CN103259024B - Cerium zinc redox flow batteries composite negative plate and preparation method thereof - Google Patents
Cerium zinc redox flow batteries composite negative plate and preparation method thereof Download PDFInfo
- Publication number
- CN103259024B CN103259024B CN201310179939.4A CN201310179939A CN103259024B CN 103259024 B CN103259024 B CN 103259024B CN 201310179939 A CN201310179939 A CN 201310179939A CN 103259024 B CN103259024 B CN 103259024B
- Authority
- CN
- China
- Prior art keywords
- composite negative
- negative plate
- cerium
- redox flow
- activator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 49
- UFNRFBFHJJPDNF-UHFFFAOYSA-N [Zn].[Ce] Chemical compound [Zn].[Ce] UFNRFBFHJJPDNF-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 44
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000010936 titanium Substances 0.000 claims abstract description 41
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 38
- 239000002184 metal Substances 0.000 claims abstract description 38
- 239000012190 activator Substances 0.000 claims abstract description 35
- 239000011230 binding agent Substances 0.000 claims abstract description 32
- 239000000654 additive Substances 0.000 claims abstract description 30
- 230000000996 additive effect Effects 0.000 claims abstract description 27
- 239000004020 conductor Substances 0.000 claims abstract description 23
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 19
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 19
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 14
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910003437 indium oxide Inorganic materials 0.000 claims abstract description 13
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 229910000416 bismuth oxide Inorganic materials 0.000 claims abstract description 10
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910002115 bismuth titanate Inorganic materials 0.000 claims abstract description 9
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 59
- 239000002002 slurry Substances 0.000 claims description 24
- 239000006230 acetylene black Substances 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 10
- 229910021389 graphene Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims 2
- 238000010422 painting Methods 0.000 claims 2
- 238000005554 pickling Methods 0.000 claims 2
- 238000001291 vacuum drying Methods 0.000 claims 1
- 239000002033 PVDF binder Substances 0.000 abstract description 15
- 229920002981 polyvinylidene fluoride Polymers 0.000 abstract description 15
- 238000012360 testing method Methods 0.000 abstract description 5
- 239000011248 coating agent Substances 0.000 description 20
- 238000000576 coating method Methods 0.000 description 20
- 239000011701 zinc Substances 0.000 description 19
- 229910052725 zinc Inorganic materials 0.000 description 19
- 229910002804 graphite Inorganic materials 0.000 description 12
- 239000010439 graphite Substances 0.000 description 12
- 238000001035 drying Methods 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 230000001680 brushing effect Effects 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 238000007790 scraping Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供一种铈锌氧化还原液流电池复合负极板及其制备方法,属于电化学电池领域。该复合负极板包括金属钛板和表面活性层,所述的表面活性层由粘结剂、活化剂和添加剂组成,粘结剂为聚偏氟乙烯或聚四氟乙烯,活化剂为锌粉和导电材料的混合物,添加剂为氧化铟、氧化锡、氧化铋、氧化钛或氧化铈中的一种或几种,所述的粘结剂、活化剂和添加剂重量份数比为(5~15):(50~90):(5~50),本发明还提供铈锌氧化还原液流电池复合负极板的制备方法。该复合负极板组装成电池,使用100mA电流进行充放电测试,电池的循环次数达到550次以上,电池平均电压效率为88.4%,平均库伦效率为96.4%,平均能量效率为82.9%。
The invention provides a composite negative plate of a cerium-zinc redox flow battery and a preparation method thereof, belonging to the field of electrochemical batteries. The composite negative plate includes a metal titanium plate and a surface active layer, the surface active layer is composed of a binder, an activator and an additive, the binder is polyvinylidene fluoride or polytetrafluoroethylene, and the activator is zinc powder and A mixture of conductive materials, the additive is one or more of indium oxide, tin oxide, bismuth oxide, titanium oxide or cerium oxide, and the weight ratio of the binder, activator and additive is (5-15) : (50-90): (5-50), the present invention also provides a preparation method for a composite negative plate of a cerium-zinc redox flow battery. The composite negative plate is assembled into a battery, and the charge and discharge test is carried out with a current of 100mA. The cycle number of the battery reaches more than 550 times, the average voltage efficiency of the battery is 88.4%, the average Coulombic efficiency is 96.4%, and the average energy efficiency is 82.9%.
Description
技术领域technical field
本发明属于电化学电池领域,具体涉及为一种铈锌氧化还原液流电池复合负极板及其制备方法。The invention belongs to the field of electrochemical batteries, and in particular relates to a composite negative plate of a cerium-zinc redox flow battery and a preparation method thereof.
技术背景technical background
在铈锌液流电池研究中,一般用石墨、石墨毡或者纯锌作为电池的负极材料。如2011年,P.K.Leung等人在JournalofPowerSources196(2011)5174-5185中报道了关于铈锌液流电池的研究成果,其在组装电池中用碳-聚乙烯复合电极作为电池负极,发现在电池的长期运行中,负极电解液中的pH会降低,对负极沉积锌有较大的腐蚀作用,最终对电池的容量和循环寿命产生影响。2011年谢志鹏在其博士论文“锌-铈液流电池正极电解液的研究”中使用了纯锌片作电池的负极,在电池运行几个循环后,由于锌析氢过电位较低,负极锌片发生溶解,电池循环寿命较短。另外,使用目前比较常见的石墨毡电极做负极时,充电过程中锌会沉积在石墨毡纤维交错部位,不利于放电时锌的溶解,导致容量的降低,影响电池的性能。In the research of cerium-zinc flow batteries, graphite, graphite felt or pure zinc are generally used as the negative electrode material of the battery. For example, in 2011, P.K.Leung et al. reported the research results on the cerium-zinc flow battery in Journal of Power Sources196 (2011) 5174-5185. They used a carbon-polyethylene composite electrode as the negative electrode of the battery in the assembled battery, and found that in the long-term of the battery During operation, the pH in the negative electrode electrolyte will decrease, which will have a greater corrosion effect on the zinc deposited on the negative electrode, and ultimately affect the capacity and cycle life of the battery. In 2011, Xie Zhipeng used pure zinc sheet as the negative electrode of the battery in his doctoral thesis "Research on the positive electrode electrolyte of zinc-cerium flow battery". Dissolution occurs and the battery cycle life is short. In addition, when using the currently more common graphite felt electrode as the negative electrode, zinc will be deposited on the interlaced parts of the graphite felt fibers during charging, which is not conducive to the dissolution of zinc during discharge, resulting in a decrease in capacity and affecting the performance of the battery.
发明内容Contents of the invention
本发明目的是为了解决现有的铈锌液流电池负极板锌片容易溶解的问题,而提供一种铈锌氧化还原液流电池复合负极板及其制备方法。The purpose of the present invention is to solve the problem that the zinc sheet of the negative plate of the existing cerium-zinc redox flow battery is easily dissolved, and to provide a composite negative plate of the cerium-zinc redox flow battery and a preparation method thereof.
本发明首先提供一种铈锌氧化还原液流电池复合负极板,该复合负极板包括金属钛板和表面活性层,所述的表面活性层由粘结剂、活化剂和添加剂组成,所述的粘结剂为聚偏氟乙烯(PVDF)或聚四氟乙烯(PTFE),活化剂为锌粉和导电材料的混合物,添加剂为氧化铟、氧化锡、氧化铋、氧化钛或氧化铈中的一种或几种,所述的粘结剂、活化剂和添加剂重量份数比为(5~15):(50~90):(5~50)。The present invention firstly provides a composite negative plate of a cerium-zinc redox flow battery, the composite negative plate includes a metal titanium plate and a surface active layer, the surface active layer is composed of a binder, an activator and an additive, and the The binder is polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), the activator is a mixture of zinc powder and conductive materials, and the additive is one of indium oxide, tin oxide, bismuth oxide, titanium oxide or cerium oxide. One or several kinds, the weight ratio of the binder, activator and additive is (5-15): (50-90): (5-50).
优选的是,所述的活化剂中锌粉和导电材料的重量份数比为(1~5):1。Preferably, the weight-number ratio of the zinc powder and the conductive material in the activator is (1-5):1.
优选的是,所述的导电材料选自活性炭、石墨烯或乙炔黑中的一种或几种。Preferably, the conductive material is selected from one or more of activated carbon, graphene or acetylene black.
优选的是,所述的粘结剂、活化剂和添加剂重量份数比为(5~10):(60~80):(20~40)。Preferably, the weight ratio of the binder, the activator and the additive is (5-10): (60-80): (20-40).
优选的是,所述的表面活性层在金属钛板表面的涂量为50~300mg/cm2。Preferably, the coating amount of the surface active layer on the surface of the metal titanium plate is 50-300 mg/cm 2 .
本发明还提供一种铈锌氧化还原液流电池复合负极板的制备方法,包括如下:The present invention also provides a method for preparing a composite negative plate of a cerium-zinc redox flow battery, comprising the following steps:
1)按照重量分数计,将粘结剂、活化剂和添加剂混合,得到活性层浆料;所述的粘结剂为聚偏氟乙烯(PVDF)或聚四氟乙烯(PTFE),活化剂为锌粉和导电材料的混合物,添加剂为氧化铟、氧化锡、氧化铋、氧化钛或氧化铈中的一种或几种,所述的粘结剂、活化剂和添加剂重量份数比为(5~15):(50~90):(5~50);1) According to the weight fraction, the binder, the activator and the additive are mixed to obtain the active layer slurry; the binder is polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), and the activator is A mixture of zinc powder and conductive materials, the additive is one or more of indium oxide, tin oxide, bismuth oxide, titanium oxide or cerium oxide, and the weight and number ratio of the binder, activator and additive is (5 ~15): (50~90): (5~50);
2)将步骤1)得到的活性层浆料涂覆在金属钛板的一侧,真空烘干后得到铈锌氧化还原液流电池复合负极板。2) Coating the active layer slurry obtained in step 1) on one side of the metal titanium plate, and drying in vacuum to obtain a composite negative plate for a cerium-zinc redox flow battery.
优选的是,所述的活化剂中锌粉和导电材料的重量份数比为(1~5):1。Preferably, the weight-number ratio of the zinc powder and the conductive material in the activator is (1-5):1.
优选的是,所述的导电材料选自活性炭、石墨烯或乙炔黑中的一种或几种。Preferably, the conductive material is selected from one or more of activated carbon, graphene or acetylene black.
优选的是,所述的粘结剂、活化剂和添加剂重量份数比为(5~10):(60~80):(20~40)。Preferably, the weight ratio of the binder, the activator and the additive is (5-10): (60-80): (20-40).
优选的是,所述的表面活性层在金属钛板表面的涂量为50~300mg/cm2。Preferably, the coating amount of the surface active layer on the surface of the metal titanium plate is 50-300 mg/cm 2 .
本发明的有益效果Beneficial effects of the present invention
本发明首先提供一种铈锌氧化还原液流电池复合负极板,该复合负极板是在耐蚀性较高的金属钛板表面涂覆高活性层,由于金属钛板力学性能较高,有利于电池堆组装,活性层具有较高的电导率和高的析氢过电位,所述的活化剂为锌粉和导电材料的混合物,锌粉的加入是保证锌在沉积时,电极表面已经有较多的成核点,从而可以节约锌的沉积准备时间,提高锌的沉积效率,导电材料的添加不仅可以提高电极的活性,还可以提高电极的导电性,降低电池的内阻,提高电池效率;添加剂作用主要是提高电极的析氢过电位,抑制锌枝晶的形成和优化电池充放电过程的截面电流分布。与目前使用的石墨类电极和金属锌电极相比,本发明的复合负极板具有电化学活性高、析氢电位高,可明显提高电池的能量效率和使用寿命,实验结果表明:本发明的复合负极板组装成电池,使用100mA电流进行充放电测试,电池的循环次数达到550次以上,电池平均电压效率为88.4%,平均库伦效率为96.4%,平均能量效率为82.9%。The present invention firstly provides a composite negative plate of a cerium-zinc redox flow battery. The composite negative plate is coated with a high-activity layer on the surface of a metal titanium plate with high corrosion resistance. Due to the high mechanical properties of the metal titanium plate, it is beneficial to The battery stack is assembled, and the active layer has high electrical conductivity and high hydrogen evolution overpotential. The activator is a mixture of zinc powder and conductive material. The addition of zinc powder is to ensure that when zinc is deposited, there is already more The nucleation point, which can save the preparation time of zinc deposition, improve the deposition efficiency of zinc, the addition of conductive materials can not only improve the activity of the electrode, but also improve the conductivity of the electrode, reduce the internal resistance of the battery, and improve the efficiency of the battery; additives The main function is to increase the hydrogen evolution overpotential of the electrode, inhibit the formation of zinc dendrites and optimize the cross-sectional current distribution of the battery charge and discharge process. Compared with the currently used graphite electrodes and metal zinc electrodes, the composite negative plate of the present invention has high electrochemical activity and high hydrogen evolution potential, which can significantly improve the energy efficiency and service life of the battery. Experimental results show that: the composite negative plate of the present invention The board is assembled into a battery, and the charge and discharge test is carried out with a current of 100mA. The cycle number of the battery reaches more than 550 times, the average voltage efficiency of the battery is 88.4%, the average Coulombic efficiency is 96.4%, and the average energy efficiency is 82.9%.
本发明还提供一种铈锌氧化还原液流电池复合负极板的制备方法,该方法利用粘结剂聚偏氟乙烯(PVDF)或聚四氟乙烯(PTFE)将活性较高的锌粉以及导电材料,配合适量的氧化铋、氧化铟、氧化钛、氧化铈等添加剂,涂覆在耐蚀性较高的钛或钛金属合金材料板,制备铈锌液流电池复合负极板,该制备方法工艺简单、成本低廉。The present invention also provides a method for preparing a composite negative plate of a cerium-zinc redox flow battery. In the method, zinc powder with higher activity and conductive The material is mixed with an appropriate amount of additives such as bismuth oxide, indium oxide, titanium oxide, and cerium oxide, and is coated on a titanium or titanium metal alloy material plate with high corrosion resistance to prepare a composite negative plate for a cerium-zinc flow battery. The preparation method Simple and inexpensive.
附图说明Description of drawings
图1为本发明的铈锌氧化还原液流电池复合负极板单片电极示意图;1 is a schematic diagram of a monolithic electrode of a composite negative plate of a cerium-zinc redox flow battery of the present invention;
其中,1、金属钛板,2、表面活性层。Among them, 1. Metal titanium plate, 2. Surface active layer.
具体实施方式Detailed ways
本发明首先提供一种铈锌氧化还原液流电池复合负极板,如图1所示,该复合负极板包括金属钛板1和表面活性层2,所述的表面活性层2由粘结剂、活化剂和添加剂组成,所述的粘结剂为聚偏氟乙烯(PVDF)或聚四氟乙烯(PTFE),活化剂为锌粉和导电材料的混合物,所述的导电材料优选选自活性炭、石墨烯或乙炔黑中的一种或几种,更优选为活性炭或乙炔黑,所述的活化剂中锌粉和导电材料的重量份数比优选为(1~5):1,更优选为(1.5~3):1;添加剂为氧化铟、氧化锡、氧化铋、氧化钛或氧化铈中的一种或几种,所述的粘结剂、活化剂和添加剂重量份数比为(5~15):(50~90):(5~50),优选为(5~10):(60~80):(20~40)。The present invention firstly provides a composite negative plate of a cerium-zinc redox flow battery. As shown in FIG. Activator and additive composition, described binding agent is polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), and activator is the mixture of zinc powder and conductive material, and described conductive material is preferably selected from activated carbon, One or more of graphene or acetylene black, more preferably activated carbon or acetylene black, the weight ratio of zinc powder and conductive material in the activator is preferably (1-5): 1, more preferably (1.5~3): 1; the additive is one or more of indium oxide, tin oxide, bismuth oxide, titanium oxide or cerium oxide, and the weight ratio of the binder, activator and additive is (5 -15): (50-90): (5-50), preferably (5-10): (60-80): (20-40).
所述的表面活性层在金属钛板表面的涂量优选为50~300mg/cm2,更优选为100~200mg/cm2,最优选为120~160mg/cm2。The coating amount of the surface active layer on the surface of the metal titanium plate is preferably 50-300 mg/cm 2 , more preferably 100-200 mg/cm 2 , most preferably 120-160 mg/cm 2 .
本发明所述的金属钛板力学性能较高,有利于电池堆组装,活性层具有较高的电导率和高的析氢过电位,所述的活化剂为锌粉和导电材料的混合物,锌粉的加入是保证锌在沉积时,电极表面已经有较多的成核点,从而可以节约锌的沉积准备时间,提高锌的沉积效率,导电材料的添加不仅可以提高电极的活性,还可以提高电极的导电性,降低电池的内阻,提高电池效率;添加剂作用主要有三点:一是其比锌的电位高,在充放电过程中沉积在锌表面,可以避免锌的溶解;二是具有较高的析氢过电位,其存在不会促进氢释放,却可能抑制氢气反应;三是可以使锌的沉积更加均匀。The metal titanium plate of the present invention has high mechanical properties, which is beneficial to the assembly of the battery stack. The active layer has high electrical conductivity and high hydrogen evolution overpotential. The activator is a mixture of zinc powder and conductive materials, zinc powder The addition of zinc is to ensure that there are more nucleation points on the electrode surface when zinc is deposited, which can save the preparation time for zinc deposition and improve the deposition efficiency of zinc. The addition of conductive materials can not only improve the activity of the electrode, but also improve the electrode surface. The conductivity of the battery reduces the internal resistance of the battery and improves the efficiency of the battery; the additive has three main functions: one is that it has a higher potential than zinc, and it is deposited on the surface of zinc during charge and discharge, which can avoid the dissolution of zinc; the other is that it has a higher The hydrogen evolution overpotential of , its existence will not promote the release of hydrogen, but may inhibit the hydrogen reaction; the third is to make the deposition of zinc more uniform.
本发明还提供一种铈锌氧化还原液流电池复合负极板的制备方法,包括如下:The present invention also provides a method for preparing a composite negative plate of a cerium-zinc redox flow battery, comprising the following steps:
1)按照重量分数计,将粘结剂、活化剂和添加剂混合,得到活性层浆料;所述的粘结剂为聚偏氟乙烯(PVDF)或聚四氟乙烯(PTFE),活化剂为锌粉和导电材料的混合物,所述的导电材料优选选自活性炭、石墨烯或乙炔黑中的一种或几种,更优选为活性炭或乙炔黑,所述的活化剂中锌粉和导电材料的重量份数比优选为(1~5):1,更优选为(1.5~3):1;添加剂为氧化铟、氧化锡、氧化铋、氧化钛或氧化铈中的一种或几种,所述的粘结剂、活化剂和添加剂重量份数比为(5~15):(50~90):(5~50),优选为(5~10):(60~80):(20~40);1) According to the weight fraction, the binder, the activator and the additive are mixed to obtain the active layer slurry; the binder is polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), and the activator is The mixture of zinc powder and conductive material, the conductive material is preferably selected from one or more of activated carbon, graphene or acetylene black, more preferably activated carbon or acetylene black, zinc powder and conductive material in the activator The ratio of parts by weight is preferably (1-5): 1, more preferably (1.5-3): 1; the additive is one or more of indium oxide, tin oxide, bismuth oxide, titanium oxide or cerium oxide, The weight ratio of the binder, activator and additive is (5-15): (50-90): (5-50), preferably (5-10): (60-80): (20 ~40);
2)将步骤1)得到的活性层浆料涂覆在金属钛板的一侧,真空烘干后得到铈锌氧化还原液流电池复合负极板。2) Coating the active layer slurry obtained in step 1) on one side of the metal titanium plate, and drying in vacuum to obtain a composite negative plate for a cerium-zinc redox flow battery.
本发明步骤1)所述的活性层浆料,当粘结剂为聚偏氟乙烯时,将粘结剂、活化剂和添加剂加到有机溶剂中溶解,得到活性层浆料,所述的有机溶剂优选为N-甲基吡咯烷酮;当粘结剂为聚四氟乙烯时,直接将聚四氟乙烯乳液、活化剂和添加剂混合,即得到活性层浆料。For the active layer slurry described in step 1) of the present invention, when the binder is polyvinylidene fluoride, the binder, activator and additives are added to an organic solvent to dissolve to obtain the active layer slurry. The organic The solvent is preferably N-methylpyrrolidone; when the binder is polytetrafluoroethylene, directly mix the polytetrafluoroethylene emulsion, the activator and the additive to obtain the active layer slurry.
本发明所述的表面活性层在金属钛板表面的涂量优选为50~300mg/cm2,更优选为100~200mg/cm2,最优选为120~160mg/cm2。The coating amount of the surface active layer of the present invention on the surface of the metal titanium plate is preferably 50-300 mg/cm 2 , more preferably 100-200 mg/cm 2 , most preferably 120-160 mg/cm 2 .
本发明步骤2)将活性层涂覆在金属钛板上可以常规方法如刷涂、刮涂或喷涂等方法。In step 2 of the present invention, the active layer can be coated on the metal titanium plate by conventional methods such as brushing, scraping or spraying.
本发明将涂敷有活性层浆料的金属钛板进行真空烘干,所述的烘干温度优选为50~120℃,时间为5~24h,真空度为1×10-1~1×10-3MPa,然后保压降温到室温,得到铈锌氧化还原液流电池复合负极板。In the present invention, the metal titanium plate coated with the active layer slurry is vacuum-dried, the drying temperature is preferably 50-120°C, the time is 5-24h, and the vacuum degree is 1×10 −1 to 1×10 -3 MPa, and then keep the pressure and cool down to room temperature to obtain a composite negative plate for a cerium-zinc redox flow battery.
下面结合具体实施例对本发明做进一步详细的描述。The present invention will be further described in detail below in conjunction with specific embodiments.
实施例1Example 1
1)称取粘结剂聚偏氟乙烯0.1g、锌粉0.5g、活性碳0.4g、乙炔黑0.05g,氧化铟、氧化锡和氧化钛各0.1g,加入2000ml的N-甲基吡咯烷酮研磨溶解,得到活性层浆料;1) Weigh 0.1g of binder polyvinylidene fluoride, 0.5g of zinc powder, 0.4g of activated carbon, 0.05g of acetylene black, 0.1g of indium oxide, tin oxide and titanium oxide, add 2000ml of N-methylpyrrolidone and grind Dissolving to obtain the active layer slurry;
2)采用刷涂的方法将上述活性层浆料均匀的涂覆在金属钛板的一侧,制备活性层,活性层在金属钛板表面的涂量为140mg/cm2,对涂覆有活性层的金属钛板进行真空高温烘干处理,烘干温度为70℃,时间为15h,相对真空度为1×10-1MPa,保压降温到室温,得到铈锌氧化还原液流电池复合负极板。如图1所示。2) Apply the above active layer slurry evenly on one side of the metal titanium plate by brushing to prepare the active layer. The coating amount of the active layer on the surface of the metal titanium plate is 140mg/cm 2 , which is active for coating The metal titanium plate on the first layer is subjected to vacuum high-temperature drying treatment, the drying temperature is 70°C, the drying time is 15h, the relative vacuum degree is 1×10 -1 MPa, the pressure is kept and the temperature is lowered to room temperature, and the composite negative electrode of the cerium-zinc redox flow battery is obtained plate. As shown in Figure 1.
将实施例1得到的铈锌氧化还原液流电池复合负极板与正极石墨毡电极配合组装电池,使用40mA电流进行充放电,电池的循环次数达到200次以上,电池平均电压效率为87.1%,平均库伦效率为94.7%,平均能量效率为80.4%。The cerium-zinc redox flow battery composite negative plate obtained in Example 1 is combined with the positive graphite felt electrode to assemble the battery, and a 40mA current is used to charge and discharge. The number of cycles of the battery reaches more than 200 times, and the average voltage efficiency of the battery is 87.1%. The Coulombic efficiency is 94.7%, and the average energy efficiency is 80.4%.
实施例2Example 2
1)称取粘结剂聚偏氟乙烯0.08g、锌粉0.6g、活性碳0.15g、乙炔黑0.05g,氧化锡、氧化铋、氧化钛和氧化铈各0.1g,加入2000ml的N-甲基吡咯烷酮研磨溶解,得到活性层浆料;1) Weigh 0.08g of binder polyvinylidene fluoride, 0.6g of zinc powder, 0.15g of activated carbon, 0.05g of acetylene black, 0.1g each of tin oxide, bismuth oxide, titanium oxide and cerium oxide, and add 2000ml of N-formazan Grinding and dissolving base pyrrolidone to obtain active layer slurry;
2)采用刮涂的方法将上述活性层浆料均匀的涂覆在金属钛板的一侧,制备活性层,活性层在金属钛板表面的涂量为135mg/cm2,对涂覆有活性层的金属钛板进行真空烘干处理,烘干温度为80℃,时间为10h,相对真空度为1×10-3MPa,保压降温到室温,得到铈锌氧化还原液流电池复合负极板。2) Apply the above active layer slurry evenly on one side of the metal titanium plate by scraping to prepare the active layer. The coating amount of the active layer on the surface of the metal titanium plate is 135mg/cm 2 , which is active for coating The metal titanium plate on the first layer was vacuum dried at a temperature of 80°C for 10 hours, with a relative vacuum of 1×10 -3 MPa, and was kept under pressure and cooled to room temperature to obtain a composite negative plate for a cerium-zinc redox flow battery. .
将实施例2得到的铈锌氧化还原液流电池复合负极板与正极石墨电极配合组装电池,使用80mA电流进行充放电,电池的循环次数达到100次以上,电池平均电压效率为84.1%,平均库伦效率为90.4%,平均能量效率为75.7%。The composite negative plate of the cerium-zinc redox flow battery obtained in Example 2 is combined with the positive graphite electrode to assemble the battery, and a current of 80 mA is used to charge and discharge. The number of cycles of the battery reaches more than 100 times, the average voltage efficiency of the battery is 84.1%, and the average Coulomb The efficiency is 90.4%, and the average energy efficiency is 75.7%.
实施例3Example 3
1)称取粘结剂聚偏氟乙烯0.1g,锌粉0.5g,活性碳0.1g,乙炔黑0.1g,氧化铟、氧化钛和氧化铈各0.1g,加入2000ml的N-甲基吡咯烷酮研磨溶解,得到活性层浆料;1) Weigh 0.1g of binder polyvinylidene fluoride, 0.5g of zinc powder, 0.1g of activated carbon, 0.1g of acetylene black, 0.1g each of indium oxide, titanium oxide and cerium oxide, add 2000ml of N-methylpyrrolidone and grind Dissolving to obtain the active layer slurry;
2)采用刷涂的方法将上述活性层浆料均匀的涂覆在金属钛板的一侧,制备活性层,活性层在金属钛板表面的涂量为120mg/cm2,对涂覆有活性层的金属钛板进行高温烘干处理,烘干温度为80℃,时间为12h,相对真空度为1×10-2MPa,保压降温到室温,得到铈锌氧化还原液流电池复合负极板。2) Apply the above active layer slurry evenly on one side of the metal titanium plate by brushing to prepare the active layer. The coating amount of the active layer on the surface of the metal titanium plate is 120mg/cm 2 , which is active for coating The metal titanium plate on the first layer is dried at high temperature at 80°C for 12 hours, the relative vacuum is 1×10 -2 MPa, and the temperature is kept at room temperature to obtain the composite negative plate of the cerium-zinc redox flow battery. .
将实施例3得到的铈锌氧化还原液流电池复合负极板与正极石墨毡电极配合组装电池,使用100mA电流进行充放电测试,电池的循环次数达到550次以上,电池平均电压效率为88.4%,平均库伦效率为96.4%,平均能量效率为82.9%。The cerium-zinc redox flow battery composite negative plate obtained in Example 3 is combined with the positive graphite felt electrode to assemble the battery, and a 100mA current is used for charge and discharge tests. The number of cycles of the battery reaches more than 550 times, and the average voltage efficiency of the battery is 88.4%. The average Coulombic efficiency is 96.4%, and the average energy efficiency is 82.9%.
实施例4Example 4
1)称取锌粉0.45g、活性碳0.2g,氧化铋、氧化钛和氧化铈各0.1g,加入2000ml聚四氟乙烯乳液,得到活性层浆料,其中聚四氟乙烯乳液含有聚四氟乙烯质量为0.1g;1) Weigh 0.45g of zinc powder, 0.2g of activated carbon, 0.1g each of bismuth oxide, titanium oxide and cerium oxide, and add 2000ml of polytetrafluoroethylene emulsion to obtain the active layer slurry, wherein the polytetrafluoroethylene emulsion contains polytetrafluoroethylene The mass of ethylene is 0.1g;
2)采用刷涂的方法将上述活性层浆料均匀的涂覆在金属钛板的一侧,制备活性层,活性层在金属钛板表面的涂量为160mg/cm2,对涂覆有活性层的金属钛板进行真空高温烘干处理,烘干温度为120℃,时间为20h,相对真空度为1×10-2MPa,保压降温到室温,得到铈锌氧化还原液流电池复合负极板。2) Apply the above active layer slurry evenly on one side of the metal titanium plate by brushing to prepare the active layer. The coating amount of the active layer on the surface of the metal titanium plate is 160mg/cm 2 , which is active for coating The metal titanium plate on the first layer is subjected to vacuum high-temperature drying treatment, the drying temperature is 120°C, the drying time is 20h, the relative vacuum degree is 1×10 -2 MPa, the pressure is kept and the temperature is lowered to room temperature, and the composite negative electrode of the cerium-zinc redox flow battery is obtained plate.
将实施例4得到的铈锌氧化还原液流电池复合负极板与正极石墨毡电极配合组装电池,使用100mA电流进行充放电测试,电池的循环次数达到170次以上,电池平均电压效率为84.4%,平均库伦效率为97.4%,平均能量效率为82.0%。The cerium-zinc redox flow battery composite negative plate obtained in Example 4 is combined with the positive graphite felt electrode to assemble the battery, and a 100mA current is used for charge and discharge tests. The number of cycles of the battery reaches more than 170 times, and the average voltage efficiency of the battery is 84.4%. The average Coulombic efficiency is 97.4%, and the average energy efficiency is 82.0%.
实施例5Example 5
1)称取锌粉0.5g、活性碳0.1g,氧化铟、氧化钛和氧化铈各0.1g,加入1500ml聚四氟乙烯乳液得到活性层浆料,其中聚四氟乙烯乳液含有聚四氟乙烯质量为0.075g;1) Weigh 0.5g of zinc powder, 0.1g of activated carbon, 0.1g each of indium oxide, titanium oxide and cerium oxide, and add 1500ml of polytetrafluoroethylene emulsion to obtain the active layer slurry, wherein the polytetrafluoroethylene emulsion contains polytetrafluoroethylene Mass is 0.075g;
2)采用刷涂的方法将上述活性层浆料均匀的涂覆在金属钛板的一侧,制备活性层,活性层在金属钛板表面的涂量为160mg/cm2,对涂覆有活性层的金属钛板进行常压高温烘干处理,烘干温度为120℃,时间为24h,保压降温到室温,得到铈锌氧化还原液流电池复合负极板。2) Apply the above active layer slurry evenly on one side of the metal titanium plate by brushing to prepare the active layer. The coating amount of the active layer on the surface of the metal titanium plate is 160mg/cm 2 , which is active for coating The metal titanium plate on the first layer was dried under normal pressure and high temperature, the drying temperature was 120°C, the drying time was 24h, and the pressure was maintained and the temperature was lowered to room temperature to obtain the composite negative plate of the cerium-zinc redox flow battery.
将实施例5得到的铈锌氧化还原液流电池复合负极板与正极石墨毡电极配合组装电池,使用100mA电流进行充放电测试,电池的循环次数达到120次以上,电池平均电压效率为78.2%,平均库伦效率为90.1%,平均能量效率为68.4%。The cerium-zinc redox flow battery composite negative plate obtained in Example 5 is combined with the positive graphite felt electrode to assemble the battery, and a 100mA current is used for charge and discharge tests. The number of cycles of the battery reaches more than 120 times, and the average voltage efficiency of the battery is 78.2%. The average Coulombic efficiency is 90.1%, and the average energy efficiency is 68.4%.
实施例6Example 6
1)称取粘结剂聚偏氟乙烯0.05g、锌粉0.3g、活性碳0.15g、乙炔黑0.05g,氧化铟、氧化钛和氧化铈各0.02g,加入800ml的N-甲基吡咯烷酮研磨溶解,得到活性层浆料;1) Weigh 0.05g of binder polyvinylidene fluoride, 0.3g of zinc powder, 0.15g of activated carbon, 0.05g of acetylene black, 0.02g of indium oxide, titanium oxide and cerium oxide, add 800ml of N-methylpyrrolidone and grind Dissolving to obtain the active layer slurry;
2)采用刮涂的方法将上述活性层浆料均匀的涂覆在金属钛板的一侧,制备活性层,活性层在金属钛板表面的涂量为120mg/cm2,对涂覆有活性层的金属钛板进行真空烘干处理,烘干温度为80℃,时间为10h,相对真空度为1×10-3MPa,保压降温到室温,得到铈锌氧化还原液流电池复合负极板。2) Apply the above active layer slurry evenly on one side of the metal titanium plate by scraping to prepare the active layer. The coating amount of the active layer on the surface of the metal titanium plate is 120mg/cm 2 , which is active for coating The metal titanium plate on the first layer was vacuum dried at a temperature of 80°C for 10 hours, with a relative vacuum of 1×10 -3 MPa, and was kept under pressure and cooled to room temperature to obtain a composite negative plate for a cerium-zinc redox flow battery. .
将实施例6得到的铈锌氧化还原液流电池复合负极板与正极石墨电极配合组装电池,使用80mA电流进行充放电,电池的循环次数达到80次以上,电池平均电压效率为78.6%,平均库伦效率为93.4%,平均能量效率为72.7%。The cerium-zinc redox flow battery composite negative plate obtained in Example 6 is combined with the positive graphite electrode to assemble the battery, and a current of 80mA is used to charge and discharge. The number of cycles of the battery reaches more than 80 times, the average voltage efficiency of the battery is 78.6%, and the average Coulomb The efficiency is 93.4%, and the average energy efficiency is 72.7%.
实施例7Example 7
1)称取粘结剂聚偏氟乙烯0.15g、锌粉0.5g、活性碳0.2g、乙炔黑0.2g,氧化铟、氧化钛和氧化铈各0.15g,加入2200ml的N-甲基吡咯烷酮研磨溶解,得到活性层浆料;1) Weigh 0.15g of binder polyvinylidene fluoride, 0.5g of zinc powder, 0.2g of activated carbon, 0.2g of acetylene black, 0.15g each of indium oxide, titanium oxide and cerium oxide, add 2200ml of N-methylpyrrolidone and grind Dissolving to obtain the active layer slurry;
2)采用刮涂的方法将上述活性层浆料均匀的涂覆在金属钛板的一侧,制备活性层,活性层在金属钛板表面的涂量为120mg/cm2,对涂覆有活性层的金属钛板进行真空烘干处理,烘干温度为80℃,时间为10h,相对真空度为1×10-3MPa,保压降温到室温,得到铈锌氧化还原液流电池复合负极板。2) Apply the above active layer slurry evenly on one side of the metal titanium plate by scraping to prepare the active layer. The coating amount of the active layer on the surface of the metal titanium plate is 120mg/cm 2 , which is active for coating The metal titanium plate on the first layer was vacuum dried at a temperature of 80°C for 10 hours, with a relative vacuum of 1×10 -3 MPa, and was kept under pressure and cooled to room temperature to obtain a composite negative plate for a cerium-zinc redox flow battery. .
将实施例7得到的铈锌氧化还原液流电池复合负极板与正极石墨电极配合组装电池,使用120mA电流进行充放电,电池的循环次数达到300次以上,电池平均电压效率为87.2%,平均库伦效率为85.2%,平均能量效率为73.8%。The cerium-zinc redox flow battery composite negative plate obtained in Example 7 is combined with the positive graphite electrode to assemble the battery, and the battery is charged and discharged with a current of 120mA. The number of cycles of the battery reaches more than 300 times, the average voltage efficiency of the battery is 87.2%, and the average Coulomb The efficiency is 85.2%, and the average energy efficiency is 73.8%.
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。The descriptions of the above embodiments are only used to help understand the method and core idea of the present invention. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310179939.4A CN103259024B (en) | 2013-05-16 | 2013-05-16 | Cerium zinc redox flow batteries composite negative plate and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310179939.4A CN103259024B (en) | 2013-05-16 | 2013-05-16 | Cerium zinc redox flow batteries composite negative plate and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103259024A CN103259024A (en) | 2013-08-21 |
CN103259024B true CN103259024B (en) | 2015-11-18 |
Family
ID=48962822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310179939.4A Expired - Fee Related CN103259024B (en) | 2013-05-16 | 2013-05-16 | Cerium zinc redox flow batteries composite negative plate and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103259024B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023200652A1 (en) * | 2022-04-15 | 2023-10-19 | Washington University | Electrode-decoupled redox flow battery |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103794813B (en) * | 2014-03-07 | 2015-12-02 | 江西理工大学 | Europium cerium flow battery |
CN108963241B (en) * | 2017-05-19 | 2021-07-13 | 苏州宝时得电动工具有限公司 | Battery, battery pack and uninterruptible power supply |
CN110364732B (en) * | 2018-04-10 | 2020-11-20 | 浙江浙能中科储能科技有限公司 | A composite zinc negative electrode with an inorganic functional modification layer in an aqueous battery and its preparation method and application |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1649201A (en) * | 2004-02-23 | 2005-08-03 | 松下电器产业株式会社 | Alkaline storage battery and its manufacturing method |
CN101098003A (en) * | 2006-06-26 | 2008-01-02 | 中银(宁波)电池有限公司 | Alkaline battery cathode additive agent |
CN101388558A (en) * | 2008-11-12 | 2009-03-18 | 安徽风日光电科技有限责任公司 | Intelligent control device for uncertain energy conversion, storage and utilization |
CN101533908A (en) * | 2009-04-02 | 2009-09-16 | 浙江理工大学 | Alkaline zinc-based secondary battery cathode material and preparation method thereof |
CN101567459A (en) * | 2008-04-25 | 2009-10-28 | 北京化工大学 | Acid single flow cell |
CN102024994A (en) * | 2010-11-30 | 2011-04-20 | 辽宁九夷三普电池有限公司 | Nickel-zinc secondary battery and preparation method thereof |
CN102244285A (en) * | 2011-05-24 | 2011-11-16 | 周成壁 | High-concentration zinc-vanadium redox battery |
-
2013
- 2013-05-16 CN CN201310179939.4A patent/CN103259024B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1649201A (en) * | 2004-02-23 | 2005-08-03 | 松下电器产业株式会社 | Alkaline storage battery and its manufacturing method |
CN101098003A (en) * | 2006-06-26 | 2008-01-02 | 中银(宁波)电池有限公司 | Alkaline battery cathode additive agent |
CN101567459A (en) * | 2008-04-25 | 2009-10-28 | 北京化工大学 | Acid single flow cell |
CN101388558A (en) * | 2008-11-12 | 2009-03-18 | 安徽风日光电科技有限责任公司 | Intelligent control device for uncertain energy conversion, storage and utilization |
CN101533908A (en) * | 2009-04-02 | 2009-09-16 | 浙江理工大学 | Alkaline zinc-based secondary battery cathode material and preparation method thereof |
CN102024994A (en) * | 2010-11-30 | 2011-04-20 | 辽宁九夷三普电池有限公司 | Nickel-zinc secondary battery and preparation method thereof |
CN102244285A (en) * | 2011-05-24 | 2011-11-16 | 周成壁 | High-concentration zinc-vanadium redox battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023200652A1 (en) * | 2022-04-15 | 2023-10-19 | Washington University | Electrode-decoupled redox flow battery |
Also Published As
Publication number | Publication date |
---|---|
CN103259024A (en) | 2013-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103839694B (en) | A kind of preparation method of Graphene/metal collector | |
CN103296275B (en) | Carbon-material-coatlead lead powder composite material and application thereof | |
CN106960945B (en) | Lithium-rich negative plate and secondary battery | |
WO2019052572A1 (en) | Microcapsule type silicon-carbon composite negative electrode material, and preparation method therefor and application thereof | |
WO2017020860A1 (en) | Battery, battery set and uninterruptable power source | |
CN110233240B (en) | Lithium ion battery negative plate, preparation method thereof and lithium ion battery | |
CN104795564B (en) | A kind of positive electrode of Aqueous solution secondary battery, pole piece, secondary cell and purposes | |
CN109755498B (en) | An iron-based negative electrode additive for an alkaline secondary battery, a preparation method, an iron-based negative electrode plate using the additive, and applications thereof | |
WO2014206352A1 (en) | Electrolytic solution and battery | |
CN103779569A (en) | Lithium ion battery anode sheet and preparation method thereof | |
CN204360933U (en) | Super lithium-ion capacitor | |
CN107359352A (en) | A kind of negative electrode of lithium ion battery electrode slice and preparation method thereof and lithium ion battery | |
CN114566650B (en) | Sodium-supplementing additive for positive electrode of sodium ion battery, sodium-supplementing method, positive electrode and flexible electrode | |
CN106229465B (en) | A kind of negative electrode of lithium ion battery and preparation method thereof based on 1,4- naphthalene diacid cobalts | |
CN104701541A (en) | A kind of WS2 makes positive aluminum ion battery and preparation method thereof | |
WO2022199505A1 (en) | Negative electrode, preparation method therefor, and application thereof | |
CN103259024B (en) | Cerium zinc redox flow batteries composite negative plate and preparation method thereof | |
CN102368543A (en) | A lithium ion battery negative pole and a lithium ion battery using the negative pole | |
CN111785972A (en) | A kind of positive electrode material of zinc ion battery and its preparation method and application | |
CN116014073A (en) | Negative electrode plate of sodium ion battery, sodium ion battery and application | |
CN115863537A (en) | Composite negative plate and preparation method thereof, and lithium ion battery and preparation method thereof | |
CN111063875A (en) | A kind of sponge-like porous structure silicon-based composite material and preparation method thereof | |
CN110828779A (en) | Lithium ion battery negative plate, preparation method thereof and lithium ion battery | |
CN110444809A (en) | A kind of composite electrolyte piece and preparation method thereof and solid state battery | |
CN108364806A (en) | A kind of tree-shaped three-dimensional structure metal material and preparation method thereof and application in the battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151118 |
|
CF01 | Termination of patent right due to non-payment of annual fee |