CN103264317A - Evaluation method for operation reliability of milling cutter - Google Patents
Evaluation method for operation reliability of milling cutter Download PDFInfo
- Publication number
- CN103264317A CN103264317A CN2013101813902A CN201310181390A CN103264317A CN 103264317 A CN103264317 A CN 103264317A CN 2013101813902 A CN2013101813902 A CN 2013101813902A CN 201310181390 A CN201310181390 A CN 201310181390A CN 103264317 A CN103264317 A CN 103264317A
- Authority
- CN
- China
- Prior art keywords
- milling process
- state
- cutter
- rho
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003801 milling Methods 0.000 title claims abstract description 59
- 238000011156 evaluation Methods 0.000 title description 4
- 238000009826 distribution Methods 0.000 claims abstract description 19
- 238000004458 analytical method Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000013598 vector Substances 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims abstract description 9
- 239000000284 extract Substances 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 13
- 238000005315 distribution function Methods 0.000 claims description 7
- 238000012549 training Methods 0.000 claims description 7
- 238000013461 design Methods 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000011218 segmentation Effects 0.000 claims 1
- 238000012423 maintenance Methods 0.000 abstract description 4
- 230000003449 preventive effect Effects 0.000 abstract description 4
- 238000003754 machining Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003064 k means clustering Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Landscapes
- Complex Calculations (AREA)
Abstract
本发明公开了一种铣削加工刀具运行可靠性的评估方法。本发明先通过霍尔传感器采集加工机床主轴与进给轴三相电流信号,然后通过小波分析提取时域均值特征与齿频率能量特征。针对这些特征向量,通过均值算法,获得观测向量输出函数:混合高斯分布密度函数。然后采用鲍姆-韦尔奇(Baum-Welch)算法训练连续“隐-半马尔可夫”模型,得到参数估计结果,采用切普曼-柯尔莫哥洛夫微分方程,来计算铣削加工刀具运行可靠性水平。本发明为铣削加工刀具预防性维修提供决策支持。
The invention discloses a method for evaluating the running reliability of a milling tool. The invention firstly collects the three-phase current signals of the main shaft and the feed shaft of the processing machine tool through the Hall sensor, and then extracts the time-domain average value feature and the tooth frequency energy feature through wavelet analysis. For these eigenvectors, by Mean algorithm, obtain the observation vector output function: mixed Gaussian distribution density function. Then the Baum-Welch algorithm is used to train the continuous "hidden-semi-Markov" model, and the parameter estimation results are obtained, and the Chapman-Kolmogorov differential equation is used to calculate the milling tool level of operational reliability. The invention provides decision support for preventive maintenance of milling tools.
Description
技术领域technical field
本发明涉及一种铣削加工刀具运行可靠性的评估方法。The invention relates to a method for evaluating the running reliability of a milling tool.
技术背景technical background
在现代制造中,刀具状态对保证加工质量和提高生产率至关重要。但刀具磨损在加工中又不可避免,它会直接影响工件的加工精度和表面粗糙度,不仅降低加工质量,严重时还会影响加工系统的安全和正常运行。因此,良好的刀具状态已成为现代机械制造和自动化加工中的必要条件,它也是保证加工工件质量的一项关键技术。而人工判别刀具状态已经成为制约制造工业发展的重要瓶颈,因此,迫切需要设计与开发一种用于刀具运行状态进行智能监测与自动评估的新方法,它不需要等待铣削加工刀具经过长时间运行而出现故障,就能准确地分析、评估铣削加工刀具可靠性变动情况,从而指导用户提前采取合理的预防性措施,防止因刀具问题而影响加工工件质量与加工系统安全运行。In modern manufacturing, the condition of the tool is very important to ensure the quality of processing and improve productivity. However, tool wear is unavoidable in machining. It will directly affect the machining accuracy and surface roughness of the workpiece, which not only reduces the machining quality, but also affects the safety and normal operation of the machining system in severe cases. Therefore, good tool condition has become a necessary condition in modern machinery manufacturing and automatic processing, and it is also a key technology to ensure the quality of processed workpieces. However, manual judgment of tool status has become an important bottleneck restricting the development of the manufacturing industry. Therefore, it is urgent to design and develop a new method for intelligent monitoring and automatic evaluation of tool operating status. It does not need to wait for the milling tool to run for a long time. If a fault occurs, it can accurately analyze and evaluate the reliability changes of the milling tool, so as to guide the user to take reasonable preventive measures in advance to prevent the quality of the workpiece and the safe operation of the processing system from being affected by tool problems.
发明内容Contents of the invention
为解决现有技术中存在的上述技术问题,本发明提供了一种可以为预防性维修提供决策支持的铣削加工刀具运行可靠性分析方法。In order to solve the above-mentioned technical problems existing in the prior art, the present invention provides a method for analyzing the operational reliability of a milling tool that can provide decision support for preventive maintenance.
解决上述技术问题的技术方案包括以下步骤为:The technical scheme for solving the above-mentioned technical problems comprises the following steps:
1)根据铣削加工刀具的设计数据和使用历史,确定其运行状态总数M;铣削加工刀具运行状态集表示为S={S1,S2,…,Sm,…,SM},sM为铣削加工刀具完全失效。1) According to the design data and use history of milling tools, determine the total number of operating states M; the operating state set of milling tools is expressed as S={S 1 ,S 2 ,…,S m ,…,S M },s M Complete tool failure for milling.
2)针对铣削刀具加工工况,记录切削参数,利用霍尔传感器采集机床主轴和进给轴三相电流信号,从中提取时域上的均值和齿频率信号的能量值作为特征量;具体包括:①频率分析,对机床电机电流信号进行小波分解,提取齿频率成分的信号进行重构,得到齿频率曲线,进行能量特征值的提取;②时域分析:取进给电流信号三相电流均方根值进行小波分析,提取信号时域上的特征量。2) According to the machining conditions of milling tools, record the cutting parameters, use the Hall sensor to collect the three-phase current signals of the machine tool spindle and the feed axis, and extract the average value in the time domain and the energy value of the tooth frequency signal as feature quantities; specifically include: ①Frequency analysis, wavelet decomposition of the current signal of the machine tool motor, extracting the signal of the tooth frequency component for reconstruction, obtaining the tooth frequency curve, and extracting the energy characteristic value; ②Time domain analysis: taking the mean square of the three-phase current of the feed current signal The wavelet analysis is performed on the root value to extract the characteristic quantity of the signal in the time domain.
3)根据铣削加工刀具运行状态总数M,确定每个铣削加工刀具运行状态所对应的高斯分布函数数目km;针对铣削加工刀具某一运行状态,对上述采集的特征信号进行平均分段,并将特征信号中属于一个段的参数组成一个大的矩阵,对每一段的矢量进行K均值聚类,得到铣削加工刀具某个状态所对应的连续混合高斯概率密度函数
4)采用连续隐半马尔科夫模型来对刀具运行状态进行可靠性水平估计;首先对连续隐半马尔科夫模型CHSMM给定初值,接着采用Baum-Welch算法对模型进行训练,完成参数估计,进行铣削加工刀具运行可靠性水平计算;4) Use the continuous hidden semi-Markov model to estimate the reliability level of the tool running state; first, give the initial value to the continuous hidden semi-Markov model CHSMM, and then use the Baum-Welch algorithm to train the model to complete the parameter estimation , to calculate the operational reliability level of the milling tool;
其中,状态持续时间模型采用Gamma分布,即vm,wm>0,vm为尺度参数,wm为形状参数;观测值模型采用混合高斯分布,即
上述步骤3)的具体过程如下:The specific process of the above step 3) is as follows:
①模型定义:连续隐-半马尔可夫模型的表述为
②模型训练:采用鲍姆-韦尔奇(Baum-Welch)算法对模型进行训练,即解决模型的参数估计问题,得到模型参数的估计值依次对刀具的所有运行状态进行训练,得到每种运行状态的隐-半马尔可夫模型。② Model training: Baum-Welch (Baum-Welch) algorithm is used to train the model, that is, to solve the parameter estimation problem of the model and obtain the model parameters estimated value of All the operating states of the tool are trained in sequence to obtain a hidden-semi-Markov model for each operating state.
③运行可靠性评估:在模型训练完成之后,根据模型参数估计的结果,采用切普曼-柯尔莫哥洛夫微分方程,来计算铣削加工刀具运行可靠性水平。③Evaluation of operational reliability: After the model training is completed, according to the results of model parameter estimation, the Chapman-Kolmogorov differential equation is used to calculate the operational reliability level of milling tools.
本发明的的有益效果有:本发明通过采集加工机床主轴电流与进给轴电流信号,采用小波分析方法提取上述信号的时域和频域特征信息,再利用连续隐半马尔科夫模型和切普曼-柯尔莫哥洛夫微分方程来计算铣削加工刀具运行可靠性水平。这为铣削加工中心刀具的维修决策分析提供了重要的参考信息。The beneficial effects of the present invention are as follows: the present invention extracts the time-domain and frequency-domain characteristic information of the above-mentioned signals by using the wavelet analysis method by collecting the main shaft current and the feed axis current signal of the processing machine tool, and then uses the continuous hidden semi-Markov model and cutting Pullman-Kolmogorov differential equation to calculate the operational reliability level of milling tools. This provides important reference information for the maintenance decision analysis of milling machining center tools.
附图说明Description of drawings
图1是本发明的流程图。Figure 1 is a flow chart of the present invention.
图2是本发明中机床主轴电流信号时域均值时域波形。Fig. 2 is the time-domain mean value time-domain waveform of the machine tool spindle current signal in the present invention.
图3是本发明中机床主轴电流信号频域波形。Fig. 3 is the frequency domain waveform of the machine tool spindle current signal in the present invention.
图4是本发明铣削加工刀具运行可靠性曲线。Fig. 4 is the running reliability curve of the milling tool of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步详细地说明。本发明方法首先通过霍尔传感器采集加工机床主轴和进给轴电流信号,接着采用小波分析方法进行特征提取,然后通过连续隐半马尔科夫模型进行参数估计,并采用切普曼-柯尔莫哥洛夫微分方程计算出铣削加工刀具运行可靠性水平,从而为预防性维修提供决策支持。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments. The method of the invention first collects the current signals of the main shaft and the feed shaft of the processing machine tool through the Hall sensor, then uses the wavelet analysis method to perform feature extraction, and then performs parameter estimation through the continuous hidden semi-Markov model, and uses the Chepman-Kolmo Gorlov's differential equation calculates the operational reliability level of milling tools to provide decision support for preventive maintenance.
如图1所示,本发明包括以下步骤:As shown in Figure 1, the present invention comprises the following steps:
第一步确定铣削加工刀具运行状态。The first step is to determine the running state of the milling tool.
根据铣削加工刀具的设计数据和使用历史,确定其运行状态总数M。铣削加工刀具运行状态集表示为S={S1,S2,…,Sm,…,SM},sM为铣削加工刀具完全失效。According to the design data and use history of the milling tool, determine the total number M of its operating status. The running state set of the milling tool is expressed as S={S 1 ,S 2 ,…,S m ,…,S M }, and s M is the complete failure of the milling tool.
第二步铣削加工刀具运行状态特征量提取。The second step is to extract the feature quantity of the running state of the milling tool.
利用霍尔传感器采集加工机床主轴和进给轴三相电流信号,采样间隔和每次采集信号的组数可以根据企业的实际情况而定。然后从中提取时域上的均值和齿频率信号的能量值作为特征量。具体过程为:(1)频率分析,对机床电机电流信号进行小波分解,提取齿频率成分的信号进行重构,得到齿频率曲线,进行能量特征值的提取。(2)时域分析:取进给电流信号三相电流均方根值进行小波分析,提取信号时域上的特征量。The hall sensor is used to collect the three-phase current signals of the main shaft and feed shaft of the processing machine tool. The sampling interval and the number of groups of signals collected each time can be determined according to the actual situation of the enterprise. Then the mean value in the time domain and the energy value of the tooth frequency signal are extracted as feature quantities. The specific process is as follows: (1) Frequency analysis, wavelet decomposition is performed on the current signal of the machine tool motor, and the signal of the tooth frequency component is extracted for reconstruction to obtain the tooth frequency curve and extract the energy characteristic value. (2) Time-domain analysis: take the root mean square value of the three-phase current of the feed current signal for wavelet analysis, and extract the characteristic quantities of the signal in the time domain.
第三步观测样本序列概率密度函数提取。The third step is to extract the probability density function of the observation sample sequence.
根据铣削加工刀具运行状态总数M,确定每个铣削加工刀具运行状态所对应的高斯分布函数数目km。针对铣削加工刀具某一运行状态,对上述采集的特征信号进行平均分段,并将特征信号中属于一个段的参数组成一个大的矩阵,对每一段的矢量进行K均值聚类,计算三个关键参数cmk,和Σmk,得到铣削加工刀具某个状态所对应的连续混合高斯概率密度函数
第四步铣削加工刀具运行可靠性评估。The fourth step is to evaluate the operational reliability of milling tools.
HSMM(Hidden Semi-Markov Model,隐-半马尔可夫模型)是HMM(HiddenMarkov Model,隐马尔可夫模型)的扩展。为了改善隐马尔可夫模型中状态驻留时间为指数分布的局限,在隐马尔可夫模型的基础上,隐-半马尔可夫模型允许根据实际问题自定义驻留时间分布。从铣削加工刀具的使用历史看,采用Gamma分布作为状态驻留时间概率分布函数。同时,观测序列输出函数采用混合高斯分布进行拟合。HSMM (Hidden Semi-Markov Model, Hidden-Semi-Markov Model) is an extension of HMM (Hidden Markov Model, Hidden Markov Model). In order to improve the limitation of the exponential distribution of the state residence time in the hidden Markov model, on the basis of the hidden Markov model, the hidden-semi-Markov model allows customizing the residence time distribution according to the actual problem. From the use history of milling tools, the Gamma distribution is used as the probability distribution function of the state dwell time. At the same time, the output function of the observation sequence is fitted with a mixed Gaussian distribution.
步骤(a1):模型训练。首先,对连续隐半马尔科夫模型参数进行初始化,其中初始状态分布采用均匀分布,并设定迭代次数和收敛误差。然后采用Baum-Welch算法对模型进行训练,得到模型参数的估计值依次对刀具的所有运行状态进行训练,得到每种运行状态的连续隐-半马尔可夫模型。Step (a1): Model training. First, initialize the parameters of the continuous hidden semi-Markov model, in which the initial state distribution adopts a uniform distribution, and set the number of iterations and convergence error. Then use the Baum-Welch algorithm to train the model to get the model parameters estimated value of All operating states of the tool are trained sequentially to obtain a continuous hidden-semi-Markov model for each operating state.
步骤(a2):铣削加工刀具运行可靠性评估。令Pj(t)=P(qt=sj)表示装备在t时刻处于sj状态的概率。根据切普曼-柯尔莫哥洛夫微分方程有P'(t)=P(t)·A,其中P(t)=(p0(t),P1(t),L,Pk(t),Pk+1(t))为状态向量,P'(t)为P(t)的一阶微分状态向量,为状态转移矩阵。对微分方程进行拉氏变换,可得:
有P(s)=(p0(s),P1(s),L,Pk(s),Pk+1(s)),对P(s)进行拉氏逆变换得到装备在t时刻处于不同状态的概率P(t)=(p0(t),P1(t),L,Pk(t),Pk+1(t)),从而可以计算出铣削加工刀具t时刻的可靠度R(t)=1-Pk+1(t)。There is P(s)=(p 0 (s), P 1 (s), L, P k (s), P k+1 (s)), and the inverse Laplace transform is performed on P(s) to obtain the equipment at t The probability of being in different states at any time P(t)=(p 0 (t), P 1 (t), L, P k (t), P k+1 (t)), so that the milling tool can be calculated at time t The reliability of R (t) = 1-P k + 1 (t).
下面结合具体例子的本发明做出进一步的阐述:Below in conjunction with the present invention of concrete example, make further elaboration:
1:根据某铣削加工刀具设计数据与使用历史,确定其运行状态总数为4,s1为正常状态,s2为轻度劣化状态,s3为重度劣化状态,s4为完全失效状态。1: According to the design data and use history of a milling tool, the total number of operating states is determined to be 4, s 1 is a normal state, s 2 is a mildly deteriorated state, s 3 is a severely deteriorated state, and s 4 is a complete failure state.
2:此刀具实际加工时,切削参数为主轴转速130r/min,进给速度140mm/min,切削深度1mm,立铣刀加工,6齿,采样频率1000Hz。采样间隔为48小时,采样总时间T=960小时。采用小波分析进行时域和频域特征量提取。图2为机床主轴电流信号时域均值时域波形;图3为机床主轴电流信号频域波形;2: When this tool is actually processed, the cutting parameters are spindle speed 130r/min, feed speed 140mm/min, depth of cut 1mm, end mill processing, 6 teeth, sampling frequency 1000Hz. The sampling interval is 48 hours, and the total sampling time T=960 hours. Wavelet analysis is used to extract time domain and frequency domain features. Fig. 2 is the time-domain waveform of the time-domain mean value of the machine tool spindle current signal; Fig. 3 is the frequency-domain waveform of the machine tool spindle current signal;
3:对上述特征信号平均分为四段,每个状态对应4个高斯分布函数,采用K均值算法,得到观测向量概率密度函数:混合高斯密度函数。为节省篇幅,这里仅列出某时刻t,刀具处于正常状态所对应的混合高斯分布函数参数:权重参数矩阵为weight=[0.345 0.287 0.129 0.239],均值矩阵mean=[0.0099 0.0079 0.5568 0.3234],协方差矩阵cov=[3.9448 3.8648 6.3945 7.4736]。3: Divide the above characteristic signal into four segments on average, each state corresponds to 4 Gaussian distribution functions, and use the K-means algorithm to obtain the probability density function of the observation vector: a mixed Gaussian density function. In order to save space, here are only the mixed Gaussian distribution function parameters corresponding to the tool being in a normal state at a certain time t: the weight parameter matrix is weight=[0.345 0.287 0.129 0.239], the mean matrix mean=[0.0099 0.0079 0.5568 0.3234], the correlation Variance matrix cov=[3.9448 3.8648 6.3945 7.4736].
4:铣削加工刀具运行可靠性评估,首先对连续隐半马尔科夫模型CHSMM给定初值,如初始状态分布为均匀分布,刀具运行状态总数M=4。接着采用Baum-Welch算法对模型进行训练,完成参数估计,进行铣削加工刀具运行可靠性水平计算,图4为此铣削刀具运行可靠性水平曲线图。4: Evaluation of milling tool operation reliability. First, the initial value is given to the continuous hidden semi-Markov model CHSMM. If the initial state distribution is uniform, the total number of tool operating states M=4. Then, the Baum-Welch algorithm is used to train the model, complete the parameter estimation, and calculate the operational reliability level of the milling tool. Figure 4 is a graph of the operational reliability level of the milling tool.
本发明不仅局限于上述具体实施方式,本领域一般技术人员根据本发明公开的内容,可以采用其它多种具体实施方式实施本发明,因此,凡是采用本发明的设计结构和思路,做一些简单的变化或更改的设计,都落入本发明保护的范围。The present invention is not limited to the above-mentioned specific embodiments, and those skilled in the art can adopt various other specific embodiments to implement the present invention according to the disclosed content of the present invention. Changes or modified designs all fall within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310181390.2A CN103264317B (en) | 2013-05-16 | 2013-05-16 | A kind of appraisal procedure of Milling Process cutter operational reliability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310181390.2A CN103264317B (en) | 2013-05-16 | 2013-05-16 | A kind of appraisal procedure of Milling Process cutter operational reliability |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103264317A true CN103264317A (en) | 2013-08-28 |
CN103264317B CN103264317B (en) | 2015-11-18 |
Family
ID=49008003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310181390.2A Active CN103264317B (en) | 2013-05-16 | 2013-05-16 | A kind of appraisal procedure of Milling Process cutter operational reliability |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103264317B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104191301A (en) * | 2014-08-02 | 2014-12-10 | 金华中科机电研究所 | Control system and method for preventing ordinary drilling machine from getting stuck |
CN105160147A (en) * | 2015-07-07 | 2015-12-16 | 大连理工大学 | State space model and fuzzy theory based tool change time decision method |
CN106002483A (en) * | 2016-05-04 | 2016-10-12 | 北京信息科技大学 | Intelligent tool fault diagnosis method |
CN106181579A (en) * | 2016-08-23 | 2016-12-07 | 西安交通大学 | A kind of Tool Wear Monitoring method based on multisensor current signal |
CN107877262A (en) * | 2017-11-13 | 2018-04-06 | 华中科技大学 | A kind of numerical control machine tool wear monitoring method based on deep learning |
CN108122049A (en) * | 2017-12-21 | 2018-06-05 | 郓城金河热电有限责任公司 | Photovoltaic array operation and maintenance method based on the analysis of photovoltaic module failure rate |
CN108620950A (en) * | 2018-05-08 | 2018-10-09 | 华中科技大学无锡研究院 | A kind of turning cutting tool drilling monitoring method and system |
CN108956783A (en) * | 2018-05-18 | 2018-12-07 | 南京大学 | A kind of grinding sound wheel loading condition detection method based on HDP-HSMM |
CN109262369A (en) * | 2018-09-13 | 2019-01-25 | 成都数之联科技有限公司 | A kind of cutting tool state detection system and method |
CN109396956A (en) * | 2018-11-06 | 2019-03-01 | 重庆大学 | A kind of chain digital control gear hobbing machine hobboing cutter state intelligent monitoring method |
CN111085898A (en) * | 2019-12-30 | 2020-05-01 | 南京航空航天大学 | Working condition self-adaptive high-speed milling process cutter monitoring method and system |
TWI749742B (en) * | 2020-08-31 | 2021-12-11 | 國立虎尾科技大學 | Machine tool spindle diagnosis method |
WO2022126678A1 (en) * | 2020-12-17 | 2022-06-23 | 广东工业大学 | Method and device for evaluating performance state of numerical control cutting tool bit of flexible material |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008064391A1 (en) * | 2007-12-27 | 2009-07-02 | Okuma Corporation | Machine diagnostic method and apparatus |
CN101799674A (en) * | 2010-03-28 | 2010-08-11 | 华中科技大学 | Method for analyzing service state of numerical control equipment |
CN101804580A (en) * | 2010-03-29 | 2010-08-18 | 华中科技大学 | Method for assessing reliability of technology for large numerical control machine |
CN102176217A (en) * | 2010-12-20 | 2011-09-07 | 西安瑞特快速制造工程研究有限公司 | Method for estimating reliability of numerical control machine tool cutting tool based on logistic model |
CN102254100A (en) * | 2011-07-13 | 2011-11-23 | 西安工业大学 | Proportional hazard rate model method for estimating operation reliability of tool |
CN102689230A (en) * | 2012-05-09 | 2012-09-26 | 天津大学 | Tool wear condition monitoring method based on conditional random field model |
-
2013
- 2013-05-16 CN CN201310181390.2A patent/CN103264317B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008064391A1 (en) * | 2007-12-27 | 2009-07-02 | Okuma Corporation | Machine diagnostic method and apparatus |
CN101799674A (en) * | 2010-03-28 | 2010-08-11 | 华中科技大学 | Method for analyzing service state of numerical control equipment |
CN101804580A (en) * | 2010-03-29 | 2010-08-18 | 华中科技大学 | Method for assessing reliability of technology for large numerical control machine |
CN102176217A (en) * | 2010-12-20 | 2011-09-07 | 西安瑞特快速制造工程研究有限公司 | Method for estimating reliability of numerical control machine tool cutting tool based on logistic model |
CN102254100A (en) * | 2011-07-13 | 2011-11-23 | 西安工业大学 | Proportional hazard rate model method for estimating operation reliability of tool |
CN102689230A (en) * | 2012-05-09 | 2012-09-26 | 天津大学 | Tool wear condition monitoring method based on conditional random field model |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104191301A (en) * | 2014-08-02 | 2014-12-10 | 金华中科机电研究所 | Control system and method for preventing ordinary drilling machine from getting stuck |
CN105160147A (en) * | 2015-07-07 | 2015-12-16 | 大连理工大学 | State space model and fuzzy theory based tool change time decision method |
CN105160147B (en) * | 2015-07-07 | 2017-11-10 | 大连理工大学 | A kind of cutter changing time decision-making technique based on state-space model and fuzzy theory |
CN106002483A (en) * | 2016-05-04 | 2016-10-12 | 北京信息科技大学 | Intelligent tool fault diagnosis method |
CN106181579A (en) * | 2016-08-23 | 2016-12-07 | 西安交通大学 | A kind of Tool Wear Monitoring method based on multisensor current signal |
CN107877262A (en) * | 2017-11-13 | 2018-04-06 | 华中科技大学 | A kind of numerical control machine tool wear monitoring method based on deep learning |
CN108122049A (en) * | 2017-12-21 | 2018-06-05 | 郓城金河热电有限责任公司 | Photovoltaic array operation and maintenance method based on the analysis of photovoltaic module failure rate |
CN108620950A (en) * | 2018-05-08 | 2018-10-09 | 华中科技大学无锡研究院 | A kind of turning cutting tool drilling monitoring method and system |
CN108956783A (en) * | 2018-05-18 | 2018-12-07 | 南京大学 | A kind of grinding sound wheel loading condition detection method based on HDP-HSMM |
CN108956783B (en) * | 2018-05-18 | 2020-04-21 | 南京大学 | A method for detecting passivation state of grinding acoustic grinding wheel based on HDP-HSMM |
CN109262369A (en) * | 2018-09-13 | 2019-01-25 | 成都数之联科技有限公司 | A kind of cutting tool state detection system and method |
CN109262369B (en) * | 2018-09-13 | 2020-02-21 | 成都数之联科技有限公司 | Cutter state detection system and method |
CN109396956A (en) * | 2018-11-06 | 2019-03-01 | 重庆大学 | A kind of chain digital control gear hobbing machine hobboing cutter state intelligent monitoring method |
CN111085898A (en) * | 2019-12-30 | 2020-05-01 | 南京航空航天大学 | Working condition self-adaptive high-speed milling process cutter monitoring method and system |
TWI749742B (en) * | 2020-08-31 | 2021-12-11 | 國立虎尾科技大學 | Machine tool spindle diagnosis method |
WO2022126678A1 (en) * | 2020-12-17 | 2022-06-23 | 广东工业大学 | Method and device for evaluating performance state of numerical control cutting tool bit of flexible material |
Also Published As
Publication number | Publication date |
---|---|
CN103264317B (en) | 2015-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103264317B (en) | A kind of appraisal procedure of Milling Process cutter operational reliability | |
CN115829422B (en) | Industrial equipment operation abnormal state identification method based on big data | |
CN102689230B (en) | Tool wear condition monitoring method based on conditional random field model | |
CN106338385B (en) | A kind of rotary machinery fault diagnosis method based on unusual spectral factorization | |
CN101870075B (en) | Method for predicting service life of screw pair of numerical control machine on basis of performance degradation model | |
CN111089726B (en) | Rolling bearing fault diagnosis method based on optimal dimension singular spectrum decomposition | |
CN103034170B (en) | Numerical control machine tool machining performance prediction method based on intervals | |
CN102176217B (en) | Method for estimating reliability of numerical control machine tool cutting tool based on logistic model | |
CN103776480B (en) | Small fault detection method based on repeatedly rolling average and device | |
CN109318056A (en) | A kind of Tool Wear Monitoring method based on multiple types sensor composite signal | |
CN109333160B (en) | On-line monitoring method for drill wear form and wear state during superalloy drilling | |
CN103105820A (en) | Machining cutter abrasion state identification method of numerical control machine tool | |
CN111582392A (en) | An on-line monitoring method for multi-condition health status of key components of wind turbines | |
CN103674511A (en) | Mechanical wearing part performance assessment and prediction method based on EMD (empirical mode decomposition)-SVD (singular value decomposition) and MTS (Mahalanobis-Taguchi system) | |
CN103962888A (en) | Tool abrasion monitoring method based on wavelet denoising and Hilbert-Huang transformation | |
CN102284888A (en) | Online monitoring method for turning stability of digital control machine tool | |
CN103646167A (en) | Satellite abnormal condition detection system based on telemeasuring data | |
CN102170126A (en) | Online analysis and early warning method for low-frequency oscillation of electric power system | |
CN104850736A (en) | Service life prediction method of high-speed numerical control milling machine cutter on basis of state space model | |
CN103345200A (en) | Cutting flutter identification method based on generalized interval | |
CN104050340A (en) | Method for recognizing tool abrasion degree of large numerical control milling machine | |
CN105675274A (en) | Time-domain parameter and D-S evidence theory-based rotor running state monitoring method | |
CN105865784A (en) | Rolling bearing detection method based on LMD (Local Mean Decomposition) and gray correlation | |
CN108304348A (en) | A kind of bearing residual life prediction technique based on binary Wiener-Hopf equation | |
CN108470570B (en) | Abnormal sound detection method for motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201224 Address after: 224400 No.10 Chunyuan Road, Xingou Town, Funing County, Yancheng City, Jiangsu Province Patentee after: Funing Jinyu Plastics Co.,Ltd. Address before: 411201 No. 2 stone wharf, Yuhu District, Hunan, Xiangtan Patentee before: Hunan University of Science and Technology |
|
TR01 | Transfer of patent right | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20130828 Assignee: Jiangsu Jinyu Polymer New Materials Co.,Ltd. Assignor: Funing Jinyu Plastics Co.,Ltd. Contract record no.: X2024980022259 Denomination of invention: A method for evaluating the reliability of milling tool operation Granted publication date: 20151118 License type: Common License Record date: 20241104 |
|
EE01 | Entry into force of recordation of patent licensing contract |