合粉体的方法,属于结构陶瓷技术领域。该方法以蔗糖、酚醛树脂、环氧树脂或沥青作为碳源,以混合氧化物作为金属源,混合氧化物为氧化锆和氧化钨的混合物或者是氧化锆和五氧化二钽的混合物。本发明中采用蔗糖、酚醛树脂、环氧树脂或沥青以及混合氧化物为原料,原料成本低,且蔗糖、酚醛树脂、环氧树脂或沥青与氧化物的混合为湿混,混合均匀,不易团聚,合成过程在高纯氩气环境下或真空中进行,能在较低温度下发生还原反应合成ZrC-WC(ZrC-TaC)粉体。
The invention relates to a method for preparing ZrC-WC or ZrC-TaC mixed powder at low temperature by carbothermal reduction method, which belongs to the technical field of structural ceramics. The method uses sucrose, phenolic resin, epoxy resin or pitch as a carbon source, and mixed oxides as a metal source, and the mixed oxide is a mixture of zirconia and tungsten oxide or a mixture of zirconia and tantalum pentoxide. In the present invention, sucrose, phenolic resin, epoxy resin or asphalt and mixed oxides are used as raw materials, and the cost of raw materials is low, and the mixing of sucrose, phenolic resin, epoxy resin or asphalt and oxides is wet mixing, which is evenly mixed and difficult to agglomerate , The synthesis process is carried out in a high-purity argon environment or in a vacuum, and the reduction reaction can occur at a lower temperature to synthesize ZrC-WC (ZrC-TaC) powder.
Description
技术领域technical field
本发明涉及一种碳热还原法低温制备ZrC-WC或ZrC-TaC混合粉体的方法,属于结构陶瓷技术领域。The invention relates to a method for preparing ZrC-WC or ZrC-TaC mixed powder at low temperature by carbothermal reduction method, which belongs to the technical field of structural ceramics.
背景技术Background technique
超高温陶瓷(Ultra-high Temperature Ceramics,UHTCs)是指在1800°C以上和反应气氛中(比如氧原子)具有优良的高温抗氧化、抗烧蚀性和抗热震性的过渡金属的碳化物和硼化物材料,主要包括TaC、HfC、ZrC、HfB2、ZrB2等,其优异的高温性能使得它们能够适应超高音速飞行、大气层再入、跨大气层飞行和火箭推进系统等极端环境,可用于飞行器鼻锥、机翼前缘、发动机热端等各种关键部位或部件。难熔金属碳化物TaC、HfC、ZrC是除了碳以外唯一能耐3500°C以上高温的材料体系。其中,ZrC的高比强度、高比模量及低制备成本使其成为最具应用潜力的超高温材料之一。Ultra-high temperature ceramics (UHTCs) refer to carbides of transition metals with excellent high-temperature oxidation resistance, ablation resistance and thermal shock resistance above 1800 °C and in a reactive atmosphere (such as oxygen atoms). and boride materials, mainly including TaC, HfC, ZrC, HfB 2 , ZrB 2 , etc., whose excellent high-temperature performance enables them to adapt to extreme environments such as hypersonic flight, atmospheric reentry, transatmospheric flight, and rocket propulsion systems. It is used in various key parts or components such as the nose cone of the aircraft, the leading edge of the wing, and the hot end of the engine. Refractory metal carbides TaC, HfC, and ZrC are the only material systems other than carbon that can withstand high temperatures above 3500°C. Among them, the high specific strength, high specific modulus and low preparation cost of ZrC make it one of the most potential ultra-high temperature materials.
然而,难烧结和弱氧化性是限制其应用的主要问题。由于ZrC是共价键结合,其扩散率低,需要高温高压才能烧结致密。针对ZrC材料难烧结,尤其是低温烧结困难的问题,制备高纯超细ZrC粉体是关键,可明显改善其烧结性。另一方面,ZrC在高温氧化环境中容易氧化生成疏松的氧化锆层,很难有效阻碍氧向材料内部扩散。为了提高其抗氧化性,研究人员向含Zr的化合物中添加含高价阳离子(如W5+、Ta5+和Nb5+等)的化合物,如WC,TaC和NbC等。这类材料在氧化过程中,生成具有被动氧化的保护层,可阻碍氧向材料内部扩散,有效提高了其抗氧化性。而且,材料中加入WC等高价阳离子化合物,其高温抗弯强度可提高1倍左右,所以,ZrC-WC复相陶瓷既能改善其抗氧化性又能提高其高温抗弯强度,很大程度上提高了ZrC材料的应用范围。因此,对合成高纯超细ZrC-WC复合粉体提出了迫切需求。However, difficult sintering and weak oxidizability are the main problems limiting its application. Since ZrC is covalently bonded, its diffusion rate is low, and high temperature and high pressure are required to sinter densely. Aiming at the difficult sintering of ZrC materials, especially at low temperature, the key is to prepare high-purity ultra-fine ZrC powder, which can significantly improve its sintering properties. On the other hand, ZrC is easy to oxidize to form a loose zirconia layer in a high-temperature oxidizing environment, and it is difficult to effectively hinder the diffusion of oxygen into the material. In order to improve its oxidation resistance, researchers added compounds containing high-valent cations (such as W 5+ , Ta 5+ and Nb 5+ , etc.) to Zr-containing compounds, such as WC, TaC and NbC. During the oxidation process of this kind of material, a protective layer with passive oxidation is formed, which can hinder the diffusion of oxygen into the material and effectively improve its oxidation resistance. Moreover, adding high-valent cationic compounds such as WC to the material can increase its high-temperature flexural strength by about 1 time. Therefore, ZrC-WC composite ceramics can not only improve its oxidation resistance but also increase its high-temperature flexural strength. The application range of the ZrC material is improved. Therefore, there is an urgent demand for the synthesis of high-purity ultrafine ZrC-WC composite powders.
目前,合成ZrC粉体的制备方法主要有:直接合成法、碳热还原法、溶胶-凝胶法、机械合金化法、自蔓延燃烧合成法等。其中,能够实现工业化生产的工艺是碳热还原法,合成ZrC粉体的方法是采用炭黑还原氧化锆法,其化学反应方程式如下:At present, the preparation methods of synthesizing ZrC powder mainly include: direct synthesis method, carbothermal reduction method, sol-gel method, mechanical alloying method, self-propagating combustion synthesis method, etc. Among them, the process that can realize industrial production is the carbothermal reduction method, and the method for synthesizing ZrC powder is to use carbon black to reduce zirconia. The chemical reaction equation is as follows:
ZrO2+3C=ZrC+2CO(g) (1)ZrO 2 +3C=ZrC+2CO(g) (1)
相类似,合成WC和TaC粉体的方法可用炭黑还原相应的氧化物,化学反应方程式如下:Similarly, the method of synthesizing WC and TaC powders can use carbon black to reduce the corresponding oxides, and the chemical reaction equation is as follows:
2WO3+7C=W2C+6CO(g) (2)2WO 3 +7C=W 2 C+6CO(g) (2)
WO3+4C=WC+3CO(g) (3)WO 3 +4C=WC+3CO(g) (3)
Ta2O5+6C=Ta2C+5CO(g) (4)Ta 2 O 5 +6C=Ta 2 C+5CO(g) (4)
Ta2O5+7C=2TaC+5CO(g) (5)Ta 2 O 5 +7C=2TaC+5CO(g) (5)
根据热力学计算(如图1和图2)可知,高纯氩气条件是低温合成高纯超细粉体的必要条件。采用蔗糖作碳源,能够解决固固混合不均的问题,实现液固湿混合的方法,使氧化物粉体表面均匀涂覆一层蔗糖(裂解后形成一层C膜),有利于碳热还原的反应,合成的粉体具有纯度高和粒径小的特点。According to thermodynamic calculations (as shown in Figure 1 and Figure 2), it can be seen that the condition of high-purity argon is a necessary condition for low-temperature synthesis of high-purity ultrafine powder. The use of sucrose as a carbon source can solve the problem of uneven solid-solid mixing, and realize the method of liquid-solid-wet mixing, so that the surface of the oxide powder is evenly coated with a layer of sucrose (a layer of C film is formed after cracking), which is beneficial to carbon heat Reduction reaction, the synthesized powder has the characteristics of high purity and small particle size.
发明内容Contents of the invention
本发明的目的是为了一种碳热还原法低温制备ZrC-WC或ZrC-TaC混合粉体的方法,该方法工艺简单、温度低、耗时短,可以获得高纯超细ZrC-WC(TaC)粉体。The object of the present invention is a method for preparing ZrC-WC or ZrC-TaC mixed powder at low temperature by carbothermal reduction method, which has simple process, low temperature and short time consumption, and can obtain high-purity ultrafine ZrC-WC (TaC) powder body.
本发明的目的是通过以下技术方案实现的。The purpose of the present invention is achieved through the following technical solutions.
本发明的一种碳热还原法低温制备ZrC-WC或ZrC-TaC混合粉体的方法,该方法以蔗糖、酚醛树脂、环氧树脂或沥青作为碳源,以混合氧化物作为金属源,混合氧化物为氧化锆和氧化钨的混合物或者是氧化锆和五氧化二钽的混合物,氧化锆和氧化钨的摩尔比为1:10~1:5,氧化锆和五氧化二钽的摩尔比为1:10~1:5,碳源中碳的摩尔量与混合氧化物的总摩尔量之比为3~20:1,该方法的步骤为:A method for preparing ZrC-WC or ZrC-TaC mixed powder at low temperature by carbothermal reduction method of the present invention, the method uses sucrose, phenolic resin, epoxy resin or pitch as carbon source, and mixed oxide as metal source, mixing The oxide is a mixture of zirconia and tungsten oxide or a mixture of zirconia and tantalum pentoxide, the molar ratio of zirconia and tungsten oxide is 1:10 to 1:5, and the molar ratio of zirconia and tantalum pentoxide is 1:10~1:5, the ratio of the molar weight of carbon in the carbon source to the total molar weight of the mixed oxide is 3~20:1, and the steps of the method are:
1)将混合氧化物放入球磨罐中,添加溶剂A,所加入的溶剂A的质量为混合氧化物总质量的1%~5%,然后加入氧化锆球磨介质,球磨混合10-48h,将混匀后的氧化物移至装有溶剂A的器皿中,超声分散,得到混合溶液;1) Put the mixed oxide into the ball milling tank, add solvent A, the mass of the added solvent A is 1% to 5% of the total mass of the mixed oxide, then add zirconia ball milling medium, ball mill and mix for 10-48h, put The mixed oxides were transferred to a vessel containing solvent A, and ultrasonically dispersed to obtain a mixed solution;
2)将碳源溶于溶剂B中,得到碳源溶液,然后将得到的碳源溶液倒入到步骤1)中得到的混合溶液中;然后加热、搅拌,得到混合均匀的反应物;2) Dissolving the carbon source in solvent B to obtain a carbon source solution, and then pouring the obtained carbon source solution into the mixed solution obtained in step 1); then heating and stirring to obtain a uniformly mixed reactant;
3)将步骤2)得到的反应物装入石墨坩埚中,将石墨坩埚放入流动氩气保护或真空热处理炉内进行加热,然后随炉冷却至室温,再经研磨得到ZrC-WC(或ZrC-TaC)粉体,得到的粉体的粒径为50~200nm。3) Put the reactant obtained in step 2) into a graphite crucible, put the graphite crucible into a flowing argon protection or vacuum heat treatment furnace for heating, then cool to room temperature with the furnace, and then grind to obtain ZrC-WC (or ZrC -TaC) powder, the particle size of the obtained powder is 50-200nm.
上述步骤1)中得到的混合溶液的总浓度为1~5mol/L,超声分散时间为0.5~2h;氧化锆的纯度≥99.9wt.%,粒径为50~120nm;氧化钨的纯度≥99.9wt.%,粒径为50~120nm;五氧化二钽的纯度≥99.9wt.%,粒径为50~120nm。The total concentration of the mixed solution obtained in the above step 1) is 1-5mol/L, and the ultrasonic dispersion time is 0.5-2h; the purity of zirconia is ≥99.9wt.%, and the particle size is 50-120nm; the purity of tungsten oxide is ≥99.9 wt.%, the particle size is 50-120nm; the purity of tantalum pentoxide is ≥99.9wt.%, and the particle size is 50-120nm.
上述步骤2)中碳源溶液的浓度为3~15mol/L,当碳源为蔗糖时,溶剂B为水,当碳源为酚醛树脂、环氧树脂或沥青时,溶剂B为乙醇、正己烷或环己烷;碳源为分析纯;加热温度100~250℃,加热时间0.5~2h;搅拌方式为磁力搅拌;The concentration of the carbon source solution in the above step 2) is 3-15mol/L. When the carbon source is sucrose, the solvent B is water; when the carbon source is phenolic resin, epoxy resin or pitch, the solvent B is ethanol, n-hexane or cyclohexane; the carbon source is analytically pure; the heating temperature is 100-250°C, and the heating time is 0.5-2h; the stirring method is magnetic stirring;
上述步骤3)中热处理炉中加热程序为以10°C/min的升温速率加热至1200~1600°C保温0.5~2h。The heating program in the heat treatment furnace in the above-mentioned step 3) is heating to 1200-1600°C at a heating rate of 10°C/min and keeping the temperature for 0.5-2h.
本发明中,球磨过程采用混合氧化物粉体和蔗糖(或酚醛树脂、环氧树脂、沥青等)溶液进行湿混,混合均匀,解决了两种固相粉体混合不均,纯度不高易团聚的问题;制备过程中采用高纯氩气或真空,能在较低温度下发生还原反应制备超细ZrC-WC(ZrC-TaC)粉体。In the present invention, the mixed oxide powder and sucrose (or phenolic resin, epoxy resin, asphalt, etc.) solution are used for wet mixing in the ball milling process, and the mixing is uniform, which solves the uneven mixing of the two solid phase powders, and the purity is not high and easy The problem of agglomeration; high-purity argon or vacuum is used in the preparation process, and the reduction reaction can occur at a lower temperature to prepare ultrafine ZrC-WC (ZrC-TaC) powder.
有益效果Beneficial effect
本发明中采用蔗糖、酚醛树脂、环氧树脂或沥青以及混合氧化物为原料,原料成本低,且蔗糖、酚醛树脂、环氧树脂或沥青与氧化物的混合为湿混,混合均匀,不易团聚,合成过程在高纯氩气环境下或真空中进行,能在较低温度下发生还原反应合成ZrC-WC(ZrC-TaC)粉体,即该方法工艺简单、温度低、耗时短。本发明采用有机物均匀包覆在混合氧化物颗粒周围,达到均匀混合的目的,制备高纯ZrC-WC(ZrC-TaC)混合粉体。In the present invention, sucrose, phenolic resin, epoxy resin or asphalt and mixed oxides are used as raw materials, the cost of raw materials is low, and the mixing of sucrose, phenolic resin, epoxy resin or asphalt and oxides is wet mixing, which is evenly mixed and difficult to agglomerate , the synthesis process is carried out in a high-purity argon environment or in a vacuum, and the reduction reaction can occur at a lower temperature to synthesize ZrC-WC (ZrC-TaC) powder, that is, the method has simple process, low temperature and short time consumption. In the invention, organic matter is evenly coated around mixed oxide particles to achieve the purpose of uniform mixing, and high-purity ZrC-WC (ZrC-TaC) mixed powder is prepared.
附图说明Description of drawings
图1为标准大气压下吉布斯自由能与温度的关系;Fig. 1 is the relationship between Gibbs free energy and temperature under standard atmospheric pressure;
图2为高纯Ar下的吉布斯自由能与温度的关系;Figure 2 is the relationship between Gibbs free energy and temperature under high-purity Ar;
图3为制备的ZrC-WC粉体和ZrC-TaC粉体的X射线衍射图谱;其中,纵坐标强度的单位为cps,横坐标衍射角的单位为°;Fig. 3 is the X-ray diffraction spectrum of the prepared ZrC-WC powder and ZrC-TaC powder; Wherein, the unit of ordinate intensity is cps, and the unit of abscissa diffraction angle is °;
图4为实施例制备的ZrC-WC粉体的扫描电镜照片;Fig. 4 is the scanning electron micrograph of the ZrC-WC powder that embodiment prepares;
图5为实施例制备的ZrC-TaC粉体的扫描电镜照片。Fig. 5 is a scanning electron micrograph of the ZrC-TaC powder prepared in the embodiment.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步说明。The present invention will be further described below in conjunction with embodiment.
实施例1Example 1
以蔗糖作为碳源,以氧化锆和氧化钨作为难熔金属源;Using sucrose as carbon source, zirconia and tungsten oxide as refractory metal source;
1)称取246.4g ZrO2粉,23.2gWO3粉,其纯度为99.9wt.%,粒径为80nm,一起放入球磨罐中,加入100ml无水乙醇,氧化锆球球磨混合24h,将混匀后的氧化物移至装有100ml无水乙醇的器皿中,超声分散0.5h;1) Weigh 246.4g of ZrO 2 powder and 23.2g of WO 3 powder with a purity of 99.9wt.% and a particle size of 80nm, and put them together into a ball mill jar, add 100ml of absolute ethanol, and mix them with zirconia balls for 24 hours. The homogenized oxides were transferred to a vessel containing 100ml of absolute ethanol, and ultrasonically dispersed for 0.5h;
2)称取365.1g蔗糖加入到100ml水中,搅拌使其混合均匀,然后加入到步骤1)得到的溶液中,加热同时磁力搅拌,加热温度为120℃,加热时间为2h,得到混合均匀的反应物;2) Weigh 365.1g of sucrose and add it to 100ml of water, stir to make it evenly mixed, then add it to the solution obtained in step 1), heat while magnetically stirring, the heating temperature is 120°C, and the heating time is 2h, and a well-mixed reaction is obtained thing;
3)将步骤2)得到的反应物装入石墨坩埚中,然后将石墨坩埚放入高纯氩气保护的热处理炉内进行加热,加热程序为以10℃/min的升温速率升温至1600℃保温1h,然后随炉冷却至室温,再经研磨得到混合粉体材料;得到的粉体材料的X射线衍射图如图3所示,其扫描电镜照片如图4所示,扫描电压为15kv。由图3可知,得到的粉体材料为ZrC-5mol%WC混合粉体;由图4可知,ZrC-5mol%WC粉体的平均粒径为100nm。3) Put the reactant obtained in step 2) into a graphite crucible, and then put the graphite crucible into a high-purity argon-protected heat treatment furnace for heating. The heating program is to heat up to 1600°C at a heating rate of 10°C/min 1h, then cooled to room temperature with the furnace, and then ground to obtain a mixed powder material; the X-ray diffraction pattern of the obtained powder material is shown in Figure 3, and its scanning electron microscope photo is shown in Figure 4, and the scanning voltage is 15kv. It can be seen from Figure 3 that the obtained powder material is ZrC-5mol%WC mixed powder; it can be seen from Figure 4 that the average particle size of ZrC-5mol%WC powder is 100nm.
实施例2Example 2
以蔗糖作为碳源,以氧化锆和氧化钨作为难熔金属源;Using sucrose as carbon source, zirconia and tungsten oxide as refractory metal source;
1)称取246.4g ZrO2粉,46.4gWO3粉,其纯度为99.9wt.%,粒径为70nm,一起放入球磨罐中,加入100ml无水乙醇,氧化锆球球磨混合24h,将混匀后的氧化物移至装有100ml无水乙醇的器皿中,超声分散1h;1) Weigh 246.4g of ZrO 2 powder and 46.4g of WO 3 powder with a purity of 99.9wt.% and a particle size of 70nm, and put them together into a ball mill jar, add 100ml of absolute ethanol, and mix them with zirconia balls for 24 hours. The homogenized oxides were transferred to a vessel containing 100ml of absolute ethanol, and ultrasonically dispersed for 1h;
2)称取388g蔗糖加入到100ml水中,搅拌使其混合均匀,然后加入到步骤1)得到的溶液中,加热同时磁力搅拌,加热温度为140℃,加热时间为2h,得到混合均匀的反应物;2) Weigh 388g of sucrose and add it to 100ml of water, stir to make it evenly mixed, then add it to the solution obtained in step 1), heat while magnetically stirring, the heating temperature is 140°C, and the heating time is 2h, to obtain a uniformly mixed reactant ;
3)将步骤2)得到的反应物装入石墨坩埚中,然后将石墨坩埚放入高纯氩气保护的热处理炉内进行加热,加热程序为以10℃/min的升温速率升温至1600℃保温1h,然后随炉冷却至室温,再经研磨得到混合粉体材料;得到的粉体材料的X射线衍射图如图3所示,由图3可知,得到的粉体材料为ZrC-10mol%WC混合粉体。3) Put the reactant obtained in step 2) into a graphite crucible, and then put the graphite crucible into a high-purity argon-protected heat treatment furnace for heating. The heating program is to heat up to 1600°C at a heating rate of 10°C/min 1h, then cool to room temperature with the furnace, and then grind to obtain a mixed powder material; the X-ray diffraction pattern of the obtained powder material is as shown in Figure 3, as can be seen from Figure 3, the obtained powder material is ZrC-10mol%WC Mix powder.
实施例3Example 3
以蔗糖作为碳源,以氧化锆和五氧化二钽作为难熔金属源;Using sucrose as carbon source, zirconia and tantalum pentoxide as refractory metal source;
1)称取246.4g ZrO2粉,44.2gTa2O5粉,其纯度为99.9wt.%,粒径为60nm,一起放入球磨罐中,加入120ml无水乙醇,氧化锆球球磨混合12h,将混匀后的氧化物移至装有100ml无水乙醇的器皿中,超声分散2h;1) Weigh 246.4g of ZrO 2 powder and 44.2g of Ta 2 O 5 powder with a purity of 99.9wt.% and a particle size of 60nm, put them together into a ball mill jar, add 120ml of absolute ethanol, and mix them with zirconia balls for 12 hours. Move the mixed oxide into a vessel containing 100ml of absolute ethanol, and disperse it ultrasonically for 2 hours;
2)称取382.2g蔗糖加入到110ml水中,搅拌使其混合均匀,然后加入到步骤1)得到的溶液中,加热同时磁力搅拌,加热温度为160℃,加热时间为1h,得到混合均匀的反应物;2) Weigh 382.2g of sucrose and add it to 110ml of water, stir to make it evenly mixed, then add it to the solution obtained in step 1), and heat while magnetically stirring, the heating temperature is 160°C, and the heating time is 1h, and a well-mixed reaction is obtained thing;
3)将步骤2)得到的反应物装入石墨坩埚中,然后将石墨坩埚放入高纯氩气保护的热处理炉内进行加热,加热程序为以10℃/min的升温速率升温至1500℃保温2h,然后随炉冷却至室温,再经研磨得到混合粉体材料;得到的粉体材料的X射线衍射图如图3所示,其扫描电镜照片如图5所示,扫描电压为15kv。由图3可知,得到的粉体材料为ZrC-10mol%TaC混合粉体;由图5可知,ZrC-10mol%TaC粉体的平均粒径为100nm。3) Put the reactant obtained in step 2) into a graphite crucible, and then put the graphite crucible into a high-purity argon-protected heat treatment furnace for heating. The heating program is to heat up to 1500°C at a heating rate of 10°C/min 2h, then cooled to room temperature with the furnace, and then ground to obtain a mixed powder material; the X-ray diffraction pattern of the obtained powder material is shown in Figure 3, and its scanning electron microscope photo is shown in Figure 5, and the scanning voltage is 15kv. It can be seen from Figure 3 that the obtained powder material is ZrC-10mol%TaC mixed powder; it can be seen from Figure 5 that the average particle size of ZrC-10mol%TaC powder is 100nm.
实施例4Example 4
以蔗糖作为碳源,以氧化锆和五氧化二钽作为难熔金属源;Using sucrose as carbon source, zirconia and tantalum pentoxide as refractory metal source;
1)称取246.4g ZrO2粉,88.4gTa2O5粉,其纯度为99.9wt.%,粒径为90nm,一起放入球磨罐中,加入120ml无水乙醇,氧化锆球球磨混合24h,将混匀后的氧化物移至装有150ml无水乙醇的器皿中,超声分散1.5h;1) Weigh 246.4g of ZrO 2 powder and 88.4g of Ta 2 O 5 powder with a purity of 99.9wt.% and a particle size of 90nm, put them together into a ball mill jar, add 120ml of absolute ethanol, and mix them with zirconia balls for 24 hours. Transfer the mixed oxides to a vessel containing 150ml of absolute ethanol, and ultrasonically disperse for 1.5h;
2)称取422.2g蔗糖加入到120ml水中,搅拌使其混合均匀,然后加入到步骤1)得到的溶液中,加热同时磁力搅拌,加热温度为130℃,加热时间为2h,得到混合均匀的反应物;2) Weigh 422.2g of sucrose and add it to 120ml of water, stir to make it evenly mixed, then add it to the solution obtained in step 1), heat while magnetically stirring, the heating temperature is 130°C, and the heating time is 2h, and a well-mixed reaction is obtained thing;
3)将步骤2)得到的反应物装入石墨坩埚中,然后将石墨坩埚放入高纯氩气保护的热处理炉内进行加热,加热程序为以10℃/min的升温速率升温至1600℃保温1h,然后随炉冷却至室温,再经研磨得到混合粉体材料;得到的粉体材料的X射线衍射图如图3所示,由图3可知,得到的粉体材料为ZrC-20mol%TaC混合粉体。3) Put the reactant obtained in step 2) into a graphite crucible, and then put the graphite crucible into a high-purity argon-protected heat treatment furnace for heating. The heating program is to heat up to 1600°C at a heating rate of 10°C/min 1h, then cool to room temperature with the furnace, and then grind to obtain a mixed powder material; the X-ray diffraction pattern of the obtained powder material is as shown in Figure 3, as can be seen from Figure 3, the obtained powder material is ZrC-20mol%TaC Mix powder.
实施例5Example 5
以酚醛树脂作为碳源,以氧化锆和氧化钨作为难熔金属源;Use phenolic resin as the carbon source, and zirconia and tungsten oxide as the refractory metal source;
1)称取246.4g ZrO2粉,23.2gWO3粉,其纯度为99.9wt.%,粒径为60nm,一起放入球磨罐中,加入110ml无水乙醇,氧化锆球球磨混合24h,将混匀后的氧化物移至装有110ml无水乙醇的器皿中,超声分散1h;1) Weigh 246.4g of ZrO 2 powder and 23.2g of WO 3 powder with a purity of 99.9wt.% and a particle size of 60nm, put them together into a ball mill jar, add 110ml of absolute ethanol, and mix them with zirconia balls for 24 hours. The homogenized oxide was transferred to a vessel containing 110ml of absolute ethanol, and ultrasonically dispersed for 1h;
2)称取342g酚醛树脂加入到150ml无水乙醇中,搅拌使其混合均匀,然后加入到步骤1)得到的溶液中,加热同时磁力搅拌,加热温度为150℃,加热时间为1.5h,得到混合均匀的反应物;2) Weigh 342g of phenolic resin and add it to 150ml of absolute ethanol, stir to make it evenly mixed, then add it to the solution obtained in step 1), and heat it with magnetic stirring at the same time. The heating temperature is 150°C and the heating time is 1.5h. uniformly mixed reactants;
3)将步骤2)得到的反应物装入石墨坩埚中,然后将石墨坩埚放入高纯氩气保护的热处理炉内进行加热,加热程序为以10℃/min的升温速率升温至1400℃保温2h,然后随炉冷却至室温,再经研磨得到ZrC-5mol%WC混合粉体。3) Put the reactant obtained in step 2) into a graphite crucible, and then put the graphite crucible into a high-purity argon-protected heat treatment furnace for heating. The heating program is to heat up to 1400°C at a heating rate of 10°C/min 2h, then cooled to room temperature with the furnace, and then ground to obtain ZrC-5mol%WC mixed powder.
实施例6Example 6
以酚醛树脂作为碳源,以氧化锆和五氧化二钽作为难熔金属源;Use phenolic resin as carbon source, zirconia and tantalum pentoxide as refractory metal source;
1)称取246.4g ZrO2粉,88.4gTa2O5粉,其纯度为99.9wt.%,粒径为80nm,一起放入球磨罐中,加入130ml无水乙醇,氧化锆球球磨混合48h,将混匀后的氧化物移至装有150ml无水乙醇的器皿中,超声分散1.5h;1) Weigh 246.4g of ZrO 2 powder and 88.4g of Ta 2 O 5 powder with a purity of 99.9wt.% and a particle size of 80nm, put them together into a ball mill jar, add 130ml of absolute ethanol, and mix them with zirconia balls for 48 hours. Transfer the mixed oxides to a vessel containing 150ml of absolute ethanol, and ultrasonically disperse for 1.5h;
2)称取395.4g酚醛树脂加入到130ml正己烷中,搅拌使其混合均匀,然后加入到步骤1)得到的溶液中,加热同时磁力搅拌,加热温度为120℃,加热时间为2.5h,得到混合均匀的反应物;2) Weigh 395.4g of phenolic resin and add it to 130ml of n-hexane, stir to make it evenly mixed, and then add it to the solution obtained in step 1), and heat it with magnetic stirring at the same time. The heating temperature is 120°C and the heating time is 2.5h, and the obtained uniformly mixed reactants;
3)将步骤2)得到的反应物装入石墨坩埚中,然后将石墨坩埚放入高纯氩气保护的热处理炉内进行加热,加热程序为以10℃/min的升温速率升温至1300℃保温2h,然后随炉冷却至室温,再经研磨得到ZrC-20mol%TaC混合粉体。3) Put the reactant obtained in step 2) into a graphite crucible, and then put the graphite crucible into a high-purity argon-protected heat treatment furnace for heating. The heating program is to heat up to 1300°C at a heating rate of 10°C/min 2h, then cooled to room temperature with the furnace, and then ground to obtain ZrC-20mol%TaC mixed powder.
实施例7Example 7
以环氧树脂作为碳源,以氧化锆和氧化钨作为难熔金属源;Use epoxy resin as carbon source, zirconia and tungsten oxide as refractory metal source;
1)称取246.4g ZrO2粉,46.4gWO3粉,其纯度为99.9wt.%,粒径为90nm,一起放入球磨罐中,加入130ml无水乙醇,氧化锆球球磨混合24h,将混匀后的氧化物移至装有150ml无水乙醇的器皿中,超声分散1h;1) Weigh 246.4g of ZrO 2 powder and 46.4g of WO 3 powder with a purity of 99.9wt.% and a particle size of 90nm, put them together into a ball mill jar, add 130ml of absolute ethanol, and mix them with zirconia balls for 24 hours. The homogenized oxide was transferred to a vessel containing 150ml of absolute ethanol, and ultrasonically dispersed for 1h;
2)称取396.9g环氧树脂加入到130ml环己烷中,搅拌使其混合均匀,然后加入到步骤1)得到的溶液中,加热同时磁力搅拌,加热温度为140℃,加热时间为2h,得到混合均匀的反应物;2) Weigh 396.9g of epoxy resin and add it to 130ml of cyclohexane, stir to make it evenly mixed, then add it to the solution obtained in step 1), and heat while magnetically stirring. The heating temperature is 140°C and the heating time is 2h. Obtain a uniformly mixed reactant;
3)将步骤2)得到的反应物装入石墨坩埚中,然后将石墨坩埚放入高纯氩气保护的热处理炉内进行加热,加热程序为以10℃/min的升温速率升温至1700℃保温1h,然后随炉冷却至室温,再经研磨得到ZrC-10mol%WC混合粉体。3) Put the reactant obtained in step 2) into a graphite crucible, and then put the graphite crucible into a high-purity argon-protected heat treatment furnace for heating. The heating program is to heat up to 1700°C at a heating rate of 10°C/min 1h, then cooled to room temperature with the furnace, and then ground to obtain ZrC-10mol%WC mixed powder.
实施例8Example 8
以沥青作为碳源,以氧化锆和五氧化二钽作为难熔金属源;Use pitch as carbon source, zirconia and tantalum pentoxide as refractory metal source;
1)称取246.4g ZrO2粉,44.2gTa2O5粉,其纯度为99.9wt.%,粒径为70nm,一起放入球磨罐中,加入140ml无水乙醇,氧化锆球球磨混合12h,将混匀后的氧化物移至装有100ml无水乙醇的器皿中,超声分散2h;1) Weigh 246.4g of ZrO 2 powder and 44.2g of Ta 2 O 5 powder with a purity of 99.9wt.% and a particle size of 70nm, put them together into a ball mill jar, add 140ml of absolute ethanol, and mix them with zirconia balls for 12 hours. Move the mixed oxide into a vessel containing 100ml of absolute ethanol, and disperse it ultrasonically for 2 hours;
2)称取380g沥青加入到210ml无水乙醇中,搅拌使其混合均匀,然后加入到步骤1)得到的溶液中,加热同时磁力搅拌,加热温度为150℃,加热时间为0.5h,得到混合均匀的反应物;2) Weigh 380g of asphalt and add it to 210ml of absolute ethanol, stir to make it evenly mixed, then add it to the solution obtained in step 1), and heat it with magnetic stirring at the same time. The heating temperature is 150°C and the heating time is 0.5h, and the mixture uniform reactants;
3)将步骤2)得到的反应物装入石墨坩埚中,然后将石墨坩埚放入高纯氩气保护的热处理炉内进行加热,加热程序为以10℃/min的升温速率升温至1400℃保温2h,然后随炉冷却至室温,再经研磨得到ZrC-10mol%TaC混合粉体。3) Put the reactant obtained in step 2) into a graphite crucible, and then put the graphite crucible into a high-purity argon-protected heat treatment furnace for heating. The heating program is to heat up to 1400°C at a heating rate of 10°C/min 2h, then cooled to room temperature with the furnace, and then ground to obtain ZrC-10mol%TaC mixed powder.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310183378.5A CN103265031B (en) | 2013-05-17 | 2013-05-17 | A kind of method of carbothermic method low-temperature growth ZrC-WC or ZrC-TaC mixed powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310183378.5A CN103265031B (en) | 2013-05-17 | 2013-05-17 | A kind of method of carbothermic method low-temperature growth ZrC-WC or ZrC-TaC mixed powder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103265031A CN103265031A (en) | 2013-08-28 |
CN103265031B true CN103265031B (en) | 2015-10-21 |
Family
ID=49008711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310183378.5A Active CN103265031B (en) | 2013-05-17 | 2013-05-17 | A kind of method of carbothermic method low-temperature growth ZrC-WC or ZrC-TaC mixed powder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103265031B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104961465B (en) * | 2015-06-30 | 2017-05-10 | 中国人民解放军国防科学技术大学 | Ta-Hf-C ternary ceramics and preparation method thereof |
CN105502398A (en) * | 2016-03-01 | 2016-04-20 | 郑州大学 | Method for synthesizing tantalum carbide superfine powder through molten salt assisted magnesiothermic reduction |
CN116443878B (en) * | 2023-04-12 | 2024-10-11 | 北京理工大学 | A method for synthesizing zirconium carbide aerogel using inorganic zirconium salt and phenolic resin |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5942204A (en) * | 1997-03-31 | 1999-08-24 | Omg Americas, Inc. | Method to produce a transition metal carbide from a partially reduced transition metal compound |
US6007598A (en) * | 1996-06-04 | 1999-12-28 | Omg Americas, Inc. | Metallic-carbide-group VIII metal powder and preparation methods thereof |
CN1751990A (en) * | 2005-11-03 | 2006-03-29 | 武汉科技大学 | Preparation method of transition metal carbide material |
CN101723367A (en) * | 2009-12-23 | 2010-06-09 | 北京科技大学 | Method for preparing powder of nanometer tantalum carbide |
CN101830463A (en) * | 2010-05-31 | 2010-09-15 | 河南工业大学 | Method for preparing nano chromium carbide powder |
CN102225764A (en) * | 2011-05-25 | 2011-10-26 | 山东理工大学 | Preparation method of tantalum carbide powder |
CN102249231A (en) * | 2010-05-20 | 2011-11-23 | 燕山大学 | Process and method for preparing transitional metal carbide nanopowder at room temperature |
CN102765720A (en) * | 2012-07-12 | 2012-11-07 | 上海大学 | Method for preparing nanocrystalline zirconium carbide powder |
CN102910628A (en) * | 2011-08-05 | 2013-02-06 | 中国科学院上海硅酸盐研究所 | Synthetic method for high-melting-point transition metal carbide ultrafine powder |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060051281A1 (en) * | 2004-09-09 | 2006-03-09 | Bhabendra Pradhan | Metal carbides and process for producing same |
-
2013
- 2013-05-17 CN CN201310183378.5A patent/CN103265031B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6007598A (en) * | 1996-06-04 | 1999-12-28 | Omg Americas, Inc. | Metallic-carbide-group VIII metal powder and preparation methods thereof |
US5942204A (en) * | 1997-03-31 | 1999-08-24 | Omg Americas, Inc. | Method to produce a transition metal carbide from a partially reduced transition metal compound |
CN1751990A (en) * | 2005-11-03 | 2006-03-29 | 武汉科技大学 | Preparation method of transition metal carbide material |
CN101723367A (en) * | 2009-12-23 | 2010-06-09 | 北京科技大学 | Method for preparing powder of nanometer tantalum carbide |
CN102249231A (en) * | 2010-05-20 | 2011-11-23 | 燕山大学 | Process and method for preparing transitional metal carbide nanopowder at room temperature |
CN101830463A (en) * | 2010-05-31 | 2010-09-15 | 河南工业大学 | Method for preparing nano chromium carbide powder |
CN102225764A (en) * | 2011-05-25 | 2011-10-26 | 山东理工大学 | Preparation method of tantalum carbide powder |
CN102910628A (en) * | 2011-08-05 | 2013-02-06 | 中国科学院上海硅酸盐研究所 | Synthetic method for high-melting-point transition metal carbide ultrafine powder |
CN102765720A (en) * | 2012-07-12 | 2012-11-07 | 上海大学 | Method for preparing nanocrystalline zirconium carbide powder |
Also Published As
Publication number | Publication date |
---|---|
CN103265031A (en) | 2013-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103253670B (en) | Method for preparing TaC powder at low temperature by carbothermic method | |
CN109180189B (en) | High-entropy carbide ultra-high temperature ceramic powder and preparation method thereof | |
CN103253669B (en) | Method for preparing HfC powder at low temperature by carbothermic method | |
WO2017016079A1 (en) | Method for synthesizing high-purity ultrafine zrc-sic composite powder | |
CN103588216B (en) | The method of a kind of boron/carbothermic method low-temperature growth zirconium boride powder | |
CN105385871A (en) | Preparing method of multielement nanometer composite strengthening thermal-resisting aluminum matrix composite | |
El-Sheikh et al. | In situ synthesis of ZrC/SiC nanocomposite via carbothermic reduction of binary xerogel | |
CN103754891A (en) | Method for preparing hafnium boride powder by using boron/carbothermic method | |
CN105272269A (en) | Preparation method of Si3N4/h-BN nano-composite ceramics | |
CN104086180B (en) | A kind of preparation method of boride ceramic powder | |
CN101857196B (en) | Method for preparing nano chrome/vanadium carbide composite powder | |
CN102350508B (en) | Method for preparing doped-tungsten-based composite powder | |
CN103265031B (en) | A kind of method of carbothermic method low-temperature growth ZrC-WC or ZrC-TaC mixed powder | |
CN106517225B (en) | Superfine M1-xTixB2Method for preparing powder | |
Lu et al. | Characterization of Al2O3–Al nano-composite powder prepared by a wet chemical method | |
Lu et al. | Synthesis of ultra-fine hafnium carbide powders combining the methods of liquid precursor conversion and plasma activated sintering | |
WO2019227811A1 (en) | Ultrafine transition-metal boride powder, and preparation method therefor and application thereof | |
CN106588018A (en) | Method for preparing superhigh temperature carbonized hafnium ceramic nano-powder | |
Simonenko et al. | Preparation of HfB 2/SiC composite powders by sol–gel technology | |
CN104016681B (en) | The method for preparing solid phase of a kind of boride and multiphase ceramic powder thereof | |
CN109665848A (en) | A kind of superhigh temperature SiC-HfB2Composite ceramics and its preparation method and application | |
Gocmez et al. | Low temperature synthesis and pressureless sintering of nanocrystalline zirconium diboride powders | |
CN102910628A (en) | Synthetic method for high-melting-point transition metal carbide ultrafine powder | |
CN101186503A (en) | A zirconium boride-zirconium carbide composite material and its application | |
Gui et al. | Synthesis and densification of zirconium diboride prepared by carbothermal reduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |