CN103247075A - Variational mechanism-based indoor scene three-dimensional reconstruction method - Google Patents
Variational mechanism-based indoor scene three-dimensional reconstruction method Download PDFInfo
- Publication number
- CN103247075A CN103247075A CN201310173608XA CN201310173608A CN103247075A CN 103247075 A CN103247075 A CN 103247075A CN 201310173608X A CN201310173608X A CN 201310173608XA CN 201310173608 A CN201310173608 A CN 201310173608A CN 103247075 A CN103247075 A CN 103247075A
- Authority
- CN
- China
- Prior art keywords
- camera
- current
- formula
- point
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Processing Or Creating Images (AREA)
- Image Analysis (AREA)
Abstract
本发明属于计算机视觉与智能机器人的交叉领域,公开了一种基于变分机制的大范围室内场景的重建方法,包括:步骤一,获取相机的标定参数,并建立畸变矫正模型;步骤二,建立相机位姿描述与相机投影模型;步骤三,利用基于SFM的单目SLAM算法实现相机位姿估计;步骤四,建立基于变分机制的深度图估计模型,并求解该模型;步骤五,建立关键帧选取机制,实现三维场景的更新。本发明采用RGB相机获取环境数据,针对利用高精度单目定位算法,提出了一种基于变分机制的深度图生成方法,实现了大范围的快速室内三维场景重建,有效地解决了三维重建算法成本与实时性问题。
The invention belongs to the intersecting field of computer vision and intelligent robot, and discloses a reconstruction method of a large-scale indoor scene based on a variational mechanism, including: step 1, obtaining calibration parameters of a camera, and establishing a distortion correction model; step 2, establishing Camera pose description and camera projection model; step 3, use the SFM-based monocular SLAM algorithm to realize camera pose estimation; step 4, establish a depth map estimation model based on a variational mechanism, and solve the model; step 5, establish a key The frame selection mechanism realizes the update of the 3D scene. The present invention uses RGB cameras to acquire environmental data, and proposes a depth map generation method based on a variational mechanism for the use of high-precision monocular positioning algorithms, which realizes large-scale rapid indoor 3D scene reconstruction and effectively solves the 3D reconstruction algorithm Cost and timeliness issues.
Description
技术领域technical field
本发明属于计算机视觉与智能机器人的交叉领域,涉及一种室内环境三维重建技术,尤其涉及一种基于变分机制的大范围室内场景的重建方法。The invention belongs to the intersecting field of computer vision and intelligent robots, relates to a three-dimensional reconstruction technology of an indoor environment, and in particular relates to a reconstruction method of a large-scale indoor scene based on a variational mechanism.
技术背景technical background
随着同时定位与地图创建(Simultaneous Localization And Mapping,SLAM)研究的不断深入,环境三维立体化建模已逐步成为该领域研究热点,引起众多学者的关注。G.Klein等于2007年在增强现实(AR)领域首先提出同时定位与地图创建(Parallel Tracking and Mapping,PTAM)的概念,以解决环境实时建模问题。PTAM将摄像机跟踪与地图生成划分为两个独立线程,利用FastCorner方法更新检测特征点的同时,采用最优的局部与全局光束平差法(Bundle Adjustment,BA),不断实现相机位姿与三维特征点地图的更新。该方法基于稀疏点云建立了环境三维地图,但该地图缺乏对环境的直观三维描述。Pollefeys等人通过多传感器融合实现了大型室外场景的三维重建。但该方法存在计算的高复杂性以及对噪音敏感等缺点。目前在实时跟踪和稠密环境模型重构方面也有了一些尝试性的进步,但是仅仅局限于一些简单物体的重构,并且只能在特定约束条件下可以获得较高的精度。Richard A.Newcombe等人,利用基于SFM(Structure from Moving)的SLAM算法获取空间稀疏特征点云,采用多尺度径向基插值,运用图形图像学中隐式曲面多边形化方法,构造三维空间初始化网格地图,并结合场景流约束与高精度TV-L1光流算法更新网格顶点坐标,以达到逼近真实场景的目的。该算法能获取高精度的环境模型,但由于其算法复杂度较高,在两个图形硬件处理器(GPU)加速情况下,处理一帧图像仍需花费几秒钟的时间。With the continuous deepening of Simultaneous Localization And Mapping (SLAM) research, three-dimensional environmental modeling has gradually become a research hotspot in this field, attracting the attention of many scholars. In 2007, G. Klein et al. first proposed the concept of simultaneous positioning and map creation (Parallel Tracking and Mapping, PTAM) in the field of augmented reality (AR) to solve the problem of real-time modeling of the environment. PTAM divides camera tracking and map generation into two independent threads, uses the FastCorner method to update the detection feature points, and uses the optimal local and global bundle adjustment (Bundle Adjustment, BA) to continuously realize the camera pose and 3D features Point map updates. This method builds a 3D map of the environment based on sparse point clouds, but the map lacks an intuitive 3D description of the environment. Pollefeys et al. achieved 3D reconstruction of large outdoor scenes through multi-sensor fusion. However, this method has disadvantages such as high computational complexity and sensitivity to noise. At present, there have been some tentative progress in real-time tracking and reconstruction of dense environment models, but they are only limited to the reconstruction of some simple objects, and can only obtain high accuracy under certain constraints. Richard A. Newcombe et al. used the SFM (Structure from Moving) SLAM algorithm to obtain spatially sparse feature point clouds, adopted multi-scale radial basis interpolation, and used the implicit surface polygonization method in graphics and imaging to construct a three-dimensional space initialization network. Grid map, combined with scene flow constraints and high-precision TV-L1 optical flow algorithm to update grid vertex coordinates, in order to achieve the purpose of approaching the real scene. This algorithm can obtain a high-precision environment model, but due to its high algorithm complexity, it still takes a few seconds to process one frame of image under the acceleration of two graphics hardware processors (GPU).
发明内容Contents of the invention
针对现有技术中存在的上述问题,本发明提供了一种基于变分机制的快速三维重建方法,以实现在室内复杂环境下的三维建模。该方法保证环境信息的同时降低了所需处理数据量,能实现大范围的快速室内三维场景重建。有效地解决了三维重建算法成本与实时性问题,提高了重建精度。Aiming at the above-mentioned problems in the prior art, the present invention provides a fast 3D reconstruction method based on a variational mechanism to realize 3D modeling in complex indoor environments. This method reduces the amount of data to be processed while ensuring the environmental information, and can realize rapid indoor three-dimensional scene reconstruction in a large range. It effectively solves the cost and real-time problems of the 3D reconstruction algorithm, and improves the reconstruction accuracy.
本发明采用的技术方案如下:The technical scheme that the present invention adopts is as follows:
利用PTAM算法作为相机位姿估计手段,并在关键帧处选取适当图像序列构造基于变分模式的深度图估计能量函数,运用原始对偶算法优化上述能量函数,实现在当前关键帧处环境深度图的获取。由于该算法利用邻近帧信息构造能量函数,且有效利用了特定视角坐标系统间的关联性,以及摄像机透视投影变换关系,使得数据项蕴含了多视成像约束,降低了算法模型求解的计算复杂度。在统一计算架构下,本发明利用图形加速硬件实现了算法的并行优化,有效提高了算法实时性。The PTAM algorithm is used as the camera pose estimation method, and an appropriate image sequence is selected at the key frame to construct a depth map estimation energy function based on the variational mode, and the primal dual algorithm is used to optimize the above energy function to realize the environment depth map at the current key frame. Obtain. Since the algorithm uses adjacent frame information to construct energy functions, and effectively utilizes the correlation between coordinate systems of specific viewing angles and the camera perspective projection transformation relationship, the data items contain multi-view imaging constraints, which reduces the computational complexity of the algorithm model solution . Under the unified computing framework, the invention realizes the parallel optimization of the algorithm by using the graphics acceleration hardware, and effectively improves the real-time performance of the algorithm.
一种基于变分机制的室内环境三维重建的方法,其特征在于包括以下步骤:A method for three-dimensional reconstruction of an indoor environment based on a variational mechanism, characterized in that it comprises the following steps:
步骤一,获取相机的标定参数,并建立畸变矫正模型。
在计算机视觉应用中,通过相机成像的几何模型,有效建立图像中像素点与空间三维点之间的映射关系。构成相机模型的几何参数须通过实验与计算才能得到,求解上述参数的过程就称之为相机标定。在本发明中相机参数的标定是非常关键的环节,标定参数的精度直接影响最终结果三维地图的准确性。In computer vision applications, through the geometric model of camera imaging, the mapping relationship between pixels in the image and three-dimensional points in space is effectively established. The geometric parameters that constitute the camera model must be obtained through experiments and calculations. The process of solving the above parameters is called camera calibration. In the present invention, the calibration of the camera parameters is a very critical link, and the accuracy of the calibration parameters directly affects the accuracy of the final three-dimensional map.
相机标定的具体过程为:The specific process of camera calibration is as follows:
(1)打印一张棋盘模板。本发明采用一张A4纸,棋盘的间隔为0.25cm。(1) Print a chessboard template. The present invention adopts a piece of A4 paper, and the interval of chessboard is 0.25cm.
(2)从多个角度拍摄棋盘。拍摄时,应尽量让棋盘占满屏幕,并保证棋盘的每一个角都在屏幕中,一共拍摄6张模板图片。(2) Photograph the chessboard from multiple angles. When shooting, try to make the chessboard fill the screen as much as possible, and ensure that every corner of the chessboard is on the screen, and shoot a total of 6 template pictures.
(3)检测出图像中的特征点,即棋盘的每一个黑色交叉点。(3) Detect the feature points in the image, that is, every black intersection of the chessboard.
(4)求取相机的内部参数,方法如下:(4) Obtain the internal parameters of the camera, the method is as follows:
RGB相机标定参数主要为相机内参。相机的内参矩阵K为:RGB camera calibration parameters are mainly camera internal parameters. The internal parameter matrix K of the camera is:
式中,u、v为相机平面坐标轴,(u0,v0)是相机像平面中心坐标,(fu,fv)是相机的焦距。In the formula, u and v are the coordinate axes of the camera plane, (u 0 , v 0 ) is the center coordinate of the camera image plane, and (f u , f v ) is the focal length of the camera.
根据标定参数,RGB图像中点与三维空间点的映射关系如下:RGB图像中点p=(u,v)在相机坐标系下的坐标P3D=(x,y,z)表示为:According to the calibration parameters, the mapping relationship between the point in the RGB image and the point in the three-dimensional space is as follows: the coordinate P 3D = (x, y, z) of the point p in the RGB image = (u, v) in the camera coordinate system is expressed as:
式中,d表示深度图像中点p的深度值。where d represents the depth value of point p in the depth image.
本发明中相机坐标系如图2所示,向下为y轴正方向,向前为z轴正方向,向右为x正方向。将相机的起始点位置设定为世界坐标系原点,世界坐标系的X、Y、Z方向与相机的定义相同。In the present invention, the camera coordinate system is shown in FIG. 2 , downward is the positive direction of the y-axis, forward is the positive direction of the z-axis, and rightward is the positive direction of the x-axis. Set the starting point of the camera as the origin of the world coordinate system. The X, Y, and Z directions of the world coordinate system are the same as those defined by the camera.
FOV(Field of Viewer)相机矫正模型为:The FOV (Field of Viewer) camera correction model is:
式中,xu为z=1面的像素坐标,ud为原始图像中像素坐标,ω为FOV相机畸变系数。In the formula, x u is the pixel coordinates of z=1 plane, u d is the pixel coordinates in the original image, and ω is the FOV camera distortion coefficient.
步骤二,建立相机位姿描述与相机投影模型。Step 2, establish the camera pose description and camera projection model.
在已建立起的世界坐标系下,相机位姿可以表示为如下矩阵:In the established world coordinate system, the camera pose can be expressed as the following matrix:
式中,“cw”表示从世界坐标系到当前相机坐标系,Tcw∈SE(3),SE(3)为刚体的旋转平移变换空间。Tcw可由如下六元组μ=(μ1,μ2,μ3,μ4,μ5,μ6)表示,即:In the formula, "cw" means from the world coordinate system to the current camera coordinate system, T cw ∈ SE(3), SE(3) is the rotation-translation transformation space of the rigid body. T cw can be represented by the following six-tuple μ=(μ 1 , μ 2 , μ 3 , μ 4 , μ 5 , μ 6 ), namely:
式中,μ1,μ2,μ3分别为Kinect在全局坐标系下的平移量,μ4,μ5,μ6表示局部坐标系下坐标轴的旋转量。In the formula, μ 1 , μ 2 , μ 3 are the translation amount of Kinect in the global coordinate system respectively, and μ 4 , μ 5 , μ 6 represent the rotation amount of the coordinate axis in the local coordinate system.
相机的位姿Tcw建立了当前坐标系下空间点云坐标pc到世界坐标pw的变换关系,即:The pose T cw of the camera establishes the transformation relationship from the spatial point cloud coordinates p c to the world coordinates p w in the current coordinate system, namely:
pc=Tcwpw p c =T cw p w
在当前标系下,三维空间点云到z=1平面上投影定义为:Under the current coordinate system, the projection of the 3D space point cloud onto the z=1 plane is defined as:
π(p)=(xz,yz)T π(p)=(xz,yz) T
式中,p∈R3为三维空间点,x,y,z为该点的坐标值。根据当前坐标点深度值d,利用逆向投影法确定当前空间三维点坐标p,其坐标关系可表示为:In the formula, p∈R 3 is a point in three-dimensional space, and x, y, z are the coordinate values of the point. According to the depth value d of the current coordinate point, use the reverse projection method to determine the coordinate p of the three-dimensional point in the current space, and its coordinate relationship can be expressed as:
π-1(u,d)=dK-1uπ -1 (u,d) = dK -1 u
步骤三,利用基于SFM的单目SLAM算法实现相机位姿估计。Step 3, use the SFM-based monocular SLAM algorithm to realize camera pose estimation.
目前,单目视觉SLAM算法主要包括基于滤波与SFM(Structure from Moving)的SLAM算法。本发明采用PTAM算法实现对相机的定位。该算法是一种基于SFM的单目视觉SLAM方法,通过将系统划分为相机跟踪与地图创建两个独立的线程。在相机跟踪线程,系统利用相机获取当前环境纹理信息,并构建四层高斯图像金字塔,运用FAST-10角点检测算法提取当前图像中特征信息,采用块匹配的方式建立角点特征间的数据关联。在此基础上,根据当前投影误差,建立位姿估计模型实现相机的精确定位,并结合特征匹配信息与三角测量算法生成当前三维点云地图。相机位姿估计的具体过程为:At present, monocular vision SLAM algorithms mainly include SLAM algorithms based on filtering and SFM (Structure from Moving). The invention adopts the PTAM algorithm to realize the positioning of the camera. This algorithm is a SFM-based monocular vision SLAM method, which creates two independent threads by dividing the system into camera tracking and map. In the camera tracking thread, the system uses the camera to obtain the current environmental texture information, and constructs a four-layer Gaussian image pyramid, uses the FAST-10 corner detection algorithm to extract feature information in the current image, and uses block matching to establish data association between corner features . On this basis, according to the current projection error, a pose estimation model is established to realize the precise positioning of the camera, and the current 3D point cloud map is generated by combining feature matching information and triangulation algorithm. The specific process of camera pose estimation is as follows:
(1)稀疏地图的初始化(1) Initialization of sparse map
PTAM算法利用标准立体相机算法模型建立当前环境初始化地图,并在此基础上结合新增加关键帧不断更新三维地图。在地图的初始化过程中,通过人为选择两个独立关键帧,利用图像中FAST角点匹配关系,采用基于随机采样一致性(Random Sample Consensus,RANSAC)的五点法实现上述关键帧间重要矩阵F估计,并计算当前特征点处的三维坐标,同时,结合RANSAC算法选取适当空间点建立当前一致性平面,以确定全局世界坐标系,实现地图的初始化。The PTAM algorithm uses the standard stereo camera algorithm model to establish the current environment initialization map, and on this basis, it combines the newly added key frames to continuously update the three-dimensional map. In the initialization process of the map, by artificially selecting two independent key frames, using the FAST corner point matching relationship in the image, and using the five-point method based on Random Sample Consensus (RANSAC) to realize the important matrix F between key frames. Estimate and calculate the three-dimensional coordinates of the current feature points, and at the same time, combine the RANSAC algorithm to select appropriate spatial points to establish the current consistent plane to determine the global world coordinate system and realize the initialization of the map.
(2)相机位姿估计(2) Camera pose estimation
系统利用相机获取当前环境纹理信息,并构建四层高斯图像金字塔,运用FAST-10角点检测算法提取当前图像中特征信息,采用块匹配的方式建立角点特征间数据关联。在此基础上,根据当前投影误差,建立位姿估计模型,其数学描述如下:The system uses the camera to obtain the current environmental texture information, and builds a four-layer Gaussian image pyramid, uses the FAST-10 corner detection algorithm to extract feature information in the current image, and uses block matching to establish data association between corner features. On this basis, according to the current projection error, a pose estimation model is established, and its mathematical description is as follows:
式中,ej是投影误差,∑Obj(·,σT)为Tukey双权目标函数,σT为特征点的匹配标准差的无偏估计值,ξ为当前位姿6元组表示,为由ξ组成的反对称矩阵。In the formula, e j is the projection error, ∑Obj(·,σ T ) is the Tukey dual-weight objective function, σ T is the unbiased estimate of the matching standard deviation of the feature point, ξ is the current pose 6-tuple representation, is an antisymmetric matrix composed of ξ.
根据上述位姿估计模型,选取位于图像金字塔顶层的50个特征匹配点,实现对相机的初始化位姿估计。更进一步,该算法结合相机初始位姿,采用极线收索的方式,建立图像金字塔中角点特征亚像素精度匹配关系,并将上述匹配对带入位姿估计模型,实现相机的精确重定位。According to the above pose estimation model, 50 feature matching points located at the top of the image pyramid are selected to realize the initial pose estimation of the camera. Furthermore, the algorithm combines the initial pose of the camera and adopts the method of epipolar retrieval to establish the sub-pixel precision matching relationship of the corner features in the image pyramid, and brings the above matching pairs into the pose estimation model to realize the precise repositioning of the camera .
(3)相机位姿优化(3) Camera pose optimization
系统经初始化后,地图创建线程将等待新的关键帧进入。若相机与当前关键帧间图像帧数超出阈值条件,且相机跟踪效果最佳时,将自动执行添加关键帧过程。此时,系统将会对新增加关键帧中所有FAST角点进行Shi-Tomas评估,以获取当前具有显著特征的角点信息,并选取与之最近的关键帧利用极线收索与块匹配方法建立特征点映射关系,结合位姿估计模型实现相机精确重定位,同时将匹配点投影到空间,生成当前全局环境三维地图。After the system is initialized, the map creation thread will wait for new keyframes to come in. If the number of image frames between the camera and the current key frame exceeds the threshold condition, and the camera tracking effect is the best, the process of adding key frames will be automatically performed. At this time, the system will perform Shi-Tomas evaluation on all FAST corner points in the newly added keyframes to obtain the current corner point information with salient features, and select the nearest keyframe to use epipolar search and block matching methods Establish the mapping relationship of feature points, combine the pose estimation model to achieve precise camera repositioning, and project the matching points into space to generate a 3D map of the current global environment.
为了实现全局地图的维护,在地图创建线程等待新关键帧进入的过程中,系统将利用局部与全局的Levenberg-Marquardt集束调整算法实现当前地图的一致性优化。该集束调整算法的数学描述为:In order to maintain the global map, the system will use the local and global Levenberg-Marquardt bundle adjustment algorithm to achieve the consistency optimization of the current map while the map creation thread is waiting for new keyframes to enter. The mathematical description of the cluster adjustment algorithm is:
式中,σji为在第i个关键帧中,FAST特征点的匹配标准差的无偏估计,ξi表示第i个关键帧位姿的6元组表示,pi为全局地图中的点。where σ ji is the unbiased estimate of the matching standard deviation of the FAST feature points in the ith keyframe, ξi is the 6-tuple representation of the pose of the ith keyframe, p i is the point in the global map .
步骤四,建立基于变分机制的深度图估计模型,并求解该模型。Step 4: Establish a variational mechanism-based depth map estimation model and solve the model.
在PTAM精确位姿估计前提下,本发明基于多视重建方法,利用变分机制建立深度求解模型。该方法基于光照不变性与深度图平滑性假设,建立L1型数据惩罚项与变分规则项,该模型由在光照不变性假设的前提下建立数据惩罚项,并利用数据惩罚项保证当前深度图的平滑性,其数学模型如下:On the premise of PTAM accurate pose estimation, the present invention is based on a multi-view reconstruction method, and uses a variational mechanism to establish a depth solution model. Based on the assumption of illumination invariance and depth map smoothness, this method establishes L1 type data penalty items and variation rule items. The model establishes data penalty items under the premise of illumination invariance assumption, and uses data penalty items to ensure that the current depth map The smoothness of , its mathematical model is as follows:
Ed=∫Ω(Edata+λEreg)dxE d =∫ Ω (E data +λE reg )dx
式中,λ为数据惩罚项Edata与变分规则项Ereg间的权重系数,为深度图取值范围。In the formula, λ is the weight coefficient between the data penalty item E data and the variation rule item E reg , Value range for the depth map.
通过选取当前关键帧为深度图估计算法的参考帧Ir,利用其相邻像序列I={I1,I2,...,In},结合投影模型建立数据惩罚项Edata,其数学描述为:By selecting the current key frame as the reference frame I r of the depth map estimation algorithm, using its adjacent image sequence I={I 1 ,I 2 ,..., In }, combined with the projection model to establish the data penalty item E data , its The mathematical description is:
式中,|I(r)|为当前图像序列中与参考帧具有重合信息的图像帧数量,x′为在当深度d下参考帧x处在Ii处的投影坐标,即:In the formula, |I(r)| is the number of image frames in the current image sequence that have overlapping information with the reference frame, and x' is the projection coordinate of the reference frame x at I i at the current depth d, that is:
在深度图平滑性假设前提下,为了确保在图像中边界处的不连续性,引入加权Huber算子构建变分规则项,其数学描述为:Under the assumption of smoothness of the depth map, in order to ensure the discontinuity at the boundary in the image, a weighted Huber operator is introduced to construct a variational rule item, whose mathematical description is:
Ereg=g(u)||▽d(u)||α E reg =g(u)||▽d(u)|| α
式中,▽d为深度图的梯度,g(u)为像素梯度权重系数,且g(u)=exp(-a||▽Ir(u)||)In the formula, ▽d is the gradient of the depth map, g(u) is the weight coefficient of the pixel gradient, and g(u)=exp(-a||▽I r (u)||)
Huber算子||x||α的数学描述为:The mathematical description of the Huber operator ||x|| α is:
式中,α为常量。In the formula, α is a constant.
根据Legendre-Fenchel变换,能量函数可表示为:
式中,
上述Huber算子的引入为三维重建过程提供了光滑性保证,同时也为确保深度图中存在非连续边界,提高了三维地图创建质量。The introduction of the above-mentioned Huber operator provides a smoothness guarantee for the 3D reconstruction process, and also ensures the presence of discontinuous boundaries in the depth map, improving the quality of 3D map creation.
针对上述数学模型求解复杂度高、计算量大的问题,引入辅助变量建立凸优化模型,采用交替下降法实现对上述模型的优化,其具体过程如下:Aiming at solving the problems of high complexity and large amount of calculation in the above mathematical model, an auxiliary variable is introduced to establish a convex optimization model, and the optimization of the above model is realized by using the alternating descent method. The specific process is as follows:
(1)固定h,求解:(1) Fix h, solve:
式中,θ为二次项常系数,g为变分规则项中梯度权重系数。In the formula, θ is the constant coefficient of the quadratic term, and g is the gradient weight coefficient in the variation rule term.
根据拉格朗日极值法,上述能量函数达到极值的条件为:According to the Lagrangian extreme value method, the condition for the above energy function to reach the extreme value is:
式中,divq为q的散度。In the formula, divq is the divergence of q.
结合偏导数离散化描述,上述极值条件可表示为:Combined with the discretization description of partial derivatives, the above extreme value condition can be expressed as:
此时可采用原始对偶算法实现能量函数的迭代优化,即:At this time, the original dual algorithm can be used to realize the iterative optimization of the energy function, namely:
式中,εq、εd为常数,分别表示最大化与最小化梯度描述系数。In the formula, ε q and ε d are constants, representing the maximum and minimum gradient description coefficients respectively.
(2)固定d,求解:(2) Fix d, solve:
在上述能量函数求解过程中,为了有效减少算法的复杂度,同时保证重建过程中的部分细节信息。本发明将深度取值范围[dmin,dmax]划分为S个采样平面,采用穷举的方式获取当前能量函数的最优解。其中步长的选择为:In the process of solving the above energy function, in order to effectively reduce the complexity of the algorithm, and at the same time ensure part of the detailed information in the reconstruction process. The present invention divides the depth value range [d min , d max ] into S sampling planes, and obtains the optimal solution of the current energy function in an exhaustive manner. The choice of step size is:
式中,为k与k-1采样平面间隔。In the formula, Sampling plane intervals for k and k-1.
步骤五,建立关键帧选取机制,实现三维场景的更新。Step five, establishing a key frame selection mechanism to realize updating of the 3D scene.
考虑系统冗余信息的消除,为了提高重建结果的清晰度以及实时性,减少系统在计算负担,本发明只在关键帧处实现对三维场景的估计,并更新和维护所生成的三维场景。当新增一帧KeyFrame数据后,根据式将当前新增KeyFrame数据转换到世界坐标系中,完成场景数据的更新。Considering the elimination of redundant information in the system, in order to improve the clarity and real-time performance of the reconstruction results and reduce the computational burden of the system, the present invention only realizes the estimation of the 3D scene at key frames, and updates and maintains the generated 3D scene. After adding a frame of KeyFrame data, according to the formula Convert the current newly added KeyFrame data to the world coordinate system to complete the update of the scene data.
利用深度模型中数据惩罚项,建立当前帧与关键帧间的信息重合程度评估函数,即:Using the data penalty item in the depth model, the evaluation function of the information coincidence degree between the current frame and the key frame is established, namely:
式中,ζ为常数。In the formula, ζ is a constant.
若此时N小于图像大小的0.7时,即确定当前帧为新关键帧。If N is smaller than 0.7 of the image size at this time, it is determined that the current frame is a new key frame.
本发明的有益效果是:本发明采用RGB相机获取环境数据。针对利用高精度单目定位算法,提出一种基于变分机制的深度图生成方法,实现了大范围的快速室内三维场景重建,有效地解决了三维重建算法成本与实时性问题。The beneficial effect of the present invention is that: the present invention adopts RGB camera to obtain environmental data. For the use of high-precision monocular positioning algorithm, a depth map generation method based on variational mechanism is proposed, which realizes a large-scale rapid indoor 3D scene reconstruction, and effectively solves the cost and real-time problems of 3D reconstruction algorithms.
附图说明Description of drawings
图1为基于变分模型的室内三维场景重建方法流程图;Fig. 1 is the flowchart of the indoor 3D scene reconstruction method based on the variational model;
图2为相机坐标系示意图;Figure 2 is a schematic diagram of the camera coordinate system;
图3为本发明应用实例的三维重建实验结果。Fig. 3 is the experimental result of three-dimensional reconstruction of the application example of the present invention.
具体实施方式Detailed ways
图1是基于变分模型的室内三维场景重建方法流程图,包括以下步骤:Figure 1 is a flowchart of a method for indoor 3D scene reconstruction based on a variational model, including the following steps:
步骤一,获取相机的标定参数,并建立畸变矫正模型。
步骤二,建立相机位姿描述与相机投影模型。Step 2, establish camera pose description and camera projection model.
步骤三,利用基于SFM的单目SLAM算法实现相机位姿估计。Step 3, use the SFM-based monocular SLAM algorithm to realize camera pose estimation.
步骤四,建立基于变分机制的深度图估计模型,并求解该模型。Step 4: Establish a variational mechanism-based depth map estimation model and solve the model.
步骤五,建立关键帧选取机制,实现三维场景的更新。Step five, establishing a key frame selection mechanism to realize updating of the 3D scene.
下面给出本发明的一个应用实例。An application example of the present invention is given below.
本实例采用的RGB相机为Point Grey Flea2,图像辨率为640×480,最高帧频为30fps,水平视场角为65°,焦距大约为3.5mm。所使用的PC机配备有GTS450GPU和i5四核CPU。The RGB camera used in this example is Point Gray Flea2, the image resolution is 640×480, the maximum frame rate is 30fps, the horizontal field of view is 65°, and the focal length is about 3.5mm. The PC used is equipped with GTS450GPU and i5 quad-core CPU.
在实验过程中,通过彩色相机获取环境深度信息,结合相机位姿估计算法实现对自身精确定位。当进入关键帧后,选择关键帧周围20帧图像作为本文深度估计算法的输入。在深度估计算法执行过程中,令d0=h0且q0=0,计算以获取当前深度图的初始化输入,并迭代优化Ed,q与Eh直到收敛。同时,该在算法迭代过程中不断减小θ值,增加二次函数在算法执行过程中的权重,有效提高了算法收敛速度。最终实验结果如图3所示,实验表明该方法能有效实现环境的稠密三维重建,并进一步验证了该方法的可行性。During the experiment, the depth information of the environment is obtained through the color camera, and the camera pose estimation algorithm is used to realize the precise positioning of itself. After entering the key frame, select 20 frames of images around the key frame as the input of the depth estimation algorithm in this paper. During the execution of the depth estimation algorithm, let d 0 =h 0 and q 0 =0, calculate To obtain the initialization input of the current depth map, and iteratively optimize E d, q and E h until convergence. At the same time, the value of θ is continuously reduced during the algorithm iteration process, and the weight of the quadratic function in the algorithm execution process is increased, which effectively improves the algorithm convergence speed. The final experimental results are shown in Figure 3. The experiment shows that the method can effectively realize the dense 3D reconstruction of the environment, and further verifies the feasibility of the method.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310173608.XA CN103247075B (en) | 2013-05-13 | 2013-05-13 | Based on the indoor environment three-dimensional rebuilding method of variation mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310173608.XA CN103247075B (en) | 2013-05-13 | 2013-05-13 | Based on the indoor environment three-dimensional rebuilding method of variation mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103247075A true CN103247075A (en) | 2013-08-14 |
CN103247075B CN103247075B (en) | 2015-08-19 |
Family
ID=48926580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310173608.XA Expired - Fee Related CN103247075B (en) | 2013-05-13 | 2013-05-13 | Based on the indoor environment three-dimensional rebuilding method of variation mechanism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103247075B (en) |
Cited By (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103901891A (en) * | 2014-04-12 | 2014-07-02 | 复旦大学 | Dynamic particle tree SLAM algorithm based on hierarchical structure |
CN103914874A (en) * | 2014-04-08 | 2014-07-09 | 中山大学 | Compact SFM three-dimensional reconstruction method without feature extraction |
CN103942832A (en) * | 2014-04-11 | 2014-07-23 | 浙江大学 | Real-time indoor scene reconstruction method based on on-line structure analysis |
CN104427230A (en) * | 2013-08-28 | 2015-03-18 | 北京大学 | Reality enhancement method and reality enhancement system |
CN104463962A (en) * | 2014-12-09 | 2015-03-25 | 合肥工业大学 | Three-dimensional scene reconstruction method based on GPS information video |
CN104537709A (en) * | 2014-12-15 | 2015-04-22 | 西北工业大学 | Real-time three-dimensional reconstruction key frame determination method based on position and orientation changes |
CN104881029A (en) * | 2015-05-15 | 2015-09-02 | 重庆邮电大学 | Mobile robot navigation method based on one point RANSAC and FAST algorithm |
WO2015134832A1 (en) * | 2014-03-06 | 2015-09-11 | Nec Laboratories America, Inc. | High accuracy monocular moving object localization |
CN105513083A (en) * | 2015-12-31 | 2016-04-20 | 新浪网技术(中国)有限公司 | PTAM camera tracking method and device |
CN105654492A (en) * | 2015-12-30 | 2016-06-08 | 哈尔滨工业大学 | Robust real-time three-dimensional (3D) reconstruction method based on consumer camera |
CN105678842A (en) * | 2016-01-11 | 2016-06-15 | 湖南拓视觉信息技术有限公司 | Manufacturing method and device for three-dimensional map of indoor environment |
CN105678754A (en) * | 2015-12-31 | 2016-06-15 | 西北工业大学 | Unmanned aerial vehicle real-time map reconstruction method |
CN105686936A (en) * | 2016-01-12 | 2016-06-22 | 浙江大学 | Sound coding interaction system based on RGB-IR camera |
CN105825520A (en) * | 2015-01-08 | 2016-08-03 | 北京雷动云合智能技术有限公司 | Monocular SLAM (Simultaneous Localization and Mapping) method capable of creating large-scale map |
CN105869136A (en) * | 2015-01-22 | 2016-08-17 | 北京雷动云合智能技术有限公司 | Collaborative visual SLAM method based on multiple cameras |
CN105856230A (en) * | 2016-05-06 | 2016-08-17 | 简燕梅 | ORB key frame closed-loop detection SLAM method capable of improving consistency of position and pose of robot |
CN105928505A (en) * | 2016-04-19 | 2016-09-07 | 深圳市神州云海智能科技有限公司 | Determination method and apparatus for position and orientation of mobile robot |
CN105955273A (en) * | 2016-05-25 | 2016-09-21 | 速感科技(北京)有限公司 | Indoor robot navigation system and method |
CN106052674A (en) * | 2016-05-20 | 2016-10-26 | 青岛克路德机器人有限公司 | Indoor robot SLAM method and system |
CN106097304A (en) * | 2016-05-31 | 2016-11-09 | 西北工业大学 | A kind of unmanned plane real-time online ground drawing generating method |
CN106127739A (en) * | 2016-06-16 | 2016-11-16 | 华东交通大学 | A kind of RGB D SLAM method of combination monocular vision |
CN106289099A (en) * | 2016-07-28 | 2017-01-04 | 汕头大学 | A kind of single camera vision system and three-dimensional dimension method for fast measuring based on this system |
CN106485744A (en) * | 2016-10-10 | 2017-03-08 | 成都奥德蒙科技有限公司 | A kind of synchronous superposition method |
CN106529838A (en) * | 2016-12-16 | 2017-03-22 | 湖南拓视觉信息技术有限公司 | Virtual assembling method and device |
CN106595601A (en) * | 2016-12-12 | 2017-04-26 | 天津大学 | Camera six-degree-of-freedom pose accurate repositioning method without hand eye calibration |
CN106780588A (en) * | 2016-12-09 | 2017-05-31 | 浙江大学 | A kind of image depth estimation method based on sparse laser observations |
CN106780576A (en) * | 2016-11-23 | 2017-05-31 | 北京航空航天大学 | A kind of camera position and orientation estimation method towards RGBD data flows |
CN106803275A (en) * | 2017-02-20 | 2017-06-06 | 苏州中科广视文化科技有限公司 | Estimated based on camera pose and the 2D panoramic videos of spatial sampling are generated |
CN106875437A (en) * | 2016-12-27 | 2017-06-20 | 北京航空航天大学 | A kind of extraction method of key frame towards RGBD three-dimensional reconstructions |
CN106875446A (en) * | 2017-02-20 | 2017-06-20 | 清华大学 | Camera method for relocating and device |
CN106940186A (en) * | 2017-02-16 | 2017-07-11 | 华中科技大学 | A kind of robot autonomous localization and air navigation aid and system |
CN107004275A (en) * | 2014-11-21 | 2017-08-01 | Metaio有限公司 | For determining that at least one of 3D in absolute space ratio of material object reconstructs the method and system of the space coordinate of part |
CN106997614A (en) * | 2017-03-17 | 2017-08-01 | 杭州光珀智能科技有限公司 | A kind of large scale scene 3D modeling method and its device based on depth camera |
CN107160395A (en) * | 2017-06-07 | 2017-09-15 | 中国人民解放军装甲兵工程学院 | Map constructing method and robot control system |
CN107292949A (en) * | 2017-05-25 | 2017-10-24 | 深圳先进技术研究院 | Three-dimensional rebuilding method, device and the terminal device of scene |
CN107481279A (en) * | 2017-05-18 | 2017-12-15 | 华中科技大学 | A kind of monocular video depth map computational methods |
CN107506040A (en) * | 2017-08-29 | 2017-12-22 | 上海爱优威软件开发有限公司 | A kind of space path method and system for planning |
CN107657640A (en) * | 2017-09-30 | 2018-02-02 | 南京大典科技有限公司 | Intelligent patrol inspection management method based on ORB SLAM |
CN107818592A (en) * | 2017-11-24 | 2018-03-20 | 北京华捷艾米科技有限公司 | Method, system and the interactive system of collaborative synchronous superposition |
CN107833245A (en) * | 2017-11-28 | 2018-03-23 | 北京搜狐新媒体信息技术有限公司 | SLAM method and system based on monocular vision Feature Points Matching |
CN107862720A (en) * | 2017-11-24 | 2018-03-30 | 北京华捷艾米科技有限公司 | Pose optimization method and pose optimization system based on the fusion of more maps |
CN107909643A (en) * | 2017-11-06 | 2018-04-13 | 清华大学 | Mixing scene reconstruction method and device based on model segmentation |
CN108062537A (en) * | 2017-12-29 | 2018-05-22 | 幻视信息科技(深圳)有限公司 | A kind of 3d space localization method, device and computer readable storage medium |
CN108122263A (en) * | 2017-04-28 | 2018-06-05 | 上海联影医疗科技有限公司 | Image re-construction system and method |
CN108154531A (en) * | 2018-01-03 | 2018-06-12 | 深圳北航新兴产业技术研究院 | A kind of method and apparatus for calculating body-surface rauma region area |
CN108171787A (en) * | 2017-12-18 | 2018-06-15 | 桂林电子科技大学 | A kind of three-dimensional rebuilding method based on the detection of ORB features |
CN108242079A (en) * | 2017-12-30 | 2018-07-03 | 北京工业大学 | A VSLAM method based on multi-feature visual odometry and graph optimization model |
CN108447116A (en) * | 2018-02-13 | 2018-08-24 | 中国传媒大学 | The method for reconstructing three-dimensional scene and device of view-based access control model SLAM |
CN108629843A (en) * | 2017-03-24 | 2018-10-09 | 成都理想境界科技有限公司 | A kind of method and apparatus for realizing augmented reality |
CN108898669A (en) * | 2018-07-17 | 2018-11-27 | 网易(杭州)网络有限公司 | Data processing method, device, medium and calculating equipment |
WO2018214086A1 (en) * | 2017-05-25 | 2018-11-29 | 深圳先进技术研究院 | Method and apparatus for three-dimensional reconstruction of scene, and terminal device |
CN109191526A (en) * | 2018-09-10 | 2019-01-11 | 杭州艾米机器人有限公司 | Three-dimensional environment method for reconstructing and system based on RGBD camera and optical encoder |
CN109254579A (en) * | 2017-07-14 | 2019-01-22 | 上海汽车集团股份有限公司 | A kind of binocular vision camera hardware system, 3 D scene rebuilding system and method |
CN109697753A (en) * | 2018-12-10 | 2019-04-30 | 智灵飞(北京)科技有限公司 | A kind of no-manned plane three-dimensional method for reconstructing, unmanned plane based on RGB-D SLAM |
CN109739079A (en) * | 2018-12-25 | 2019-05-10 | 广东工业大学 | A Method to Improve the Accuracy of VSLAM System |
CN109870118A (en) * | 2018-11-07 | 2019-06-11 | 南京林业大学 | A point cloud collection method for green plant time series model |
CN110059651A (en) * | 2019-04-24 | 2019-07-26 | 北京计算机技术及应用研究所 | A kind of camera real-time tracking register method |
CN110555883A (en) * | 2018-04-27 | 2019-12-10 | 腾讯科技(深圳)有限公司 | repositioning method and device for camera attitude tracking process and storage medium |
CN110751640A (en) * | 2019-10-17 | 2020-02-04 | 南京鑫和汇通电子科技有限公司 | Quadrangle detection method of depth image based on angular point pairing |
CN110966917A (en) * | 2018-09-29 | 2020-04-07 | 深圳市掌网科技股份有限公司 | Indoor three-dimensional scanning system and method for mobile terminal |
CN111145238A (en) * | 2019-12-12 | 2020-05-12 | 中国科学院深圳先进技术研究院 | Three-dimensional reconstruction method and device of monocular endoscope image and terminal equipment |
CN111340864A (en) * | 2020-02-26 | 2020-06-26 | 浙江大华技术股份有限公司 | Monocular estimation-based three-dimensional scene fusion method and device |
CN111652901A (en) * | 2020-06-02 | 2020-09-11 | 山东大学 | A Textureless 3D Object Tracking Method Based on Confidence and Feature Fusion |
CN112221132A (en) * | 2020-10-14 | 2021-01-15 | 王军力 | Method and system for applying three-dimensional weiqi to online game |
CN112348868A (en) * | 2020-11-06 | 2021-02-09 | 养哇(南京)科技有限公司 | Method and system for recovering monocular SLAM scale through detection and calibration |
CN112348869A (en) * | 2020-11-17 | 2021-02-09 | 的卢技术有限公司 | Method for recovering monocular SLAM scale through detection and calibration |
CN112597334A (en) * | 2021-01-15 | 2021-04-02 | 天津帕克耐科技有限公司 | Data processing method of communication data center |
CN112634371A (en) * | 2019-09-24 | 2021-04-09 | 北京百度网讯科技有限公司 | Method and device for outputting information and calibrating camera |
CN113034606A (en) * | 2021-02-26 | 2021-06-25 | 嘉兴丰鸟科技有限公司 | Motion recovery structure calculation method |
CN113534786A (en) * | 2020-04-20 | 2021-10-22 | 深圳市奇虎智能科技有限公司 | SLAM method-based environment reconstruction method and system and mobile robot |
CN113902847A (en) * | 2021-10-11 | 2022-01-07 | 岱悟智能科技(上海)有限公司 | Monocular depth image pose optimization method based on three-dimensional feature constraint |
US11348260B2 (en) * | 2017-06-22 | 2022-05-31 | Interdigital Vc Holdings, Inc. | Methods and devices for encoding and reconstructing a point cloud |
WO2022142049A1 (en) * | 2020-12-29 | 2022-07-07 | 浙江商汤科技开发有限公司 | Map construction method and apparatus, device, storage medium, and computer program product |
CN114943773A (en) * | 2022-04-06 | 2022-08-26 | 阿里巴巴(中国)有限公司 | Camera calibration method, device, equipment and storage medium |
CN117214860A (en) * | 2023-08-14 | 2023-12-12 | 北京科技大学顺德创新学院 | Laser radar odometer method based on twin feature pyramid and ground segmentation |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105701811B (en) * | 2016-01-12 | 2018-05-22 | 浙江大学 | A kind of acoustic coding exchange method based on RGB-IR cameras |
CN108645398A (en) * | 2018-02-09 | 2018-10-12 | 深圳积木易搭科技技术有限公司 | A kind of instant positioning and map constructing method and system based on structured environment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07182541A (en) * | 1993-12-21 | 1995-07-21 | Nec Corp | Preparing method for three-dimensional model |
CN101369348A (en) * | 2008-11-07 | 2009-02-18 | 上海大学 | A New Viewpoint Reconstruction Method in Multi-viewpoint Acquisition/Display System of Convergent Cameras |
CN102800127A (en) * | 2012-07-18 | 2012-11-28 | 清华大学 | Light stream optimization based three-dimensional reconstruction method and device |
-
2013
- 2013-05-13 CN CN201310173608.XA patent/CN103247075B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07182541A (en) * | 1993-12-21 | 1995-07-21 | Nec Corp | Preparing method for three-dimensional model |
CN101369348A (en) * | 2008-11-07 | 2009-02-18 | 上海大学 | A New Viewpoint Reconstruction Method in Multi-viewpoint Acquisition/Display System of Convergent Cameras |
CN102800127A (en) * | 2012-07-18 | 2012-11-28 | 清华大学 | Light stream optimization based three-dimensional reconstruction method and device |
Non-Patent Citations (2)
Title |
---|
TAGUCHI.Y ,ETAL: "SLAM using both points and planes for hand-held 3D sensors", 《MIXED AND AUGMENTED REALITY (ISMAR), 2012 IEEE INTERNATIONAL SYMPOSIUM ON》 * |
刘鑫,等: "基于GPU和Kinect的快速物体重建", 《自动化学报》 * |
Cited By (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104427230B (en) * | 2013-08-28 | 2017-08-25 | 北京大学 | The method of augmented reality and the system of augmented reality |
CN104427230A (en) * | 2013-08-28 | 2015-03-18 | 北京大学 | Reality enhancement method and reality enhancement system |
WO2015134832A1 (en) * | 2014-03-06 | 2015-09-11 | Nec Laboratories America, Inc. | High accuracy monocular moving object localization |
US9367922B2 (en) | 2014-03-06 | 2016-06-14 | Nec Corporation | High accuracy monocular moving object localization |
CN103914874B (en) * | 2014-04-08 | 2017-02-01 | 中山大学 | Compact SFM three-dimensional reconstruction method without feature extraction |
US9686527B2 (en) | 2014-04-08 | 2017-06-20 | Sun Yat-Sen University | Non-feature extraction-based dense SFM three-dimensional reconstruction method |
CN103914874A (en) * | 2014-04-08 | 2014-07-09 | 中山大学 | Compact SFM three-dimensional reconstruction method without feature extraction |
WO2015154601A1 (en) * | 2014-04-08 | 2015-10-15 | 中山大学 | Non-feature extraction-based dense sfm three-dimensional reconstruction method |
CN103942832A (en) * | 2014-04-11 | 2014-07-23 | 浙江大学 | Real-time indoor scene reconstruction method based on on-line structure analysis |
CN103942832B (en) * | 2014-04-11 | 2016-07-06 | 浙江大学 | A kind of indoor scene real-time reconstruction method based on online structural analysis |
CN103901891A (en) * | 2014-04-12 | 2014-07-02 | 复旦大学 | Dynamic particle tree SLAM algorithm based on hierarchical structure |
CN107004275A (en) * | 2014-11-21 | 2017-08-01 | Metaio有限公司 | For determining that at least one of 3D in absolute space ratio of material object reconstructs the method and system of the space coordinate of part |
US11741624B2 (en) | 2014-11-21 | 2023-08-29 | Apple Inc. | Method and system for determining spatial coordinates of a 3D reconstruction of at least part of a real object at absolute spatial scale |
CN107004275B (en) * | 2014-11-21 | 2020-09-29 | 苹果公司 | Method and system for determining spatial coordinates of 3D heavy components of at least a portion of an object |
US10846871B2 (en) | 2014-11-21 | 2020-11-24 | Apple Inc. | Method and system for determining spatial coordinates of a 3D reconstruction of at least part of a real object at absolute spatial scale |
CN104463962B (en) * | 2014-12-09 | 2017-02-22 | 合肥工业大学 | Three-dimensional scene reconstruction method based on GPS information video |
CN104463962A (en) * | 2014-12-09 | 2015-03-25 | 合肥工业大学 | Three-dimensional scene reconstruction method based on GPS information video |
CN104537709A (en) * | 2014-12-15 | 2015-04-22 | 西北工业大学 | Real-time three-dimensional reconstruction key frame determination method based on position and orientation changes |
CN104537709B (en) * | 2014-12-15 | 2017-09-29 | 西北工业大学 | It is a kind of that method is determined based on the real-time three-dimensional reconstruction key frame that pose changes |
CN105825520A (en) * | 2015-01-08 | 2016-08-03 | 北京雷动云合智能技术有限公司 | Monocular SLAM (Simultaneous Localization and Mapping) method capable of creating large-scale map |
CN105869136A (en) * | 2015-01-22 | 2016-08-17 | 北京雷动云合智能技术有限公司 | Collaborative visual SLAM method based on multiple cameras |
CN104881029B (en) * | 2015-05-15 | 2018-01-30 | 重庆邮电大学 | Mobile Robotics Navigation method based on a point RANSAC and FAST algorithms |
CN104881029A (en) * | 2015-05-15 | 2015-09-02 | 重庆邮电大学 | Mobile robot navigation method based on one point RANSAC and FAST algorithm |
CN105654492B (en) * | 2015-12-30 | 2018-09-07 | 哈尔滨工业大学 | Robust real-time three-dimensional method for reconstructing based on consumer level camera |
CN105654492A (en) * | 2015-12-30 | 2016-06-08 | 哈尔滨工业大学 | Robust real-time three-dimensional (3D) reconstruction method based on consumer camera |
CN105678754A (en) * | 2015-12-31 | 2016-06-15 | 西北工业大学 | Unmanned aerial vehicle real-time map reconstruction method |
CN105513083A (en) * | 2015-12-31 | 2016-04-20 | 新浪网技术(中国)有限公司 | PTAM camera tracking method and device |
CN105513083B (en) * | 2015-12-31 | 2019-02-22 | 新浪网技术(中国)有限公司 | A kind of PTAM video camera tracking method and device |
CN105678842A (en) * | 2016-01-11 | 2016-06-15 | 湖南拓视觉信息技术有限公司 | Manufacturing method and device for three-dimensional map of indoor environment |
CN105686936B (en) * | 2016-01-12 | 2017-12-29 | 浙江大学 | A kind of acoustic coding interactive system based on RGB-IR cameras |
CN105686936A (en) * | 2016-01-12 | 2016-06-22 | 浙江大学 | Sound coding interaction system based on RGB-IR camera |
CN105928505B (en) * | 2016-04-19 | 2019-01-29 | 深圳市神州云海智能科技有限公司 | The pose of mobile robot determines method and apparatus |
CN105928505A (en) * | 2016-04-19 | 2016-09-07 | 深圳市神州云海智能科技有限公司 | Determination method and apparatus for position and orientation of mobile robot |
CN105856230B (en) * | 2016-05-06 | 2017-11-24 | 简燕梅 | A kind of ORB key frames closed loop detection SLAM methods for improving robot pose uniformity |
CN105856230A (en) * | 2016-05-06 | 2016-08-17 | 简燕梅 | ORB key frame closed-loop detection SLAM method capable of improving consistency of position and pose of robot |
CN106052674A (en) * | 2016-05-20 | 2016-10-26 | 青岛克路德机器人有限公司 | Indoor robot SLAM method and system |
CN106052674B (en) * | 2016-05-20 | 2019-07-26 | 青岛克路德机器人有限公司 | A kind of SLAM method and system of Indoor Robot |
CN105955273A (en) * | 2016-05-25 | 2016-09-21 | 速感科技(北京)有限公司 | Indoor robot navigation system and method |
CN106097304A (en) * | 2016-05-31 | 2016-11-09 | 西北工业大学 | A kind of unmanned plane real-time online ground drawing generating method |
CN106097304B (en) * | 2016-05-31 | 2019-04-23 | 西北工业大学 | A real-time online map generation method for unmanned aerial vehicles |
CN106127739B (en) * | 2016-06-16 | 2021-04-27 | 华东交通大学 | An RGB-D SLAM Method Combined with Monocular Vision |
CN106127739A (en) * | 2016-06-16 | 2016-11-16 | 华东交通大学 | A kind of RGB D SLAM method of combination monocular vision |
CN106289099A (en) * | 2016-07-28 | 2017-01-04 | 汕头大学 | A kind of single camera vision system and three-dimensional dimension method for fast measuring based on this system |
CN106289099B (en) * | 2016-07-28 | 2018-11-20 | 汕头大学 | A kind of single camera vision system and the three-dimensional dimension method for fast measuring based on the system |
CN106485744A (en) * | 2016-10-10 | 2017-03-08 | 成都奥德蒙科技有限公司 | A kind of synchronous superposition method |
CN106485744B (en) * | 2016-10-10 | 2019-08-20 | 成都弥知科技有限公司 | A kind of synchronous superposition method |
CN106780576B (en) * | 2016-11-23 | 2020-03-17 | 北京航空航天大学 | RGBD data stream-oriented camera pose estimation method |
CN106780576A (en) * | 2016-11-23 | 2017-05-31 | 北京航空航天大学 | A kind of camera position and orientation estimation method towards RGBD data flows |
CN106780588A (en) * | 2016-12-09 | 2017-05-31 | 浙江大学 | A kind of image depth estimation method based on sparse laser observations |
CN106595601B (en) * | 2016-12-12 | 2020-01-07 | 天津大学 | An accurate relocation method of camera 6-DOF pose without hand-eye calibration |
CN106595601A (en) * | 2016-12-12 | 2017-04-26 | 天津大学 | Camera six-degree-of-freedom pose accurate repositioning method without hand eye calibration |
CN106529838A (en) * | 2016-12-16 | 2017-03-22 | 湖南拓视觉信息技术有限公司 | Virtual assembling method and device |
CN106875437A (en) * | 2016-12-27 | 2017-06-20 | 北京航空航天大学 | A kind of extraction method of key frame towards RGBD three-dimensional reconstructions |
CN106940186A (en) * | 2017-02-16 | 2017-07-11 | 华中科技大学 | A kind of robot autonomous localization and air navigation aid and system |
CN106940186B (en) * | 2017-02-16 | 2019-09-24 | 华中科技大学 | A kind of robot autonomous localization and navigation methods and systems |
CN106803275A (en) * | 2017-02-20 | 2017-06-06 | 苏州中科广视文化科技有限公司 | Estimated based on camera pose and the 2D panoramic videos of spatial sampling are generated |
CN106875446A (en) * | 2017-02-20 | 2017-06-20 | 清华大学 | Camera method for relocating and device |
CN106875446B (en) * | 2017-02-20 | 2019-09-20 | 清华大学 | Camera repositioning method and device |
CN106997614A (en) * | 2017-03-17 | 2017-08-01 | 杭州光珀智能科技有限公司 | A kind of large scale scene 3D modeling method and its device based on depth camera |
CN108629843A (en) * | 2017-03-24 | 2018-10-09 | 成都理想境界科技有限公司 | A kind of method and apparatus for realizing augmented reality |
CN108629843B (en) * | 2017-03-24 | 2021-07-13 | 成都理想境界科技有限公司 | Method and equipment for realizing augmented reality |
US11455756B2 (en) | 2017-04-28 | 2022-09-27 | Shanghai United Imaging Healthcare Co., Ltd. | System and method for image reconstruction |
CN108122263B (en) * | 2017-04-28 | 2021-06-25 | 上海联影医疗科技股份有限公司 | Image reconstruction system and method |
US11062487B2 (en) | 2017-04-28 | 2021-07-13 | Shanghai United Imaging Healthcare Co., Ltd. | System and method for image reconstruction |
CN108122263A (en) * | 2017-04-28 | 2018-06-05 | 上海联影医疗科技有限公司 | Image re-construction system and method |
CN107481279A (en) * | 2017-05-18 | 2017-12-15 | 华中科技大学 | A kind of monocular video depth map computational methods |
WO2018214086A1 (en) * | 2017-05-25 | 2018-11-29 | 深圳先进技术研究院 | Method and apparatus for three-dimensional reconstruction of scene, and terminal device |
CN107292949A (en) * | 2017-05-25 | 2017-10-24 | 深圳先进技术研究院 | Three-dimensional rebuilding method, device and the terminal device of scene |
CN107292949B (en) * | 2017-05-25 | 2020-06-16 | 深圳先进技术研究院 | Three-dimensional reconstruction method and device of scene and terminal equipment |
CN107160395A (en) * | 2017-06-07 | 2017-09-15 | 中国人民解放军装甲兵工程学院 | Map constructing method and robot control system |
US11348260B2 (en) * | 2017-06-22 | 2022-05-31 | Interdigital Vc Holdings, Inc. | Methods and devices for encoding and reconstructing a point cloud |
CN109254579A (en) * | 2017-07-14 | 2019-01-22 | 上海汽车集团股份有限公司 | A kind of binocular vision camera hardware system, 3 D scene rebuilding system and method |
CN107506040A (en) * | 2017-08-29 | 2017-12-22 | 上海爱优威软件开发有限公司 | A kind of space path method and system for planning |
CN107657640A (en) * | 2017-09-30 | 2018-02-02 | 南京大典科技有限公司 | Intelligent patrol inspection management method based on ORB SLAM |
CN107909643A (en) * | 2017-11-06 | 2018-04-13 | 清华大学 | Mixing scene reconstruction method and device based on model segmentation |
CN107909643B (en) * | 2017-11-06 | 2020-04-24 | 清华大学 | Mixed scene reconstruction method and device based on model segmentation |
CN107862720B (en) * | 2017-11-24 | 2020-05-22 | 北京华捷艾米科技有限公司 | Pose optimization method and pose optimization system based on multi-map fusion |
CN107862720A (en) * | 2017-11-24 | 2018-03-30 | 北京华捷艾米科技有限公司 | Pose optimization method and pose optimization system based on the fusion of more maps |
CN107818592A (en) * | 2017-11-24 | 2018-03-20 | 北京华捷艾米科技有限公司 | Method, system and the interactive system of collaborative synchronous superposition |
CN107833245A (en) * | 2017-11-28 | 2018-03-23 | 北京搜狐新媒体信息技术有限公司 | SLAM method and system based on monocular vision Feature Points Matching |
CN107833245B (en) * | 2017-11-28 | 2020-02-07 | 北京搜狐新媒体信息技术有限公司 | Monocular visual feature point matching-based SLAM method and system |
CN108171787A (en) * | 2017-12-18 | 2018-06-15 | 桂林电子科技大学 | A kind of three-dimensional rebuilding method based on the detection of ORB features |
CN108062537A (en) * | 2017-12-29 | 2018-05-22 | 幻视信息科技(深圳)有限公司 | A kind of 3d space localization method, device and computer readable storage medium |
CN108242079B (en) * | 2017-12-30 | 2021-06-25 | 北京工业大学 | A VSLAM method based on multi-feature visual odometry and graph optimization model |
CN108242079A (en) * | 2017-12-30 | 2018-07-03 | 北京工业大学 | A VSLAM method based on multi-feature visual odometry and graph optimization model |
CN108154531B (en) * | 2018-01-03 | 2021-10-08 | 深圳北航新兴产业技术研究院 | Method and device for calculating area of body surface damage region |
CN108154531A (en) * | 2018-01-03 | 2018-06-12 | 深圳北航新兴产业技术研究院 | A kind of method and apparatus for calculating body-surface rauma region area |
CN108447116A (en) * | 2018-02-13 | 2018-08-24 | 中国传媒大学 | The method for reconstructing three-dimensional scene and device of view-based access control model SLAM |
CN110555883A (en) * | 2018-04-27 | 2019-12-10 | 腾讯科技(深圳)有限公司 | repositioning method and device for camera attitude tracking process and storage medium |
CN110555883B (en) * | 2018-04-27 | 2022-07-22 | 腾讯科技(深圳)有限公司 | Repositioning method and device for camera attitude tracking process and storage medium |
CN108898669A (en) * | 2018-07-17 | 2018-11-27 | 网易(杭州)网络有限公司 | Data processing method, device, medium and calculating equipment |
CN109191526B (en) * | 2018-09-10 | 2020-07-07 | 杭州艾米机器人有限公司 | Three-dimensional environment reconstruction method and system based on RGBD camera and optical encoder |
CN109191526A (en) * | 2018-09-10 | 2019-01-11 | 杭州艾米机器人有限公司 | Three-dimensional environment method for reconstructing and system based on RGBD camera and optical encoder |
CN110966917A (en) * | 2018-09-29 | 2020-04-07 | 深圳市掌网科技股份有限公司 | Indoor three-dimensional scanning system and method for mobile terminal |
CN109870118B (en) * | 2018-11-07 | 2020-09-11 | 南京林业大学 | A point cloud collection method for green plant time series model |
CN109870118A (en) * | 2018-11-07 | 2019-06-11 | 南京林业大学 | A point cloud collection method for green plant time series model |
CN109697753A (en) * | 2018-12-10 | 2019-04-30 | 智灵飞(北京)科技有限公司 | A kind of no-manned plane three-dimensional method for reconstructing, unmanned plane based on RGB-D SLAM |
CN109697753B (en) * | 2018-12-10 | 2023-10-03 | 智灵飞(北京)科技有限公司 | Unmanned aerial vehicle three-dimensional reconstruction method based on RGB-D SLAM and unmanned aerial vehicle |
CN109739079B (en) * | 2018-12-25 | 2022-05-10 | 九天创新(广东)智能科技有限公司 | Method for improving VSLAM system precision |
CN109739079A (en) * | 2018-12-25 | 2019-05-10 | 广东工业大学 | A Method to Improve the Accuracy of VSLAM System |
CN110059651B (en) * | 2019-04-24 | 2021-07-02 | 北京计算机技术及应用研究所 | Real-time tracking and registering method for camera |
CN110059651A (en) * | 2019-04-24 | 2019-07-26 | 北京计算机技术及应用研究所 | A kind of camera real-time tracking register method |
CN112634371B (en) * | 2019-09-24 | 2023-12-15 | 阿波罗智联(北京)科技有限公司 | Method and device for outputting information and calibrating camera |
CN112634371A (en) * | 2019-09-24 | 2021-04-09 | 北京百度网讯科技有限公司 | Method and device for outputting information and calibrating camera |
CN110751640A (en) * | 2019-10-17 | 2020-02-04 | 南京鑫和汇通电子科技有限公司 | Quadrangle detection method of depth image based on angular point pairing |
CN110751640B (en) * | 2019-10-17 | 2024-07-16 | 南京鑫和汇通电子科技有限公司 | Quadrilateral detection method for depth image based on corner pairing |
CN111145238A (en) * | 2019-12-12 | 2020-05-12 | 中国科学院深圳先进技术研究院 | Three-dimensional reconstruction method and device of monocular endoscope image and terminal equipment |
WO2021115071A1 (en) * | 2019-12-12 | 2021-06-17 | 中国科学院深圳先进技术研究院 | Three-dimensional reconstruction method and apparatus for monocular endoscope image, and terminal device |
CN111145238B (en) * | 2019-12-12 | 2023-09-22 | 中国科学院深圳先进技术研究院 | Three-dimensional reconstruction method, device and terminal equipment of monocular endoscopic images |
CN111340864A (en) * | 2020-02-26 | 2020-06-26 | 浙江大华技术股份有限公司 | Monocular estimation-based three-dimensional scene fusion method and device |
CN111340864B (en) * | 2020-02-26 | 2023-12-12 | 浙江大华技术股份有限公司 | Three-dimensional scene fusion method and device based on monocular estimation |
CN113534786A (en) * | 2020-04-20 | 2021-10-22 | 深圳市奇虎智能科技有限公司 | SLAM method-based environment reconstruction method and system and mobile robot |
CN111652901B (en) * | 2020-06-02 | 2021-03-26 | 山东大学 | A Textureless 3D Object Tracking Method Based on Confidence and Feature Fusion |
CN111652901A (en) * | 2020-06-02 | 2020-09-11 | 山东大学 | A Textureless 3D Object Tracking Method Based on Confidence and Feature Fusion |
CN112221132A (en) * | 2020-10-14 | 2021-01-15 | 王军力 | Method and system for applying three-dimensional weiqi to online game |
CN112348868A (en) * | 2020-11-06 | 2021-02-09 | 养哇(南京)科技有限公司 | Method and system for recovering monocular SLAM scale through detection and calibration |
CN112348869A (en) * | 2020-11-17 | 2021-02-09 | 的卢技术有限公司 | Method for recovering monocular SLAM scale through detection and calibration |
CN112348869B (en) * | 2020-11-17 | 2024-08-16 | 的卢技术有限公司 | Method for recovering monocular SLAM scale through detection and calibration |
WO2022142049A1 (en) * | 2020-12-29 | 2022-07-07 | 浙江商汤科技开发有限公司 | Map construction method and apparatus, device, storage medium, and computer program product |
CN112597334A (en) * | 2021-01-15 | 2021-04-02 | 天津帕克耐科技有限公司 | Data processing method of communication data center |
CN113034606A (en) * | 2021-02-26 | 2021-06-25 | 嘉兴丰鸟科技有限公司 | Motion recovery structure calculation method |
CN113902847B (en) * | 2021-10-11 | 2024-04-16 | 岱悟智能科技(上海)有限公司 | Monocular depth image pose optimization method based on three-dimensional feature constraint |
CN113902847A (en) * | 2021-10-11 | 2022-01-07 | 岱悟智能科技(上海)有限公司 | Monocular depth image pose optimization method based on three-dimensional feature constraint |
CN114943773A (en) * | 2022-04-06 | 2022-08-26 | 阿里巴巴(中国)有限公司 | Camera calibration method, device, equipment and storage medium |
CN117214860A (en) * | 2023-08-14 | 2023-12-12 | 北京科技大学顺德创新学院 | Laser radar odometer method based on twin feature pyramid and ground segmentation |
CN117214860B (en) * | 2023-08-14 | 2024-04-19 | 北京科技大学顺德创新学院 | LiDAR odometry method based on twin feature pyramid and ground segmentation |
Also Published As
Publication number | Publication date |
---|---|
CN103247075B (en) | 2015-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103247075B (en) | Based on the indoor environment three-dimensional rebuilding method of variation mechanism | |
CN109461180B (en) | Three-dimensional scene reconstruction method based on deep learning | |
CN109974707B (en) | Indoor mobile robot visual navigation method based on improved point cloud matching algorithm | |
CN108416840B (en) | A 3D scene dense reconstruction method based on monocular camera | |
CN109166149B (en) | Positioning and three-dimensional line frame structure reconstruction method and system integrating binocular camera and IMU | |
CN107292965B (en) | Virtual and real shielding processing method based on depth image data stream | |
CN109003325B (en) | Three-dimensional reconstruction method, medium, device and computing equipment | |
CN110189399B (en) | Indoor three-dimensional layout reconstruction method and system | |
CN108564616B (en) | Fast robust RGB-D indoor three-dimensional scene reconstruction method | |
US9613420B2 (en) | Method for locating a camera and for 3D reconstruction in a partially known environment | |
CN111462135A (en) | Semantic Mapping Method Based on Visual SLAM and 2D Semantic Segmentation | |
CN108776989B (en) | Low-texture planar scene reconstruction method based on sparse SLAM framework | |
CN109035388A (en) | Three-dimensional face model method for reconstructing and device | |
CN107240129A (en) | Object and indoor small scene based on RGB D camera datas recover and modeling method | |
CN103106688A (en) | Indoor three-dimensional scene rebuilding method based on double-layer rectification method | |
CN111062966A (en) | Method for optimizing camera tracking based on L-M algorithm and polynomial interpolation | |
Pathak et al. | Dense 3D reconstruction from two spherical images via optical flow-based equirectangular epipolar rectification | |
CN114494150A (en) | A Design Method of Monocular Visual Odometry Based on Semi-direct Method | |
CN115205463A (en) | New visual angle image generation method, device and equipment based on multi-spherical scene expression | |
Liu et al. | Dense stereo matching strategy for oblique images that considers the plane directions in urban areas | |
Qu et al. | Visual slam with 3d gaussian primitives and depth priors enabling novel view synthesis | |
CN112767481B (en) | High-precision positioning and mapping method based on visual edge features | |
CN114935316A (en) | Standard depth image generation method based on optical tracking and monocular vision | |
CN119206118B (en) | NeRF-based visual dominant multi-mode SLAM method for indoor office environment | |
CN113963030B (en) | A method to improve the stability of monocular vision initialization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150819 Termination date: 20200513 |